10.

Functional Programming
Paper Collection CPSC 521

September 12, 2011

Table of Contents

. Why Functional Programming Matters (Hughes) (2-24)

Where do I begin? A problem solving approach in teaching functional
programming (Thompson) (25-36)

A Gentle Introduction to Haskell 98 (Hudak, Peterson,Fasel) (37-100)
Foundations of Functional Programming (Paulson) (101-158)
Demonstrating Lambda Calculus Reduction (Sestoft) (159-174)

A Tutorial on the universality and expressiveness of fold (Hutton) (175-
192)

Notes on rewriting (Cockett) (193-216)
Monads for functional programming (Wadler) (217-247)
The Haskell programmer’s guide to the IO monad (Klinger) (248-281)

Monadic parser combinators (Hutton) (282-320)

Why Functional Programming Matters

John Hughes, Institutionen for Datavetenskap,
Chalmers Tekniska Hogskola,
41296 Goteborg,
SWEDEN. rjmh@cs.chalmers.se

This paper dates from 1984, and circulated as a Chalmers memo for many
years. Slightly revised versions appeared in 1989 and 1990 as [Hug90] and
[Hug89]. This version is based on the original Chalmers memo nroff
source, lightly edited for LaTeX and to bring it closer to the published ver-
stons, and with one or two errors corrected. Please excuse the slightly old-
fashioned type-setting, and the fact that the examples are not in Haskell!

Abstract

As software becomes more and more complex, it is more and more
important to structure it well. Well-structured software is easy to write,
easy to debug, and provides a collection of modules that can be re-used
to reduce future programming costs. Conventional languages place con-
ceptual limits on the way problems can be modularised. Functional lan-
guages push those limits back. In this paper we show that two features of
functional languages in particular, higher-order functions and lazy eval-
uation, can contribute greatly to modularity. As examples, we manipu-
late lists and trees, program several numerical algorithms, and implement
the alpha-beta heuristic (an algorithm from Artificial Intelligence used in
game-playing programs). Since modularity is the key to successful pro-
gramming, functional languages are vitally important to the real world.

1 Introduction

This paper is an attempt to demonstrate to the “real world” that functional
programming is vitally important, and also to help functional programmers
exploit its advantages to the full by making it clear what those advantages are.

Functional programming is so called because a program consists entirely of
functions. The main program itself is written as a function which receives the
program’s input as its argument and delivers the program’s output as its result.
Typically the main function is defined in terms of other functions, which in
turn are defined in terms of still more functions, until at the bottom level the
functions are language primitives. These functions are much like ordinary math-
ematical functions, and in this paper will be defined by ordinary equations. Our

notation follows Turner’s language Miranda(TM) [Tur85], but should be read-
able with no prior knowledge of functional languages. (Miranda is a trademark
of Research Software Ltd.)

The special characteristics and advantages of functional programming are
often summed up more or less as follows. Functional programs contain no
assignment statements, so variables, once given a value, never change. More
generally, functional programs contain no side-effects at all. A function call can
have no effect other than to compute its result. This eliminates a major source
of bugs, and also makes the order of execution irrelevant - since no side-effect
can change the value of an expression, it can be evaluated at any time. This
relieves the programmer of the burden of prescribing the flow of control. Since
expressions can be evaluated at any time, one can freely replace variables by
their values and vice versa - that is, programs are “referentially transparent”.
This freedom helps make functional programs more tractable mathematically
than their conventional counterparts.

Such a catalogue of “advantages” is all very well, but one must not be sur-
prised if outsiders don’t take it too seriously. It says a lot about what functional
programming is not (it has no assignment, no side effects, no flow of control) but
not much about what it is. The functional programmer sounds rather like a me-
dieval monk, denying himself the pleasures of life in the hope that it will make
him virtuous. To those more interested in material benefits, these “advantages”
are not very convincing.

Functional programmers argue that there are great material benefits - that
a functional programmer is an order of magnitude more productive than his
conventional counterpart, because functional programs are an order of magni-
tude shorter. Yet why should this be? The only faintly plausible reason one
can suggest on the basis of these “advantages” is that conventional programs
consist of 90% assignment statements, and in functional programs these can be
omitted! This is plainly ridiculous. If omitting assignment statements brought
such enormous benefits then FORTRAN programmers would have been doing it
for twenty years. It is a logical impossibility to make a language more powerful
by omitting features, no matter how bad they may be.

Even a functional programmer should be dissatisfied with these so-called
advantages, because they give him no help in exploiting the power of functional
languages. One cannot write a program which is particularly lacking in assign-
ment statements, or particularly referentially transparent. There is no yardstick
of program quality here, and therefore no ideal to aim at.

Clearly this characterisation of functional programming is inadequate. We
must find something to put in its place - something which not only explains the
power of functional programming, but also gives a clear indication of what the
functional programmer should strive towards.

2 An Analogy with Structured Programming

It is helpful to draw an analogy between functional and structured programming,.
In the past, the characteristics and advantages of structured programming have
been summed up more or less as follows. Structured programs contain no goto
statements. Blocks in a structured program do not have multiple entries or exits.
Structured programs are more tractable mathematically than their unstructured
counterparts. These “advantages” of structured programming are very similar in
spirit to the “advantages” of functional programming we discussed earlier. They
are essentially negative statements, and have led to much fruitless argument
about “essential gotos” and so on.

With the benefit of hindsight, it is clear that these properties of structured
programs, although helpful, do not go to the heart of the matter. The most im-
portant difference between structured and unstructured programs is that struc-
tured programs are designed in a modular way. Modular design brings with
it great productivity improvements. First of all, small modules can be coded
quickly and easily. Secondly, general purpose modules can be re-used, leading to
faster development of subsequent programs. Thirdly, the modules of a program
can be tested independently, helping to reduce the time spent debugging.

The absence of gotos, and so on, has very little to do with this. It helps with
“programming in the small”, whereas modular design helps with “programming
in the large”. Thus one can enjoy the benefits of structured programming in
FORTRAN or assembly language, even if it is a little more work.

It is now generally accepted that modular design is the key to successful pro-
gramming, and languages such as Modula-IT [Wir82], Ada [0D80] and Standard
ML [MTH90] include features specifically designed to help improve modularity.
However, there is a very important point that is often missed. When writing
a modular program to solve a problem, one first divides the problem into sub-
problems, then solves the sub-problems and combines the solutions. The ways
in which one can divide up the original problem depend directly on the ways
in which one can glue solutions together. Therefore, to increase ones ability
to modularise a problem conceptually, one must provide new kinds of glue in
the programming language. Complicated scope rules and provision for separate
compilation only help with clerical details; they offer no new conceptual tools
for decomposing problems.

One can appreciate the importance of glue by an analogy with carpentry.
A chair can be made quite easily by making the parts - seat, legs, back etc. -
and sticking them together in the right way. But this depends on an ability
to make joints and wood glue. Lacking that ability, the only way to make a
chair is to carve it in one piece out of a solid block of wood, a much harder
task. This example demonstrates both the enormous power of modularisation
and the importance of having the right glue.

Now let us return to functional programming. We shall argue in the remain-
der of this paper that functional languages provide two new, very important
kinds of glue. We shall give many examples of programs that can be modu-
larised in new ways, and thereby greatly simplified. This is the key to functional

programming’s power - it allows greatly improved modularisation. It is also the
goal for which functional programmers must strive - smaller and simpler and
more general modules, glued together with the new glues we shall describe.

3 Glueing Functions Together

The first of the two new kinds of glue enables simple functions to be glued
together to make more complex ones. It can be illustrated with a simple list-
processing problem - adding up the elements of a list. We define lists by

listof X ::= nil | cons X (listof X)

which means that a list of Xs (whatever X is) is either nil, representing a list
with no elements, or it is a cons of an X and another list of Xs. A cons represents
a list whose first element is the X and whose second and subsequent elements
are the elements of the other list of Xs. X here may stand for any type - for
example, if X is “integer” then the definition says that a list of integers is either
empty or a cons of an integer and another list of integers. Following normal
practice, we will write down lists simply by enclosing their elements in square
brackets, rather than by writing conses and nils explicitly. This is simply a
shorthand for notational convenience. For example,

] means nil
[1] means cons 1 nil
[1,2,3] means cons 1 (cons 2 (cons 3 nil))

The elements of a list can be added up by a recursive function sum. Sum must
be defined for two kinds of argument: an empty list (nil), and a cons. Since the
sum of no numbers is zero, we define

sum nil = 0

and since the sum of a cons can be calculated by adding the first element of the
list to the sum of the others, we can define

sum (cons num list) = num + sum list

Examining this definition, we see that only the boxed parts below are specific
to computing a sum.

f———t
sum nil = | 0 |
-t
-t
sum (cons num list) = num | + | sum list
f———t

This means that the computation of a sum can be modularised by glueing
together a general recursive pattern and the boxed parts. This recursive pattern
is conventionally called reduce and so sum can be expressed as

sum = reduce add O

where for convenience reduce is passed a two argument function add rather than
an operator. Add is just defined by

add x y =x +y

The definition of reduce can be derived just by parameterising the definition of
sum, giving

(reduce f x) nil = x
(reduce f x) (cons a 1) = f a ((reduce f x) 1)

Here we have written brackets around (reduce f x) to make it clear that it
replaces sum. Conventionally the brackets are omitted, and so ((reduce f x) 1) is
written as (reduce f x 1). A function of 3 arguments such as reduce, applied to
only 2 is taken to be a function of the one remaining argument, and in general,
a function of n arguments applied to only m(< n) is taken to be a function of
the n — m remaining ones. We will follow this convention in future.

Having modularised sum in this way, we can reap benefits by re-using the
parts. The most interesting part is reduce, which can be used to write down
a function for multiplying together the elements of a list with no further pro-
gramming:

product = reduce multiply 1

It can also be used to test whether any of a list of booleans is true
anytrue = reduce or false

or whether they are all true
alltrue = reduce and true

One way to understand (reduce f a) is as a function that replaces all occurrences
of cons in a list by f, and all occurrences of nil by a. Taking the list [1,2,3] as
an example, since this means

cons 1 (cons 2 (cons 3 nil))
then (reduce add 0) converts it into
add 1 (add 2 (add 3 0)) = 6
and (reduce multiply 1) converts it into
multiply 1 (multiply 2 (multiply 3 1)) = 6

Now it is obvious that (reduce cons nil) just copies a list. Since one list can be
appended to another by consing its elements onto the front, we find

append a b = reduce cons b a

As an example,

append [1,2] [3,4] = reduce cons [3,4] [1,2]
(reduce cons [3,4]) (cons 1 (comns 2 nil))
cons 1 (cons 2 [3,4]))

(replacing cons by cons and nil by [3,4])
[1,2,3,4]

A function to double all the elements of a list could be written as

doubleall = reduce doubleandcons nil
where doubleandcons num list = cons (2%num) list

Doubleandcons can be modularised even further, first into

doubleandcons = fandcons double
where double n = 2*n
fandcons f el list = cons (f el) list

and then by
fandcons f = cons . f

where “.” (function composition, a standard operator) is defined by
(f . g)h=1f (gh

We can see that the new definition of fandcons is correct by applying it to some
arguments:

fandcons f el = (cons . f) el
= cons (f el)
so fandcons f el list = cons (f el) list

The final version is
doubleall = reduce (cons . double) nil
With one further modularisation we arrive at

doubleall = map double
map f = reduce (cons . f) nil

where map applies any function f to all the elements of a list. Map is another
generally useful function.

We can even write down a function to add up all the elements of a matrix,
represented as a list of lists. It is

summatrix = sum . map sum

The map sum uses sum to add up all the rows, and then the left-most sum adds
up the row totals to get the sum of the whole matrix.

