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THE UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

FINAL EXAMINATION

COMPUTER SCIENCE 521

December, 2016 Time: 2 hrs.

Instructions

The exam contains questions totaling 100 points. Answer all
questions. This exam is closed book.



(10 Marks)

(15 marks)
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1.

2.

(a)
(b)

()

(a)
(b)

()

Given the definition of fold(right) in Haskell for lists.
Use the fold(right) on lists to implement the function

inlist :: Eq a = a — [a] — Bool

which tests whether an element is in a list.

What is the foldleft combinator for a list? How do you implement
it using a the fold(right) combinator?

Explain what a fixed point combinator is in the A-calculus.

Show that X = (A\zy.z y z)(Ayz.y (z y z)) is a fixed point com-
binator (this is Tromp’s fixed point combinator). Remember to
try S-reducing at both ends of the desired equality!

Consider the general recursive function
nats n = (n, nats (n + 1))

where (z,y) := Ap.p © y. Describe how nats is implemented in
the A-calculus (you may assume a general fixed point combinator
Y).

When is a A-term in head normal form? Illustrate a head re-
duction on nats 0 as implemented in the A-calculus in part (c)
above.
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20 marks

3. In the A-calculus:

(a)

Give an example of a term with a normal form for which a right-
most innermost rewriting strategy will not find the normal form.
Explain briefly why a leftmost outermost reduction will find a
normal form if there is one.

Give the de Bruijn form of the term:

Azy.(Az.(Ay.yx)(zy)) (yz)

and give the step-by-step outermost leftmost reduction of the
term.

Explain how the natural numbers, Nat, can be represented in the
A-calculus - the so called Church numerals. How does one write
the fold and the predecessor function?

One may represent A-terms in the A-calculus using the following
datatype:

data LTerm a = Var a | App LTerm LTerm | Abs a LTerm
Describe the encoding of the constructors, the fold, and the map
for this data type.

In the second recursion theorem one uses a function 1" such that
T(X) = X where X is the representation of the A-term X in the
A-calculus (as above using LTerm Nat). Describe how T’ can be
implement as a A-calculus term. (Hint: use the folds above!!)



CPSC 521 Final Exam cont’d. P.40f7

15 marks . . : ..
4. Call a A\-term n-cyclic if all reduction sequences leaving the term revisit

the term (for the first time) after exactly n-steps. Every term is 0-
cyclic and, for example, € is 1-cyclic.

(a) Show that the terms
(A\yz.zzx)(A\yz.zxx)(Ayz.xxx)

and
Az.z((Ayz.zxy)( A\yz.zry) (Ayx.zzy))

are 2-cyclic.

(b) Show that for each n > 0, there are always terms which are n-
cyclic and are not n-cyclic. Furthermore, show that for each n
there are always infinitely many terms which are n-cyclic and
infinitely many which are not n-cyclic!

(c) Explain why it is decidable, for n > 0, whether a term is not
n-cyclic but (harder!) undecidable whether a term never reduces
to any n-cyclic term.

Explain your reasoning carefully!



15 marks
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5. The basic modern SECD/CES machine has instructions:

Clo(¢) for pushing a closure of the code ¢ with the current environment
on the stack,

App for perform an application,

#(n) for retrieving the n*® value in the environment,

Ret for jumping to the continuation on the stack,

Const(n) for pushing the constant n on the stack, and

Add for addition.

The machine transitions are:

Before After
Code Env | Stack Code | Env | Stack
Clo(d):c e s c e Clos(c,e) : s
App : ¢ e Clos(¢/,e) :v:s || ¢ v:e' | Clos(c,e): s
#(n);c e s c e e(n):s
Ret: ¢ e v:Clos(d,e):s || ¢ e v:s
Const(k) :c | e s c e k:s
Add : ¢ e n:m:s c e (n+m):s

Where Clos(c, ) denotes closure of code ¢ with environment e and e(n)
is the n'P-element of the environment.

One way to express the compilation of A-terms (with arithmetic) into
CES-machine code is as follows:

[Mz.t]s = [Clo([t]s.s+[Ret])]
[M N]s = [N]s+[M]sH[app]
[x]s = [#(n)] where n =index x s
[k]s = [Const(k)]

[a+0bls = [b]s+[als+[Add]
Compile
(Ax.(A\y.z +y) 10) 3

into CES-machine code and show in detail the machine steps for eval-
uating this code.

Which reduction strategy does this machine implement? What are the
advantages and disadvantages of this reduction strategy?
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6. Using the judgments for type inference in Table 1 give the result of

collecting the type equations and solving the equations (or showing
there is no solution) in the following:

(a) For the term, Az f.(f z) (x f), in the simply typed lambda calcu-
lus (or in BPCF), either provide the most general type or show
that it cannot be typed.

(b) Show how the recursive program, map, map on lists:

case z
map f z = nil — nil
of
cons a as +— cons (f a) (map f as)

can be written in BPCF as a close term using the fix construct
and show how its most general type can be inferred.
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z:Pz:Tkhax:Q (P=Q) proJ

z:X,z:T'F t:Y (E)
z:'FXxt:Q (33X, Y.Q=X—->YE)

abst

z:THf:Z 2:THt: X (E)
z:TH(ft):Q (IX,ZZ=X —Q,F)

app

z:THt:Z (E)
SiTFfl]:Q (32.2=Q = Q,E)

fix

z:THt: X (E)) z:Tks:Y (Ej)
2 TF (6,5):Q (3X,Y.Q=X xV,E, Bs)

pair

z:T'Ht:Z (F) z:T,z:X,y:YEs:Q (E)

pcase

case t
e Ol L@ BXY.ZZ=X K Y.B B

unit

STF0:Q @=1)

z:THt:Z (F) z:Tks:Q (E9)

, ucase
case
ST T fQ (922 = 1B )
SiThnl cQ FAQ =LAy ™M
cons

z:TFcons : Q (JA.Q=AXxL(A) — L(A))

Z:Ff‘t:Xl <E1> Z:F"to:yl <E2> Z:F,’U:Xgl_tlZYQ <E3>

L
X1 =L(4),
case t A, X, X, = A x L(A)
z:TH nil S oty :Q (3IN, Xy, . TP ’
of consv — Y5 Bb=0n=0
! 2 Ey, Ey, Es

Table 1: Rules for type inference
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