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Why Functional Programming Matters

John Hughes, Institutionen för Datavetenskap,
Chalmers Tekniska Högskola,

41296 Göteborg,
SWEDEN. rjmh@cs.chalmers.se

This paper dates from 1984, and circulated as a Chalmers memo for many
years. Slightly revised versions appeared in 1989 and 1990 as [Hug90] and
[Hug89]. This version is based on the original Chalmers memo nroff

source, lightly edited for LaTeX and to bring it closer to the published ver-
sions, and with one or two errors corrected. Please excuse the slightly old-
fashioned type-setting, and the fact that the examples are not in Haskell!

Abstract

As software becomes more and more complex, it is more and more
important to structure it well. Well-structured software is easy to write,
easy to debug, and provides a collection of modules that can be re-used
to reduce future programming costs. Conventional languages place con-
ceptual limits on the way problems can be modularised. Functional lan-
guages push those limits back. In this paper we show that two features of
functional languages in particular, higher-order functions and lazy eval-
uation, can contribute greatly to modularity. As examples, we manipu-
late lists and trees, program several numerical algorithms, and implement
the alpha-beta heuristic (an algorithm from Artificial Intelligence used in
game-playing programs). Since modularity is the key to successful pro-
gramming, functional languages are vitally important to the real world.

1 Introduction

This paper is an attempt to demonstrate to the “real world” that functional
programming is vitally important, and also to help functional programmers
exploit its advantages to the full by making it clear what those advantages are.

Functional programming is so called because a program consists entirely of
functions. The main program itself is written as a function which receives the
program’s input as its argument and delivers the program’s output as its result.
Typically the main function is defined in terms of other functions, which in
turn are defined in terms of still more functions, until at the bottom level the
functions are language primitives. These functions are much like ordinary math-
ematical functions, and in this paper will be defined by ordinary equations. Our
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notation follows Turner’s language Miranda(TM) [Tur85], but should be read-
able with no prior knowledge of functional languages. (Miranda is a trademark
of Research Software Ltd.)

The special characteristics and advantages of functional programming are
often summed up more or less as follows. Functional programs contain no
assignment statements, so variables, once given a value, never change. More
generally, functional programs contain no side-effects at all. A function call can
have no effect other than to compute its result. This eliminates a major source
of bugs, and also makes the order of execution irrelevant - since no side-effect
can change the value of an expression, it can be evaluated at any time. This
relieves the programmer of the burden of prescribing the flow of control. Since
expressions can be evaluated at any time, one can freely replace variables by
their values and vice versa - that is, programs are “referentially transparent”.
This freedom helps make functional programs more tractable mathematically
than their conventional counterparts.

Such a catalogue of “advantages” is all very well, but one must not be sur-
prised if outsiders don’t take it too seriously. It says a lot about what functional
programming is not (it has no assignment, no side effects, no flow of control) but
not much about what it is. The functional programmer sounds rather like a me-
dieval monk, denying himself the pleasures of life in the hope that it will make
him virtuous. To those more interested in material benefits, these “advantages”
are not very convincing.

Functional programmers argue that there are great material benefits - that
a functional programmer is an order of magnitude more productive than his
conventional counterpart, because functional programs are an order of magni-
tude shorter. Yet why should this be? The only faintly plausible reason one
can suggest on the basis of these “advantages” is that conventional programs
consist of 90% assignment statements, and in functional programs these can be
omitted! This is plainly ridiculous. If omitting assignment statements brought
such enormous benefits then FORTRAN programmers would have been doing it
for twenty years. It is a logical impossibility to make a language more powerful
by omitting features, no matter how bad they may be.

Even a functional programmer should be dissatisfied with these so-called
advantages, because they give him no help in exploiting the power of functional
languages. One cannot write a program which is particularly lacking in assign-
ment statements, or particularly referentially transparent. There is no yardstick
of program quality here, and therefore no ideal to aim at.

Clearly this characterisation of functional programming is inadequate. We
must find something to put in its place - something which not only explains the
power of functional programming, but also gives a clear indication of what the
functional programmer should strive towards.
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2 An Analogy with Structured Programming

It is helpful to draw an analogy between functional and structured programming.
In the past, the characteristics and advantages of structured programming have
been summed up more or less as follows. Structured programs contain no goto
statements. Blocks in a structured program do not have multiple entries or exits.
Structured programs are more tractable mathematically than their unstructured
counterparts. These “advantages” of structured programming are very similar in
spirit to the “advantages” of functional programming we discussed earlier. They
are essentially negative statements, and have led to much fruitless argument
about “essential gotos” and so on.

With the benefit of hindsight, it is clear that these properties of structured
programs, although helpful, do not go to the heart of the matter. The most im-
portant difference between structured and unstructured programs is that struc-
tured programs are designed in a modular way. Modular design brings with
it great productivity improvements. First of all, small modules can be coded
quickly and easily. Secondly, general purpose modules can be re-used, leading to
faster development of subsequent programs. Thirdly, the modules of a program
can be tested independently, helping to reduce the time spent debugging.

The absence of gotos, and so on, has very little to do with this. It helps with
“programming in the small”, whereas modular design helps with “programming
in the large”. Thus one can enjoy the benefits of structured programming in
FORTRAN or assembly language, even if it is a little more work.

It is now generally accepted that modular design is the key to successful pro-
gramming, and languages such as Modula-II [Wir82], Ada [oD80] and Standard
ML [MTH90] include features specifically designed to help improve modularity.
However, there is a very important point that is often missed. When writing
a modular program to solve a problem, one first divides the problem into sub-
problems, then solves the sub-problems and combines the solutions. The ways
in which one can divide up the original problem depend directly on the ways
in which one can glue solutions together. Therefore, to increase ones ability
to modularise a problem conceptually, one must provide new kinds of glue in
the programming language. Complicated scope rules and provision for separate
compilation only help with clerical details; they offer no new conceptual tools
for decomposing problems.

One can appreciate the importance of glue by an analogy with carpentry.
A chair can be made quite easily by making the parts - seat, legs, back etc. -
and sticking them together in the right way. But this depends on an ability
to make joints and wood glue. Lacking that ability, the only way to make a
chair is to carve it in one piece out of a solid block of wood, a much harder
task. This example demonstrates both the enormous power of modularisation
and the importance of having the right glue.

Now let us return to functional programming. We shall argue in the remain-
der of this paper that functional languages provide two new, very important
kinds of glue. We shall give many examples of programs that can be modu-
larised in new ways, and thereby greatly simplified. This is the key to functional
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programming’s power - it allows greatly improved modularisation. It is also the
goal for which functional programmers must strive - smaller and simpler and
more general modules, glued together with the new glues we shall describe.

3 Glueing Functions Together

The first of the two new kinds of glue enables simple functions to be glued
together to make more complex ones. It can be illustrated with a simple list-
processing problem - adding up the elements of a list. We define lists by

listof X ::= nil | cons X (listof X)

which means that a list of Xs (whatever X is) is either nil, representing a list
with no elements, or it is a cons of an X and another list of Xs. A cons represents
a list whose first element is the X and whose second and subsequent elements
are the elements of the other list of Xs. X here may stand for any type - for
example, if X is “integer” then the definition says that a list of integers is either
empty or a cons of an integer and another list of integers. Following normal
practice, we will write down lists simply by enclosing their elements in square
brackets, rather than by writing conses and nils explicitly. This is simply a
shorthand for notational convenience. For example,

[] means nil
[1] means cons 1 nil
[1,2,3] means cons 1 (cons 2 (cons 3 nil))

The elements of a list can be added up by a recursive function sum. Sum must
be defined for two kinds of argument: an empty list (nil), and a cons. Since the
sum of no numbers is zero, we define

sum nil = 0

and since the sum of a cons can be calculated by adding the first element of the
list to the sum of the others, we can define

sum (cons num list) = num + sum list

Examining this definition, we see that only the boxed parts below are specific
to computing a sum.

+---+
sum nil = | 0 |

+---+
+---+

sum (cons num list) = num | + | sum list
+---+

This means that the computation of a sum can be modularised by glueing
together a general recursive pattern and the boxed parts. This recursive pattern
is conventionally called reduce and so sum can be expressed as
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sum = reduce add 0

where for convenience reduce is passed a two argument function add rather than
an operator. Add is just defined by

add x y = x + y

The definition of reduce can be derived just by parameterising the definition of
sum, giving

(reduce f x) nil = x
(reduce f x) (cons a l) = f a ((reduce f x) l)

Here we have written brackets around (reduce f x) to make it clear that it
replaces sum. Conventionally the brackets are omitted, and so ((reduce f x) l) is
written as (reduce f x l). A function of 3 arguments such as reduce, applied to
only 2 is taken to be a function of the one remaining argument, and in general,
a function of n arguments applied to only m(< n) is taken to be a function of
the n−m remaining ones. We will follow this convention in future.

Having modularised sum in this way, we can reap benefits by re-using the
parts. The most interesting part is reduce, which can be used to write down
a function for multiplying together the elements of a list with no further pro-
gramming:

product = reduce multiply 1

It can also be used to test whether any of a list of booleans is true

anytrue = reduce or false

or whether they are all true

alltrue = reduce and true

One way to understand (reduce f a) is as a function that replaces all occurrences
of cons in a list by f, and all occurrences of nil by a. Taking the list [1,2,3] as
an example, since this means

cons 1 (cons 2 (cons 3 nil))

then (reduce add 0) converts it into

add 1 (add 2 (add 3 0)) = 6

and (reduce multiply 1) converts it into

multiply 1 (multiply 2 (multiply 3 1)) = 6

Now it is obvious that (reduce cons nil) just copies a list. Since one list can be
appended to another by consing its elements onto the front, we find

append a b = reduce cons b a
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As an example,

append [1,2] [3,4] = reduce cons [3,4] [1,2]
= (reduce cons [3,4]) (cons 1 (cons 2 nil))
= cons 1 (cons 2 [3,4]))

(replacing cons by cons and nil by [3,4])
= [1,2,3,4]

A function to double all the elements of a list could be written as

doubleall = reduce doubleandcons nil
where doubleandcons num list = cons (2*num) list

Doubleandcons can be modularised even further, first into

doubleandcons = fandcons double
where double n = 2*n

fandcons f el list = cons (f el) list

and then by

fandcons f = cons . f

where “.” (function composition, a standard operator) is defined by

(f . g) h = f (g h)

We can see that the new definition of fandcons is correct by applying it to some
arguments:

fandcons f el = (cons . f) el
= cons (f el)

so fandcons f el list = cons (f el) list

The final version is

doubleall = reduce (cons . double) nil

With one further modularisation we arrive at

doubleall = map double
map f = reduce (cons . f) nil

where map applies any function f to all the elements of a list. Map is another
generally useful function.

We can even write down a function to add up all the elements of a matrix,
represented as a list of lists. It is

summatrix = sum . map sum

6



The map sum uses sum to add up all the rows, and then the left-most sum adds
up the row totals to get the sum of the whole matrix.

These examples should be enough to convince the reader that a little mod-
ularisation can go a long way. By modularising a simple function (sum) as a
combination of a “higher order function” and some simple arguments, we have
arrived at a part (reduce) that can be used to write down many other functions
on lists with no more programming effort. We do not need to stop with func-
tions on lists. As another example, consider the datatype of ordered labelled
trees, defined by

treeof X ::= node X (listof (treeof X))

This definition says that a tree of Xs is a node, with a label which is an X, and
a list of subtrees which are also trees of Xs. For example, the tree

1 o
/ \
/ \

/ \
2 o o 3

|
|
|
o 4

would be represented by

node 1
(cons (node 2 nil)

(cons (node 3
(cons (node 4 nil) nil))

nil))

Instead of considering an example and abstracting a higher order function from
it, we will go straight to a function redtree analogous to reduce. Recall that
reduce took two arguments, something to replace cons with, and something to
replace nil with. Since trees are built using node, cons and nil, redtree must
take three arguments - something to replace each of these with. Since trees and
lists are of different types, we will have to define two functions, one operating
on each type. Therefore we define

redtree f g a (node label subtrees) =
f label (redtree’ f g a subtrees)

redtree’ f g a (cons subtree rest) =
g (redtree f g a subtree) (redtree’ f g a rest)

redtree’ f g a nil = a

Many interesting functions can be defined by glueing redtree and other functions
together. For example, all the labels in a tree of numbers can be added together
using
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sumtree = redtree add add 0

Taking the tree we wrote down earlier as an example, sumtree gives

add 1
(add (add 2 0)

(add (add 3
(add (add 4 0) 0))

0))
= 10

A list of all the labels in a tree can be computed using

labels = redtree cons append nil

The same example gives

cons 1
(append (cons 2 nil)

(append (cons 3
(append (cons 4 nil) nil))

nil))
= [1,2,3,4]

Finally, one can define a function analogous to map which applies a function f
to all the labels in a tree:

maptree f = redtree (node . f) cons nil

All this can be achieved because functional languages allow functions which are
indivisible in conventional programming languages to be expressed as a combi-
nation of parts - a general higher order function and some particular specialising
functions. Once defined, such higher order functions allow many operations to
be programmed very easily. Whenever a new datatype is defined higher order
functions should be written for processing it. This makes manipulating the
datatype easy, and also localises knowledge about the details of its represen-
tation. The best analogy with conventional programming is with extensible
languages - it is as though the programming language can be extended with
new control structures whenever desired.

4 Glueing Programs Together

The other new kind of glue that functional languages provide enables whole
programs to be glued together. Recall that a complete functional program is
just a function from its input to its output. If f and g are such programs, then
(g . f) is a program which, when applied to its input, computes

g (f input)
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The program f computes its output which is used as the input to program g.
This might be implemented conventionally by storing the output from f in a
temporary file. The problem with this is that the temporary file might occupy
so much memory that it is impractical to glue the programs together in this way.
Functional languages provide a solution to this problem. The two programs f
and g are run together in strict synchronisation. F is only started once g tries
to read some input, and only runs for long enough to deliver the output g is
trying to read. Then f is suspended and g is run until it tries to read another
input. As an added bonus, if g terminates without reading all of f’s output then
f is aborted. F can even be a non-terminating program, producing an infinite
amount of output, since it will be terminated forcibly as soon as g is finished.
This allows termination conditions to be separated from loop bodies - a powerful
modularisation.

Since this method of evaluation runs f as little as possible, it is called “lazy
evaluation”. It makes it practical to modularise a program as a generator which
constructs a large number of possible answers, and a selector which chooses the
appropriate one. While some other systems allow programs to be run together in
this manner, only functional languages use lazy evaluation uniformly for every
function call, allowing any part of a program to be modularised in this way.
Lazy evaluation is perhaps the most powerful tool for modularisation in the
functional programmer’s repertoire.

4.1 Newton-Raphson Square Roots

We will illustrate the power of lazy evaluation by programming some numerical
algorithms. First of all, consider the Newton-Raphson algorithm for finding
square roots. This algorithm computes the square root of a number N by starting
from an initial approximation a0 and computing better and better ones using
the rule

a(n+1) = (a(n) + N/a(n)) / 2

If the approximations converge to some limit a, then

a = (a + N/a) / 2
so 2a = a + N/a

a = N/a
a*a = N
a = squareroot(N)

In fact the approximations converge rapidly to a limit. Square root programs
take a tolerance (eps) and stop when two successive approximations differ by
less than eps.

The algorithm is usually programmed more or less as follows:

C N IS CALLED ZN HERE SO THAT IT HAS THE RIGHT TYPE
X = A0
Y = A0 + 2.*EPS
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C THE VALUE OF Y DOES NOT MATTER SO LONG AS ABS(X-Y).GT.EPS
100 IF (ABS(X-Y).LE.EPS) GOTO 200

Y = X
X = (X + ZN/X) / 2.
GOTO 100

200 CONTINUE
C THE SQUARE ROOT OF ZN IS NOW IN X

This program is indivisible in conventional languages. We will express it in a
more modular form using lazy evaluation, and then show some other uses to
which the parts may be put.

Since the Newton-Raphson algorithm computes a sequence of approxima-
tions it is natural to represent this explicitly in the program by a list of approx-
imations. Each approximation is derived from the previous one by the function

next N x = (x + N/x) / 2

so (next N) is the function mapping one approximation onto the next. Calling
this function f, the sequence of approximations is

[a0, f a0, f(f a0), f(f(f a0)), ..]

We can define a function to compute this:

repeat f a = cons a (repeat f (f a))

so that the list of approximations can be computed by

repeat (next N) a0

Repeat is an example of a function with an “infinite” output - but it doesn’t
matter, because no more approximations will actually be computed than the
rest of the program requires. The infinity is only potential: all it means is that
any number of approximations can be computed if required, repeat itself places
no limit.

The remainder of a square root finder is a function within, that takes a
tolerance and a list of approximations and looks down the list for two successive
approximations that differ by no more than the given tolerance. It can be
defined by

within eps (cons a (cons b rest)) =
= b, if abs(a-b) <= eps
= within eps (cons b rest), otherwise

Putting the parts together,

sqrt a0 eps N = within eps (repeat (next N) a0)

Now that we have the parts of a square root finder, we can try combining them
in different ways. One modification we might wish to make is to wait for the
ratio between successive approximations to approach one, rather than for the
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difference to approach zero. This is more appropriate for very small numbers
(when the difference between successive approximations is small to start with)
and for very large ones (when rounding error could be much larger than the
tolerance). It is only necessary to define a replacement for within:

relative eps (cons a (cons b rest)) =
= b, if abs(a-b) <= eps*abs b
= relative eps (cons b rest), otherwise

Now a new version of sqrt can be defined by

relativesqrt a0 eps N = relative eps (repeat (next N) a0)

It is not necessary to rewrite the part that generates approximations.

4.2 Numerical Differentiation

We have re-used the sequence of approximations to a square root. Of course,
it is also possible to re-use within and relative with any numerical algorithm
that generates a sequence of approximations. We will do so in a numerical
differentiation algorithm.