These examples should be enough to convince the reader that a little mod-
ularisation can go a long way. By modularising a simple function (sum) as a
combination of a “higher order function” and some simple arguments, we have
arrived at a part (reduce) that can be used to write down many other functions
on lists with no more programming effort. We do not need to stop with func-
tions on lists. As another example, consider the datatype of ordered labelled
trees, defined by

treeof X ::= node X (listof (treeof X))

This definition says that a tree of Xs is a node, with a label which is an X, and
a list of subtrees which are also trees of Xs. For example, the tree

0O ———o0

would be represented by

node 1
(cons (node 2 nil)
(cons (node 3
(cons (node 4 nil) nil))
nil))

Instead of considering an example and abstracting a higher order function from
it, we will go straight to a function redtree analogous to reduce. Recall that
reduce took two arguments, something to replace cons with, and something to
replace nil with. Since trees are built using node, cons and nil, redtree must
take three arguments - something to replace each of these with. Since trees and
lists are of different types, we will have to define two functions, one operating
on each type. Therefore we define

redtree f g a (node label subtrees) =

f label (redtree’ f g a subtrees)
redtree’ f g a (cons subtree rest) =

g (redtree f g a subtree) (redtree’ f g a rest)
redtree’ f g a nil = a

Many interesting functions can be defined by glueing redtree and other functions
together. For example, all the labels in a tree of numbers can be added together
using

sumtree = redtree add add O

Taking the tree we wrote down earlier as an example, sumtree gives

add 1
(add (add 2 0)
(add (add 3
(add (add 4 0) 0))
0))
= 10

A list of all the labels in a tree can be computed using
labels = redtree cons append nil
The same example gives

cons 1
(append (cons 2 nil)
(append (cons 3
(append (cons 4 nil) nil))
nil))
= [1,2,3,4]

Finally, one can define a function analogous to map which applies a function f
to all the labels in a tree:

maptree f = redtree (node . f) comns nil

All this can be achieved because functional languages allow functions which are
indivisible in conventional programming languages to be expressed as a combi-
nation of parts - a general higher order function and some particular specialising
functions. Once defined, such higher order functions allow many operations to
be programmed very easily. Whenever a new datatype is defined higher order
functions should be written for processing it. This makes manipulating the
datatype easy, and also localises knowledge about the details of its represen-
tation. The best analogy with conventional programming is with extensible
languages - it is as though the programming language can be extended with
new control structures whenever desired.

4 Glueing Programs Together

The other new kind of glue that functional languages provide enables whole
programs to be glued together. Recall that a complete functional program is
just a function from its input to its output. If f and g are such programs, then
(g . f) is a program which, when applied to its input, computes

g (f input)

The program f computes its output which is used as the input to program g.
This might be implemented conventionally by storing the output from f in a
temporary file. The problem with this is that the temporary file might occupy
so much memory that it is impractical to glue the programs together in this way.
Functional languages provide a solution to this problem. The two programs f
and g are run together in strict synchronisation. F is only started once g tries
to read some input, and only runs for long enough to deliver the output g is
trying to read. Then f is suspended and g is run until it tries to read another
input. As an added bonus, if g terminates without reading all of f’s output then
f is aborted. F can even be a non-terminating program, producing an infinite
amount of output, since it will be terminated forcibly as soon as g is finished.
This allows termination conditions to be separated from loop bodies - a powerful
modularisation.

Since this method of evaluation runs f as little as possible, it is called “lazy
evaluation”. It makes it practical to modularise a program as a generator which
constructs a large number of possible answers, and a selector which chooses the
appropriate one. While some other systems allow programs to be run together in
this manner, only functional languages use lazy evaluation uniformly for every
function call, allowing any part of a program to be modularised in this way.
Lazy evaluation is perhaps the most powerful tool for modularisation in the
functional programmer’s repertoire.

4.1 Newton-Raphson Square Roots

We will illustrate the power of lazy evaluation by programming some numerical
algorithms. First of all, consider the Newton-Raphson algorithm for finding
square roots. This algorithm computes the square root of a number N by starting
from an initial approximation a0 and computing better and better ones using
the rule

a(n+l) = (a(n) + N/a(n)) / 2
If the approximations converge to some limit a, then

a=(a+N/a) / 2

so 2a = a + N/a
a = N/a
axa = N

a = squareroot(N)

In fact the approximations converge rapidly to a limit. Square root programs
take a tolerance (eps) and stop when two successive approximations differ by
less than eps.

The algorithm is usually programmed more or less as follows:

C N IS CALLED ZN HERE SO THAT IT HAS THE RIGHT TYPE
X = A0
Y = AO + 2.*EPS

C THE VALUE OF Y DOES NOT MATTER SO LONG AS ABS(X-Y).GT.EPS
100 IF (ABS(X-Y).LE.EPS) GOTO 200

Y =X
X=X+ ZN/X) / 2.
GOTO 100

200 CONTINUE
C THE SQUARE ROOT OF ZN IS NOW IN X

This program is indivisible in conventional languages. We will express it in a
more modular form using lazy evaluation, and then show some other uses to
which the parts may be put.

Since the Newton-Raphson algorithm computes a sequence of approxima-
tions it is natural to represent this explicitly in the program by a list of approx-
imations. Each approximation is derived from the previous one by the function

next Nx = (x+ N/x) / 2

so (next N) is the function mapping one approximation onto the next. Calling
this function f, the sequence of approximations is

[a0, f a0, f(f a0), £f(£(f a0)), ..]
We can define a function to compute this:

repeat f a = cons a (repeat £ (f a))
so that the list of approximations can be computed by

repeat (next N) a0

Repeat is an example of a function with an “infinite” output - but it doesn’t
matter, because no more approximations will actually be computed than the
rest of the program requires. The infinity is only potential: all it means is that
any number of approximations can be computed if required, repeat itself places
no limit.

The remainder of a square root finder is a function within, that takes a
tolerance and a list of approximations and looks down the list for two successive
approximations that differ by no more than the given tolerance. It can be
defined by

within eps (cons a (cons b rest)) =
= b, if abs(a-b) <= eps
= within eps (cons b rest), otherwise

Putting the parts together,
sqrt a0 eps N = within eps (repeat (next N) a0)

Now that we have the parts of a square root finder, we can try combining them
in different ways. One modification we might wish to make is to wait for the
ratio between successive approximations to approach one, rather than for the

10

difference to approach zero. This is more appropriate for very small numbers
(when the difference between successive approximations is small to start with)
and for very large ones (when rounding error could be much larger than the
tolerance). It is only necessary to define a replacement for within:

relative eps (cons a (cons b rest)) =
= b, if abs(a-b) <= eps*abs b
relative eps (cons b rest), otherwise

Now a new version of sqrt can be defined by
relativesqrt a0 eps N = relative eps (repeat (next N) a0)

It is not necessary to rewrite the part that generates approximations.

4.2 Numerical Differentiation

We have re-used the sequence of approximations to a square root. Of course,
it is also possible to re-use within and relative with any numerical algorithm
that generates a sequence of approximations. We will do so in a numerical
differentiation algorithm.

The result of differentiating a function at a point is the slope of the function’s
graph at that point. It can be estimated quite easily by evaluating the function
at the given point and at another point nearby and computing the slope of a
straight line between the two points. This assumes that, if the two points are
close enough together then the graph of the function will not curve much in
between. This gives the definition

easydiff f x h = (£(x+h)-f x) / h

In order to get a good approximation the value of h should be very small.
Unfortunately, if h is too small then the two values f(x+h) and f(x) are very
close together, and so the rounding error in the subtraction may swamp the
result. How can the right value of h be chosen? One solution to this dilemma
is to compute a sequence of approximations with smaller and smaller values of
h, starting with a reasonably large one. Such a sequence should converge to the
value of the derivative, but will become hopelessly inaccurate eventually due to
rounding error. If (within eps) is used to select the first approximation that is
accurate enough then the risk of rounding error affecting the result can be much
reduced. We need a function to compute the sequence:

differentiate hO f x = map (easydiff f x) (repeat halve hO)
halve x = x/2

Here hO is the initial value of h, and successive values are obtained by repeated
halving. Given this function, the derivative at any point can be computed by

within eps (differentiate hO f x)

11

Even this solution is not very satisfactory because the sequence of approxima-
tions converges fairly slowly. A little simple mathematics can help here. The
elements of the sequence can be expressed as

the right answer + an error term involving h

and it can be shown theoretically that the error term is roughly proportional to
a power of h, so that it gets smaller as h gets smaller. Let the right answer be
A, and the error term be B*¥h**n. Since each approximation is computed using
a value of h twice that used for the next one, any two successive approximations
can be expressed as

a(i) = A + B*(2%*n)*(h**n)
and a(i+1) = A + Bx(h**n)

Now the error term can be eliminated. We conclude

a(i+1)*(2*%*n) - a(di)

Of course, since the error term is only roughly a power of h this conclusion is
also approximate, but it is a much better approximation. This improvement
can be applied to all successive pairs of approximations using the function

elimerror n (cons a (cons b rest)) =
= cons ((b*(2**n)-a)/(2**n-1)) (elimerror n (cons b rest))

Eliminating error terms from a sequence of approximations yields another se-
quence which converges much more rapidly.

One problem remains before we can use elimerror - we have to know the
right value of n. This is difficult to predict in general, but is easy to measure.
It is not difficult to show that the following function estimates it correctly, but
we won’t include the proof here.

order (cons a (cons b (cons c rest))) =

= round(log2((a-c)/(b-c) - 1))
round x = X rounded to the nearest integer
log2 x = the logarithm of x to the base 2

Now a general function to improve a sequence of approximations can be defined:
improve s = elimerror (order s) s

The derivative of a function f can be computed more efficiently using improve,
as follows

within eps (improve (differentiate hO f x))

12

Improve only works on sequences of approximations which are computed using
a parameter h, which is halved between each approximation. However, if it is
applied to such a sequence its result is also such a sequence! This means that a
sequence of approximations can be improved more than once. A different error
term is eliminated each time, and the resulting sequences converge faster and
faster. So, one could compute a derivative very efficiently using

within eps (improve (improve (improve (differentiate hO f x))))

In numerical analysts terms, this is likely to be a fourth order method, and gives
an accurate result very quickly. One could even define

super s = map second (repeat improve s)
second (cons a (cons b rest)) =D

which uses repeat improve to get a sequence of more and more improved se-
quences of approximations, and constructs a new sequence of approximations
by taking the second approximation from each of the improved sequences (it
turns out that the second one is the best one to take - it is more accurate than
the first and doesn’t require any extra work to compute). This algorithm is
really very sophisticated - it uses a better and better numerical method as more
and more approximations are computed. One could compute derivatives very
efficiently indeed with the program:

within eps (super (differentiate hO f x))

This is probably a case of using a sledge-hammer to crack a nut, but the point
is that even an algorithm as sophisticated as super is easily expressed when
modularised using lazy evaluation.

4.3 Numerical Integration

The last example we will discuss in this section is numerical integration. The
problem may be stated very simply: given a real valued function f of one real
argument, and two end-points a and b, estimate the area under the curve f
describes between the end-points. The easiest way to estimate the area is to
assume that f is nearly a straight line, in which case the area would be

easyintegrate f a b = (f a + £ b)*(b-a)/2

Unfortunately this estimate is likely to be very inaccurate unless a and b are
close together. A better estimate can be made by dividing the interval from a
to b in two, estimating the area on each half, and adding the results together.
We can define a sequence of better and better approximations to the value of
the integral by using the formula above for the first approximation, and then
adding together better and better approximations to the integrals on each half
to calculate the others. This sequence is computed by the function

13

integrate f a b = cons (easyintegrate f a b)
(map addpair (zip (integrate f a mid)
(integrate f mid b)))
where mid = (a+b)/2

Zip is another standard list-processing function. It takes two lists and returns
a list of pairs, each pair consisting of corresponding elements of the two lists.
Thus the first pair consists of the first element of the first list and the first
element of the second, and so on. Zip can be defined by

zip (cons a s) (cons b t) = cons (pair a b) (zip s t)

In integrate, zip computes a list of pairs of corresponding approximations to the
integrals on the two sub-intervals, and map addpair adds the elements of the
pairs together to give a list of approximations to the original integral.

Actually, this version of integrate is rather inefficient because it continually
recomputes values of f. As written, easyintegrate evaluates f at a and at b, and
then the recursive calls of integrate re-evaluate each of these. Also, (f mid) is
evaluated in each recursive call. It is therefore preferable to use the following
version which never recomputes a value of f.

integrate f a b = integ f a b (f a) (f b)
integ £ a b fa fb = cons ((fa+fb)*(b-a)/2)
(map addpair (zip (integ f a m fa fm)
(integ £ m b fm fb)))
where m = (a+b)/2
fm=fm

Integrate computes an infinite list of better and better approximations to the
integral, just as differentiate did in the section above. One can therefore just
write down integration routines that integrate to any required accuracy, as in

within eps (integrate f a b)
relative eps (integrate f a b)

This integration algorithm suffers from the same disadvantage as the first dif-
ferentiation algorithm in the preceding sub-section - it converges rather slowly.
Once again, it can be improved. The first approximation in the sequence is
computed (by easyintegrate) using only two points, with a separation of b-a.
The second approximation also uses the mid-point, so that the separation be-
tween neighbouring points is only (b-a)/2. The third approximation uses this
method on each half-interval, so the separation between neighbouring points
is only (b-a)/4. Clearly the separation between neighbouring points is halved
between each approximation and the next. Taking this separation as “h”, the
sequence is a candidate for improvement using the “improve” function defined
in the preceding section. Therefore we can now write down quickly converging
sequences of approximations to integrals, for example

14

super (integrate sin 0 4)
improve (integrate f 0 1)
where f x = 1/(1+x*x)

(This latter sequence is an eighth order method for computing pi/4. The second
approximation, which requires only five evaluations of f to compute, is correct
to five decimal places).

