
CPSC 521: midterm exam

Robin Cockett

November 2009

This exam is worth 20% of the course. There are 100 points available.

1. (25 points)

Consider the following Haskell code:

data Exp f v = Var v | Opn f [Exp f v]

deriving Show

instance Monad (Exp f) where

return x = Var x

Var x >>= f = f x

(Opn opn args) >>= f = Opn opn (map (\e -> e>>=f) args)

sst::Eq v => (v,Exp f v) -> (Exp f v) -> (Exp f v)

sst (v,exp1) exp2 =

do w <- exp2

if w==v then exp1 else (return w)

(i) Explain how this code implements a substitution!

(ii) Translate the above “do” syntax into “core” Haskell explaining the steps.

(iii) Write the fold(right) for lists giving its type.

(iv) Write a substitution function for a sequence of substitutions:

substitute::Eq v => [(v,Exp f v)] -> (Exp f v) -> (Exp f v)

such that

substitute [] t = t

substitute [t1/x1, t2/x2, ...] t = (substitute [t2/x2, ...] t)[t1/x1]

1

2. (20 points)

Demonstrate leftmost outermost reduction on the following λ-terms:

(a) (λzx.x(zx))x(λy.yx)

(b) (λxy.y(xx))(λx.y)(λx.xx)(λx.xx)

(c) (λyx.x)((λx.xx)(λx.xx))(λxy.x)

What are the advantages and disadvantages of this reduction strategy? What is by-value
reduction? What is lazy reduction?

3. (20 points)

(i) Explain how conditional statements

if e then t1 else t2

are programmed in the λ-calculus.

(ii) Explain what a fixed point combinator is. Prove that

λf.(λx.f(xx))(λx.f(xx))

is a fixed point combinator.

(iii) Explain how to program the gcd function using fixed points:

gcd(n,m) = if n < m then gcd(m − n, n)

elseif m < n then gcd(n − m,m)

else n

You may assume that you already have basic arithmetic functions n < m,n−m defined.

2

4. (15 points)

(i) How do you represent the λ-calculus in the λ-calculus? (Hint: give a Haskell data
definition for λ-terms – on an arbitrary type of variables – and translate it).

(ii) Denote the representation of a λ-term (with natural numbers as variables) by N : explain
how to write a function H such that HN = N .

(iii) Which of the following are true:

(a) For every λ-term M there is a λ-term N such that MN = N ;

(b) For every λ-term M there is a λ-term N such that MN = N ;

(c) For every λ-term M there is a λ-term N such that MN = N .

5. (20 points)

(i) Explain what it means to say that β-reduction is confluent.

(ii) When is a λ-term in normal form? Why are two normal form λ-terms which are not
α-equivalent not (β-)equal?

(iii) How do you represent the natural numbers in the λ-calculus? Why, in this representa-
tion, are all the numbers distinct?

(iv) Explain what is wrong with the reasoning which says “to tell whether two λ-terms are
equal simply reduce them until they become the same.”

(v) (5 point bonus!)

A λ-term N is said to be hopelessly cyclic if every β-reduction sequence eventually
revisits N (for example Ω is hopelessly cyclic). A term is said to be never hopelessly

cyclic if it never reduces to a hopelessly cyclic term.

Give an argument to show that one cannot decide whether a term is never hopelessly
cyclic

3