The result of differentiating a function at a point is the slope of the function’s
graph at that point. It can be estimated quite easily by evaluating the function
at the given point and at another point nearby and computing the slope of a
straight line between the two points. This assumes that, if the two points are
close enough together then the graph of the function will not curve much in
between. This gives the definition

easydiff f x h = (f(x+h)-f x) / h

In order to get a good approximation the value of h should be very small.
Unfortunately, if h is too small then the two values f(x+h) and f(x) are very
close together, and so the rounding error in the subtraction may swamp the
result. How can the right value of h be chosen? One solution to this dilemma
is to compute a sequence of approximations with smaller and smaller values of
h, starting with a reasonably large one. Such a sequence should converge to the
value of the derivative, but will become hopelessly inaccurate eventually due to
rounding error. If (within eps) is used to select the first approximation that is
accurate enough then the risk of rounding error affecting the result can be much
reduced. We need a function to compute the sequence:

differentiate h0 f x = map (easydiff f x) (repeat halve h0)
halve x = x/2

Here h0 is the initial value of h, and successive values are obtained by repeated
halving. Given this function, the derivative at any point can be computed by

within eps (differentiate h0 f x)
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Even this solution is not very satisfactory because the sequence of approxima-
tions converges fairly slowly. A little simple mathematics can help here. The
elements of the sequence can be expressed as

the right answer + an error term involving h

and it can be shown theoretically that the error term is roughly proportional to
a power of h, so that it gets smaller as h gets smaller. Let the right answer be
A, and the error term be B*h**n. Since each approximation is computed using
a value of h twice that used for the next one, any two successive approximations
can be expressed as

a(i) = A + B*(2**n)*(h**n)
and a(i+1) = A + B*(h**n)

Now the error term can be eliminated. We conclude

a(i+1)*(2**n) - a(i)
A = --------------------

2**n - 1

Of course, since the error term is only roughly a power of h this conclusion is
also approximate, but it is a much better approximation. This improvement
can be applied to all successive pairs of approximations using the function

elimerror n (cons a (cons b rest)) =
= cons ((b*(2**n)-a)/(2**n-1)) (elimerror n (cons b rest))

Eliminating error terms from a sequence of approximations yields another se-
quence which converges much more rapidly.

One problem remains before we can use elimerror - we have to know the
right value of n. This is difficult to predict in general, but is easy to measure.
It is not difficult to show that the following function estimates it correctly, but
we won’t include the proof here.

order (cons a (cons b (cons c rest))) =
= round(log2( (a-c)/(b-c) - 1 ))

round x = x rounded to the nearest integer
log2 x = the logarithm of x to the base 2

Now a general function to improve a sequence of approximations can be defined:

improve s = elimerror (order s) s

The derivative of a function f can be computed more efficiently using improve,
as follows

within eps (improve (differentiate h0 f x))
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Improve only works on sequences of approximations which are computed using
a parameter h, which is halved between each approximation. However, if it is
applied to such a sequence its result is also such a sequence! This means that a
sequence of approximations can be improved more than once. A different error
term is eliminated each time, and the resulting sequences converge faster and
faster. So, one could compute a derivative very efficiently using

within eps (improve (improve (improve (differentiate h0 f x))))

In numerical analysts terms, this is likely to be a fourth order method, and gives
an accurate result very quickly. One could even define

super s = map second (repeat improve s)
second (cons a (cons b rest)) = b

which uses repeat improve to get a sequence of more and more improved se-
quences of approximations, and constructs a new sequence of approximations
by taking the second approximation from each of the improved sequences (it
turns out that the second one is the best one to take - it is more accurate than
the first and doesn’t require any extra work to compute). This algorithm is
really very sophisticated - it uses a better and better numerical method as more
and more approximations are computed. One could compute derivatives very
efficiently indeed with the program:

within eps (super (differentiate h0 f x))

This is probably a case of using a sledge-hammer to crack a nut, but the point
is that even an algorithm as sophisticated as super is easily expressed when
modularised using lazy evaluation.

4.3 Numerical Integration

The last example we will discuss in this section is numerical integration. The
problem may be stated very simply: given a real valued function f of one real
argument, and two end-points a and b, estimate the area under the curve f
describes between the end-points. The easiest way to estimate the area is to
assume that f is nearly a straight line, in which case the area would be

easyintegrate f a b = (f a + f b)*(b-a)/2

Unfortunately this estimate is likely to be very inaccurate unless a and b are
close together. A better estimate can be made by dividing the interval from a
to b in two, estimating the area on each half, and adding the results together.
We can define a sequence of better and better approximations to the value of
the integral by using the formula above for the first approximation, and then
adding together better and better approximations to the integrals on each half
to calculate the others. This sequence is computed by the function
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integrate f a b = cons (easyintegrate f a b)
(map addpair (zip (integrate f a mid)

(integrate f mid b)))
where mid = (a+b)/2

Zip is another standard list-processing function. It takes two lists and returns
a list of pairs, each pair consisting of corresponding elements of the two lists.
Thus the first pair consists of the first element of the first list and the first
element of the second, and so on. Zip can be defined by

zip (cons a s) (cons b t) = cons (pair a b) (zip s t)

In integrate, zip computes a list of pairs of corresponding approximations to the
integrals on the two sub-intervals, and map addpair adds the elements of the
pairs together to give a list of approximations to the original integral.

Actually, this version of integrate is rather inefficient because it continually
recomputes values of f. As written, easyintegrate evaluates f at a and at b, and
then the recursive calls of integrate re-evaluate each of these. Also, (f mid) is
evaluated in each recursive call. It is therefore preferable to use the following
version which never recomputes a value of f.

integrate f a b = integ f a b (f a) (f b)
integ f a b fa fb = cons ((fa+fb)*(b-a)/2)

(map addpair (zip (integ f a m fa fm)
(integ f m b fm fb)))

where m = (a+b)/2
fm = f m

Integrate computes an infinite list of better and better approximations to the
integral, just as differentiate did in the section above. One can therefore just
write down integration routines that integrate to any required accuracy, as in

within eps (integrate f a b)
relative eps (integrate f a b)

This integration algorithm suffers from the same disadvantage as the first dif-
ferentiation algorithm in the preceding sub-section - it converges rather slowly.
Once again, it can be improved. The first approximation in the sequence is
computed (by easyintegrate) using only two points, with a separation of b-a.
The second approximation also uses the mid-point, so that the separation be-
tween neighbouring points is only (b-a)/2. The third approximation uses this
method on each half-interval, so the separation between neighbouring points
is only (b-a)/4. Clearly the separation between neighbouring points is halved
between each approximation and the next. Taking this separation as “h”, the
sequence is a candidate for improvement using the “improve” function defined
in the preceding section. Therefore we can now write down quickly converging
sequences of approximations to integrals, for example
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super (integrate sin 0 4)
improve (integrate f 0 1)
where f x = 1/(1+x*x)

(This latter sequence is an eighth order method for computing pi/4. The second
approximation, which requires only five evaluations of f to compute, is correct
to five decimal places).

In this section we have taken a number of numerical algorithms and pro-
grammed them functionally, using lazy evaluation as glue to stick their parts
together. Thanks to this, we were able to modularise them in new ways, into
generally useful functions such as within, relative and improve. By combining
these parts in various ways we programmed some quite good numerical algo-
rithms very simply and easily.

5 An Example from Artificial Intelligence

We have argued that functional languages are powerful primarily because they
provide two new kinds of glue: higher-order functions and lazy evaluation. In
this section we take a larger example from Artificial Intelligence and show how
it can be programmed quite simply using these two kinds of glue.

The example we choose is the alpha-beta “heuristic”, an algorithm for es-
timating how good a position a game-player is in. The algorithm works by
looking ahead to see how the game might develop, but avoids pursuing unprof-
itable lines.

Let game-positions be represented by objects of the type “position”. This
type will vary from game to game, and we assume nothing about it. There must
be some way of knowing what moves can be made from a position: assume that
there is a function

moves: position -> listof position

that takes a game-position as its argument and returns the list of all positions
that can be reached from it in one move. Taking noughts and crosses (tic-tac-
toe) as an example,

| | X| | |X| | |
-+-+- -+-+- -+-+- -+-+-

moves | | = [ | | , | | , |X| ]
-+-+- -+-+- -+-+- -+-+-
| | | | | | | |

| | O| | |O|
-+-+- -+-+- -+-+-

moves |X| = [ |X| , |X| ]
-+-+- -+-+- -+-+-
| | | | | |
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This assumes that it is always possible to tell which player’s turn it is from a
position. In noughts and crosses this can be done by counting the noughts and
crosses, in a game like chess one would have to include the information explicitly
in the type “position”.

Given the function moves, the first step is to build a game tree. This is a
tree in which the nodes are labelled by positions, such that the children of a
node are labelled with the positions that can be reached in one move from that
node. That is, if a node is labelled with position p, then its children are labelled
with the positions in (moves p). A game tree may very well be infinite, if it
is possible for a game to go on for ever with neither side winning. Game trees
are exactly like the trees we discussed in section 2 - each node has a label (the
position it represents) and a list of subnodes. We can therefore use the same
datatype to represent them.

A game tree is built by repeated applications of moves. Starting from the
root position, moves is used to generate the labels for the sub-trees of the root.
Moves is then used again to generate the sub-trees of the sub-trees and so on.
This pattern of recursion can be expressed as a higher-order function,

reptree f a = node a (map (reptree f) (f a))

Using this function another can be defined which constructs a game tree from
a particular position

gametree p = reptree moves p

For an example, look at figure 1. The higher-order function used here (reptree) is
analogous to the function repeat used to construct infinite lists in the preceding
section.

The alpha-beta algorithm looks ahead from a given position to see whether
the game will develop favourably or unfavourably, but in order to do so it must
be able to make a rough estimate of the value of a position without looking
ahead. This “static evaluation” must be used at the limit of the look-ahead, and
may be used to guide the algorithm earlier. The result of the static evaluation
is a measure of the promise of a position from the computer’s point of view
(assuming that the computer is playing the game against a human opponent).
The larger the result, the better the position for the computer. The smaller the
result, the worse the position. The simplest such function would return (say)
+1 for positions where the computer has already won, -1 for positions where
the computer has already lost, and 0 otherwise. In reality, the static evaluation
function measures various things that make a position “look good”, for example
material advantage and control of the centre in chess. Assume that we have
such a function,

static: position -> number

Since a game-tree is a (treeof position), it can be converted into a (treeof num-
ber) by the function (maptree static), which statically evaluates all the positions
in the tree (which may be infinitely many). This uses the function maptree de-
fined in section 2.
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| |
-+-+-

gametree | |
-+-+-
| |

| |
-+-+-

= | |
-+-+-
| |

/ | \
/ | \

/ | \
/ | \

/ | \
/ | \

X| | |X| | |
-+-+- -+-+- -+-+-
| | | | |X|
-+-+- -+-+- -+-+-
| | | | | |
/|\ /|\ /\
... ... / \

/ \
/ \

O| | |O|
-+-+- -+-+-
|X| |X|

-+-+- -+-+-
| | | |
/|\ /|\
... ...

Figure 1: An Example of a Game-Tree.
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Given such a tree of static evaluations, what is the true value of the positions
in it? In particular, what value should be ascribed to the root position? Not
its static value, since this is only a rough guess. The value ascribed to a node
must be determined from the true values of its subnodes. This can be done by
assuming that each player makes the best moves he can. Remembering that a
high value means a good position for the computer, it is clear that when it is
the computer’s move from any position, it will choose the move leading to the
sub-node with the maximum true value. Similarly, the opponent will choose the
move leading to the sub-node with the minimum true value. Assuming that the
computer and its opponent alternate turns, the true value of a node is computed
by the function maximise if it is the computer’s turn and minimise if it is not:

maximise (node n sub) = max (map minimise sub)
minimise (node n sub) = min (map maximise sub)

Here max and min are functions on lists of numbers that return the maximum
and minimum of the list respectively. These definitions are not complete because
they recurse for ever - there is no base case. We must define the value of a node
with no successors, and we take it to be the static evaluation of the node (its
label). Therefore the static evaluation is used when either player has already
won, or at the limit of look-ahead. The complete definitions of maximise and
minimise are

maximise (node n nil) = n
maximise (node n sub) = max (map minimise sub)
minimise (node n nil) = n
minimise (node n sub) = min (map maximise sub)

One could almost write down a function at this stage that would take a position
and return its true value. This would be:

evaluate = maximise . maptree static . gametree

There are two problems with this definition. First of all, it doesn’t work for
infinite trees. Maximise keeps on recursing until it finds a node with no subtrees
- an end to the tree. If there is no end then maximise will return no result. The
second problem is related - even finite game trees (like the one for noughts and
crosses) can be very large indeed. It is unrealistic to try to evaluate the whole
of the game tree - the search must be limited to the next few moves. This can
be done by pruning the tree to a fixed depth,

prune 0 (node a x) = node a nil
prune n (node a x) = node a (map (prune (n-1)) x)

(prune n) takes a tree and “cuts off” all nodes further than n from the root. If
a game tree is pruned it forces maximise to use the static evaluation for nodes
at depth n, instead of recursing further. Evaluate can therefore be defined by

evaluate = maximise . maptree static . prune 5 . gametree
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which looks (say) 5 moves ahead.
Already in this development we have used higher-order functions and lazy

evaluation. Higher order functions reptree and maptree allow us to construct
and manipulate game trees with ease. More importantly, lazy evaluation permits
us to modularise evaluate in this way. Since gametree has a potentially infinite
result, this program would never terminate without lazy evaluation. Instead of
writing

prune 5 . gametree

we would have to fold these two functions together into one which only con-
structed the first five levels of the tree. Worse, even the first five levels may be
too large to be held in memory at one time. In the program we have written,
the function

maptree static . prune 5 . gametree

only constructs parts of the tree as maximise requires them. Since each part can
be thrown away (reclaimed by the garbage collector) as soon as maximise has
finished with it, the whole tree is never resident in memory. Only a small part
of the tree is stored at a time. The lazy program is therefore efficient. Since
this efficiency depends on an interaction between maximise (the last function in
the chain of compositions) and gametree (the first), it could only be achieved
without lazy evaluation by folding all the functions in the chain together into
one big one. This is a drastic reduction in modularity, but it is what is usually
done. We can make improvements to this evaluation algorithm by tinkering
with each part: this is relatively easy. A conventional programmer must modify
the entire program as a unit, which is much harder.

So far we have only described simple minimaxing. The heart of the alpha-
beta algorithm is the observation that one can often compute the value of max-
imise or minimise without looking at the whole tree. Consider the tree:

max
/ \
/ \

/ \
/ \

min min
/ \ / \

/ \ / \
1 2 0 ?

Strangely enough, it is unnecessary to know the value of the question mark
in order to evaluate the tree. The left minimum evaluates to 1, but the right
minimum clearly evaluates to something less than or equal to 0. Therefore the
maximum of the two minima must be 1. This observation can be generalised
and built into maximise and minimise.

The first step is to separate maximise into an application of max to a list of
numbers; that is, we decompose maximise as
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maximise = max . maximise’

(Minimise is decomposed in a similar way. Since minimise and maximise are
entirely symmetrical we shall discuss maximise and assume that minimise is
treated similarly). Once decomposed in this way, maximise can use minimise’
rather than minimise itself, to discover which numbers minimise would take
the minimum of. It may then be able to discard some of the numbers without
looking at them. Thanks to lazy evaluation, if maximise doesn’t look at all of
the list of numbers, some of them will not be computed, with a potential saving
in computer time.

It is easy to “factor out” max from the definition of maximise, giving

maximise’ (node n nil) = cons n nil
maximise’ (node n l) = map minimise l

= map (min . minimise’) l
= map min (map minimise’ l)
= mapmin (map minimise’ l)

where mapmin = map min

Since minimise’ returns a list of numbers, the minimum of which is the result of
minimise, (map minimise’ l) returns a list of lists of numbers. Maximise’ should
return a list of the minima of those lists. However, only the maximum of this
list matters. We shall define a new version of mapmin which omits the minima
of lists whose minimum doesn’t matter.

mapmin (cons nums rest) =
= cons (min nums) (omit (min nums) rest)

The function omit is passed a “potential maximum” - the largest minimum seen
so far - and omits any minima which are less than this.

omit pot nil = nil
omit pot (cons nums rest) =

= omit pot rest, if minleq nums pot
= cons (min nums) (omit (min nums) rest), otherwise

Minleq takes a list of numbers and a potential maximum, and returns true if the
minimum of the list of numbers is less than or equal to the potential maximum.
To do this, it does not need to look at all the list! If there is any element in the
list less than or equal to the potential maximum, then the minimum of the list
is sure to be. All elements after this particular one are irrelevant - they are like
the question mark in the example above. Therefore minleq can be defined by

minleq nil pot = false
minleq (cons num rest) pot = true, if num<=pot

= minleq rest pot, otherwise

Having defined maximise’ and minimise’ in this way it is simple to write a new
evaluator:
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evaluate = max . maximise’ . maptree static . prune 8 . gametree

Thanks to lazy evaluation, the fact that maximise’ looks at less of the tree
means that the whole program runs more efficiently, just as the fact that prune
looks at only part of an infinite tree enables the program to terminate. The
optimisations in maximise’, although fairly simple, can have a dramatic effect
on the speed of evaluation, and so can allow the evaluator to look further ahead.

Other optimisations can be made to the evaluator. For example, the alpha-
beta algorithm just described works best if the best moves are considered first,
since if one has found a very good move then there is no need to consider worse
moves, other than to demonstrate that the opponent has at least one good reply
to them. One might therefore wish to sort the sub-trees at each node, putting
those with the highest values first when it is the computer’s move, and those
with the lowest values first when it is not. This can be done with the function

highfirst (node n sub) = node n (sort higher (map lowfirst sub))
lowfirst (node n sub) = node n (sort (not.higher) (map highfirst sub))
higher (node n1 sub1) (node n2 sub2) = n1>n2

where sort is a general purpose sorting function. The evaluator would now be
defined by

evaluate = max . maximise’ . highfirst . maptree static .
prune 8 . gametree

One might regard it as sufficient to consider only the three best moves for the
computer or the opponent, in order to restrict the search. To program this, it
is only necessary to replace highfirst with (taketree 3 . highfirst), where

taketree n = redtree (nodett n) cons nil
nodett n label sub = node label (take n sub)

Taketree replaces all the nodes in a tree with nodes with at most n subnodes,
using the function (take n) which returns the first n elements of a list (or fewer
if the list is shorter than n).