In this section we have taken a number of numerical algorithms and pro-
grammed them functionally, using lazy evaluation as glue to stick their parts
together. Thanks to this, we were able to modularise them in new ways, into
generally useful functions such as within, relative and improve. By combining
these parts in various ways we programmed some quite good numerical algo-
rithms very simply and easily.

5 An Example from Artificial Intelligence

We have argued that functional languages are powerful primarily because they
provide two new kinds of glue: higher-order functions and lazy evaluation. In
this section we take a larger example from Artificial Intelligence and show how
it can be programmed quite simply using these two kinds of glue.

The example we choose is the alpha-beta “heuristic”, an algorithm for es-
timating how good a position a game-player is in. The algorithm works by
looking ahead to see how the game might develop, but avoids pursuing unprof-
itable lines.

Let game-positions be represented by objects of the type “position”. This
type will vary from game to game, and we assume nothing about it. There must
be some way of knowing what moves can be made from a position: assume that
there is a function

moves: position -> listof position

that takes a game-position as its argument and returns the list of all positions
that can be reached from it in one move. Taking noughts and crosses (tic-tac-
toe) as an example,

[Xl [X] [1
—+—t— et —t—t— ——t—
moves | | = Cr0r, 1, IXlI]
—+—t— et = ——t—
[[] [[]
[ol | O]
—+—t— et —t—t—
moves |X| = [IXl , 1XI]
—t—t— —t—t—

15

This assumes that it is always possible to tell which player’s turn it is from a
position. In noughts and crosses this can be done by counting the noughts and
crosses, in a game like chess one would have to include the information explicitly
in the type “position”.

Given the function moves, the first step is to build a game tree. This is a
tree in which the nodes are labelled by positions, such that the children of a
node are labelled with the positions that can be reached in one move from that
node. That is, if a node is labelled with position p, then its children are labelled
with the positions in (moves p). A game tree may very well be infinite, if it
is possible for a game to go on for ever with neither side winning. Game trees
are exactly like the trees we discussed in section 2 - each node has a label (the
position it represents) and a list of subnodes. We can therefore use the same
datatype to represent them.

A game tree is built by repeated applications of moves. Starting from the
root position, moves is used to generate the labels for the sub-trees of the root.
Moves is then used again to generate the sub-trees of the sub-trees and so on.
This pattern of recursion can be expressed as a higher-order function,

reptree f a = node a (map (reptree f) (f a))

Using this function another can be defined which constructs a game tree from
a particular position

gametree p = reptree moves p

For an example, look at figure 1. The higher-order function used here (reptree) is
analogous to the function repeat used to construct infinite lists in the preceding
section.

The alpha-beta algorithm looks ahead from a given position to see whether
the game will develop favourably or unfavourably, but in order to do so it must
be able to make a rough estimate of the value of a position without looking
ahead. This “static evaluation” must be used at the limit of the look-ahead, and
may be used to guide the algorithm earlier. The result of the static evaluation
is a measure of the promise of a position from the computer’s point of view
(assuming that the computer is playing the game against a human opponent).
The larger the result, the better the position for the computer. The smaller the
result, the worse the position. The simplest such function would return (say)
+1 for positions where the computer has already won, -1 for positions where
the computer has already lost, and 0 otherwise. In reality, the static evaluation
function measures various things that make a position “look good”, for example
material advantage and control of the centre in chess. Assume that we have
such a function,

static: position -> number

Since a game-tree is a (treeof position), it can be converted into a (treeof num-
ber) by the function (maptree static), which statically evaluates all the positions
in the tree (which may be infinitely many). This uses the function maptree de-
fined in section 2.

16

gametree

X|

—+—+- —+—+-

—_—t =

IX|

—_—t -

—_—t -

Jo]
IX1

ol

—_—t -
IX|
—_— =

Figure 1: An Example of a Game-Tree.

17

Given such a tree of static evaluations, what is the true value of the positions
in it? In particular, what value should be ascribed to the root position? Not
its static value, since this is only a rough guess. The value ascribed to a node
must be determined from the true values of its subnodes. This can be done by
assuming that each player makes the best moves he can. Remembering that a
high value means a good position for the computer, it is clear that when it is
the computer’s move from any position, it will choose the move leading to the
sub-node with the maximum true value. Similarly, the opponent will choose the
move leading to the sub-node with the minimum true value. Assuming that the
computer and its opponent alternate turns, the true value of a node is computed
by the function maximise if it is the computer’s turn and minimise if it is not:

maximise (node n sub) = max (map minimise sub)
minimise (node n sub) = min (map maximise sub)

Here max and min are functions on lists of numbers that return the maximum
and minimum of the list respectively. These definitions are not complete because
they recurse for ever - there is no base case. We must define the value of a node
with no successors, and we take it to be the static evaluation of the node (its
label). Therefore the static evaluation is used when either player has already
won, or at the limit of look-ahead. The complete definitions of maximise and
minimise are

maximise (node n nil)
maximise (node n sub) = max (map minimise sub)
minimise (node n nil) =n

minimise (node n sub) = min (map maximise sub)

n

One could almost write down a function at this stage that would take a position
and return its true value. This would be:

evaluate = maximise . maptree static . gametree

There are two problems with this definition. First of all, it doesn’t work for
infinite trees. Maximise keeps on recursing until it finds a node with no subtrees
- an end to the tree. If there is no end then maximise will return no result. The
second problem is related - even finite game trees (like the one for noughts and
crosses) can be very large indeed. It is unrealistic to try to evaluate the whole
of the game tree - the search must be limited to the next few moves. This can
be done by pruning the tree to a fixed depth,

prune O (node a x) = node a nil
prune n (node a x) = node a (map (prune (n-1)) x)

(prune n) takes a tree and “cuts off” all nodes further than n from the root. If
a game tree is pruned it forces maximise to use the static evaluation for nodes
at depth n, instead of recursing further. Evaluate can therefore be defined by

evaluate = maximise . maptree static . prune 5 . gametree

18

which looks (say) 5 moves ahead.

Already in this development we have used higher-order functions and lazy
evaluation. Higher order functions reptree and maptree allow us to construct
and manipulate game trees with ease. More importantly, lazy evaluation permits
us to modularise evaluate in this way. Since gametree has a potentially infinite
result, this program would never terminate without lazy evaluation. Instead of
writing

prune 5 . gametree

we would have to fold these two functions together into one which only con-
structed the first five levels of the tree. Worse, even the first five levels may be
too large to be held in memory at one time. In the program we have written,
the function

maptree static . prune 5 . gametree

only constructs parts of the tree as maximise requires them. Since each part can
be thrown away (reclaimed by the garbage collector) as soon as maximise has
finished with it, the whole tree is never resident in memory. Only a small part
of the tree is stored at a time. The lazy program is therefore efficient. Since
this efficiency depends on an interaction between maximise (the last function in
the chain of compositions) and gametree (the first), it could only be achieved
without lazy evaluation by folding all the functions in the chain together into
one big one. This is a drastic reduction in modularity, but it is what is usually
done. We can make improvements to this evaluation algorithm by tinkering
with each part: this is relatively easy. A conventional programmer must modify
the entire program as a unit, which is much harder.

So far we have only described simple minimaxing. The heart of the alpha-
beta algorithm is the observation that one can often compute the value of max-
imise or minimise without looking at the whole tree. Consider the tree:

min min

Strangely enough, it is unnecessary to know the value of the question mark
in order to evaluate the tree. The left minimum evaluates to 1, but the right
minimum clearly evaluates to something less than or equal to 0. Therefore the
maximum of the two minima must be 1. This observation can be generalised
and built into maximise and minimise.

The first step is to separate maximise into an application of max to a list of
numbers; that is, we decompose maximise as

19

maximise = max . maximise’

(Minimise is decomposed in a similar way. Since minimise and maximise are
entirely symmetrical we shall discuss maximise and assume that minimise is
treated similarly). Once decomposed in this way, maximise can use minimise’
rather than minimise itself, to discover which numbers minimise would take
the minimum of. It may then be able to discard some of the numbers without
looking at them. Thanks to lazy evaluation, if maximise doesn’t look at all of
the list of numbers, some of them will not be computed, with a potential saving
in computer time.
It is easy to “factor out” max from the definition of maximise, giving

maximise’ (node n nil) = cons n nil

maximise’ (node n 1) = map minimise 1

map (min . minimise’) 1
= map min (map minimise’ 1)
mapmin (map minimise’ 1)

where mapmin = map min

Since minimise’ returns a list of numbers, the minimum of which is the result of
minimise, (map minimise’ 1) returns a list of lists of numbers. Maximise’ should
return a list of the minima of those lists. However, only the maximum of this
list matters. We shall define a new version of mapmin which omits the minima
of lists whose minimum doesn’t matter.

mapmin (cons nums rest) =
= cons (min nums) (omit (min nums) rest)

The function omit is passed a “potential maximum” - the largest minimum seen
so far - and omits any minima which are less than this.

omit pot nil = nil

omit pot (cons nums rest) =
= omit pot rest, if minleq nums pot
= cons (min nums) (omit (min nums) rest), otherwise

Minleq takes a list of numbers and a potential maximum, and returns true if the
minimum of the list of numbers is less than or equal to the potential maximum.
To do this, it does not need to look at all the list! If there is any element in the
list less than or equal to the potential maximum, then the minimum of the list
is sure to be. All elements after this particular one are irrelevant - they are like
the question mark in the example above. Therefore minleq can be defined by

minleq nil pot = false
minleq (cons num rest) pot

true, if num<=pot
minleq rest pot, otherwise

Having defined maximise’ and minimise’ in this way it is simple to write a new
evaluator:

20

evaluate = max . maximise’ . maptree static . prune 8 . gametree

Thanks to lazy evaluation, the fact that maximise’ looks at less of the tree
means that the whole program runs more efficiently, just as the fact that prune
looks at only part of an infinite tree enables the program to terminate. The
optimisations in maximise’, although fairly simple, can have a dramatic effect
on the speed of evaluation, and so can allow the evaluator to look further ahead.

Other optimisations can be made to the evaluator. For example, the alpha-
beta algorithm just described works best if the best moves are considered first,
since if one has found a very good move then there is no need to consider worse
moves, other than to demonstrate that the opponent has at least one good reply
to them. One might therefore wish to sort the sub-trees at each node, putting
those with the highest values first when it is the computer’s move, and those
with the lowest values first when it is not. This can be done with the function

highfirst (node n sub) = node n (sort higher (map lowfirst sub))
lowfirst (node n sub) = node n (sort (not.higher) (map highfirst sub))
higher (node nl subl) (node n2 sub2) = ni>n2

where sort is a general purpose sorting function. The evaluator would now be
defined by

evaluate = max . maximise’ . highfirst . maptree static .
prune 8 . gametree

One might regard it as sufficient to consider only the three best moves for the
computer or the opponent, in order to restrict the search. To program this, it
is only necessary to replace highfirst with (taketree 3 . highfirst), where

taketree n = redtree (nodett n) cons nil
nodett n label sub = node label (take n sub)

Taketree replaces all the nodes in a tree with nodes with at most n subnodes,
using the function (take n) which returns the first n elements of a list (or fewer
if the list is shorter than n).

Another improvement is to refine the pruning. The program above looks
ahead a fixed depth even if the position is very dynamic - it may decide to look
no further than a position in which the queen is threated in chess, for example.
It is usual to define certain “dynamic” positions and not to allow look-ahead
to stop in one of these. Assuming a function “dynamic” that recognises such
positions, we need only add one equation to prune to do this:

prune O (node pos sub) = node pos (map (prune 0) sub),
if dynamic pos

Making such changes is easy in a program as modular as this one. As we
remarked above, since the program depends crucially for its efficiency on an
interaction between maximise, the last function in the chain, and gametree, the
first, it can only be written as a monolithic program without lazy evaluation.
Such a program is hard to write, hard to modify, and very hard to understand.

21

6 Conclusion

In this paper, we’'ve argued that modularity is the key to successful program-
ming. Languages which aim to improve productivity must support modular
programming well. But new scope rules and mechanisms for separate compi-
lation are not enough - modularity means more than modules. Our ability to
decompose a problem into parts depends directly on our ability to glue solutions
together. To assist modular programming, a language must provide good glue.
Functional programming languages provide two new kinds of glue - higher-order
functions and lazy evaluation. Using these glues one can modularise programs
in new and exciting ways, and we’ve shown many examples of this. Smaller
and more general modules can be re-used more widely, easing subsequent pro-
gramming. This explains why functional programs are so much smaller and
easier to write than conventional ones. It also provides a target for functional
programmers to aim at. If any part of a program is messy or complicated, the
programmer should attempt to modularise it and to generalise the parts. He
should expect to use higher-order functions and lazy evaluation as his tools for
doing this.

Of course, we are not the first to point out the power and elegance of higher-
order functions and lazy evaluation. For example, Turner shows how both can
be used to great advantage in a program for generating chemical structures
[Tur81]. Abelson and Sussman stress that streams (lazy lists) are a powerful
tool for structuring programs [AS86]. Henderson has used streams to structure
functional operating systems [P.H82]. The main contribution of this paper is
to assert that better modularity alone is the key to the power of functional
languages.

It is also relevant to the present controversy over lazy evaluation. Some
believe that functional languages should be lazy, others believe they should
not. Some compromise and provide only lazy lists, with a special syntax for
constructing them (as, for example, in SCHEME [AS86]). This paper provides
further evidence that lazy evaluation is too important to be relegated to second-
class citizenship. It is perhaps the most powerful glue functional programmers
possess. One should not obstruct access to such a vital tool.

Acknowledgements

This paper owes much to many conversations with Phil Wadler and Richard
Bird in the Programming Research Group at Oxford. Magnus Bondesson at
Chalmers University, Goteborg pointed out a serious error in an earlier version of
one of the numerical algorithms, and thereby prompted development of many of
the others. This work was carried out with the support of a Research Fellowship
from the UK Science and Engineering Research Council.

22

References

[ASS6]

[Hug89]

[Hug90]

[MTH90]

[oD80]

[P.H82]
[Tur81]

[Tur85]

[Wirs2]

H. Abelson and G.J. Sussman. Structure and Interpretation of Com-
puter Programs. MIT Press, Boston, 1986.

J. Hughes. Why Functional Programming Matters. Computer Jour-
nal, 32(2), 1989.

John Hughes. Why Functional Programming Matters. In D. Turner,
editor, Research Topics in Functional Programming. Addison Wesley,
1990.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
MIT Press, 1990.

United States Department of Defense. The Programming Language
Ada Reference Manual. Springer-Verlag, 1980.

P.Henderson. Purely Functional Operating Systems. 1982.

D. A. Turner. The Semantic Elegance of Applicative Languages. In
Proceedings 1981 Conference on Functional Languages and Computer
Architecture, Wentworth-by-the-Sea, Portsmouth, New Hampshire,
1981.

D. A. Turner. Miranda: A non-strict language with polymorphic
types. In Proceedings 1985 Conference on Functional Programming
Languages and Computer Architecture, pages 1-16, Nancy, France,
1985.

N. Wirth. Programming in Modula-II. Springer-Verlag, 1982.

23

Where do I begin? A problem solving approach in
teaching functional programming

Simon Thompson

Computing Laboratory
University of Kent at Canterbury
S.J.Thompson@ukc.ac.uk

Abstract. This paper introduces a problem solving method for teach-
ing functional programming, based on Polya’s How To Solve It, an in-
troductory investigation of mathematical method. We first present the
language independent version, and then show in particular how it applies
to the development of programs in Haskell. The method is illustrated by
a sequence of examples and a larger case study.

Keywords. Functional programming, Haskell, palindrome recognition,
Polya, problem solving.

1 Introduction

Many students take easily to functional programming, whilst others experience
difficulties of one sort or another. The work reported here is the result of attempts
to advise students on how to use problem solving ideas to help them design and
develop programs.

Some students come to a computer science degree with considerable experi-
ence of programming in an imperative language such as Pascal or C. For these
students, a functional approach forces them to look afresh at the process of
programming; it is no longer possible to construct programs ‘from the middle
out’; instead design has to be confronted from the start. Other students come to
a CS programme with no prior programming experience, and so with no ‘bag-
gage’ which might encumber them. Many of these students prefer a functional
approach to the imperative, but lacking the background of the experienced stu-
dents need encouragement and advice about how to build programs.’

In this paper we report on how we try to answer our students’ question
‘Where do I begin? by talking explicitly about problem solving and what it
means in programming. Beyond enabling students to program more effectively
a problem solving approach has a number of other important consequences. The
approach is not only beneficial in a functional programming context, as we are
able to use the approach across our introductory curriculum, as reported in [1],
reinforcing ideas in a disparate set of courses including imperative programming
and systems analysis. It 1s also striking that the cycle of problem solving is very

! Further reports on instructors’ experience of teaching functional programming were
given at the recent Workshop in the UK [6].

close to the ‘understand, plan, write and review’ scheme which is recommended
to students experiencing difficulties in writing essays, emphasising the fact that
problem solving ability is a transferable skill.

In this paper we first review our general problem solving strategy, mod-
elled on Polya’s epoch-making How To Solve It, [5], which brought these ideas
to prominence in mathematics some fifty years ago. This material is largely
language-independent. We then go on to explore how to take these ideas into
the functional domain by describing ‘How to program it in Haskell’. After looking
at a sequence of examples we examine the case study of palindrome recognition,
and the lessons to be learned from this example. We conclude by reviewing the
future role of problem solving in functional programming and across the com-
puter science curriculum, since the material on problem solving can also be seen
as the first stage in learning software engineering, ‘in the small’ as it were; more
details are given in [1].

I am very grateful to David Barnes and Sally Fincher with whom the cross-
curricular ideas were developed, and to Jan Sellers of the Rutherford Study
Centre at the University of Kent who provided support for workshops in problem
solving, as well as pointing out the overlap with essay writing techniques. The
Alumni Fund of the University of Kent provided funding for Jan to work with
us. Finally I would like to acknowledge all the colleagues at UKC with whom I
have taught functional programming, and from whom I have learned an immense
amount.

2 How To Program It

Polya’s How To Solve It, [5], contains a wealth of material about how to ap-
proach mathematical problems of various kinds. This ranges from specific hints
which can be used in particular circumstances to general methodological ideas.
The latter are summarised in a two-page table giving a four-stage process (or
more strictly a cycle) for solving problems. In helping students to program, we
have specified a similar summary of method — How To Program It — which is
presented in Figures 1 and 2. The stages of our cycle are: understanding the
problem; designing the program; writing the program and finally looking back
(or ‘reflection’).

The table is largely self-explanatory, so we will not paraphrase it here; instead
we will make some comments about its structure and how it has been used.

How To Program It has been written in a language-independent way (at least
as much as the terminology of modern computing allows). In Section 3 we look at
how it can be specialised for the lazy functional programming language Haskell,
[4, 7]. Plainly it can also be used with other programming languages, and at the
University of Kent we have used it in teaching Modula-3, [1], for instance.

Our approach emphasizes that a novice can make substantial progress in
completing a programming task before beginning to write any program code.
This is very important in demystifying the programming process for those who
find it difficult. As the title of this paper suggests, getting started in the task

UNDERSTANDING THE PROBLEM

First understand the What are the inputs (or arguments)? What are the outputs
problem. (or results)? What is the specification of the problem?
Name the program or Can the specification be satisfied? Is it insufficient? or
function. redundant? or contradictory? What special conditions are

What s its tupe? there on the inputs and outputs?
at is its type?

Does the problem break into parts? It can help to draw
diagrams and to write things down in pseudo-code or plain

English.

DESIGNING THE PROGRAM

In designing the program Have you seen the problem before? In a slightly different
you need to think about form?
the connections between

‘?
the input and the output. Do you know a related problem? Do you know any

programs or functions which could be useful?
If there is no immediate
connection, you might
have to think of auxiliary
problems which would Here is a problem related to yours and solved before. Could
help in the solution. you use 1t7 Could you use its results? Could you use its

Look at the specification. Try to find a familiar problem
with the same or similar specification.

methods? Should you introduce some auxiliary parts to the

You want to give yourself
program?

some sort of plan of how

to write the program. If you cannot solve the proposed problem try to solve a
related one. Can you imagine a more accessible related one?
A more general one? A more specific one? An analogous
problem?

Can you solve part of the problem? Can you get something
useful from the inputs? Can you think of information which
would help you to calculate the outputs? How could you
change the inputs/outputs so that they were closer to each
other?

Did you use all the inputs? Did you use the special
conditions on the inputs? Have you taken into account all
that the specification requires?

Fig.1. How To Program It, Part I

Writing the program
means taking your design
into a particular
programming language.

Think about how you can
build programs in the
language. How do you
deal with different cases?
With doing things in
sequence? With doing
things repeatedly or
recursively?

You also need to know

the programs you have

already written, and the
functions built into the

language or library.

Ezamine your solution:
how can it be tmproved?

WRITING YOUR PROGRAM

In writing your program, make sure that you check each
step of the design. Can you see clearly that each step does
what it should?

You can write the program in stages. Think about the
different cases into which the problem divides; in particular
think about the different cases for the inputs. You can also
think about computing parts of the result separately, and
how to put the parts together to get the final results.

You can think of solving the problem by solving it for a
smaller input and using the result to get your result; this is
recursion.

Your design may call on you to solve a more general or
more specific problem. Write the solutions to these; they
may guide how you write the solution itself, or may indeed
be used in that solution.

You should also draw on other programs you have written.
Can they be used? Can they be modified? Can they guide
how to build the solution?

LOOKING BACK
Can you test that the program works, on a variety of
arguments?

Can you think of how you might write the program
differently if you had to start again?

Can you see how you might use the program or its method
to build another program?

Fig. 2. How To Program It, Part II

can be a block for many students. For example, in the first stage of the process a
student will have to clarify the problem in two complementary ways. First, the
informal statement has to be clarified, and perhaps restated, giving a clear infor-
mal goal. Secondly, this should mean that the student 1s able to write down the
name of a program or function and more importantly give a type to this artifact
at this stage. While this may seem a small step, it means that misconceptions
can be spotted at an early stage, and avoid a student going off in a mistaken

direction.

The last observation is an example of a general point. Although we have made

reflection (or ‘looking back’) the final stage of the process, it should permeate
the whole process. At the first stage, once a type for a function has been given, it
is sensible to reflect on this choice: giving some typical inputs and corresponding
outputs, does the type specified actually reflect the problem? This means that
a student is forced to check both their understanding of the problem and of the
types of the target language.

At the design stage, students are encouraged to think about the context of the
problem, and the ways in which this can help the solution of the problem itself.
We emphasise that programs can be re-used either by calling them or by mod-
ifying their definitions, as well as the ideas of specialisation and generalisation.
Generalisation is particularly apt in the modern functional context, in which
polymorphism and higher-order functions allow libraries of general functions to
be written with little overhead (in contrast to the C++ Standard Template
Library, say).

Implementation ideas can be discussed in a more concrete way in the context
of a particular language. The ideas of this section are next discussed in the
context of Haskell by means of a succession of examples in Section 3 and by a
lengthier case study in Section 4. Note that the design stage of the case study
is essentially language independent.

Students are encouraged to reflect on what they have achieved throughout
the problem solving cycle. As well as testing their finished programs, pencil and
paper evaluation of Haskell programs is particularly effective, and we expect
students to use this as a way of discovering how their programs work.

3 Programming it in Haskell

As we saw in the previous section, it is more difficult to give useful language-
independent advice about how to write programs than it is about how to design
them. It is also easier to understand the generalities of How To Program It in
the context of particular examples. We therefore provide students with particular
language-specific advice in tabular form. These tables allow us to

— give examples to illustrate the design and programming stages of the process,
and
— discuss the programming process in a much more specific way.

The full text of Programming it in Haskell is available on the World Wide Web,
[9]. Rather than reproduce it here, in the rest of this section we look at some of
the examples and the points in the process which they illustrate.

Problem: find the maximum of three integers

A first example is to find the maximum of three integers. In our discussion we
link various points in the exposition to the four stages of How To Program It.