Another improvement is to refine the pruning. The program above looks
ahead a fixed depth even if the position is very dynamic - it may decide to look
no further than a position in which the queen is threated in chess, for example.
It is usual to define certain “dynamic” positions and not to allow look-ahead
to stop in one of these. Assuming a function “dynamic” that recognises such
positions, we need only add one equation to prune to do this:

prune 0 (node pos sub) = node pos (map (prune 0) sub),
if dynamic pos

Making such changes is easy in a program as modular as this one. As we
remarked above, since the program depends crucially for its efficiency on an
interaction between maximise, the last function in the chain, and gametree, the
first, it can only be written as a monolithic program without lazy evaluation.
Such a program is hard to write, hard to modify, and very hard to understand.
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6 Conclusion

In this paper, we’ve argued that modularity is the key to successful program-
ming. Languages which aim to improve productivity must support modular
programming well. But new scope rules and mechanisms for separate compi-
lation are not enough - modularity means more than modules. Our ability to
decompose a problem into parts depends directly on our ability to glue solutions
together. To assist modular programming, a language must provide good glue.
Functional programming languages provide two new kinds of glue - higher-order
functions and lazy evaluation. Using these glues one can modularise programs
in new and exciting ways, and we’ve shown many examples of this. Smaller
and more general modules can be re-used more widely, easing subsequent pro-
gramming. This explains why functional programs are so much smaller and
easier to write than conventional ones. It also provides a target for functional
programmers to aim at. If any part of a program is messy or complicated, the
programmer should attempt to modularise it and to generalise the parts. He
should expect to use higher-order functions and lazy evaluation as his tools for
doing this.

Of course, we are not the first to point out the power and elegance of higher-
order functions and lazy evaluation. For example, Turner shows how both can
be used to great advantage in a program for generating chemical structures
[Tur81]. Abelson and Sussman stress that streams (lazy lists) are a powerful
tool for structuring programs [AS86]. Henderson has used streams to structure
functional operating systems [P.H82]. The main contribution of this paper is
to assert that better modularity alone is the key to the power of functional
languages.

It is also relevant to the present controversy over lazy evaluation. Some
believe that functional languages should be lazy, others believe they should
not. Some compromise and provide only lazy lists, with a special syntax for
constructing them (as, for example, in SCHEME [AS86]). This paper provides
further evidence that lazy evaluation is too important to be relegated to second-
class citizenship. It is perhaps the most powerful glue functional programmers
possess. One should not obstruct access to such a vital tool.
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Where do I begin? A problem solving approach inteaching functional programmingSimon ThompsonComputing LaboratoryUniversity of Kent at CanterburyS.J.Thompson@ukc.ac.ukAbstract. This paper introduces a problem solving method for teach-ing functional programming, based on Polya's How To Solve It, an in-troductory investigation of mathematical method. We �rst present thelanguage independent version, and then show in particular how it appliesto the development of programs in Haskell. The method is illustrated bya sequence of examples and a larger case study.Keywords. Functional programming, Haskell, palindrome recognition,Polya, problem solving.1 IntroductionMany students take easily to functional programming, whilst others experiencedi�culties of one sort or another. The work reported here is the result of attemptsto advise students on how to use problem solving ideas to help them design anddevelop programs.Some students come to a computer science degree with considerable experi-ence of programming in an imperative language such as Pascal or C. For thesestudents, a functional approach forces them to look afresh at the process ofprogramming; it is no longer possible to construct programs `from the middleout'; instead design has to be confronted from the start. Other students come toa CS programme with no prior programming experience, and so with no `bag-gage' which might encumber them. Many of these students prefer a functionalapproach to the imperative, but lacking the background of the experienced stu-dents need encouragement and advice about how to build programs.1In this paper we report on how we try to answer our students' question`Where do I begin?' by talking explicitly about problem solving and what itmeans in programming. Beyond enabling students to program more e�ectivelya problem solving approach has a number of other important consequences. Theapproach is not only bene�cial in a functional programming context, as we areable to use the approach across our introductory curriculum, as reported in [1],reinforcing ideas in a disparate set of courses including imperative programmingand systems analysis. It is also striking that the cycle of problem solving is very1 Further reports on instructors' experience of teaching functional programming weregiven at the recent Workshop in the UK [6].



close to the `understand, plan, write and review' scheme which is recommendedto students experiencing di�culties in writing essays, emphasising the fact thatproblem solving ability is a transferable skill.In this paper we �rst review our general problem solving strategy, mod-elled on Polya's epoch-making How To Solve It, [5], which brought these ideasto prominence in mathematics some �fty years ago. This material is largelylanguage-independent. We then go on to explore how to take these ideas intothe functional domain by describing `How to program it in Haskell'. After lookingat a sequence of examples we examine the case study of palindrome recognition,and the lessons to be learned from this example. We conclude by reviewing thefuture role of problem solving in functional programming and across the com-puter science curriculum, since the material on problem solving can also be seenas the �rst stage in learning software engineering, `in the small' as it were; moredetails are given in [1].I am very grateful to David Barnes and Sally Fincher with whom the cross-curricular ideas were developed, and to Jan Sellers of the Rutherford StudyCentre at the University of Kent who provided support for workshops in problemsolving, as well as pointing out the overlap with essay writing techniques. TheAlumni Fund of the University of Kent provided funding for Jan to work withus. Finally I would like to acknowledge all the colleagues at UKC with whom Ihave taught functional programming, and from whom I have learned an immenseamount.2 How To Program ItPolya's How To Solve It, [5], contains a wealth of material about how to ap-proach mathematical problems of various kinds. This ranges from speci�c hintswhich can be used in particular circumstances to general methodological ideas.The latter are summarised in a two-page table giving a four-stage process (ormore strictly a cycle) for solving problems. In helping students to program, wehave speci�ed a similar summary of method { How To Program It { which ispresented in Figures 1 and 2. The stages of our cycle are: understanding theproblem; designing the program; writing the program and �nally looking back(or `re
ection').The table is largely self-explanatory, so we will not paraphrase it here; insteadwe will make some comments about its structure and how it has been used.How To Program It has been written in a language-independent way (at leastas much as the terminology of modern computing allows). In Section 3 we look athow it can be specialised for the lazy functional programming language Haskell,[4, 7]. Plainly it can also be used with other programming languages, and at theUniversity of Kent we have used it in teaching Modula-3, [1], for instance.Our approach emphasizes that a novice can make substantial progress incompleting a programming task before beginning to write any program code.This is very important in demystifying the programming process for those who�nd it di�cult. As the title of this paper suggests, getting started in the task



UNDERSTANDING THE PROBLEMFirst understand theproblem.Name the program orfunction.What is its type? What are the inputs (or arguments)? What are the outputs(or results)? What is the speci�cation of the problem?Can the speci�cation be satis�ed? Is it insu�cient? orredundant? or contradictory? What special conditions arethere on the inputs and outputs?Does the problem break into parts? It can help to drawdiagrams and to write things down in pseudo-code or plainEnglish.DESIGNING THE PROGRAMIn designing the programyou need to think aboutthe connections betweenthe input and the output.If there is no immediateconnection, you mighthave to think of auxiliaryproblems which wouldhelp in the solution.You want to give yourselfsome sort of plan of howto write the program.
Have you seen the problem before? In a slightly di�erentform?Do you know a related problem? Do you know anyprograms or functions which could be useful?Look at the speci�cation. Try to �nd a familiar problemwith the same or similar speci�cation.Here is a problem related to yours and solved before. Couldyou use it? Could you use its results? Could you use itsmethods? Should you introduce some auxiliary parts to theprogram?If you cannot solve the proposed problem try to solve arelated one. Can you imagine a more accessible related one?A more general one? A more speci�c one? An analogousproblem?Can you solve part of the problem? Can you get somethinguseful from the inputs? Can you think of information whichwould help you to calculate the outputs? How could youchange the inputs/outputs so that they were closer to eachother?Did you use all the inputs? Did you use the specialconditions on the inputs? Have you taken into account allthat the speci�cation requires?Fig. 1. How To Program It, Part I



WRITING YOUR PROGRAMWriting the programmeans taking your designinto a particularprogramming language.Think about how you canbuild programs in thelanguage. How do youdeal with di�erent cases?With doing things insequence? With doingthings repeatedly orrecursively?You also need to knowthe programs you havealready written, and thefunctions built into thelanguage or library.
In writing your program, make sure that you check eachstep of the design. Can you see clearly that each step doeswhat it should?You can write the program in stages. Think about thedi�erent cases into which the problem divides; in particularthink about the di�erent cases for the inputs. You can alsothink about computing parts of the result separately, andhow to put the parts together to get the �nal results.You can think of solving the problem by solving it for asmaller input and using the result to get your result; this isrecursion.Your design may call on you to solve a more general ormore speci�c problem. Write the solutions to these; theymay guide how you write the solution itself, or may indeedbe used in that solution.You should also draw on other programs you have written.Can they be used? Can they be modi�ed? Can they guidehow to build the solution?LOOKING BACKExamine your solution:how can it be improved? Can you test that the program works, on a variety ofarguments?Can you think of how you might write the programdi�erently if you had to start again?Can you see how you might use the program or its methodto build another program?Fig. 2. How To Program It, Part IIcan be a block for many students. For example, in the �rst stage of the process astudent will have to clarify the problem in two complementary ways. First, theinformal statement has to be clari�ed, and perhaps restated, giving a clear infor-mal goal. Secondly, this should mean that the student is able to write down thename of a program or function and more importantly give a type to this artifactat this stage. While this may seem a small step, it means that misconceptionscan be spotted at an early stage, and avoid a student going o� in a mistakendirection.The last observation is an example of a general point. Although we have made



re
ection (or `looking back') the �nal stage of the process, it should permeatethe whole process. At the �rst stage, once a type for a function has been given, itis sensible to re
ect on this choice: giving some typical inputs and correspondingoutputs, does the type speci�ed actually re
ect the problem? This means thata student is forced to check both their understanding of the problem and of thetypes of the target language.At the design stage, students are encouraged to think about the context of theproblem, and the ways in which this can help the solution of the problem itself.We emphasise that programs can be re-used either by calling them or by mod-ifying their de�nitions, as well as the ideas of specialisation and generalisation.Generalisation is particularly apt in the modern functional context, in whichpolymorphism and higher-order functions allow libraries of general functions tobe written with little overhead (in contrast to the C++ Standard TemplateLibrary, say).Implementation ideas can be discussed in a more concrete way in the contextof a particular language. The ideas of this section are next discussed in thecontext of Haskell by means of a succession of examples in Section 3 and by alengthier case study in Section 4. Note that the design stage of the case studyis essentially language independent.Students are encouraged to re
ect on what they have achieved throughoutthe problem solving cycle. As well as testing their �nished programs, pencil andpaper evaluation of Haskell programs is particularly e�ective, and we expectstudents to use this as a way of discovering how their programs work.3 Programming it in HaskellAs we saw in the previous section, it is more di�cult to give useful language-independent advice about how to write programs than it is about how to designthem. It is also easier to understand the generalities of How To Program It inthe context of particular examples. We therefore provide students with particularlanguage-speci�c advice in tabular form. These tables allow us to{ give examples to illustrate the design and programming stages of the process,and{ discuss the programming process in a much more speci�c way.The full text of Programming it in Haskell is available on the World Wide Web,[9]. Rather than reproduce it here, in the rest of this section we look at some ofthe examples and the points in the process which they illustrate.Problem: �nd the maximum of three integersA �rst example is to �nd the maximum of three integers. In our discussion welink various points in the exposition to the four stages of How To Program It.



Understanding the problem Even in a problem of this simplicity there canbe some discussion of the speci�cation: what is to be done in the case when two(or three) of the integers are maximal? This is usually resolved by saying thatthe common value should be returned, but the important learning point here isthat the discussion takes place. Also one can state the name and type, beginningthe solution:maxThree :: Int -> Int -> Int -> IntDesigning and writing the program More interesting points can be madein the design stage. Given a function max to �nd the maximum of two integers,max :: Int -> Int -> Intmax a b| a>=b = a| otherwise = bthis can be used in two ways. It can form a model for the solution of the problem:maxThree a b c| a>=b && a>=c = a| ....or it can itself be used in a solutionmaxThree a b c = max (max a b) cIt is almost universally the case that novices produce the �rst solution ratherthan the second, so this provides a useful �rst lesson in the existence of designchoices, guided by the resources available (in this case the function max). Al-though it is di�cult to interpret exactly why this is the case, it can be takenas an indication that novice students �nd it more natural to tackle a problemin a single step, rather than stepping back from the problem and looking at itmore strategically. This lends support to introducing these problem solving ideasexplicitly, rather than hoping that they will be absorbed `osmotically'.We also point out that given maxThree it is straightforward to generalise tocases of �nding the minimum of three numbers, the maximum of four, and soon.Looking back Finally, this is a non-trivial example for program testing. A notuncommon student error here is to make the inequalities strict, thusmaxThreeErr a b c| a>b && a>c = a| b>c && b>a = b| otherwise = cThis provides a discussion point in how test data are chosen; the vast majorityof student test data sets do not reveal the error. A systematic approach shouldproduce the data which indicate the error { a and b jointly maximal { and indeedthe cause of error links back to the initial clari�cation of the speci�cation.



Problem: add the positive numbers in a listWe use this example to show how to break down the process of designing andwriting a program { stages two and three of our four-step process { into a numberof simpler steps. The function we require isaddPos :: [Int] -> IntWe �rst consider the design of the equations which describe the function. Aparadigm here if we are to de�ne the function from scratch is primitive recursion(or structural recursion) over the list argument. In doing this we adopt thegeneral schemeaddPos [] = ...addPos (a:x) = ... addPos x ...in which we have do de�ne the value at [] outright and the value at (a:x) fromthe value at x. Completing the �rst equation givesaddPos [] = 0The (a:x) case requires more thought. Guidance can often come from lookingat examples. Here we take lists[-4,3,2,-1][2,3,2,-1]which respectively give sums 0 and 6. In the �rst case the head does not con-tribute to the sum; in the second it does. This suggests the case analysisaddPos (a:x)| a>0 = ...| otherwise = ...from which point in development the answer can be seen. The point of thisexample is less to develop the particular function than to illustrate how theprocess works.The example is also enlightening for the other design possibilities it o�ers byway of looking back at the problem. In particularly when students are acquaintedwith filter and foldr the explicit de�nitionaddPos = foldr (+) 0 . filter (>0)is possible. The de�nition here re
ects very clearly its top-down design.Further examplesOther examples we have used includeMaximum of a list This is similar to addPos, but revisits the questions raisedby the maxThree example. In particular, will the max function be used in thede�nition?



Counting how many times a maximum occurs among three numbersThis gives a reasonable example in which local de�nitions (in a where clause)naturally structure a de�nition with a number of parts.Deciding whether one list is a sublist of another This example naturallygives rise to an auxiliary function during its development.Summing integers up to n This can give rise to the generalisation of sum-ming numbers from m to n.The discussions thus far have been about algorithms; there is a wealth of materialwhich addresses data and object design, the former of which we address in [9].4 Case study: palindromesThe problem is to recognise palindromes, such as"Madam I'm Adam"It is chosen as an example since even for a more con�dent student it requires somethought before implementation can begin. Once the speci�cation is clari�ed itpresents a non-trivial design space in which we can illustrate how choices betweenalternative designs can take place. Indeed, it is a useful example for small-groupwork since it is likely that di�erent groups will produce substantially di�erentinitial design ideas. It is also an example in which a variety of standard functionscan be used.We address the main ideas in this section; further details are available on theWorld Wide Web [8].Understanding the problemThe problem is stated in a deliberately vague way. A palindrome can be identi�edas a string which is the same read forwards or backwards, so long as(1) we disregard the punctuation (punctuation marks and spaces) in the string;(2) we disregard the case (upper or lower: that is capital or small) of the lettersin the string.Requirement (2) is plainly unambiguous, whilst (1) will need to be revisited atthe implementation stage.Overall designThe palindrome example lends itself to a wide choice of designs. The simplerproblem in which there is no punctuation and all letters in lower case can behelpful in two ways. It can either form a guide about how to write the fullsolution, or be used as a part of that solution. The choice here provides a usefuldiscussion point.