Understanding the problem Even in a problem of this simplicity there can
be some discussion of the specification: what is to be done in the case when two
(or three) of the integers are maximal? This is usually resolved by saying that
the common value should be returned, but the important learning point here is
that the discussion takes place. Also one can state the name and type, beginning
the solution:

maxThree :: Int -> Int -> Int -> Int

Designing and writing the program More interesting points can be made
in the design stage. Given a function max to find the maximum of two integers,

max :: Int -> Int -> Int
max a b

| a>=b = a

| otherwise =D

this can be used in two ways. It can form a model for the solution of the problem:

maxThree a b ¢
| a>=b && a>=c = a

[
or 1t can itself be used 1n a solution
maxThree a b ¢ = max (max a b) ¢

It is almost universally the case that novices produce the first solution rather
than the second, so this provides a useful first lesson in the existence of design
choices, guided by the resources available (in this case the function max). Al-
though 1t is difficult to interpret exactly why this is the case, it can be taken
as an indication that novice students find it more natural to tackle a problem
in a single step, rather than stepping back from the problem and looking at it
more strategically. This lends support to introducing these problem solving ideas
explicitly, rather than hoping that they will be absorbed ‘osmotically’.

We also point out that given maxThree it is straightforward to generalise to
cases of finding the minimum of three numbers, the maximum of four, and so
on.

Looking back Finally, this is a non-trivial example for program testing. A not
uncommon student error here is to make the inequalities strict, thus

maxThreeErr a b ¢

| a>b && a>c = a
| b>c && b>a = b
| otherwise =c

This provides a discussion point in how test data are chosen; the vast majority
of student test data sets do not reveal the error. A systematic approach should
produce the data which indicate the error — a and b jointly maximal — and indeed
the cause of error links back to the initial clarification of the specification.

Problem: add the positive numbers in a list

We use this example to show how to break down the process of designing and
writing a program — stages two and three of our four-step process — into a number
of simpler steps. The function we require is

addPos :: [Int] -> Int

We first consider the design of the equations which describe the function. A
paradigm here if we are to define the function from scratch is primitive recursion
(or structural recursion) over the list argument. In doing this we adopt the
general scheme

addPos []
addPos (a:x)

. addPos x ...

in which we have do define the value at [] outright and the value at (a:x) from
the value at x. Completing the first equation gives

addPos [] =0

The (a:x) case requires more thought. Guidance can often come from looking
at examples. Here we take lists

[-4,3,2,-1]
[2,3,2,-1]

which respectively give sums 0 and 6. In the first case the head does not con-
tribute to the sum; in the second it does. This suggests the case analysis

addPos (a:x)
| a>0 = ...
| otherwise

from which point in development the answer can be seen. The point of this
example is less to develop the particular function than to illustrate how the
process works.

The example is also enlightening for the other design possibilities it offers by
way of looking back at the problem. In particularly when students are acquainted
with filter and foldr the explicit definition

addPos = foldr (+) 0 . filter (>0)

is possible. The definition here reflects very clearly its top-down design.

Further examples
Other examples we have used include

Maximum of a list This is similar to addPos, but revisits the questions raised
by the maxThree example. In particular, will the max function be used in the
definition?

Counting how many times a maximum occurs among three numbers
This gives a reasonable example in which local definitions (in a where clause)
naturally structure a definition with a number of parts.

Deciding whether one list is a sublist of another This example naturally
gives rise to an auxiliary function during its development.

Summing integers up to n This can give rise to the generalisation of sum-
ming numbers from m to n.

The discussions thus far have been about algorithms; there is a wealth of material
which addresses data and object design, the former of which we address in [9].

4 Case study: palindromes

The problem is to recognise palindromes, such as
"Madam I’m Adam"

It 1s chosen as an example since even for a more confident student it requires some
thought before implementation can begin. Once the specification is clarified it
presents a non-trivial design space in which we can illustrate how choices between
alternative designs can take place. Indeed, it is a useful example for small-group
work since it is likely that different groups will produce substantially different
initial design ideas. It 1s also an example in which a variety of standard functions
can be used.

We address the main ideas in this section; further details are available on the

World Wide Web [8].

Understanding the problem

The problem is stated in a deliberately vague way. A palindrome can be identified
as a string which is the same read forwards or backwards, so long as

(1) we disregard the punctuation (punctuation marks and spaces) in the string;
(2) we disregard the case (upper or lower: that is capital or small) of the letters
in the string.

Requirement (2) is plainly unambiguous, whilst (1) will need to be revisited at
the implementation stage.

Overall design

The palindrome example lends itself to a wide choice of designs. The simpler
problem in which there is no punctuation and all letters in lower case can be
helpful in two ways. It can either form a guide about how to write the full
solution, or be used as a part of that solution. The choice here provides a useful
discussion point.

Design: the simpler problem
Possible designs which can emerge here may be classified in two different ways.

— Is the string handled as a single entity, or split into two parts?
— Is comparison made between strings, or between individual characters?

These choices generate these outline designs:

— The string is reversed and compared with itself;

— the string is split, one part reversed and the result compared with the other
part;

— the first and last characters are compared, and if equal are removed and an
iteration or a recursion is performed;

— the string is split, one part reversed and the strings are then compared one
character at a time.

Again, it is important for students to be able both to see the possibilities avail-
able, and to discuss their relative merits (in the context of the implementation
language). Naturally, too, there needs to be a comparison of the different ways
in which the string is represented.

Design: the full problem

Assuming we are to use the solution to the simpler problem in solving the full
problem, we reach our goal by writing a function which removes punctuation and
changes all upper case letters to lower case. Here again we can see an opportunity
to split the task in two, and also to discuss the order in which the two operations
are performed: do we remove punctuation before or after converting letters to
lower case? This allows a discussion of relative efficiency.

Writing the program

At this point we need to revisit the specification and to make plain what is meant
by punctuation. This is not clear from the example given in the specification, and
we can choose either to be proscriptive and disallow everything but letters and
digits, or to be permissive and to say that punctuation consists of a particular
set of characters.

There are more specific implementation decisions to be taken here; these
reinforce the discussions in Section 3. In particular there is substantial scope for
using built-in or library functions.

We give a full implementation of the palindrome recognition problem in Fig-
ure 3.

palin :: String -> Bool

palin st = simplePalin (disregard st)
simplePalin :: String -> Bool
gimplePalin st = (rev st == st)

rev :: String -> String

rev [] =[]

rev (a:st) = rev st ++ [al
disregard :: String -> String
disregard st = change (remove st)

remove :: String -> String
change :: String -> String

remove [] = []

remove (a:st)
| notPunct a
| otherwise

a : remove st

remove st
notPunct ch = isAlpha ch || isDigit ch

change [1 = []
change (a:st) = convert a : change st

convert :: Char -> Char

convert ch

| isCap ch = toEnum (fromEnum ch + offset)
| otherwise = ch

where

offset = fromEnum ’a’ - fromEnum ’A°’

isCap :: Char -> Bool

isCap ch = A’ <= ch && ch <= ’Z’

Fig. 3. Recognising palindromes in Haskell

Looking back

Using the approach suggested here, students see that the solution which they
have chosen represents one branch in a tree of choices. Their solution can be
evaluated against other possibilities, including those written by other students.
There is also ample scope for discussion of testing in this problem.

For instance, the solution given in Figure 3 can give rise to numerous discus-
sion points.

— No higher order functions are used in the solution; we would expect to revisit
the example after covering HOF's to reveal that change is map convert and
that remove is filter notPunct.

— In a similar way we would expect to revisit the solution and discuss incor-
porating function-level definitions such as

palin = simplePalin . disregard

This would also apply to disregard itself.

— Some library functions have been used; digits and letters are recognised by
isDigit and isAlpha.

— An alternative definition of disregard is given by

disregard st = remove (change st)

and other solutions are provided by implementing the two operations in a
single function definition, rather than as a composition of two separate pieces
of functionality.

— We have chosen the proscriptive definition of punctuation, considering only
letters and digits to be significant.

5 Conclusion

In this paper we have given an explicit problem solving method for beginning
(functional) programmers, motivated by the desire to equip them with tools to
enable them to write complex programs in a disciplined way. The method also
gives weaker students the confidence to proceed by showing them the ways in
which a seemingly intractable problem can be broken down into simpler parts
which can be solved separately. As well as providing a general method we think
it crucial to illustrate the method by examples and case studies — this latter
approach is not new, see [2] for a very effective account of using case studies in
teaching Pascal.

To conclude, it is worth noting that numerous investigations into mathe-
matical method were stimulated by Polya’s work. Most prominent are Lakatos’
investigations of the roles of proof and counterexample, [3], which we believe
have useful parallels for teachers and students of computer science. We intend
to develop this correspondence further in the future.

References

1. David Barnes, Sally Fincher, and Simon Thompson. Introductory problem solving
in computer science. In CTC97, Dublin, 1997.

2. Michael Clancy and Marcia Linn. Designing Pascal Solutions: Case studies using
data structures. Computer Science Press, W. H. Freeman and Co., 1996.

3. Imre Lakatos. Proofs and Refuations: The Logic of Mathematical Discovery. Cam-
bridge University Press, 1976. Edited by John Worrall and Elie Zahar.

4. John Peterson and Kevin Hammond, editors. Report on the Programming Language
Haskell, Version 1.3.
http://haskell.cs.yale.edu/haskell-report/haskell-report.html, 1996.

5. G. Polya. How To Solve It. Princeton University Press, second edition, 1957.

6. Teaching functional programming: Opportunities & difficulties.
http://www.ukc.ac.uk/CSDN/conference/96/Report.html, September 1996.

7. Simon Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley,
1996.

8. Simon Thompson. Problem solving: recognising palindromes.
http://www.ukc.ac.uk/computer_science/Haskell_craft/palindrome.html,
1996.

9. Simon Thompson. Programming it in Haskell.
http://www.ukc.ac.uk/computer_science/Haskell_craft/ProgInHaskell.html,
1996.

This article was processed using the INTpX macro package with LLNCS style

A Gentle Introduction to Haskell 98

Paul Hudak John Peterson
Yale University Yale University
Department of Computer Science Department of Computer Science

Joseph H. Fasel
University of California
Los Alamos National Laboratory

October, 1999

Copyright © 1999 Paul Hudak, John Peterson and Joseph Fasel

Permission is hereby granted, free of charge, to any person obtaining a copy of “A Gentle
Introduction to Haskell” (the Text), to deal in the Text without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Text, and to permit persons to whom the Text is furnished to do so, subject to the following
condition: The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Text.

1 Introduction

Our purpose in writing this tutorial is not to teach programming, nor even to teach functional
programming. Rather, it is intended to serve as a supplement to the Haskell Report [4], which is
otherwise a rather dense technical exposition. Our goal is to provide a gentle introduction to Haskell
for someone who has experience with at least one other language, preferably a functional language
(even if only an “almost-functional” language such as ML or Scheme). If the reader wishes to learn
more about the functional programming style, we highly recommend Bird’s text Introduction to
Functional Programming [1] or Davie’s An Introduction to Functional Programming Systems Using
Haskell [2]. For a useful survey of functional programming languages and techniques, including
some of the language design principles used in Haskell, see [3].

The Haskell language has evolved significantly since its birth in 1987. This tutorial deals with
Haskell 98. Older versions of the language are now obsolete; Haskell users are encouraged to use
Haskell 98. There are also many extensions to Haskell 98 that have been widely implemented.
These are not yet a formal part of the Haskell language and are not covered in this tutorial.

Our general strategy for introducing language features is this: motivate the idea, define some
terms, give some examples, and then point to the Report for details. We suggest, however, that the
reader completely ignore the details until the Gentle Introduction has been completely read. On the

2 2 VALUES, TYPES, AND OTHER GOODIES

other hand, Haskell’s Standard Prelude (in Appendix A of the Report and the standard libraries
(found in the Library Report [5]) contain lots of useful examples of Haskell code; we encourage a
thorough reading once this tutorial is completed. This will not only give the reader a feel for what
real Haskell code looks like, but will also familiarize her with Haskell’s standard set of predefined
functions and types.

Finally, the Haskell web site, http://haskell.org, has a wealth of information about the
Haskell language and its implementations.

[We have also taken the course of not laying out a plethora of lexical syntax rules at the outset.
Rather, we introduce them incrementally as our examples demand, and enclose them in brackets,
as with this paragraph. This is in stark contrast to the organization of the Report, although the
Report remains the authoritative source for details (references such as “§2.1”7 refer to sections in
the Report).]