Design: the simpler problemPossible designs which can emerge here may be classi�ed in two di�erent ways.{ Is the string handled as a single entity, or split into two parts?{ Is comparison made between strings, or between individual characters?These choices generate these outline designs:{ The string is reversed and compared with itself;{ the string is split, one part reversed and the result compared with the otherpart;{ the �rst and last characters are compared, and if equal are removed and aniteration or a recursion is performed;{ the string is split, one part reversed and the strings are then compared onecharacter at a time.Again, it is important for students to be able both to see the possibilities avail-able, and to discuss their relative merits (in the context of the implementationlanguage). Naturally, too, there needs to be a comparison of the di�erent waysin which the string is represented.Design: the full problemAssuming we are to use the solution to the simpler problem in solving the fullproblem, we reach our goal by writing a function which removes punctuation andchanges all upper case letters to lower case. Here again we can see an opportunityto split the task in two, and also to discuss the order in which the two operationsare performed: do we remove punctuation before or after converting letters tolower case? This allows a discussion of relative e�ciency.Writing the programAt this point we need to revisit the speci�cation and to make plain what is meantby punctuation. This is not clear from the example given in the speci�cation, andwe can choose either to be proscriptive and disallow everything but letters anddigits, or to be permissive and to say that punctuation consists of a particularset of characters.There are more speci�c implementation decisions to be taken here; thesereinforce the discussions in Section 3. In particular there is substantial scope forusing built-in or library functions.We give a full implementation of the palindrome recognition problem in Fig-ure 3.



palin :: String -> Boolpalin st = simplePalin (disregard st)simplePalin :: String -> BoolsimplePalin st = (rev st == st)rev :: String -> Stringrev [] = []rev (a:st) = rev st ++ [a]disregard :: String -> Stringdisregard st = change (remove st)remove :: String -> Stringchange :: String -> Stringremove [] = []remove (a:st)| notPunct a = a : remove st| otherwise = remove stnotPunct ch = isAlpha ch || isDigit chchange [] = []change (a:st) = convert a : change stconvert :: Char -> Charconvert ch| isCap ch = toEnum (fromEnum ch + offset)| otherwise = chwhereoffset = fromEnum 'a' - fromEnum 'A'isCap :: Char -> BoolisCap ch = 'A' <= ch && ch <= 'Z'Fig. 3. Recognising palindromes in Haskell



Looking backUsing the approach suggested here, students see that the solution which theyhave chosen represents one branch in a tree of choices. Their solution can beevaluated against other possibilities, including those written by other students.There is also ample scope for discussion of testing in this problem.For instance, the solution given in Figure 3 can give rise to numerous discus-sion points.{ No higher order functions are used in the solution; we would expect to revisitthe example after covering HOFs to reveal that change is map convert andthat remove is filter notPunct.{ In a similar way we would expect to revisit the solution and discuss incor-porating function-level de�nitions such aspalin = simplePalin . disregardThis would also apply to disregard itself.{ Some library functions have been used; digits and letters are recognised byisDigit and isAlpha.{ An alternative de�nition of disregard is given bydisregard st = remove (change st)and other solutions are provided by implementing the two operations in asingle function de�nition, rather than as a composition of two separate piecesof functionality.{ We have chosen the proscriptive de�nition of punctuation, considering onlyletters and digits to be signi�cant.5 ConclusionIn this paper we have given an explicit problem solving method for beginning(functional) programmers, motivated by the desire to equip them with tools toenable them to write complex programs in a disciplined way. The method alsogives weaker students the con�dence to proceed by showing them the ways inwhich a seemingly intractable problem can be broken down into simpler partswhich can be solved separately. As well as providing a general method we thinkit crucial to illustrate the method by examples and case studies { this latterapproach is not new, see [2] for a very e�ective account of using case studies inteaching Pascal.To conclude, it is worth noting that numerous investigations into mathe-matical method were stimulated by Polya's work. Most prominent are Lakatos'investigations of the roles of proof and counterexample, [3], which we believehave useful parallels for teachers and students of computer science. We intendto develop this correspondence further in the future.
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Permission is hereby granted, free of charge, to any person obtaining a copy of \A Gentle
Introduction to Haskell" (the Text), to deal in the Text without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Text, and to permit persons to whom the Text is furnished to do so, subject to the following
condition: The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Text.

1 Introduction

Our purpose in writing this tutorial is not to teach programming, nor even to teach functional
programming. Rather, it is intended to serve as a supplement to the Haskell Report [4], which is
otherwise a rather dense technical exposition. Our goal is to provide a gentle introduction to Haskell
for someone who has experience with at least one other language, preferably a functional language
(even if only an \almost-functional" language such as ML or Scheme). If the reader wishes to learn
more about the functional programming style, we highly recommend Bird's text Introduction to
Functional Programming [1] or Davie's An Introduction to Functional Programming Systems Using
Haskell [2]. For a useful survey of functional programming languages and techniques, including
some of the language design principles used in Haskell, see [3].

The Haskell language has evolved signi�cantly since its birth in 1987. This tutorial deals with
Haskell 98. Older versions of the language are now obsolete; Haskell users are encouraged to use
Haskell 98. There are also many extensions to Haskell 98 that have been widely implemented.
These are not yet a formal part of the Haskell language and are not covered in this tutorial.

Our general strategy for introducing language features is this: motivate the idea, de�ne some
terms, give some examples, and then point to the Report for details. We suggest, however, that the
reader completely ignore the details until the Gentle Introduction has been completely read. On the

1



2 2 VALUES, TYPES, AND OTHER GOODIES

other hand, Haskell's Standard Prelude (in Appendix A of the Report and the standard libraries
(found in the Library Report [5]) contain lots of useful examples of Haskell code; we encourage a
thorough reading once this tutorial is completed. This will not only give the reader a feel for what
real Haskell code looks like, but will also familiarize her with Haskell's standard set of prede�ned
functions and types.

Finally, the Haskell web site, http://haskell.org, has a wealth of information about the
Haskell language and its implementations.

[We have also taken the course of not laying out a plethora of lexical syntax rules at the outset.
Rather, we introduce them incrementally as our examples demand, and enclose them in brackets,
as with this paragraph. This is in stark contrast to the organization of the Report, although the
Report remains the authoritative source for details (references such as \x2.1" refer to sections in
the Report).]

Haskell is a typeful programming language:1 types are pervasive, and the newcomer is best o�
becoming well aware of the full power and complexity of Haskell's type system from the outset. For
those whose only experience is with relatively \untypeful" languages such as Perl, Tcl, or Scheme,
this may be a diÆcult adjustment; for those familiar with Java, C, Modula, or even ML, the
adjustment should be easier but still not insigni�cant, since Haskell's type system is di�erent and
somewhat richer than most. In any case, \typeful programming" is part of the Haskell programming
experience, and cannot be avoided.

2 Values, Types, and Other Goodies

Because Haskell is a purely functional language, all computations are done via the evaluation of
expressions (syntactic terms) to yield values (abstract entities that we regard as answers). Every
value has an associated type. (Intuitively, we can think of types as sets of values.) Examples
of expressions include atomic values such as the integer 5, the character 'a', and the function
\x -> x+1, as well as structured values such as the list [1,2,3] and the pair ('b',4).

Just as expressions denote values, type expressions are syntactic terms that denote type values
(or just types). Examples of type expressions include the atomic types Integer (in�nite-precision
integers), Char (characters), Integer->Integer (functions mapping Integer to Integer), as well
as the structured types [Integer] (homogeneous lists of integers) and (Char,Integer) (character,
integer pairs).

All Haskell values are \�rst-class"|they may be passed as arguments to functions, returned as
results, placed in data structures, etc. Haskell types, on the other hand, are not �rst-class. Types
in a sense describe values, and the association of a value with its type is called a typing. Using the
examples of values and types above, we write typings as follows:

5 :: Integer

'a' :: Char

inc :: Integer -> Integer

[1,2,3] :: [Integer]

('b',4) :: (Char,Integer)
1Coined by Luca Cardelli.
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The \::" can be read \has type."

Functions in Haskell are normally de�ned by a series of equations. For example, the function
inc can be de�ned by the single equation:

inc n = n+1

An equation is an example of a declaration. Another kind of declaration is a type signature decla-
ration (x4.4.1), with which we can declare an explicit typing for inc:

inc :: Integer -> Integer

We will have much more to say about function de�nitions in Section 3.

For pedagogical purposes, when we wish to indicate that an expression e1 evaluates, or \re-
duces," to another expression or value e2, we will write:

e1 ) e2

For example, note that:

inc (inc 3) ) 5

Haskell's static type system de�nes the formal relationship between types and values (x4.1.3).
The static type system ensures that Haskell programs are type safe; that is, that the programmer has
not mismatched types in some way. For example, we cannot generally add together two characters,
so the expression 'a'+'b' is ill-typed. The main advantage of statically typed languages is well-
known: All type errors are detected at compile-time. Not all errors are caught by the type system;
an expression such as 1/0 is typable but its evaluation will result in an error at execution time.
Still, the type system �nds many program errors at compile time, aids the user in reasoning about
programs, and also permits a compiler to generate more eÆcient code (for example, no run-time
type tags or tests are required).

The type system also ensures that user-supplied type signatures are correct. In fact, Haskell's
type system is powerful enough to allow us to avoid writing any type signatures at all;2 we say
that the type system infers the correct types for us. Nevertheless, judicious placement of type
signatures such as that we gave for inc is a good idea, since type signatures are a very e�ective
form of documentation and help bring programming errors to light.

[The reader will note that we have capitalized identi�ers that denote speci�c types, such as
Integer and Char, but not identi�ers that denote values, such as inc. This is not just a convention:
it is enforced by Haskell's lexical syntax. In fact, the case of the other characters matters, too: foo,
fOo, and fOO are all distinct identi�ers.]

2.1 Polymorphic Types

Haskell also incorporates polymorphic types|types that are universally quanti�ed in some way
over all types. Polymorphic type expressions essentially describe families of types. For example,
(8a)[a] is the family of types consisting of, for every type a, the type of lists of a. Lists of

2With a few exceptions to be described later.
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integers (e.g. [1,2,3]), lists of characters (['a','b','c']), even lists of lists of integers, etc., are
all members of this family. (Note, however, that [2,'b'] is not a valid example, since there is no
single type that contains both 2 and 'b'.)

[Identi�ers such as a above are called type variables, and are uncapitalized to distinguish them
from speci�c types such as Int. Furthermore, since Haskell has only universally quanti�ed types,
there is no need to explicitly write out the symbol for universal quanti�cation, and thus we sim-
ply write [a] in the example above. In other words, all type variables are implicitly universally
quanti�ed.]

Lists are a commonly used data structure in functional languages, and are a good vehicle for
explaining the principles of polymorphism. The list [1,2,3] in Haskell is actually shorthand for
the list 1:(2:(3:[])), where [] is the empty list and : is the in�x operator that adds its �rst
argument to the front of its second argument (a list).3 Since : is right associative, we can also
write this list as 1:2:3:[].

As an example of a user-de�ned function that operates on lists, consider the problem of counting
the number of elements in a list:

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

This de�nition is almost self-explanatory. We can read the equations as saying: \The length of the
empty list is 0, and the length of a list whose �rst element is x and remainder is xs is 1 plus the
length of xs." (Note the naming convention used here; xs is the plural of x, and should be read
that way.)

Although intuitive, this example highlights an important aspect of Haskell that is yet to be
explained: pattern matching. The left-hand sides of the equations contain patterns such as [] and
x:xs. In a function application these patterns are matched against actual parameters in a fairly
intuitive way ([] only matches the empty list, and x:xs will successfully match any list with at least
one element, binding x to the �rst element and xs to the rest of the list). If the match succeeds,
the right-hand side is evaluated and returned as the result of the application. If it fails, the next
equation is tried, and if all equations fail, an error results.

De�ning functions by pattern matching is quite common in Haskell, and the user should become
familiar with the various kinds of patterns that are allowed; we will return to this issue in Section 4.

The length function is also an example of a polymorphic function. It can be applied to a list
containing elements of any type, for example [Integer], [Char], or [[Integer]].

length [1,2,3] ) 3
length ['a','b','c'] ) 3
length [[1],[2],[3]] ) 3

Here are two other useful polymorphic functions on lists that will be used later. Function head

returns the �rst element of a list, function tail returns all but the �rst.

3: and [] are like Lisp's cons and nil, respectively.
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head :: [a] -> a

head (x:xs) = x

tail :: [a] -> [a]

tail (x:xs) = xs

Unlike length, these functions are not de�ned for all possible values of their argument. A runtime
error occurs when these functions are applied to an empty list.

With polymorphic types, we �nd that some types are in a sense strictly more general than
others in the sense that the set of values they de�ne is larger. For example, the type [a] is more
general than [Char]. In other words, the latter type can be derived from the former by a suitable
substitution for a. With regard to this generalization ordering, Haskell's type system possesses two
important properties: First, every well-typed expression is guaranteed to have a unique principal
type (explained below), and second, the principal type can be inferred automatically (x4.1.3). In
comparison to a monomorphically typed language such as C, the reader will �nd that polymorphism
improves expressiveness, and type inference lessens the burden of types on the programmer.

An expression's or function's principal type is the least general type that, intuitively, \contains
all instances of the expression". For example, the principal type of head is [a]->a; [b]->a, a->a,
or even a are correct types, but too general, whereas something like [Integer]->Integer is too
speci�c. The existence of unique principal types is the hallmark feature of the Hindley-Milner type
system, which forms the basis of the type systems of Haskell, ML, Miranda,4 and several other
(mostly functional) languages.

2.2 User-De�ned Types

We can de�ne our own types in Haskell using a data declaration, which we introduce via a series
of examples (x4.2.1).

An important prede�ned type in Haskell is that of truth values:

data Bool = False | True

The type being de�ned here is Bool, and it has exactly two values: True and False. Type Bool is
an example of a (nullary) type constructor, and True and False are (also nullary) data constructors
(or just constructors, for short).

Similarly, we might wish to de�ne a color type:

data Color = Red | Green | Blue | Indigo | Violet

Both Bool and Color are examples of enumerated types, since they consist of a �nite number of
nullary data constructors.

Here is an example of a type with just one data constructor:

data Point a = Pt a a

Because of the single constructor, a type like Point is often called a tuple type, since it is essentially

4\Miranda" is a trademark of Research Software, Ltd.
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just a cartesian product (in this case binary) of other types.5 In contrast, multi-constructor types,
such as Bool and Color, are called (disjoint) union or sum types.

More importantly, however, Point is an example of a polymorphic type: for any type t, it
de�nes the type of cartesian points that use t as the coordinate type. The Point type can now be
seen clearly as a unary type constructor, since from the type t it constructs a new type Point t.
(In the same sense, using the list example given earlier, [] is also a type constructor. Given any
type t we can \apply" [] to yield a new type [t]. The Haskell syntax allows [] t to be written
as [t]. Similarly, -> is a type constructor: given two types t and u, t->u is the type of functions
mapping elements of type t to elements of type u.)

Note that the type of the binary data constructor Pt is a -> a -> Point a, and thus the
following typings are valid:

Pt 2.0 3.0 :: Point Float

Pt 'a' 'b' :: Point Char

Pt True False :: Point Bool

On the other hand, an expression such as Pt 'a' 1 is ill-typed because 'a' and 1 are of di�erent
types.

It is important to distinguish between applying a data constructor to yield a value, and applying
a type constructor to yield a type; the former happens at run-time and is how we compute things
in Haskell, whereas the latter happens at compile-time and is part of the type system's process of
ensuring type safety.

[Type constructors such as Point and data constructors such as Pt are in separate namespaces.
This allows the same name to be used for both a type constructor and data constructor, as in the
following:

data Point a = Point a a

While this may seem a little confusing at �rst, it serves to make the link between a type and its
data constructor more obvious.]

2.2.1 Recursive Types

Types can also be recursive, as in the type of binary trees:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Here we have de�ned a polymorphic binary tree type whose elements are either leaf nodes containing
a value of type a, or internal nodes (\branches") containing (recursively) two sub-trees.

When reading data declarations such as this, remember again that Tree is a type constructor,
whereas Branch and Leaf are data constructors. Aside from establishing a connection between
these constructors, the above declaration is essentially de�ning the following types for Branch and
Leaf:

Branch :: Tree a -> Tree a -> Tree a

Leaf :: a -> Tree a
5Tuples are somewhat like records in other languages.
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With this example we have de�ned a type suÆciently rich to allow de�ning some interesting
(recursive) functions that use it. For example, suppose we wish to de�ne a function fringe that
returns a list of all the elements in the leaves of a tree from left to right. It's usually helpful to write
down the type of new functions �rst; in this case we see that the type should be Tree a -> [a].
That is, fringe is a polymorphic function that, for any type a, maps trees of a into lists of a. A
suitable de�nition follows:

fringe :: Tree a -> [a]

fringe (Leaf x) = [x]

fringe (Branch left right) = fringe left ++ fringe right

Here ++ is the in�x operator that concatenates two lists (its full de�nition will be given in Section
9.1). As with the length example given earlier, the fringe function is de�ned using pattern
matching, except that here we see patterns involving user-de�ned constructors: Leaf and Branch.
[Note that the formal parameters are easily identi�ed as the ones beginning with lower-case letters.]

2.3 Type Synonyms

For convenience, Haskell provides a way to de�ne type synonyms; i.e. names for commonly used
types. Type synonyms are created using a type declaration (x4.2.2). Here are several examples:

type String = [Char]

type Person = (Name,Address)

type Name = String

data Address = None | Addr String

Type synonyms do not de�ne new types, but simply give new names for existing types. For
example, the type Person -> Name is precisely equivalent to (String,Address) -> String. The
new names are often shorter than the types they are synonymous with, but this is not the only
purpose of type synonyms: they can also improve readability of programs by being more mnemonic;
indeed, the above examples highlight this. We can even give new names to polymorphic types:

type AssocList a b = [(a,b)]

This is the type of \association lists" which associate values of type a with those of type b.

2.4 Built-in Types Are Not Special

Earlier we introduced several \built-in" types such as lists, tuples, integers, and characters. We have
also shown how new user-de�ned types can be de�ned. Aside from special syntax, are the built-in
types in any way more special than the user-de�ned ones? The answer is no. The special syntax is
for convenience and for consistency with historical convention, but has no semantic consequences.

We can emphasize this point by considering what the type declarations would look like for these
built-in types if in fact we were allowed to use the special syntax in de�ning them. For example,
the Char type might be written as:
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data Char = 'a' | 'b' | 'c' | ... -- This is not valid

| 'A' | 'B' | 'C' | ... -- Haskell code!

| '1' | '2' | '3' | ...

...

These constructor names are not syntactically valid; to �x them we would have to write something
like:

data Char = Ca | Cb | Cc | ...

| CA | CB | CC | ...

| C1 | C2 | C3 | ...

...

Even though these constructors are more concise, they are quite unconventional for representing
characters.

In any case, writing \pseudo-Haskell" code in this way helps us to see through the special
syntax. We see now that Char is just an enumerated type consisting of a large number of nullary
constructors. Thinking of Char in this way makes it clear that we can pattern-match against
characters in function de�nitions, just as we would expect to be able to do so for any of a type's
constructors.

[This example also demonstrates the use of comments in Haskell; the characters -- and all
subsequent characters to the end of the line are ignored. Haskell also permits nested comments
which have the form {-: : :-} and can appear anywhere (x2.2).]

Similarly, we could de�ne Int (�xed precision integers) and Integer by:

data Int = -65532 | ... | -1 | 0 | 1 | ... | 65532 -- more pseudo-code

data Integer = ... -2 | -1 | 0 | 1 | 2 ...

where -65532 and 65532, say, are the maximum and minimum �xed precision integers for a given
implementation. Int is a much larger enumeration than Char, but it's still �nite! In contrast, the
pseudo-code for Integer is intended to convey an in�nite enumeration.

Tuples are also easy to de�ne playing this game:

data (a,b) = (a,b) -- more pseudo-code

data (a,b,c) = (a,b,c)

data (a,b,c,d) = (a,b,c,d)

. .

. .

. .

Each declaration above de�nes a tuple type of a particular length, with (...) playing a role in
both the expression syntax (as data constructor) and type-expression syntax (as type constructor).
The vertical dots after the last declaration are intended to convey an in�nite number of such
declarations, re
ecting the fact that tuples of all lengths are allowed in Haskell.

Lists are also easily handled, and more interestingly, they are recursive:

data [a] = [] | a : [a] -- more pseudo-code

We can now see clearly what we described about lists earlier: [] is the empty list, and : is the in�x
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list constructor; thus [1,2,3] must be equivalent to the list 1:2:3:[]. (: is right associative.)
The type of [] is [a], and the type of : is a->[a]->[a].

[The way \:" is de�ned here is actually legal syntax|in�x constructors are permitted in data

declarations, and are distinguished from in�x operators (for pattern-matching purposes) by the fact
that they must begin with a \:" (a property trivially satis�ed by \:").]

At this point the reader should note carefully the di�erences between tuples and lists, which
the above de�nitions make abundantly clear. In particular, note the recursive nature of the list
type whose elements are homogeneous and of arbitrary length, and the non-recursive nature of a
(particular) tuple type whose elements are heterogeneous and of �xed length. The typing rules for
tuples and lists should now also be clear:

For (e1,e2, : : : ,en); n � 2, if ti is the type of ei, then the type of the tuple is (t1,t2, : : : ,tn).

For [e1,e2, : : : ,en]; n � 0, each ei must have the same type t, and the type of the list is [t].

2.4.1 List Comprehensions and Arithmetic Sequences

As with Lisp dialects, lists are pervasive in Haskell, and as with other functional languages, there is
yet more syntactic sugar to aid in their creation. Aside from the constructors for lists just discussed,
Haskell provides an expression known as a list comprehension that is best explained by example:

[ f x | x <- xs ]

This expression can intuitively be read as \the list of all f x such that x is drawn from xs." The
similarity to set notation is not a coincidence. The phrase x <- xs is called a generator, of which
more than one is allowed, as in:

[ (x,y) | x <- xs, y <- ys ]

This list comprehension forms the cartesian product of the two lists xs and ys. The elements are
selected as if the generators were \nested" from left to right (with the rightmost generator varying
fastest); thus, if xs is [1,2] and ys is [3,4], the result is [(1,3),(1,4),(2,3),(2,4)].

Besides generators, boolean expressions called guards are permitted. Guards place constraints
on the elements generated. For example, here is a concise de�nition of everybody's favorite sorting
algorithm:

quicksort [] = []

quicksort (x:xs) = quicksort [y | y <- xs, y<x ]

++ [x]

++ quicksort [y | y <- xs, y>=x]

To further support the use of lists, Haskell has special syntax for arithmetic sequences, which
are best explained by a series of examples:

[1..10] ) [1,2,3,4,5,6,7,8,9,10]

[1,3..10] ) [1,3,5,7,9]

[1,3..] ) [1,3,5,7,9, ... (in�nite sequence)

More will be said about arithmetic sequences in Section 8.2, and \in�nite lists" in Section 3.4.
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2.4.2 Strings

As another example of syntactic sugar for built-in types, we note that the literal string "hello" is
actually shorthand for the list of characters ['h','e','l','l','o']. Indeed, the type of "hello"
is String, where String is a prede�ned type synonym (that we gave as an earlier example):

type String = [Char]

This means we can use prede�ned polymorphic list functions to operate on strings. For example:

"hello" ++ " world" ) "hello world"

3 Functions

Since Haskell is a functional language, one would expect functions to play a major role, and indeed
they do. In this section, we look at several aspects of functions in Haskell.

First, consider this de�nition of a function which adds its two arguments:

add :: Integer -> Integer -> Integer

add x y = x + y

This is an example of a curried function.6 An application of add has the form add e1 e2, and
is equivalent to (add e1) e2, since function application associates to the left. In other words,
applying add to one argument yields a new function which is then applied to the second argu-
ment. This is consistent with the type of add, Integer->Integer->Integer, which is equivalent
to Integer->(Integer->Integer); i.e. -> associates to the right. Indeed, using add, we can de�ne
inc in a di�erent way from earlier:

inc = add 1

This is an example of the partial application of a curried function, and is one way that a function
can be returned as a value. Let's consider a case in which it's useful to pass a function as an
argument. The well-known map function is a perfect example:

map :: (a->b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

[Function application has higher precedence than any in�x operator, and thus the right-hand side
of the second equation parses as (f x) : (map f xs).] The map function is polymorphic and
its type indicates clearly that its �rst argument is a function; note also that the two a's must be
instantiated with the same type (likewise for the b's). As an example of the use of map, we can
increment the elements in a list:

map (add 1) [1,2,3] ) [2,3,4]

6The name curry derives from the person who popularized the idea: Haskell Curry. To get the e�ect of an
uncurried function, we could use a tuple, as in:

add (x,y) = x + y

But then we see that this version of add is really just a function of one argument!
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These examples demonstrate the �rst-class nature of functions, which when used in this way
are usually called higher-order functions.

3.1 Lambda Abstractions

Instead of using equations to de�ne functions, we can also de�ne them \anonymously" via a lambda
abstraction. For example, a function equivalent to inc could be written as \x -> x+1. Similarly,
the function add is equivalent to \x -> \y -> x+y. Nested lambda abstractions such as this may
be written using the equivalent shorthand notation \x y -> x+y. In fact, the equations:

inc x = x+1

add x y = x+y

are really shorthand for:

inc = \x -> x+1

add = \x y -> x+y

We will have more to say about such equivalences later.

In general, given that x has type t1 and exp has type t2, then \x->exp has type t1->t2.

3.2 In�x Operators

In�x operators are really just functions, and can also be de�ned using equations. For example, here
is a de�nition of a list concatenation operator:

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs++ys)

[Lexically, in�x operators consist entirely of \symbols," as opposed to normal identi�ers which are
alphanumeric (x2.4). Haskell has no pre�x operators, with the exception of minus (-), which is
both in�x and pre�x.]

As another example, an important in�x operator on functions is that for function composition:

(.) :: (b->c) -> (a->b) -> (a->c)

f . g = \ x -> f (g x)

3.2.1 Sections

Since in�x operators are really just functions, it makes sense to be able to partially apply them as
well. In Haskell the partial application of an in�x operator is called a section. For example:

(x+) � \y -> x+y

(+y) � \x -> x+y

(+) � \x y -> x+y
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[The parentheses are mandatory.]

The last form of section given above essentially coerces an in�x operator into an equivalent
functional value, and is handy when passing an in�x operator as an argument to a function, as
in map (+) [1,2,3] (the reader should verify that this returns a list of functions!). It is also
necessary when giving a function type signature, as in the examples of (++) and (.) given earlier.

We can now see that add de�ned earlier is just (+), and inc is just (+1)! Indeed, these
de�nitions would do just �ne:

inc = (+ 1)

add = (+)

We can coerce an in�x operator into a functional value, but can we go the other way? Yes|we
simply enclose an identi�er bound to a functional value in backquotes. For example, x `add` y

is the same as add x y.7 Some functions read better this way. An example is the prede�ned list
membership predicate elem; the expression x `elem` xs can be read intuitively as \x is an element
of xs."

[There are some special rules regarding sections involving the pre�x/in�x operator -; see
(x3.5,x3.4).]

At this point, the reader may be confused at having so many ways to de�ne a function! The
decision to provide these mechanisms partly re
ects historical conventions, and partly re
ects the
desire for consistency (for example, in the treatment of in�x vs. regular functions).

3.2.2 Fixity Declarations

A �xity declaration can be given for any in�x operator or constructor (including those made from
ordinary identi�ers, such as `elem`). This declaration speci�es a precedence level from 0 to 9 (with
9 being the strongest; normal application is assumed to have a precedence level of 10), and left-,
right-, or non-associativity. For example, the �xity declarations for ++ and . are:

infixr 5 ++

infixr 9 .

Both of these specify right-associativity, the �rst with a precedence level of 5, the other 9. Left
associativity is speci�ed via infixl, and non-associativity by infix. Also, the �xity of more than
one operator may be speci�ed with the same �xity declaration. If no �xity declaration is given for
a particular operator, it defaults to infixl 9. (See x5.9 for a detailed de�nition of the associativity
rules.)

3.3 Functions are Non-strict

Suppose bot is de�ned by:

7Note carefully that add is enclosed in backquotes, not apostrophes as used in the syntax of characters; i.e. 'f' is
a character, whereas `f` is an in�x operator. Fortunately, most ASCII terminals distinguish these much better than
the font used in this manuscript.
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bot = bot

In other words, bot is a non-terminating expression. Abstractly, we denote the value of a non-
terminating expression as ? (read \bottom"). Expressions that result in some kind of a run-time
error, such as 1/0, also have this value. Such an error is not recoverable: programs will not continue
past these errors. Errors encountered by the I/O system, such as an end-of-�le error, are recoverable
and are handled in a di�erent manner. (Such an I/O error is really not an error at all but rather
an exception. Much more will be said about exceptions in Section 7.)

A function f is said to be strict if, when applied to a nonterminating expression, it also fails to
terminate. In other words, f is strict i� the value of f bot is ?. For most programming languages,
all functions are strict. But this is not so in Haskell. As a simple example, consider const1, the
constant 1 function, de�ned by:

const1 x = 1

The value of const1 bot in Haskell is 1. Operationally speaking, since const1 does not \need"
the value of its argument, it never attempts to evaluate it, and thus never gets caught in a nonter-
minating computation. For this reason, non-strict functions are also called \lazy functions", and
are said to evaluate their arguments \lazily", or \by need".

Since error and nonterminating values are semantically the same in Haskell, the above argument
also holds for errors. For example, const1 (1/0) also evaluates properly to 1.

Non-strict functions are extremely useful in a variety of contexts. The main advantage is that
they free the programmer from many concerns about evaluation order. Computationally expensive
values may be passed as arguments to functions without fear of them being computed if they are
not needed. An important example of this is a possibly in�nite data structure.

Another way of explaining non-strict functions is that Haskell computes using de�nitions rather
than the assignments found in traditional languages. Read a declaration such as

v = 1/0

as `de�ne v as 1/0' instead of `compute 1/0 and store the result in v'. Only if the value (de�nition)
of v is needed will the division by zero error occur. By itself, this declaration does not imply
any computation. Programming using assignments requires careful attention to the ordering of
the assignments: the meaning of the program depends on the order in which the assignments are
executed. De�nitions, in contrast, are much simpler: they can be presented in any order without
a�ecting the meaning of the program.

3.4 \In�nite" Data Structures

One advantage of the non-strict nature of Haskell is that data constructors are non-strict, too. This
should not be surprising, since constructors are really just a special kind of function (the distin-
guishing feature being that they can be used in pattern matching). For example, the constructor
for lists, (:), is non-strict.

Non-strict constructors permit the de�nition of (conceptually) in�nite data structures. Here is
an in�nite list of ones:
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Figure 1: Circular Fibonacci Sequence

ones = 1 : ones

Perhaps more interesting is the function numsFrom:

numsFrom n = n : numsFrom (n+1)

Thus numsFrom n is the in�nite list of successive integers beginning with n. From it we can construct
an in�nite list of squares:

squares = map (^2) (numsfrom 0)

(Note the use of a section; ^ is the in�x exponentiation operator.)

Of course, eventually we expect to extract some �nite portion of the list for actual computation,
and there are lots of prede�ned functions in Haskell that do this sort of thing: take, takeWhile,
filter, and others. The de�nition of Haskell includes a large set of built-in functions and types|
this is called the \Standard Prelude". The complete Standard Prelude is included in Appendix A
of the Haskell report; see the portion named PreludeList for many useful functions involving lists.
For example, take removes the �rst n elements from a list:

take 5 squares ) [0,1,4,9,16]

The de�nition of ones above is an example of a circular list. In most circumstances laziness
has an important impact on eÆciency, since an implementation can be expected to implement the
list as a true circular structure, thus saving space.

For another example of the use of circularity, the Fibonacci sequence can be computed eÆciently
as the following in�nite sequence:

fib = 1 : 1 : [ a+b | (a,b) <- zip fib (tail fib) ]

where zip is a Standard Prelude function that returns the pairwise interleaving of its two list
arguments:

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip xs ys = []

Note how fib, an in�nite list, is de�ned in terms of itself, as if it were \chasing its tail." Indeed,
we can draw a picture of this computation as shown in Figure 1.

For another application of in�nite lists, see Section 4.4.
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3.5 The Error Function

Haskell has a built-in function called error whose type is String->a. This is a somewhat odd
function: From its type it looks as if it is returning a value of a polymorphic type about which it
knows nothing, since it never receives a value of that type as an argument!

In fact, there is one value \shared" by all types: ?. Indeed, semantically that is exactly what
value is always returned by error (recall that all errors have value ?). However, we can expect that
a reasonable implementation will print the string argument to error for diagnostic purposes. Thus
this function is useful when we wish to terminate a program when something has \gone wrong."
For example, the actual de�nition of head taken from the Standard Prelude is:

head (x:xs) = x

head [] = error "head{PreludeList}: head []"

4 Case Expressions and Pattern Matching

Earlier we gave several examples of pattern matching in de�ning functions|for example length

and fringe. In this section we will look at the pattern-matching process in greater detail (x3.17).8

Patterns are not \�rst-class;" there is only a �xed set of di�erent kinds of patterns. We have
already seen several examples of data constructor patterns; both length and fringe de�ned earlier
use such patterns, the former on the constructors of a \built-in" type (lists), the latter on a user-
de�ned type (Tree). Indeed, matching is permitted using the constructors of any type, user-de�ned
or not. This includes tuples, strings, numbers, characters, etc. For example, here's a contrived
function that matches against a tuple of \constants:"

contrived :: ([a], Char, (Int, Float), String, Bool) -> Bool

contrived ([], 'b', (1, 2.0), "hi", True) = False

This example also demonstrates that nesting of patterns is permitted (to arbitrary depth).

Technically speaking, formal parameters9 are also patterns|it's just that they never fail to
match a value. As a \side e�ect" of the successful match, the formal parameter is bound to the
value it is being matched against. For this reason patterns in any one equation are not allowed
to have more than one occurrence of the same formal parameter (a property called linearity x3.17,
x3.3, x4.4.2).

Patterns such as formal parameters that never fail to match are said to be irrefutable, in contrast
to refutable patterns which may fail to match. The pattern used in the contrived example above
is refutable. There are three other kinds of irrefutable patterns, two of which we will introduce now
(the other we will delay until Section 4.4).

8Pattern matching in Haskell is di�erent from that found in logic programming languages such as Prolog; in
particular, it can be viewed as \one-way" matching, whereas Prolog allows \two-way" matching (via uni�cation),
along with implicit backtracking in its evaluation mechanism.

9The Report calls these variables.
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As-patterns. Sometimes it is convenient to name a pattern for use on the right-hand side of an
equation. For example, a function that duplicates the �rst element in a list might be written as:

f (x:xs) = x:x:xs

(Recall that \:" associates to the right.) Note that x:xs appears both as a pattern on the left-hand
side, and an expression on the right-hand side. To improve readability, we might prefer to write
x:xs just once, which we can achieve using an as-pattern as follows:10

f s@(x:xs) = x:s

Technically speaking, as-patterns always result in a successful match, although the sub-pattern (in
this case x:xs) could, of course, fail.

Wild-cards. Another common situation is matching against a value we really care nothing about.
For example, the functions head and tail de�ned in Section 2.1 can be rewritten as:

head (x:_) = x

tail (_:xs) = xs

in which we have \advertised" the fact that we don't care what a certain part of the input is.
Each wild-card independently matches anything, but in contrast to a formal parameter, each binds
nothing; for this reason more than one is allowed in an equation.

4.1 Pattern-Matching Semantics

So far we have discussed how individual patterns are matched, how some are refutable, some are
irrefutable, etc. But what drives the overall process? In what order are the matches attempted?
What if none succeeds? This section addresses these questions.

Pattern matching can either fail, succeed or diverge. A successful match binds the formal
parameters in the pattern. Divergence occurs when a value needed by the pattern contains an error
(?). The matching process itself occurs \top-down, left-to-right." Failure of a pattern anywhere
in one equation results in failure of the whole equation, and the next equation is then tried. If all
equations fail, the value of the function application is ?, and results in a run-time error.

For example, if [1,2] is matched against [0,bot], then 1 fails to match 0, so the result is a
failed match. (Recall that bot, de�ned earlier, is a variable bound to ?.) But if [1,2] is matched
against [bot,0], then matching 1 against bot causes divergence (i.e. ?).

The other twist to this set of rules is that top-level patterns may also have a boolean guard, as
in this de�nition of a function that forms an abstract version of a number's sign:

sign x | x > 0 = 1

| x == 0 = 0

| x < 0 = -1

Note that a sequence of guards may be provided for the same pattern; as with patterns, they are
evaluated top-down, and the �rst that evaluates to True results in a successful match.

10Another advantage to doing this is that a naive implementation might completely reconstruct x:xs rather than
re-use the value being matched against.
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4.2 An Example

The pattern-matching rules can have subtle e�ects on the meaning of functions. For example,
consider this de�nition of take:

take 0 _ = []

take _ [] = []

take n (x:xs) = x : take (n-1) xs

and this slightly di�erent version (the �rst 2 equations have been reversed):

take1 _ [] = []

take1 0 _ = []

take1 n (x:xs) = x : take1 (n-1) xs

Now note the following:

take 0 bot ) []

take1 0 bot ) ?

take bot [] ) ?

take1 bot [] ) []

We see that take is \more de�ned" with respect to its second argument, whereas take1 is more
de�ned with respect to its �rst. It is diÆcult to say in this case which de�nition is better. Just
remember that in certain applications, it may make a di�erence. (The Standard Prelude includes
a de�nition corresponding to take.)