Haskell is a typeful programming language:' types are pervasive, and the newcomer is best off
becoming well aware of the full power and complexity of Haskell’s type system from the outset. For
those whose only experience is with relatively “untypeful” languages such as Perl, Tcl, or Scheme,
this may be a difficult adjustment; for those familiar with Java, C, Modula, or even ML, the
adjustment should be easier but still not insignificant, since Haskell’s type system is different and
somewhat richer than most. In any case, “typeful programming” is part of the Haskell programming
experience, and cannot be avoided.

2 Values, Types, and Other Goodies

Because Haskell is a purely functional language, all computations are done via the evaluation of
expressions (syntactic terms) to yield values (abstract entities that we regard as answers). Every
value has an associated type. (Intuitively, we can think of types as sets of values.) Examples
of expressions include atomic values such as the integer 5, the character ’a’, and the function
\x -> x+1, as well as structured values such as the list [1,2,3] and the pair (°b’,4).

Just as expressions denote values, type expressions are syntactic terms that denote type values
(or just types). Examples of type expressions include the atomic types Integer (infinite-precision
integers), Char (characters), Integer->Integer (functions mapping Integer to Integer), as well
as the structured types [Integer] (homogeneous lists of integers) and (Char,Integer) (character,
integer pairs).

All Haskell values are “first-class”—they may be passed as arguments to functions, returned as
results, placed in data structures, etc. Haskell types, on the other hand, are not first-class. Types
in a sense describe values, and the association of a value with its type is called a typing. Using the
examples of values and types above, we write typings as follows:

5 :: Integer
’a’ :: Char
inc :: Integer -> Integer

[1,2,3] :: [Integer]
(’b?,4) :: (Char,Integer)

!Coined by Luca Cardelli.

2.1 Polymorphic Types 3

The “::” can be read “has type.”

Functions in Haskell are normally defined by a series of equations. For example, the function
inc can be defined by the single equation:

inc n = n+1

An equation is an example of a declaration. Another kind of declaration is a type signature decla-
ration (§4.4.1), with which we can declare an explicit typing for inc:

inc :: Integer -> Integer

We will have much more to say about function definitions in Section 3.

For pedagogical purposes, when we wish to indicate that an expression e; evaluates, or “re-

duces,” to another expression or value ey, we will write:
el = (D)

For example, note that:
inc (inc 3) = 5

Haskell’s static type system defines the formal relationship between types and values (§4.1.3).
The static type system ensures that Haskell programs are type safe; that is, that the programmer has
not mismatched types in some way. For example, we cannot generally add together two characters,
80 the expression ’a’+’b’ is ill-typed. The main advantage of statically typed languages is well-
known: All type errors are detected at compile-time. Not all errors are caught by the type system;
an expression such as 1/0 is typable but its evaluation will result in an error at execution time.
Still, the type system finds many program errors at compile time, aids the user in reasoning about
programs, and also permits a compiler to generate more efficient code (for example, no run-time
type tags or tests are required).

The type system also ensures that user-supplied type signatures are correct. In fact, Haskell’s
type system is powerful enough to allow us to avoid writing any type signatures at all;? we say
that the type system infers the correct types for us. Nevertheless, judicious placement of type
signatures such as that we gave for inc is a good idea, since type signatures are a very effective
form of documentation and help bring programming errors to light.

[The reader will note that we have capitalized identifiers that denote specific types, such as
Integer and Char, but not identifiers that denote values, such as inc. This is not just a convention:
it is enforced by Haskell’s lexical syntax. In fact, the case of the other characters matters, too: foo,
f0o, and £00 are all distinct identifiers.]

2.1 Polymorphic Types

Haskell also incorporates polymorphic types—types that are universally quantified in some way
over all types. Polymorphic type expressions essentially describe families of types. For example,
(Va)[a] is the family of types consisting of, for every type a, the type of lists of a. Lists of

2With a few exceptions to be described later.

4 2 VALUES, TYPES, AND OTHER GOODIES

integers (e.g. [1,2,3]), lists of characters ([’a’,’b’,’c’]), even lists of lists of integers, etc., are
all members of this family. (Note, however, that [2,’b’] is not a valid example, since there is no
single type that contains both 2 and ’b’.)

[Identifiers such as a above are called type variables, and are uncapitalized to distinguish them
from specific types such as Int. Furthermore, since Haskell has only universally quantified types,
there is no need to explicitly write out the symbol for universal quantification, and thus we sim-
ply write [a] in the example above. In other words, all type variables are implicitly universally
quantified.]

Lists are a commonly used data structure in functional languages, and are a good vehicle for
explaining the principles of polymorphism. The list [1,2,3] in Haskell is actually shorthand for
the list 1:(2:(3:[1)), where [] is the empty list and : is the infix operator that adds its first
argument to the front of its second argument (a list).?> Since : is right associative, we can also
write this list as 1:2:3: [].

As an example of a user-defined function that operates on lists, consider the problem of counting
the number of elements in a list:

length :: [a]l -> Integer

length [] 0
length (x:xs) 1 + length xs

This definition is almost self-explanatory. We can read the equations as saying: “The length of the
empty list is 0, and the length of a list whose first element is x and remainder is xs is 1 plus the
length of xs.” (Note the naming convention used here; xs is the plural of x, and should be read
that way.)

Although intuitive, this example highlights an important aspect of Haskell that is yet to be
explained: pattern matching. The left-hand sides of the equations contain patterns such as []1 and
x:xs. In a function application these patterns are matched against actual parameters in a fairly
intuitive way ([] only matches the empty list, and x: xs will successfully match any list with at least
one element, binding x to the first element and xs to the rest of the list). If the match succeeds,
the right-hand side is evaluated and returned as the result of the application. If it fails, the next
equation is tried, and if all equations fail, an error results.

Defining functions by pattern matching is quite common in Haskell, and the user should become
familiar with the various kinds of patterns that are allowed; we will return to this issue in Section 4.

The length function is also an example of a polymorphic function. It can be applied to a list
containing elements of any type, for example [Integer], [Char], or [[Integer]].

length [1,2,3] 3
length [’a’,’b’,’c’]

length [[11,[2],[3]1] = 3

=
=

w

Here are two other useful polymorphic functions on lists that will be used later. Function head
returns the first element of a list, function tail returns all but the first.

3. and [] are like Lisp’s cons and nil, respectively.

2.2 User-Defined Types 5

head :: [a]l] -> a
head (x:xs) = x

tail :: [a]l -> [al
tail (x:xs) = xs

Unlike length, these functions are not defined for all possible values of their argument. A runtime
error occurs when these functions are applied to an empty list.

With polymorphic types, we find that some types are in a sense strictly more general than
others in the sense that the set of values they define is larger. For example, the type [a] is more
general than [Char]. In other words, the latter type can be derived from the former by a suitable
substitution for a. With regard to this generalization ordering, Haskell’s type system possesses two
important properties: First, every well-typed expression is guaranteed to have a unique principal
type (explained below), and second, the principal type can be inferred automatically (§4.1.3). In
comparison to a monomorphically typed language such as C, the reader will find that polymorphism
improves expressiveness, and type inference lessens the burden of types on the programmer.

An expression’s or function’s principal type is the least general type that, intuitively, “contains
all instances of the expression”. For example, the principal type of head is [al->a; [b]->a, a->a,
or even a are correct types, but too general, whereas something like [Integer]->Integer is too
specific. The existence of unique principal types is the hallmark feature of the Hindley-Milner type
system, which forms the basis of the type systems of Haskell, ML, Miranda,* and several other
(mostly functional) languages.

2.2 User-Defined Types
We can define our own types in Haskell using a data declaration, which we introduce via a series
of examples (§4.2.1).

An important predefined type in Haskell is that of truth values:

data Bool = False | True

The type being defined here is Bool, and it has exactly two values: True and False. Type Bool is
an example of a (nullary) type constructor, and True and False are (also nullary) data constructors
(or just constructors, for short).

Similarly, we might wish to define a color type:
data Color = Red | Green | Blue | Indigo | Violet

Both Bool and Color are examples of enumerated types, since they consist of a finite number of
nullary data constructors.

Here is an example of a type with just one data constructor:
data Point a =Pt aa

Because of the single constructor, a type like Point is often called a tuple type, since it is essentially

4«Miranda” is a trademark of Research Software, Ltd.

6 2 VALUES, TYPES, AND OTHER GOODIES

just a cartesian product (in this case binary) of other types.® In contrast, multi-constructor types,
such as Bool and Color, are called (disjoint) union or sum types.

More importantly, however, Point is an example of a polymorphic type: for any type t, it
defines the type of cartesian points that use ¢ as the coordinate type. The Point type can now be
seen clearly as a unary type constructor, since from the type ¢ it constructs a new type Point t.
(In the same sense, using the list example given earlier, [] is also a type constructor. Given any
type t we can “apply” [] to yield a new type [t]. The Haskell syntax allows [] ¢ to be written
as [t]. Similarly, => is a type constructor: given two types ¢ and wu, t->u is the type of functions
mapping elements of type ¢ to elements of type u.)

Note that the type of the binary data constructor Pt is a -> a -> Point a, and thus the
following typings are valid:

Pt 2.0 3.0 :: Point Float
Pt ’a’ ’b’ :: Point Char
Pt True False :: Point Bool

On the other hand, an expression such as Pt ’a’ 1 is ill-typed because ’a’ and 1 are of different
types.

It is important to distinguish between applying a data constructor to yield a value, and applying
a type constructor to yield a type; the former happens at run-time and is how we compute things
in Haskell, whereas the latter happens at compile-time and is part of the type system’s process of
ensuring type safety.

[Type constructors such as Point and data constructors such as Pt are in separate namespaces.
This allows the same name to be used for both a type constructor and data constructor, as in the
following;:

data Point a = Point a a

While this may seem a little confusing at first, it serves to make the link between a type and its
data constructor more obvious.]

2.2.1 Recursive Types

Types can also be recursive, as in the type of binary trees:
data Tree a = Leaf a | Branch (Tree a) (Tree a)

Here we have defined a polymorphic binary tree type whose elements are either leaf nodes containing
a value of type a, or internal nodes (“branches”) containing (recursively) two sub-trees.

When reading data declarations such as this, remember again that Tree is a type constructor,
whereas Branch and Leaf are data constructors. Aside from establishing a connection between
these constructors, the above declaration is essentially defining the following types for Branch and
Leaf:

Branch :: Tree a -> Tree a -> Tree a
Leaf :: a > Tree a

STuples are somewhat like records in other languages.

2.3 Type Synonyms 7

With this example we have defined a type sufficiently rich to allow defining some interesting
(recursive) functions that use it. For example, suppose we wish to define a function fringe that
returns a list of all the elements in the leaves of a tree from left to right. It’s usually helpful to write
down the type of new functions first; in this case we see that the type should be Tree a -> [a].
That is, fringe is a polymorphic function that, for any type a, maps trees of a into lists of a. A
suitable definition follows:

fringe :: Tree a -> [al

fringe (Leaf x) = [x]

fringe (Branch left right) fringe left ++ fringe right

Here ++ is the infix operator that concatenates two lists (its full definition will be given in Section
9.1). As with the length example given earlier, the fringe function is defined using pattern
matching, except that here we see patterns involving user-defined constructors: Leaf and Branch.
[Note that the formal parameters are easily identified as the ones beginning with lower-case letters.]

2.3 Type Synonyms

For convenience, Haskell provides a way to define type synonyms; i.e. names for commonly used
types. Type synonyms are created using a type declaration (§4.2.2). Here are several examples:

type String = [Char]
type Person = (Name,Address)
type Name = String

data Address None | Addr String

Type synonyms do not define new types, but simply give new names for existing types. For
example, the type Person -> Name is precisely equivalent to (String,Address) -> String. The
new names are often shorter than the types they are synonymous with, but this is not the only
purpose of type synonyms: they can also improve readability of programs by being more mnemonic;
indeed, the above examples highlight this. We can even give new names to polymorphic types:

type AssocList a b = [(a,b)]

This is the type of “association lists” which associate values of type a with those of type b.

2.4 Built-in Types Are Not Special

Earlier we introduced several “built-in” types such as lists, tuples, integers, and characters. We have
also shown how new user-defined types can be defined. Aside from special syntax, are the built-in
types in any way more special than the user-defined ones? The answer is no. The special syntax is
for convenience and for consistency with historical convention, but has no semantic consequences.