4.3 Case Expressions

Pattern matching provides a way to \dispatch control" based on structural properties of a value.
In many circumstances we don't wish to de�ne a function every time we need to do this, but
so far we have only shown how to do pattern matching in function de�nitions. Haskell's case
expression provides a way to solve this problem. Indeed, the meaning of pattern matching in
function de�nitions is speci�ed in the Report in terms of case expressions, which are considered
more primitive. In particular, a function de�nition of the form:

f p11 : : : p1k = e1
: : :

f pn1 : : : pnk = en

where each pij is a pattern, is semantically equivalent to:

f x1 x2 : : : xk = case (x1, : : : , xk) of (p11 ; : : : ; p1k) -> e1
: : :

(pn1 ; : : : ; pnk) -> en

where the xi are new identi�ers. (For a more general translation that includes guards, see x4.4.2.)
For example, the de�nition of take given earlier is equivalent to:
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take m ys = case (m,ys) of

(0,_) -> []

(_,[]) -> []

(n,x:xs) -> x : take (n-1) xs

A point not made earlier is that, for type correctness, the types of the right-hand sides of a case
expression or set of equations comprising a function de�nition must all be the same; more precisely,
they must all share a common principal type.

The pattern-matching rules for case expressions are the same as we have given for function
de�nitions, so there is really nothing new to learn here, other than to note the convenience that
case expressions o�er. Indeed, there's one use of a case expression that is so common that it has
special syntax: the conditional expression. In Haskell, conditional expressions have the familiar
form:

if e1 then e2 else e3

which is really short-hand for:
case e1 of True -> e2

False -> e3

From this expansion it should be clear that e1 must have type Bool, and e2 and e3 must have the
same (but otherwise arbitrary) type. In other words, if-then-else when viewed as a function has
type Bool->a->a->a.

4.4 Lazy Patterns

There is one other kind of pattern allowed in Haskell. It is called a lazy pattern, and has the form
~pat. Lazy patterns are irrefutable: matching a value v against ~pat always succeeds, regardless
of pat. Operationally speaking, if an identi�er in pat is later \used" on the right-hand-side, it will
be bound to that portion of the value that would result if v were to successfully match pat, and ?
otherwise.

Lazy patterns are useful in contexts where in�nite data structures are being de�ned recursively.
For example, in�nite lists are an excellent vehicle for writing simulation programs, and in this
context the in�nite lists are often called streams. Consider the simple case of simulating the
interactions between a server process server and a client process client, where client sends a
sequence of requests to server, and server replies to each request with some kind of response.
This situation is shown pictorially in Figure 2. (Note that client also takes an initial message as
argument.) Using streams to simulate the message sequences, the Haskell code corresponding to
this diagram is:

reqs = client init resps

resps = server reqs

These recursive equations are a direct lexical transliteration of the diagram.

Let us further assume that the structure of the server and client look something like this:

client init (resp:resps) = init : client (next resp) resps

server (req:reqs) = process req : server reqs
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Figure 2: Client-Server Simulation

where we assume that next is a function that, given a response from the server, determines the
next request, and process is a function that processes a request from the client, returning an
appropriate response.

Unfortunately, this program has a serious problem: it will not produce any output! The problem
is that client, as used in the recursive setting of reqs and resps, attempts a match on the response
list before it has submitted its �rst request! In other words, the pattern matching is being done
\too early." One way to �x this is to rede�ne client as follows:

client init resps = init : client (next (head resps)) (tail resps)

Although workable, this solution does not read as well as that given earlier. A better solution is to
use a lazy pattern:

client init ~(resp:resps) = init : client (next resp) resps

Because lazy patterns are irrefutable, the match will immediately succeed, allowing the initial
request to be \submitted", in turn allowing the �rst response to be generated; the engine is now
\primed", and the recursion takes care of the rest.

As an example of this program in action, if we de�ne:

init = 0

next resp = resp

process req = req+1

then we see that:

take 10 reqs ) [0,1,2,3,4,5,6,7,8,9]

As another example of the use of lazy patterns, consider the de�nition of Fibonacci given earlier:

fib = 1 : 1 : [ a+b | (a,b) <- zip fib (tail fib) ]

We might try rewriting this using an as-pattern:

fib@(1:tfib) = 1 : 1 : [ a+b | (a,b) <- zip fib tfib ]

This version of fib has the (small) advantage of not using tail on the right-hand side, since it is
available in \destructured" form on the left-hand side as tfib.

[This kind of equation is called a pattern binding because it is a top-level equation in which the
entire left-hand side is a pattern; i.e. both fib and tfib become bound within the scope of the
declaration.]
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Now, using the same reasoning as earlier, we should be led to believe that this program will
not generate any output. Curiously, however, it does, and the reason is simple: in Haskell, pattern
bindings are assumed to have an implicit ~ in front of them, re
ecting the most common behavior
expected of pattern bindings, and avoiding some anomalous situations which are beyond the scope
of this tutorial. Thus we see that lazy patterns play an important role in Haskell, if only implicitly.

4.5 Lexical Scoping and Nested Forms

It is often desirable to create a nested scope within an expression, for the purpose of creating local
bindings not seen elsewhere|i.e. some kind of \block-structuring" form. In Haskell there are two
ways to achieve this:

Let Expressions. Haskell's let expressions are useful whenever a nested set of bindings is re-
quired. As a simple example, consider:

let y = a*b

f x = (x+y)/y

in f c + f d

The set of bindings created by a let expression is mutually recursive, and pattern bindings are
treated as lazy patterns (i.e. they carry an implicit ~). The only kind of declarations permitted
are type signatures, function bindings, and pattern bindings.

Where Clauses. Sometimes it is convenient to scope bindings over several guarded equations,
which requires a where clause:

f x y | y>z = ...

| y==z = ...

| y<z = ...

where z = x*x

Note that this cannot be done with a let expression, which only scopes over the expression which
it encloses. A where clause is only allowed at the top level of a set of equations or case expression.
The same properties and constraints on bindings in let expressions apply to those in where clauses.

These two forms of nested scope seem very similar, but remember that a let expression is an
expression, whereas a where clause is not|it is part of the syntax of function declarations and case
expressions.

4.6 Layout

The reader may have been wondering how it is that Haskell programs avoid the use of semicolons,
or some other kind of terminator, to mark the end of equations, declarations, etc. For example,
consider this let expression from the last section:

let y = a*b

f x = (x+y)/y

in f c + f d
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How does the parser know not to parse this as:

let y = a*b f

x = (x+y)/y

in f c + f d

?

The answer is that Haskell uses a two-dimensional syntax called layout that essentially relies
on declarations being \lined up in columns." In the above example, note that y and f begin in
the same column. The rules for layout are spelled out in detail in the Report (x2.7, xB.3), but in
practice, use of layout is rather intuitive. Just remember two things:

First, the next character following any of the keywords where, let, or of is what determines
the starting column for the declarations in the where, let, or case expression being written (the
rule also applies to where used in the class and instance declarations to be introduced in Section
5). Thus we can begin the declarations on the same line as the keyword, the next line, etc. (The
do keyword, to be discussed later, also uses layout).

Second, just be sure that the starting column is further to the right than the starting column
associated with the immediately surrounding clause (otherwise it would be ambiguous). The \ter-
mination" of a declaration happens when something appears at or to the left of the starting column
associated with that binding form.11

Layout is actually shorthand for an explicit grouping mechanism, which deserves mention be-
cause it can be useful under certain circumstances. The let example above is equivalent to:

let { y = a*b

; f x = (x+y)/y

}

in f c + f d

Note the explicit curly braces and semicolons. One way in which this explicit notation is useful is
when more than one declaration is desired on a line; for example, this is a valid expression:

let y = a*b; z = a/b

f x = (x+y)/z

in f c + f d

For another example of the expansion of layout into explicit delimiters, see x2.7.

The use of layout greatly reduces the syntactic clutter associated with declaration lists, thus
enhancing readability. It is easy to learn, and its use is encouraged.

5 Type Classes and Overloading

There is one �nal feature of Haskell's type system that sets it apart from other programming lan-
guages. The kind of polymorphism that we have talked about so far is commonly called parametric
polymorphism. There is another kind called ad hoc polymorphism, better known as overloading.
Here are some examples of ad hoc polymorphism:

11Haskell observes the convention that tabs count as 8 blanks; thus care must be taken when using an editor which
may observe some other convention.
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� The literals 1, 2, etc. are often used to represent both �xed and arbitrary precision integers.

� Numeric operators such as + are often de�ned to work on many di�erent kinds of numbers.

� The equality operator (== in Haskell) usually works on numbers and many other (but not all)
types.

Note that these overloaded behaviors are di�erent for each type (in fact the behavior is sometimes
unde�ned, or error), whereas in parametric polymorphism the type truly does not matter (fringe,
for example, really doesn't care what kind of elements are found in the leaves of a tree). In Haskell,
type classes provide a structured way to control ad hoc polymorphism, or overloading.

Let's start with a simple, but important, example: equality. There are many types for which we
would like equality de�ned, but some for which we would not. For example, comparing the equality
of functions is generally considered computationally intractable, whereas we often want to compare
two lists for equality.12 To highlight the issue, consider this de�nition of the function elem which
tests for membership in a list:

x `elem` [] = False

x `elem` (y:ys) = x==y || (x `elem` ys)

[For the stylistic reason we discussed in Section 3.1, we have chosen to de�ne elem in in�x form.
== and || are the in�x operators for equality and logical or, respectively.]

Intuitively speaking, the type of elem \ought" to be: a->[a]->Bool. But this would imply that ==
has type a->a->Bool, even though we just said that we don't expect == to be de�ned for all types.

Furthermore, as we have noted earlier, even if == were de�ned on all types, comparing two
lists for equality is very di�erent from comparing two integers. In this sense, we expect == to be
overloaded to carry on these various tasks.

Type classes conveniently solve both of these problems. They allow us to declare which types
are instances of which class, and to provide de�nitions of the overloaded operations associated with
a class. For example, let's de�ne a type class containing an equality operator:

class Eq a where

(==) :: a -> a -> Bool

Here Eq is the name of the class being de�ned, and == is the single operation in the class. This
declaration may be read \a type a is an instance of the class Eq if there is an (overloaded) operation
==, of the appropriate type, de�ned on it." (Note that == is only de�ned on pairs of objects of the
same type.)

The constraint that a type a must be an instance of the class Eq is written Eq a. Thus Eq a

is not a type expression, but rather it expresses a constraint on a type, and is called a context.
Contexts are placed at the front of type expressions. For example, the e�ect of the above class
declaration is to assign the following type to ==:

(==) :: (Eq a) => a -> a -> Bool

12The kind of equality we are referring to here is \value equality," and opposed to the \pointer equality" found,
for example, with Java's ==. Pointer equality is not referentially transparent, and thus does not sit well in a purely
functional language.
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This should be read, \For every type a that is an instance of the class Eq, == has type a->a->Bool".
This is the type that would be used for == in the elem example, and indeed the constraint imposed
by the context propagates to the principal type for elem:

elem :: (Eq a) => a -> [a] -> Bool

This is read, \For every type a that is an instance of the class Eq, elem has type a->[a]->Bool".
This is just what we want|it expresses the fact that elem is not de�ned on all types, just those
for which we know how to compare elements for equality.

So far so good. But how do we specify which types are instances of the class Eq, and the actual
behavior of == on each of those types? This is done with an instance declaration. For example:

instance Eq Integer where

x == y = x `integerEq` y

The de�nition of == is called a method. The function integerEq happens to be the primitive
function that compares integers for equality, but in general any valid expression is allowed on the
right-hand side, just as for any other function de�nition. The overall declaration is essentially
saying: \The type Integer is an instance of the class Eq, and here is the de�nition of the method
corresponding to the operation ==." Given this declaration, we can now compare �xed precision
integers for equality using ==. Similarly:

instance Eq Float where

x == y = x `floatEq` y

allows us to compare 
oating point numbers using ==.

Recursive types such as Tree de�ned earlier can also be handled:

instance (Eq a) => Eq (Tree a) where

Leaf a == Leaf b = a == b

(Branch l1 r1) == (Branch l2 r2) = (l1==l2) && (r1==r2)

_ == _ = False

Note the context Eq a in the �rst line|this is necessary because the elements in the leaves (of type
a) are compared for equality in the second line. The additional constraint is essentially saying that
we can compare trees of a's for equality as long as we know how to compare a's for equality. If the
context were omitted from the instance declaration, a static type error would result.

The Haskell Report, especially the Prelude, contains a wealth of useful examples of type classes.
Indeed, a class Eq is de�ned that is slightly larger than the one de�ned earlier:

class Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

This is an example of a class with two operations, one for equality, the other for inequality. It also
demonstrates the use of a default method, in this case for the inequality operation /=. If a method
for a particular operation is omitted in an instance declaration, then the default one de�ned in
the class declaration, if it exists, is used instead. For example, the three instances of Eq de�ned
earlier will work perfectly well with the above class declaration, yielding just the right de�nition of
inequality that we want: the logical negation of equality.
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Haskell also supports a notion of class extension. For example, we may wish to de�ne a class
Ord which inherits all of the operations in Eq, but in addition has a set of comparison operations
and minimum and maximum functions:

class (Eq a) => Ord a where

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a

Note the context in the class declaration. We say that Eq is a superclass of Ord (conversely, Ord
is a subclass of Eq), and any type which is an instance of Ord must also be an instance of Eq. (In
the next Section we give a fuller de�nition of Ord taken from the Prelude.)

One bene�t of such class inclusions is shorter contexts: a type expression for a function that
uses operations from both the Eq and Ord classes can use the context (Ord a), rather than
(Eq a, Ord a), since Ord \implies" Eq. More importantly, methods for subclass operations can
assume the existence of methods for superclass operations. For example, the Ord declaration in the
Standard Prelude contains this default method for (<):

x < y = x <= y && x /= y

As an example of the use of Ord, the principal typing of quicksort de�ned in Section 2.4.1 is:

quicksort :: (Ord a) => [a] -> [a]

In other words, quicksort only operates on lists of values of ordered types. This typing for
quicksort arises because of the use of the comparison operators < and >= in its de�nition.

Haskell also permits multiple inheritance, since classes may have more than one superclass. For
example, the declaration

class (Eq a, Show a) => C a where ...

creates a class C which inherits operations from both Eq and Show.

Class methods are treated as top level declarations in Haskell. They share the same namespace
as ordinary variables; a name cannot be used to denote both a class method and a variable or
methods in di�erent classes.

Contexts are also allowed in data declarations; see x4.2.1.

Class methods may have additional class constraints on any type variable except the one de�ning
the current class. For example, in this class:

class C a where

m :: Show b => a -> b

the method m requires that type b is in class Show. However, the method m could not place any
additional class constraints on type a. These would instead have to be part of the context in the
class declaration.

So far, we have been using \�rst-order" types. For example, the type constructor Tree has so
far always been paired with an argument, as in Tree Integer (a tree containing Integer values)
or Tree a (representing the family of trees containing a values). But Tree by itself is a type
constructor, and as such takes a type as an argument and returns a type as a result. There are
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no values in Haskell that have this type, but such \higher-order" types can be used in class

declarations.

To begin, consider the following Functor class (taken from the Prelude):

class Functor f where

fmap :: (a -> b) -> f a -> f b

The fmap function generalizes the map function used previously. Note that the type variable f is
applied to other types in f a and f b. Thus we would expect it to be bound to a type such as
Tree which can be applied to an argument. An instance of Functor for type Tree would be:

instance Functor Tree where

fmap f (Leaf x) = Leaf (f x)

fmap f (Branch t1 t2) = Branch (fmap f t1) (fmap f t2)

This instance declaration declares that Tree, rather than Tree a, is an instance of Functor. This
capability is quite useful, and here demonstrates the ability to describe generic \container" types,
allowing functions such as fmap to work uniformly over arbitrary trees, lists, and other data types.

[Type applications are written in the same manner as function applications. The type T a b is
parsed as (T a) b. Types such as tuples which use special syntax can be written in an alternative
style which allows currying. For functions, (->) is a type constructor; the types f -> g and
(->) f g are the same. Similarly, the types [a] and [] a are the same. For tuples, the type
constructors (as well as the data constructors) are (,), (,,), and so on.]

As we know, the type system detects typing errors in expressions. But what about errors due to
malformed type expressions? The expression (+) 1 2 3 results in a type error since (+) takes only
two arguments. Similarly, the type Tree Int Int should produce some sort of an error since the
Tree type takes only a single argument. So, how does Haskell detect malformed type expressions?
The answer is a second type system which ensures the correctness of types! Each type has an
associated kind which ensures that the type is used correctly.

Type expressions are classi�ed into di�erent kinds which take one of two possible forms:

� The symbol � represents the kind of type associated with concrete data objects. That is, if
the value v has type t , the kind of v must be �.

� If �1 and �2 are kinds, then �1 ! �2 is the kind of types that take a type of kind �1 and
return a type of kind �2.

The type constructor Tree has the kind � ! �; the type Tree Int has the kind �. Members of the
Functor class must all have the kind � ! �; a kinding error would result from an declaration such
as

instance Functor Integer where ...

since Integer has the kind �.

Kinds do not appear directly in Haskell programs. The compiler infers kinds before doing
type checking without any need for `kind declarations'. Kinds stay in the background of a Haskell
program except when an erroneous type signature leads to a kind error. Kinds are simple enough
that compilers should be able to provide descriptive error messages when kind con
icts occur. See
x4.1.1 and x4.6 for more information about kinds.
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A Di�erent Perspective. Before going on to further examples of the use of type classes, it is
worth pointing out two other views of Haskell's type classes. The �rst is by analogy with object-
oriented programming (OOP). In the following general statement about OOP, simply substituting
type class for class, and type for object, yields a valid summary of Haskell's type class mechanism:

\Classes capture common sets of operations. A particular object may be an instance of a class,
and will have a method corresponding to each operation. Classes may be arranged hierarchically,
forming notions of superclasses and subclasses, and permitting inheritance of operations/methods.
A default method may also be associated with an operation."

In contrast to OOP, it should be clear that types are not objects, and in particular there is no
notion of an object's or type's internal mutable state. An advantage over some OOP languages is
that methods in Haskell are completely type-safe: any attempt to apply a method to a value whose
type is not in the required class will be detected at compile time instead of at runtime. In other
words, methods are not \looked up" at runtime but are simply passed as higher-order functions.

A di�erent perspective can be gotten by considering the relationship between parametric and ad
hoc polymorphism. We have shown how parametric polymorphism is useful in de�ning families of
types by universally quantifying over all types. Sometimes, however, that universal quanti�cation is
too broad|we wish to quantify over some smaller set of types, such as those types whose elements
can be compared for equality. Type classes can be seen as providing a structured way to do just
this. Indeed, we can think of parametric polymorphism as a kind of overloading too! It's just that
the overloading occurs implicitly over all types instead of a constrained set of types (i.e. a type
class).

Comparison to Other Languages. The classes used by Haskell are similar to those used in
other object-oriented languages such as C++ and Java. However, there are some signi�cant di�er-
ences:

� Haskell separates the de�nition of a type from the de�nition of the methods associated with
that type. A class in C++ or Java usually de�nes both a data structure (the member
variables) and the functions associated with the structure (the methods). In Haskell, these
de�nitions are separated.

� The class methods de�ned by a Haskell class correspond to virtual functions in a C++ class.
Each instance of a class provides its own de�nition for each method; class defaults correspond
to default de�nitions for a virtual function in the base class.

� Haskell classes are roughly similar to a Java interface. Like an interface declaration, a Haskell
class declaration de�nes a protocol for using an object rather than de�ning an object itself.

� Haskell does not support the C++ overloading style in which functions with di�erent types
share a common name.

� The type of a Haskell object cannot be implicitly coerced; there is no universal base class
such as Object which values can be projected into or out of.
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� C++ and Java attach identifying information (such as a VTable) to the runtime representation
of an object. In Haskell, such information is attached logically instead of physically to values,
through the type system.

� There is no access control (such as public or private class constituents) built into the Haskell
class system. Instead, the module system must be used to hide or reveal components of a
class.

6 Types, Again

Here we examine some of the more advanced aspects of type declarations.

6.1 The Newtype Declaration

A common programming practice is to de�ne a type whose representation is identical to an existing
one but which has a separate identity in the type system. In Haskell, the newtype declaration
creates a new type from an existing one. For example, natural numbers can be represented by the
type Integer using the following declaration:

newtype Natural = MakeNatural Integer

This creates an entirely new type, Natural, whose only constructor contains a single Integer. The
constructor MakeNatural converts between an Natural and an Integer:

toNatural :: Integer -> Natural

toNatural x | x < 0 = error "Can't create negative naturals!"

| otherwise = MakeNatural x

fromNatural :: Natural -> Integer

fromNatural (MakeNatural i) = i

The following instance declaration admits Natural to the Num class:

instance Num Natural where

fromInteger = toNatural

x + y = toNatural (fromNatural x + fromNatural y)

x - y = let r = fromNatural x - fromNatural y in

if r < 0 then error "Unnatural subtraction"

else toNatural r

x * y = toNatural (fromNatural x * fromNatural y)

Without this declaration, Natural would not be in Num. Instances declared for the old type do not
carry over to the new one. Indeed, the whole purpose of this type is to introduce a di�erent Num
instance. This would not be possible if Natural were de�ned as a type synonym of Integer.

All of this works using a data declaration instead of a newtype declaration. However, the data
declaration incurs extra overhead in the representation of Natural values. The use of newtype
avoids the extra level of indirection (caused by laziness) that the data declaration would introduce.
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See section 4.2.3 of the report for a more discussion of the relation between newtype, data, and
type declarations.

[Except for the keyword, the newtype declaration uses the same syntax as a data declaration
with a single constructor containing a single �eld. This is appropriate since types de�ned using
newtype are nearly identical to those created by an ordinary data declaration.]

6.2 Field Labels

The �elds within a Haskell data type can be accessed either positionally or by name using �eld labels .
Consider a data type for a two-dimensional point:

data Point = Pt Float Float

The two components of a Point are the �rst and second arguments to the constructor Pt. A
function such as

pointx :: Point -> Float

pointx (Pt x _) = x

may be used to refer to the �rst component of a point in a more descriptive way, but, for large
structures, it becomes tedious to create such functions by hand.

Constructors in a data declaration may be declared with associated �eld names , enclosed in
braces. These �eld names identify the components of constructor by name rather than by position.
This is an alternative way to de�ne Point:

data Point = Pt {pointx, pointy :: Float}

This data type is identical to the earlier de�nition of Point. The constructor Pt is the same in
both cases. However, this declaration also de�nes two �eld names, pointx and pointy. These �eld
names can be used as selector functions to extract a component from a structure. In this example,
the selectors are:

pointx :: Point -> Float

pointy :: Point -> Float

This is a function using these selectors:

absPoint :: Point -> Float

absPoint p = sqrt (pointx p * pointx p +

pointy p * pointy p)

Field labels can also be used to construct new values. The expression Pt {pointx=1, pointy=2}

is identical to Pt 1 2. The use of �eld names in the declaration of a data constructor does not pre-
clude the positional style of �eld access; both Pt {pointx=1, pointy=2} and Pt 1 2 are allowed.
When constructing a value using �eld names, some �elds may be omitted; these absent �elds are
unde�ned.

Pattern matching using �eld names uses a similar syntax for the constructor Pt:

absPoint (Pt {pointx = x, pointy = y}) = sqrt (x*x + y*y)
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An update function uses �eld values in an existing structure to �ll in components of a new
structure. If p is a Point, then p {pointx=2} is a point with the same pointy as p but with
pointx replaced by 2. This is not a destructive update: the update function merely creates a new
copy of the object, �lling in the speci�ed �elds with new values.

[The braces used in conjunction with �eld labels are somewhat special: Haskell syntax usually
allows braces to be omitted using the layout rule (described in Section 4.6). However, the braces
associated with �eld names must be explicit.]

Field names are not restricted to types with a single constructor (commonly called `record'
types). In a type with multiple constructors, selection or update operations using �eld names may
fail at runtime. This is similar to the behavior of the head function when applied to an empty list.

Field labels share the top level namespace with ordinary variables and class methods. A �eld
name cannot be used in more than one data type in scope. However, within a data type, the same
�eld name can be used in more than one of the constructors so long as it has the same typing in
all cases. For example, in this data type

data T = C1 {f :: Int, g :: Float}

| C2 {f :: Int, h :: Bool}

the �eld name f applies to both constructors in T. Thus if x is of type T, then x {f=5} will work
for values created by either of the constructors in T.

Field names does not change the basic nature of an algebraic data type; they are simply a
convenient syntax for accessing the components of a data structure by name rather than by position.
They make constructors with many components more manageable since �elds can be added or
removed without changing every reference to the constructor. For full details of �eld labels and
their semantics, see Section x4.2.1.

6.3 Strict Data Constructors

Data structures in Haskell are generally lazy : the components are not evaluated until needed. This
permits structures that contain elements which, if evaluated, would lead to an error or fail to
terminate. Lazy data structures enhance the expressiveness of Haskell and are an essential aspect
of the Haskell programming style.

Internally, each �eld of a lazy data object is wrapped up in a structure commonly referred to
as a thunk that encapsulates the computation de�ning the �eld value. This thunk is not entered
until the value is needed; thunks which contain errors (?) do not a�ect other elements of a data
structure. For example, the tuple ('a',?) is a perfectly legal Haskell value. The 'a' may be
used without disturbing the other component of the tuple. Most programming languages are strict
instead of lazy: that is, all components of a data structure are reduced to values before being placed
in the structure.

There are a number of overheads associated with thunks: they take time to construct and
evaluate, they occupy space in the heap, and they cause the garbage collector to retain other
structures needed for the evaluation of the thunk. To avoid these overheads, strictness 
ags in
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data declarations allow speci�c �elds of a constructor to be evaluated immediately, selectively
suppressing laziness. A �eld marked by ! in a data declaration is evaluated when the structure is
created instead of delayed in a thunk.

There are a number of situations where it may be appropriate to use strictness 
ags:

� Structure components that are sure to be evaluated at some point during program execution.

� Structure components that are simple to evaluate and never cause errors.

� Types in which partially unde�ned values are not meaningful.

For example, the complex number library de�nes the Complex type as:

data RealFloat a => Complex a = !a :+ !a

[note the in�x de�nition of the constructor :+.] This de�nition marks the two components, the
real and imaginary parts, of the complex number as being strict. This is a more compact repre-
sentation of complex numbers but this comes at the expense of making a complex number with an
unde�ned component, 1 :+ ? for example, totally unde�ned (?). As there is no real need for
partially de�ned complex numbers, it makes sense to use strictness 
ags to achieve a more eÆcient
representation.

Strictness 
ags may be used to address memory leaks: structures retained by the garbage
collector but no longer necessary for computation.

The strictness 
ag, !, can only appear in data declarations. It cannot be used in other type
signatures or in any other type de�nitions. There is no corresponding way to mark function
arguments as being strict, although the same e�ect can be obtained using the seq or !$ functions.
See x4.2.1 for further details.

It is diÆcult to present exact guidelines for the use of strictness 
ags. They should be used
with caution: laziness is one of the fundamental properties of Haskell and adding strictness 
ags
may lead to hard to �nd in�nite loops or have other unexpected consequences.

7 Input/Output

The I/O system in Haskell is purely functional, yet has all of the expressive power found in con-
ventional programming languages. In imperative languages, programs proceed via actions which
examine and modify the current state of the world. Typical actions include reading and setting
global variables, writing �les, reading input, and opening windows. Such actions are also a part of
Haskell but are cleanly separated from the purely functional core of the language.

Haskell's I/O system is built around a somewhat daunting mathematical foundation: the
monad . However, understanding of the underlying monad theory is not necessary to program
using the I/O system. Rather, monads are a conceptual structure into which I/O happens to �t. It
is no more necessary to understand monad theory to perform Haskell I/O than it is to understand
group theory to do simple arithmetic. A detailed explanation of monads is found in Section 9.
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The monadic operators that the I/O system is built upon are also used for other purposes; we
will look more deeply into monads later. For now, we will avoid the term monad and concentrate
on the use of the I/O system. It's best to think of the I/O monad as simply an abstract data type.

Actions are de�ned rather than invoked within the expression language of Haskell. Evaluating
the de�nition of an action doesn't actually cause the action to happen. Rather, the invocation of
actions takes place outside of the expression evaluation we have considered up to this point.

Actions are either atomic, as de�ned in system primitives, or are a sequential composition of
other actions. The I/O monad contains primitives which build composite actions, a process similar
to joining statements in sequential order using `;' in other languages. Thus the monad serves as
the glue which binds together the actions in a program.

7.1 Basic I/O Operations

Every I/O action returns a value. In the type system, the return value is `tagged' with IO type,
distinguishing actions from other values. For example, the type of the function getChar is:

getChar :: IO Char

The IO Char indicates that getChar, when invoked, performs some action which returns a char-
acter. Actions which return no interesting values use the unit type, (). For example, the putChar
function:

putChar :: Char -> IO ()

takes a character as an argument but returns nothing useful. The unit type is similar to void in
other languages.

Actions are sequenced using an operator that has a rather cryptic name: >>= (or `bind'). Instead
of using this operator directly, we choose some syntactic sugar, the do notation, to hide these
sequencing operators under a syntax resembling more conventional languages. The do notation can
be trivially expanded to >>=, as described in x3.14.

The keyword do introduces a sequence of statements which are executed in order. A statement
is either an action, a pattern bound to the result of an action using <-, or a set of local de�nitions
introduced using let. The do notation uses layout in the same manner as let or where so we can
omit braces and semicolons with proper indentation. Here is a simple program to read and then
print a character:

main :: IO ()

main = do c <- getChar

putChar c

The use of the name main is important: main is de�ned to be the entry point of a Haskell program
(similar to the main function in C), and must have an IO type, usually IO (). (The name main

is special only in the module Main; we will have more to say about modules later.) This program
performs two actions in sequence: �rst it reads in a character, binding the result to the variable
c, and then prints the character. Unlike a let expression where variables are scoped over all
de�nitions, the variables de�ned by <- are only in scope in the following statements.
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There is still one missing piece. We can invoke actions and examine their results using do, but
how do we return a value from a sequence of actions? For example, consider the ready function
that reads a character and returns True if the character was a `y':

ready :: IO Bool

ready = do c <- getChar

c == 'y' -- Bad!!!

This doesn't work because the second statement in the `do' is just a boolean value, not an action.
We need to take this boolean and create an action that does nothing but return the boolean as its
result. The return function does just that:

return :: a -> IO a

The return function completes the set of sequencing primitives. The last line of ready should read
return (c == 'y').

We are now ready to look at more complicated I/O functions. First, the function getLine:

getLine :: IO String

getLine = do c <- getChar

if c == '\n'

then return ""

else do l <- getLine

return (c:l)

Note the second do in the else clause. Each do introduces a single chain of statements. Any
intervening construct, such as the if, must use a new do to initiate further sequences of actions.

The return function admits an ordinary value such as a boolean to the realm of I/O actions.
What about the other direction? Can we invoke some I/O actions within an ordinary expression?
For example, how can we say x + print y in an expression so that y is printed out as the expression
evaluates? The answer is that we can't! It is not possible to sneak into the imperative universe
while in the midst of purely functional code. Any value `infected' by the imperative world must be
tagged as such. A function such as

f :: Int -> Int -> Int

absolutely cannot do any I/O since IO does not appear in the returned type. This fact is often
quite distressing to programmers used to placing print statements liberally throughout their code
during debugging. There are, in fact, some unsafe functions available to get around this problem
but these are better left to advanced programmers. Debugging packages (like Trace) often make
liberal use of these `forbidden functions' in an entirely safe manner.

7.2 Programming With Actions

I/O actions are ordinary Haskell values: they may be passed to functions, placed in structures, and
used as any other Haskell value. Consider this list of actions:
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todoList :: [IO ()]

todoList = [putChar 'a',

do putChar 'b'

putChar 'c',

do c <- getChar

putChar c]

This list doesn't actually invoke any actions|it simply holds them. To join these actions into a
single action, a function such as sequence_ is needed:

sequence_ :: [IO ()] -> IO ()

sequence_ [] = return ()

sequence_ (a:as) = do a

sequence as

This can be simpli�ed by noting that do x;y is expanded to x >> y (see Section 9.1). This pattern
of recursion is captured by the foldr function (see the Prelude for a de�nition of foldr); a better
de�nition of sequence_ is:

sequence_ :: [IO ()] -> IO ()

sequence_ = foldr (>>) (return ())

The do notation is a useful tool but in this case the underlying monadic operator, >>, is more
appropriate. An understanding of the operators upon which do is built is quite useful to the
Haskell programmer.

The sequence_ function can be used to construct putStr from putChar:

putStr :: String -> IO ()

putStr s = sequence_ (map putChar s)

One of the di�erences between Haskell and conventional imperative programming can be seen in
putStr. In an imperative language, mapping an imperative version of putChar over the string
would be suÆcient to print it. In Haskell, however, the map function does not perform any action.
Instead it creates a list of actions, one for each character in the string. The folding operation in
sequence_ uses the >> function to combine all of the individual actions into a single action. The
return () used here is quite necessary { foldr needs a null action at the end of the chain of
actions it creates (especially if there are no characters in the string!).

The Prelude and the libraries contains many functions which are useful for sequencing I/O
actions. These are usually generalized to arbitrary monads; any function with a context including
Monad m => works with the IO type.

7.3 Exception Handling

So far, we have avoided the issue of exceptions during I/O operations. What would happen if
getChar encounters an end of �le?13 To deal with exceptional conditions such as `�le not found'

13We use the term error for ?: a condition which cannot be recovered from such as non-termination or pattern
match failure. Exceptions, on the other hand, can be caught and handled within the I/O monad.
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within the I/O monad, a handling mechanism is used, similar in functionality to the one in standard
ML. No special syntax or semantics are used; exception handling is part of the de�nition of the
I/O sequencing operations.

Errors are encoded using a special data type, IOError. This type represents all possible excep-
tions that may occur within the I/O monad. This is an abstract type: no constructors for IOError
are available to the user. Predicates allow IOError values to be queried. For example, the function

isEOFError :: IOError -> Bool

determines whether an error was caused by an end-of-�le condition. By making IOError abstract,
new sorts of errors may be added to the system without a noticeable change to the data type. The
function isEOFError is de�ned in a separate library, IO, and must be explicitly imported into a
program.

An exception handler has type IOError -> IO a. The catch function associates an exception
handler with an action or set of actions:

catch :: IO a -> (IOError -> IO a) -> IO a

The arguments to catch are an action and a handler. If the action succeeds, its result is returned
without invoking the handler. If an error occurs, it is passed to the handler as a value of type
IOError and the action associated with the handler is then invoked. For example, this version of
getChar returns a newline when an error is encountered:

getChar' :: IO Char

getChar' = getChar `catch` (\e -> return '\n')

This is rather crude since it treats all errors in the same manner. If only end-of-�le is to be
recognized, the error value must be queried:

getChar' :: IO Char

getChar' = getChar `catch` eofHandler where

eofHandler e = if isEofError e then return '\n' else ioError e

The ioError function used here throws an exception on to the next exception handler. The type
of ioError is

ioError :: IOError -> IO a

It is similar to return except that it transfers control to the exception handler instead of proceeding
to the next I/O action. Nested calls to catch are permitted, and produce nested exception handlers.

Using getChar', we can rede�ne getLine to demonstrate the use of nested handlers:

getLine' :: IO String

getLine' = catch getLine'' (\err -> return ("Error: " ++ show err))

where

getLine'' = do c <- getChar'

if c == '\n' then return ""

else do l <- getLine'

return (c:l)
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The nested error handlers allow getChar' to catch end of �le while any other error results in a
string starting with "Error: " from getLine'.

For convenience, Haskell provides a default exception handler at the topmost level of a program
that prints out the exception and terminates the program.

7.4 Files, Channels, and Handles

Aside from the I/O monad and the exception handling mechanism it provides, I/O facilities in
Haskell are for the most part quite similar to those in other languages. Many of these functions
are in the IO library instead of the Prelude and thus must be explicitly imported to be in scope
(modules and importing are discussed in Section 11). Also, many of these functions are discussed
in the Library Report instead of the main report.