We can emphasize this point by considering what the type declarations would look like for these
built-in types if in fact we were allowed to use the special syntax in defining them. For example,
the Char type might be written as:

8 2 VALUES, TYPES, AND OTHER GOODIES

data Char =’a’> | ’b> | ’¢c> | ... -- This is not valid
| A | B> | ’C’ | ... -- Haskell code!
| ’1’ |)2) |)3) |

These constructor names are not syntactically valid; to fix them we would have to write something
like:

data Char =Ca | Cb | Cc |
| CA | CB | CC |
| c1 | c2 | C3 |

Even though these constructors are more concise, they are quite unconventional for representing
characters.

In any case, writing “pseudo-Haskell” code in this way helps us to see through the special
syntax. We see now that Char is just an enumerated type consisting of a large number of nullary
constructors. Thinking of Char in this way makes it clear that we can pattern-match against
characters in function definitions, just as we would expect to be able to do so for any of a type’s
constructors.

[This example also demonstrates the use of comments in Haskell; the characters -- and all
subsequent characters to the end of the line are ignored. Haskell also permits nested comments
which have the form {-...-} and can appear anywhere (§2.2).]

Similarly, we could define Int (fixed precision integers) and Integer by:

data Int
data Integer

-655632 | ... | -1 [O] 1] ... | 655632 -- more pseudo-code
=2 -1 o 1]2...

where -65532 and 65532, say, are the maximum and minimum fixed precision integers for a given
implementation. Int is a much larger enumeration than Char, but it’s still finite! In contrast, the
pseudo-code for Integer is intended to convey an infinite enumeration.

Tuples are also easy to define playing this game:

data (a,b) = (a,b) -- more pseudo-code
data (a,b,c) = (a,b,c)
data (a,b,c,d) = (a,b,c,d)

Each declaration above defines a tuple type of a particular length, with (...) playing a role in
both the expression syntax (as data constructor) and type-expression syntax (as type constructor).
The vertical dots after the last declaration are intended to convey an infinite number of such
declarations, reflecting the fact that tuples of all lengths are allowed in Haskell.

Lists are also easily handled, and more interestingly, they are recursive:
data [a] =[] | a: [a] -- more pseudo-code

We can now see clearly what we described about lists earlier: [] is the empty list, and : is the infix

2.4 Built-in Types Are Not Special 9

list constructor; thus [1,2,3] must be equivalent to the list 1:2:3:[]. (: is right associative.)
The type of [] is [a], and the type of : is a->[a]->[a].

W,

[The way “:” is defined here is actually legal syntax—infix constructors are permitted in data
declarations, and are distinguished from infix operators (for pattern-matching purposes) by the fact
that they must begin with a “:” (a property trivially satisfied by “:7).]

At this point the reader should note carefully the differences between tuples and lists, which
the above definitions make abundantly clear. In particular, note the recursive nature of the list
type whose elements are homogeneous and of arbitrary length, and the non-recursive nature of a
(particular) tuple type whose elements are heterogeneous and of fixed length. The typing rules for
tuples and lists should now also be clear:

For (eq,es,...,e,), n > 2, if t; is the type of e;, then the type of the tuple is (¢1,t2, ... ,t,).
For [e1,es,...,e,], n >0, each e; must have the same type t, and the type of the list is [¢].

2.4.1 List Comprehensions and Arithmetic Sequences

As with Lisp dialects, lists are pervasive in Haskell, and as with other functional languages, there is
yet more syntactic sugar to aid in their creation. Aside from the constructors for lists just discussed,
Haskell provides an expression known as a list comprehension that is best explained by example:

[£fx | x<-xs]

This expression can intuitively be read as “the list of all £ x such that x is drawn from xs.” The
similarity to set notation is not a coincidence. The phrase x <- xs is called a generator, of which
more than one is allowed, as in:

[(x,y) | x <- x5, y <= ys]

This list comprehension forms the cartesian product of the two lists xs and ys. The elements are
selected as if the generators were “nested” from left to right (with the rightmost generator varying
fastest); thus, if xs is [1,2] and ys is [3,4], the result is [(1,3),(1,4),(2,3),(2,4)].

Besides generators, boolean expressions called guards are permitted. Guards place constraints
on the elements generated. For example, here is a concise definition of everybody’s favorite sorting
algorithm:

quicksort [] = []

quicksort (x:xs) quicksort [y | y <- xs, y<x]
++ [x]
++ quicksort [y | y <- xs, y>=x]

To further support the use of lists, Haskell has special syntax for arithmetic sequences, which
are best explained by a series of examples:

[1..10] = [1,2,3,4,5,6,7,8,9,10]
[1,3..10] = [1,3,5,7,9]
[1,3..] = [1,3,5,7,9, ... (infinite sequence)

More will be said about arithmetic sequences in Section 8.2, and “infinite lists” in Section 3.4.

10 3 FUNCTIONS

2.4.2 Strings

As another example of syntactic sugar for built-in types, we note that the literal string "hello" is
actually shorthand for the list of characters [’h’,’e?,?1”,°1°,0’]. Indeed, the type of "hello"
is String, where String is a predefined type synonym (that we gave as an earlier example):

type String = [Char]

This means we can use predefined polymorphic list functions to operate on strings. For example:

"hello" ++ " world" = "hello world"

3 Functions

Since Haskell is a functional language, one would expect functions to play a major role, and indeed
they do. In this section, we look at several aspects of functions in Haskell.

First, consider this definition of a function which adds its two arguments:

add :: Integer -> Integer -> Integer
add x y = x+y

This is an example of a curried function.® An application of add has the form add e; e, and
is equivalent to (add e;) eo, since function application associates to the left. In other words,
applying add to one argument yields a new function which is then applied to the second argu-
ment. This is consistent with the type of add, Integer->Integer->Integer, which is equivalent
to Integer->(Integer->Integer); i.e. -> associates to the right. Indeed, using add, we can define
inc in a different way from earlier:

inc = add 1

This is an example of the partial application of a curried function, and is one way that a function
can be returned as a value. Let’s consider a case in which it’s useful to pass a function as an
argument. The well-known map function is a perfect example:

map :: (a->b) > [a] -> [b]
map £ [] = [l
map f (x:xs) = f x : map f xs

[Function application has higher precedence than any infix operator, and thus the right-hand side
of the second equation parses as (f x) : (map f xs).] The map function is polymorphic and
its type indicates clearly that its first argument is a function; note also that the two a’s must be
instantiated with the same type (likewise for the b’s). As an example of the use of map, we can
increment the elements in a list:

map (add 1) [1,2,3] = [2,3,4]

®The name curry derives from the person who popularized the idea: Haskell Curry. To get the effect of an
uncurried function, we could use a tuple, as in:
add (x,y) =x +y
But then we see that this version of add is really just a function of one argument!

3.1 Lambda Abstractions 11

These examples demonstrate the first-class nature of functions, which when used in this way
are usually called higher-order functions.

3.1 Lambda Abstractions

Instead of using equations to define functions, we can also define them “anonymously” via a lambda
abstraction. For example, a function equivalent to inc could be written as \x -> x+1. Similarly,
the function add is equivalent to \x -> \y -> x+y. Nested lambda abstractions such as this may
be written using the equivalent shorthand notation \x y -> x+y. In fact, the equations:

inc x = x+1
add x y = x+y
are really shorthand for:
inc =\x -> x+1
add = \x y -> x+y

We will have more to say about such equivalences later.
In general, given that x has type ¢; and exp has type t2, then \x->exp has type t;->ts.
3.2 Infix Operators

Infix operators are really just functions, and can also be defined using equations. For example, here
is a definition of a list concatenation operator:

(++) :: [al > [a]l -> [a]
(1 ++ ys = ys
(x:x8) ++ ys = x : (xs++ys)

[Lexically, infix operators consist entirely of “symbols,” as opposed to normal identifiers which are
alphanumeric (§2.4). Haskell has no prefix operators, with the exception of minus (-), which is
both infix and prefix.]

As another example, an important infix operator on functions is that for function composition:

¢.) i1 (b->¢) -> (a->b) -> (a->c)
f.g =\x > f (g x)

3.2.1 Sections

Since infix operators are really just functions, it makes sense to be able to partially apply them as
well. In Haskell the partial application of an infix operator is called a section. For example:

(x+) = \y -> x+y
(+y) = \x —> x+y
(+) = \x y -> x+y

12 3 FUNCTIONS

[The parentheses are mandatory.]

The last form of section given above essentially coerces an infix operator into an equivalent
functional value, and is handy when passing an infix operator as an argument to a function, as
in map (+) [1,2,3] (the reader should verify that this returns a list of functions!). It is also
necessary when giving a function type signature, as in the examples of (++) and (.) given earlier.

We can now see that add defined earlier is just (+), and inc is just (+1)! Indeed, these
definitions would do just fine:

(+ 1)
+)

inc
add

We can coerce an infix operator into a functional value, but can we go the other way? Yes—we
simply enclose an identifier bound to a functional value in backquotes. For example, x ‘add‘ y
is the same as add x y.” Some functions read better this way. An example is the predefined list
membership predicate elem; the expression x ‘elem‘ xs can be read intuitively as “x is an element
of xs.”

[There are some special rules regarding sections involving the prefix/infix operator -; see
(83.5,83.4).]

At this point, the reader may be confused at having so many ways to define a function! The
decision to provide these mechanisms partly reflects historical conventions, and partly reflects the
desire for consistency (for example, in the treatment of infix vs. regular functions).

3.2.2 Fixity Declarations

A fizity declaration can be given for any infix operator or constructor (including those made from
ordinary identifiers, such as ‘elem®). This declaration specifies a precedence level from 0 to 9 (with
9 being the strongest; normal application is assumed to have a precedence level of 10), and left-,
right-, or non-associativity. For example, the fixity declarations for ++ and . are:

infixr 5 ++
infixr 9 .

Both of these specify right-associativity, the first with a precedence level of 5, the other 9. Left
associativity is specified via infixl, and non-associativity by infix. Also, the fixity of more than
one operator may be specified with the same fixity declaration. If no fixity declaration is given for
a particular operator, it defaults to infixl 9. (See §5.9 for a detailed definition of the associativity
rules.)

3.3 Functions are Non-strict

Suppose bot is defined by:

"Note carefully that add is enclosed in backquotes, not apostrophes as used in the syntax of characters; i.e. *£’ is
a character, whereas ‘f° is an infix operator. Fortunately, most ASCII terminals distinguish these much better than
the font used in this manuscript.

3.4 “Infinite” Data Structures 13

bot = bot

In other words, bot is a non-terminating expression. Abstractly, we denote the wvalue of a non-
terminating expression as L (read “bottom”). Expressions that result in some kind of a run-time
error, such as 1/0, also have this value. Such an error is not recoverable: programs will not continue
past these errors. Errors encountered by the I/O system, such as an end-of-file error, are recoverable
and are handled in a different manner. (Such an I/O error is really not an error at all but rather
an exception. Much more will be said about exceptions in Section 7.)

A function f is said to be strict if, when applied to a nonterminating expression, it also fails to
terminate. In other words, f is strict iff the value of £ bot is L. For most programming languages,
all functions are strict. But this is not so in Haskell. As a simple example, consider const1, the
constant 1 function, defined by:

constl x =1

The value of constl bot in Haskell is 1. Operationally speaking, since constl does not “need”
the value of its argument, it never attempts to evaluate it, and thus never gets caught in a nonter-
minating computation. For this reason, non-strict functions are also called “lazy functions”, and
are said to evaluate their arguments “lazily”, or “by need”.

Since error and nonterminating values are semantically the same in Haskell, the above argument
also holds for errors. For example, constl (1/0) also evaluates properly to 1.

Non-strict functions are extremely useful in a variety of contexts. The main advantage is that
they free the programmer from many concerns about evaluation order. Computationally expensive
values may be passed as arguments to functions without fear of them being computed if they are
not needed. An important example of this is a possibly infinite data structure.

Another way of explaining non-strict functions is that Haskell computes using definitions rather
than the assignments found in traditional languages. Read a declaration such as

v =1/0

as ‘define v as 1/0’ instead of ‘compute 1/0 and store the result in v’. Only if the value (definition)
of v is needed will the division by zero error occur. By itself, this declaration does not imply
any computation. Programming using assignments requires careful attention to the ordering of
the assignments: the meaning of the program depends on the order in which the assignments are
executed. Definitions, in contrast, are much simpler: they can be presented in any order without
affecting the meaning of the program.

3.4 “Infinite” Data Structures

One advantage of the non-strict nature of Haskell is that data constructors are non-strict, too. This
should not be surprising, since constructors are really just a special kind of function (the distin-
guishing feature being that they can be used in pattern matching). For example, the constructor
for lists, (:), is non-strict.

Non-strict constructors permit the definition of (conceptually) infinite data structures. Here is
an infinite list of ones:

14 3 FUNCTIONS

Figure 1: Circular Fibonacci Sequence

ones =1 : ones
Perhaps more interesting is the function numsFrom:
numsFrom n = n : numsFrom (n+1)

Thus numsFrom n is the infinite list of successive integers beginning with n. From it we can construct
an infinite list of squares:

squares = map ("2) (numsfrom 0)
(Note the use of a section; ~ is the infix exponentiation operator.)

Of course, eventually we expect to extract some finite portion of the list for actual computation,
and there are lots of predefined functions in Haskell that do this sort of thing: take, takeWhile,
filter, and others. The definition of Haskell includes a large set of built-in functions and types—
this is called the “Standard Prelude”. The complete Standard Prelude is included in Appendix A
of the Haskell report; see the portion named PreludeList for many useful functions involving lists.
For example, take removes the first n elements from a list:

take 5 squares = [0,1,4,9,16]

The definition of ones above is an example of a circular list. In most circumstances laziness
has an important impact on efficiency, since an implementation can be expected to implement the
list as a true circular structure, thus saving space.

For another example of the use of circularity, the Fibonacci sequence can be computed efficiently
as the following infinite sequence:

fib =1:1: [a+tb | (a,b) <- zip fib (tail fib)]

where zip is a Standard Prelude function that returns the pairwise interleaving of its two list
arguments:

zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip xs ys = []

Note how fib, an infinite list, is defined in terms of itself, as if it were “chasing its tail.” Indeed,
we can draw a picture of this computation as shown in Figure 1.

For another application of infinite lists, see Section 4.4.

3.5 The Error Function 15

3.5 The Error Function

Haskell has a built-in function called error whose type is String->a. This is a somewhat odd
function: From its type it looks as if it is returning a value of a polymorphic type about which it
knows nothing, since it never receives a value of that type as an argument!

In fact, there is one value “shared” by all types: L. Indeed, semantically that is exactly what
value is always returned by error (recall that all errors have value 1). However, we can expect that
a reasonable implementation will print the string argument to error for diagnostic purposes. Thus
this function is useful when we wish to terminate a program when something has “gone wrong.”
For example, the actual definition of head taken from the Standard Prelude is:

head (x:xs) = x
head [] = error "head{PreludeList}: head []"

4 Case Expressions and Pattern Matching

Earlier we gave several examples of pattern matching in defining functions—for example length
and fringe. In this section we will look at the pattern-matching process in greater detail (§3.17).8

Patterns are not “first-class;” there is only a fixed set of different kinds of patterns. We have
already seen several examples of data constructor patterns; both length and fringe defined earlier
use such patterns, the former on the constructors of a “built-in” type (lists), the latter on a user-
defined type (Tree). Indeed, matching is permitted using the constructors of any type, user-defined
or not. This includes tuples, strings, numbers, characters, etc. For example, here’s a contrived
function that matches against a tuple of “constants:”

contrived :: ([al, Char, (Int, Float), String, Bool) -> Bool
contrived (f1, °’b’, (1, 2.0), '"hi", True) = False

This example also demonstrates that nesting of patterns is permitted (to arbitrary depth).

Technically speaking, formal parameters’ are also patterns—it’s just that they never fail to
match a value. As a “side effect” of the successful match, the formal parameter is bound to the
value it is being matched against. For this reason patterns in any one equation are not allowed
to have more than one occurrence of the same formal parameter (a property called linearity §3.17,
§3.3, §4.4.2).

Patterns such as formal parameters that never fail to match are said to be irrefutable, in contrast
to refutable patterns which may fail to match. The pattern used in the contrived example above
is refutable. There are three other kinds of irrefutable patterns, two of which we will introduce now
(the other we will delay until Section 4.4).

8Pattern matching in Haskell is different from that found in logic programming languages such as Prolog; in
particular, it can be viewed as “one-way” matching, whereas Prolog allows “two-way” matching (via unification),
along with implicit backtracking in its evaluation mechanism.

°The Report calls these variables.

16 4 CASE EXPRESSIONS AND PATTERN MATCHING

As-patterns. Sometimes it is convenient to name a pattern for use on the right-hand side of an
equation. For example, a function that duplicates the first element in a list might be written as:

f (x:xs) = X:X:XS

(Recall that “:” associates to the right.) Note that x:xs appears both as a pattern on the left-hand
side, and an expression on the right-hand side. To improve readability, we might prefer to write
x:xs just once, which we can achieve using an as-pattern as follows:'’

f s@(x:xs) = x:8

Technically speaking, as-patterns always result in a successful match, although the sub-pattern (in
this case x:xs) could, of course, fail.

Wild-cards. Another common situation is matching against a value we really care nothing about.
For example, the functions head and tail defined in Section 2.1 can be rewritten as:

head (x:_) = x
tail (_:xs) = xs

in which we have “advertised” the fact that we don’t care what a certain part of the input is.
Each wild-card independently matches anything, but in contrast to a formal parameter, each binds
nothing; for this reason more than one is allowed in an equation.

4.1 Pattern-Matching Semantics

So far we have discussed how individual patterns are matched, how some are refutable, some are
irrefutable, etc. But what drives the overall process? In what order are the matches attempted?
What if none succeeds? This section addresses these questions.

Pattern matching can either fail, succeed or diverge. A successful match binds the formal
parameters in the pattern. Divergence occurs when a value needed by the pattern contains an error
(L). The matching process itself occurs “top-down, left-to-right.” Failure of a pattern anywhere
in one equation results in failure of the whole equation, and the next equation is then tried. If all
equations fail, the value of the function application is 1, and results in a run-time error.

For example, if [1,2] is matched against [0,bot], then 1 fails to match 0, so the result is a
failed match. (Recall that bot, defined earlier, is a variable bound to L.) But if [1,2] is matched
against [bot,0], then matching 1 against bot causes divergence (i.e. L).

The other twist to this set of rules is that top-level patterns may also have a boolean guard, as
in this definition of a function that forms an abstract version of a number’s sign:

signx | x> 0 = 1
| x==0 = 0
| x< 0 = -1

Note that a sequence of guards may be provided for the same pattern; as with patterns, they are
evaluated top-down, and the first that evaluates to True results in a successful match.

10 Another advantage to doing this is that a naive implementation might completely reconstruct x:xs rather than
re-use the value being matched against.

4.2 An Example 17

4.2 An Example

The pattern-matching rules can have subtle effects on the meaning of functions. For example,
consider this definition of take:

take 0 _ = []
take _ [] = [
take n (x:x8) = x : take (n-1) xs

and this slightly different version (the first 2 equations have been reversed):

takel _ (1]
takel O = [

takel n (x:x8) x : takel (n-1) xs

Now note the following:

take O bot =]
takel 0 bot = 1
take bot [] = 1

takel bot [] =]

We see that take is “more defined” with respect to its second argument, whereas takel is more
defined with respect to its first. It is difficult to say in this case which definition is better. Just
remember that in certain applications, it may make a difference. (The Standard Prelude includes
a definition corresponding to take.)

4.3 Case Expressions

Pattern matching provides a way to “dispatch control” based on structural properties of a value.
In many circumstances we don’t wish to define a function every time we need to do this, but
so far we have only shown how to do pattern matching in function definitions. Haskell’s case
erpression provides a way to solve this problem. Indeed, the meaning of pattern matching in
function definitions is specified in the Report in terms of case expressions, which are considered
more primitive. In particular, a function definition of the form:

fpir .. Pk = ex
£ Dut - Pk = n
where each pj; is a pattern, is semantically equivalent to:
f x1 x2 ... xk = case (x1, ..., xk) of (pys, ..., P1x) —> €;
.(.p.nz, ooy Dnk) > en

where the xi are new identifiers. (For a more general translation that includes guards, see §4.4.2.)
For example, the definition of take given earlier is equivalent to:

18 4 CASE EXPRESSIONS AND PATTERN MATCHING

take m ys = case (m,ys) of
(0,.) -> 0
., [-> [1
(n,x:x8) -> x : take (n-1) xs

A point not made earlier is that, for type correctness, the types of the right-hand sides of a case
expression or set of equations comprising a function definition must all be the same; more precisely,
they must all share a common principal type.

The pattern-matching rules for case expressions are the same as we have given for function
definitions, so there is really nothing new to learn here, other than to note the convenience that
case expressions offer. Indeed, there’s one use of a case expression that is so common that it has
special syntax: the conditional expression. In Haskell, conditional expressions have the familiar
form:

if e; then e else e3

which is really short-hand for:
case e; of True ->e9
False -> ej3

From this expansion it should be clear that e; must have type Bool, and ez and e3 must have the
same (but otherwise arbitrary) type. In other words, if-then-else when viewed as a function has
type Bool->a—>a->a.

4.4 Lazy Patterns

There is one other kind of pattern allowed in Haskell. It is called a lazy pattern, and has the form
“pat. Lazy patterns are irrefutable: matching a value v against “pat always succeeds, regardless
of pat. Operationally speaking, if an identifier in pat is later “used” on the right-hand-side, it will
be bound to that portion of the value that would result if v were to successfully match pat, and L
otherwise.

Lazy patterns are useful in contexts where infinite data structures are being defined recursively.
For example, infinite lists are an excellent vehicle for writing simulation programs, and in this
context the infinite lists are often called streams. Consider the simple case of simulating the
interactions between a server process server and a client process client, where client sends a
sequence of requests to server, and server replies to each request with some kind of response.
This situation is shown pictorially in Figure 2. (Note that client also takes an initial message as
argument.) Using streams to simulate the message sequences, the Haskell code corresponding to
this diagram is:

reqgs = client init resps
resps = server regs

These recursive equations are a direct lexical transliteration of the diagram.
Let us further assume that the structure of the server and client look something like this:

client init (resp:resps) = init : client (next resp) resps
server (req:reqs) = process req : server reqs

4.4 Lazy Patterns 19

reqs
Client Server

? resps

init

Figure 2: Client-Server Simulation

where we assume that next is a function that, given a response from the server, determines the
next request, and process is a function that processes a request from the client, returning an
appropriate response.

Unfortunately, this program has a serious problem: it will not produce any output! The problem
is that client, as used in the recursive setting of reqs and resps, attempts a match on the response
list before it has submitted its first request! In other words, the pattern matching is being done
“too early.” One way to fix this is to redefine client as follows:

client init resps = init : client (next (head resps)) (tail resps)

Although workable, this solution does not read as well as that given earlier. A better solution is to
use a lazy pattern:

client init “(resp:resps) = init : client (next resp) resps

Because lazy patterns are irrefutable, the match will immediately succeed, allowing the initial
request to be “submitted”, in turn allowing the first response to be generated; the engine is now
“primed”, and the recursion takes care of the rest.

As an example of this program in action, if we define:
init =0

next resp = resp

process req req+1l

then we see that:
take 10 reqs = [0,1,2,3,4,5,6,7,8,9]
As another example of the use of lazy patterns, consider the definition of Fibonacci given earlier:
fib =1:1: [a+tb | (a,b) <- zip fib (tail fib)]
We might try rewriting this using an as-pattern:
fib@(1:tfib) =1:1: [a+tb | (a,b) <- zip fib tfib]

This version of £ib has the (small) advantage of not using tail on the right-hand side, since it is
available in “destructured” form on the left-hand side as tfib.

[This kind of equation is called a pattern binding because it is a top-level equation in which the
entire left-hand side is a pattern; i.e. both fib and tfib become bound within the scope of the
declaration.]

20 4 CASE EXPRESSIONS AND PATTERN MATCHING

Now, using the same reasoning as earlier, we should be led to believe that this program will
not generate any output. Curiously, however, it does, and the reason is simple: in Haskell, pattern
bindings are assumed to have an implicit ~ in front of them, reflecting the most common behavior
expected of pattern bindings, and avoiding some anomalous situations which are beyond the scope
of this tutorial. Thus we see that lazy patterns play an important role in Haskell, if only implicitly.

4.5 Lexical Scoping and Nested Forms

It is often desirable to create a nested scope within an expression, for the purpose of creating local
bindings not seen elsewhere—i.e. some kind of “block-structuring” form. In Haskell there are two
ways to achieve this:

Let Expressions. Haskell’s let expressions are useful whenever a nested set of bindings is re-
quired. As a simple example, consider:

let y = axb

fx=(x+y/y
inf c+ £fd

The set of bindings created by a let expression is mutually recursive, and pattern bindings are
treated as lazy patterns (i.e. they carry an implicit 7). The only kind of declarations permitted