Opening a �le creates a handle (of type Handle) for use in I/O transactions. Closing the handle
closes the associated �le:

type FilePath = String -- path names in the file system

openFile :: FilePath -> IOMode -> IO Handle

hClose :: Handle -> IO ()

data IOMode = ReadMode | WriteMode | AppendMode | ReadWriteMode

Handles can also be associated with channels : communication ports not directly attached to �les. A
few channel handles are prede�ned, including stdin (standard input), stdout (standard output),
and stderr (standard error). Character level I/O operations include hGetChar and hPutChar,
which take a handle as an argument. The getChar function used previously can be de�ned as:

getChar = hGetChar stdin

Haskell also allows the entire contents of a �le or channel to be returned as a single string:

getContents :: Handle -> IO String

Pragmatically, it may seem that getContents must immediately read an entire �le or channel,
resulting in poor space and time performance under certain conditions. However, this is not the
case. The key point is that getContents returns a \lazy" (i.e. non-strict) list of characters (recall
that strings are just lists of characters in Haskell), whose elements are read \by demand" just like
any other list. An implementation can be expected to implement this demand-driven behavior by
reading one character at a time from the �le as they are required by the computation.

In this example, a Haskell program copies one �le to another:
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main = do fromHandle <- getAndOpenFile "Copy from: " ReadMode

toHandle <- getAndOpenFile "Copy to: " WriteMode

contents <- hGetContents fromHandle

hPutStr toHandle contents

hClose toHandle

putStr "Done."

getAndOpenFile :: String -> IOMode -> IO Handle

getAndOpenFile prompt mode =

do putStr prompt

name <- getLine

catch (openFile name mode)

(\_ -> do putStrLn ("Cannot open "++ name ++ "\n")

getAndOpenFile prompt mode)

By using the lazy getContents function, the entire contents of the �le need not be read into
memory all at once. If hPutStr chooses to bu�er the output by writing the string in �xed sized
blocks of characters, only one block of the input �le needs to be in memory at once. The input �le
is closed implicitly when the last character has been read.

7.5 Haskell and Imperative Programming

As a �nal note, I/O programming raises an important issue: this style looks suspiciously like
ordinary imperative programming. For example, the getLine function:

getLine = do c <- getChar

if c == '\n'

then return ""

else do l <- getLine

return (c:l)

bears a striking similarity to imperative code (not in any real language) :

function getLine() {

c := getChar();

if c == `\n` then return ""

else {l := getLine();

return c:l}}

So, in the end, has Haskell simply re-invented the imperative wheel?

In some sense, yes. The I/O monad constitutes a small imperative sub-language inside Haskell,
and thus the I/O component of a program may appear similar to ordinary imperative code. But
there is one important di�erence: There is no special semantics that the user needs to deal with. In
particular, equational reasoning in Haskell is not compromised. The imperative feel of the monadic
code in a program does not detract from the functional aspect of Haskell. An experienced functional
programmer should be able to minimize the imperative component of the program, only using
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the I/O monad for a minimal amount of top-level sequencing. The monad cleanly separates the
functional and imperative program components. In contrast, imperative languages with functional
subsets do not generally have any well-de�ned barrier between the purely functional and imperative
worlds.

8 Standard Haskell Classes

In this section we introduce the prede�ned standard type classes in Haskell. We have simpli�ed
these classes somewhat by omitting some of the less interesting methods in these classes; the Haskell
report contains a more complete description. Also, some of the standard classes are part of the
standard Haskell libraries; these are described in the Haskell Library Report.

8.1 Equality and Ordered Classes

The classes Eq and Ord have already been discussed. The de�nition of Ord in the Prelude is
somewhat more complex than the simpli�ed version of Ord presented earlier. In particular, note
the compare method:

data Ordering = EQ | LT | GT

compare :: Ord a => a -> a -> Ordering

The compare method is suÆcient to de�ne all other methods (via defaults) in this class and is the
best way to create Ord instances.

8.2 The Enumeration Class

Class Enum has a set of operations that underlie the syntactic sugar of arithmetic sequences; for
example, the arithmetic sequence expression [1,3..] stands for enumFromThen 1 3 (see x3.10 for
the formal translation). We can now see that arithmetic sequence expressions can be used to
generate lists of any type that is an instance of Enum. This includes not only most numeric types,
but also Char, so that, for instance, ['a'..'z'] denotes the list of lower-case letters in alphabetical
order. Furthermore, user-de�ned enumerated types like Color can easily be given Enum instance
declarations. If so:

[Red .. Violet] ) [Red, Green, Blue, Indigo, Violet]

Note that such a sequence is arithmetic in the sense that the increment between values is constant,
even though the values are not numbers. Most types in Enum can be mapped onto �xed precision
integers; for these, the fromEnum and toEnum convert between Int and a type in Enum.

8.3 The Read and Show Classes

The instances of class Show are those types that can be converted to character strings (typically
for I/O). The class Read provides operations for parsing character strings to obtain the values they
may represent. The simplest function in the class Show is show:
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show :: (Show a) => a -> String

Naturally enough, show takes any value of an appropriate type and returns its representation as a
character string (list of characters), as in show (2+2), which results in "4". This is �ne as far as
it goes, but we typically need to produce more complex strings that may have the representations
of many values in them, as in

"The sum of " ++ show x ++ " and " ++ show y ++ " is " ++ show (x+y) ++ "."

and after a while, all that concatenation gets to be a bit ineÆcient. Speci�cally, let's consider a
function to represent the binary trees of Section 2.2.1 as a string, with suitable markings to show
the nesting of subtrees and the separation of left and right branches (provided the element type is
representable as a string):

showTree :: (Show a) => Tree a -> String

showTree (Leaf x) = show x

showTree (Branch l r) = "<" ++ showTree l ++ "|" ++ showTree r ++ ">"

Because (++) has time complexity linear in the length of its left argument, showTree is potentially
quadratic in the size of the tree.

To restore linear complexity, the function shows is provided:

shows :: (Show a) => a -> String -> String

shows takes a printable value and a string and returns that string with the value's representation
concatenated at the front. The second argument serves as a sort of string accumulator, and show

can now be de�ned as shows with the null accumulator. This is the default de�nition of show in
the Show class de�nition:

show x = shows x ""

We can use shows to de�ne a more eÆcient version of showTree, which also has a string accumulator
argument:

showsTree :: (Show a) => Tree a -> String -> String

showsTree (Leaf x) s = shows x s

showsTree (Branch l r) s= '<' : showsTree l ('|' : showsTree r ('>' : s))

This solves our eÆciency problem (showsTree has linear complexity), but the presentation of this
function (and others like it) can be improved. First, let's create a type synonym:

type ShowS = String -> String

This is the type of a function that returns a string representation of something followed by an
accumulator string. Second, we can avoid carrying accumulators around, and also avoid amassing
parentheses at the right end of long constructions, by using functional composition:

showsTree :: (Show a) => Tree a -> ShowS

showsTree (Leaf x) = shows x

showsTree (Branch l r) = ('<':) . showsTree l . ('|':) . showsTree r . ('>':)

Something more important than just tidying up the code has come about by this transformation:
we have raised the presentation from an object level (in this case, strings) to a function level. We
can think of the typing as saying that showsTree maps a tree into a showing function. Functions
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like ('<' :) or ("a string" ++) are primitive showing functions, and we build up more complex
functions by function composition.

Now that we can turn trees into strings, let's turn to the inverse problem. The basic idea is
a parser for a type a, which is a function that takes a string and returns a list of (a, String)

pairs [9]. The Prelude provides a type synonym for such functions:

type ReadS a = String -> [(a,String)]

Normally, a parser returns a singleton list, containing a value of type a that was read from the input
string and the remaining string that follows what was parsed. If no parse was possible, however, the
result is the empty list, and if there is more than one possible parse (an ambiguity), the resulting
list contains more than one pair. The standard function reads is a parser for any instance of Read:

reads :: (Read a) => ReadS a

We can use this function to de�ne a parsing function for the string representation of binary trees
produced by showsTree. List comprehensions give us a convenient idiom for constructing such
parsers:14

readsTree :: (Read a) => ReadS (Tree a)

readsTree ('<':s) = [(Branch l r, u) | (l, '|':t) <- readsTree s,

(r, '>':u) <- readsTree t ]

readsTree s = [(Leaf x, t) | (x,t) <- reads s]

Let's take a moment to examine this function de�nition in detail. There are two main cases to
consider: If the �rst character of the string to be parsed is '<', we should have the representation
of a branch; otherwise, we have a leaf. In the �rst case, calling the rest of the input string following
the opening angle bracket s, any possible parse must be a tree Branch l r with remaining string
u, subject to the following conditions:

1. The tree l can be parsed from the beginning of the string s.

2. The string remaining (following the representation of l) begins with '|'. Call the tail of this
string t.

3. The tree r can be parsed from the beginning of t.

4. The string remaining from that parse begins with '>', and u is the tail.

Notice the expressive power we get from the combination of pattern matching with list comprehen-
sion: the form of a resulting parse is given by the main expression of the list comprehension, the
�rst two conditions above are expressed by the �rst generator (\(l, '|':t) is drawn from the list
of parses of s"), and the remaining conditions are expressed by the second generator.

The second de�ning equation above just says that to parse the representation of a leaf, we parse
a representation of the element type of the tree and apply the constructor Leaf to the value thus
obtained.

14An even more elegant approach to parsing uses monads and parser combinators. These are part of a standard
parsing library distributed with most Haskell systems.
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We'll accept on faith for the moment that there is a Read (and Show) instance of Integer
(among many other types), providing a reads that behaves as one would expect, e.g.:

(reads "5 golden rings") :: [(Integer,String)] ) [(5, " golden rings")]

With this understanding, the reader should verify the following evaluations:

readsTree "<1|<2|3>>" ) [(Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3)), "")]

readsTree "<1|2" ) []

There are a couple of shortcomings in our de�nition of readsTree. One is that the parser is
quite rigid, allowing no white space before or between the elements of the tree representation; the
other is that the way we parse our punctuation symbols is quite di�erent from the way we parse
leaf values and subtrees, this lack of uniformity making the function de�nition harder to read. We
can address both of these problems by using the lexical analyzer provided by the Prelude:

lex :: ReadS String

lex normally returns a singleton list containing a pair of strings: the �rst lexeme in the input
string and the remainder of the input. The lexical rules are those of Haskell programs, including
comments, which lex skips, along with whitespace. If the input string is empty or contains only
whitespace and comments, lex returns [("","")]; if the input is not empty in this sense, but also
does not begin with a valid lexeme after any leading whitespace and comments, lex returns [].

Using the lexical analyzer, our tree parser now looks like this:

readsTree :: (Read a) => ReadS (Tree a)

readsTree s = [(Branch l r, x) | ("<", t) <- lex s,

(l, u) <- readsTree t,

("|", v) <- lex u,

(r, w) <- readsTree v,

(">", x) <- lex w ]

++

[(Leaf x, t) | (x, t) <- reads s ]

We may now wish to use readsTree and showsTree to declare (Read a) => Tree a an instance
of Read and (Show a) => Tree a an instance of Show. This would allow us to use the generic
overloaded functions from the Prelude to parse and display trees. Moreover, we would automatically
then be able to parse and display many other types containing trees as components, for example,
[Tree Integer]. As it turns out, readsTree and showsTree are of almost the right types to
be Show and Read methods The showsPrec and readsPrec methods are parameterized versions
of shows and reads. The extra parameter is a precedence level, used to properly parenthesize
expressions containing in�x constructors. For types such as Tree, the precedence can be ignored.
The Show and Read instances for Tree are:

instance Show a => Show (Tree a) where

showsPrec _ x = showsTree x

instance Read a => Read (Tree a) where

readsPrec _ s = readsTree s
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Alternatively, the Show instance could be de�ned in terms of showTree:

instance Show a => Show (Tree a) where

show t = showTree t

This, however, will be less eÆcient than the ShowS version. Note that the Show class de�nes default
methods for both showsPrec and show, allowing the user to de�ne either one of these in an instance
declaration. Since these defaults are mutually recursive, an instance declaration that de�nes neither
of these functions will loop when called. Other classes such as Num also have these \interlocking
defaults".

We refer the interested reader to xD for details of the Read and Show classes.

We can test the Read and Show instances by applying (read . show) (which should be the
identity) to some trees, where read is a specialization of reads:

read :: (Read a) => String -> a

This function fails if there is not a unique parse or if the input contains anything more than a
representation of one value of type a (and possibly, comments and whitespace).

8.4 Derived Instances

Recall the Eq instance for trees we presented in Section 5; such a declaration is simple|and boring|
to produce: we require that the element type in the leaves be an equality type; then, two leaves are
equal i� they contain equal elements, and two branches are equal i� their left and right subtrees
are equal, respectively. Any other two trees are unequal:

instance (Eq a) => Eq (Tree a) where

(Leaf x) == (Leaf y) = x == y

(Branch l r) == (Branch l' r') = l == l' && r == r'

_ == _ = False

Fortunately, we don't need to go through this tedium every time we need equality operators for
a new type; the Eq instance can be derived automatically from the data declaration if we so specify:

data Tree a = Leaf a | Branch (Tree a) (Tree a) deriving Eq

The deriving clause implicitly produces an Eq instance declaration just like the one in Section 5.
Instances of Ord, Enum, Ix, Read, and Show can also be generated by the deriving clause. [More
than one class name can be speci�ed, in which case the list of names must be parenthesized and
the names separated by commas.]

The derived Ord instance for Tree is slightly more complicated than the Eq instance:

instance (Ord a) => Ord (Tree a) where

(Leaf _) <= (Branch _) = True

(Leaf x) <= (Leaf y) = x <= y

(Branch _) <= (Leaf _) = False

(Branch l r) <= (Branch l' r') = l == l' && r <= r' || l <= l'

This speci�es a lexicographic order: Constructors are ordered by the order of their appearance in
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the data declaration, and the arguments of a constructor are compared from left to right. Recall
that the built-in list type is semantically equivalent to an ordinary two-constructor type. In fact,
this is the full declaration:

data [a] = [] | a : [a] deriving (Eq, Ord) -- pseudo-code

(Lists also have Show and Read instances, which are not derived.) The derived Eq and Ord instances
for lists are the usual ones; in particular, character strings, as lists of characters, are ordered as
determined by the underlying Char type, with an initial substring comparing less than a longer
string; for example, "cat" < "catalog".

In practice, Eq and Ord instances are almost always derived, rather than user-de�ned. In fact, we
should provide our own de�nitions of equality and ordering predicates only with some trepidation,
being careful to maintain the expected algebraic properties of equivalence relations and total orders.
An intransitive (==) predicate, for example, could be disastrous, confusing readers of the program
and confounding manual or automatic program transformations that rely on the (==) predicate's
being an approximation to de�nitional equality. Nevertheless, it is sometimes necessary to provide
Eq or Ord instances di�erent from those that would be derived; probably the most important
example is that of an abstract data type in which di�erent concrete values may represent the same
abstract value.

An enumerated type can have a derived Enum instance, and here again, the ordering is that of
the constructors in the data declaration. For example:

data Day = Sunday | Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday deriving (Enum)

Here are some simple examples using the derived instances for this type:

[Wednesday .. Friday] ) [Wednesday, Thursday, Friday]

[Monday, Wednesday ..] ) [Monday, Wednesday, Friday]

Derived Read (Show) instances are possible for all types whose component types also have
Read (Show) instances. (Read and Show instances for most of the standard types are provided
by the Prelude. Some types, such as the function type (->), have a Show instance but not a
corresponding Read.) The textual representation de�ned by a derived Show instance is consistent
with the appearance of constant Haskell expressions of the type in question. For example, if we
add Show and Read to the deriving clause for type Day, above, we obtain

show [Monday .. Wednesday] ) "[Monday,Tuesday,Wednesday]"

9 About Monads

Many newcomers to Haskell are puzzled by the concept of monads. Monads are frequently encoun-
tered in Haskell: the IO system is constructed using a monad, a special syntax for monads has
been provided (do expressions), and the standard libraries contain an entire module dedicated to
monads. In this section we explore monadic programming in more detail.
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This section is perhaps less \gentle" than the others. Here we address not only the language
features that involve monads but also try to reveal the bigger picture: why monads are such an
important tool and how they are used. There is no single way of explaining monads that works for
everyone; more explanations can be found at haskell.org. Another good introduction to practical
programming using monads is Wadler's Monads for Functional Programming [10].

9.1 Monadic Classes

The Prelude contains a number of classes de�ning monads are they are used in Haskell. These classes
are based on the monad construct in category theory; whilst the category theoretic terminology
provides the names for the monadic classes and operations, it is not necessary to delve into abstract
mathematics to get an intuitive understanding of how to use the monadic classes.

A monad is constructed on top of a polymorphic type such as IO. The monad itself is de�ned
by instance declarations associating the type with the some or all of the monadic classes, Functor,
Monad, and MonadPlus. None of the monadic classes are derivable. In addition to IO, two other
types in the Prelude are members of the monadic classes: lists ([]) and Maybe.

Mathematically, monads are governed by set of laws that should hold for the monadic operations.
This idea of laws is not unique to monads: Haskell includes other operations that are governed, at
least informally, by laws. For example, x /= y and not (x == y) ought to be the same for any
type of values being compared. However, there is no guarantee of this: both == and /= are separate
methods in the Eq class and there is no way to assure that == and =/ are related in this manner. In
the same sense, the monadic laws presented here are not enforced by Haskell, but ought be obeyed
by any instances of a monadic class. The monad laws give insight into the underlying structure of
monads: by examining these laws, we hope to give a feel for how monads are used.

The Functor class, already discussed in section 5, de�nes a single operation: fmap. The map
function applies an operation to the objects inside a container (polymorphic types can be thought
of as containers for values of another type), returning a container of the same shape. These laws
apply to fmap in the class Functor:

fmap id = id

fmap (f . g) = fmap f . fmap g

These laws ensure that the container shape is unchanged by fmap and that the contents of the
container are not re-arranged by the mapping operation.

The Monad class de�nes two basic operators: >>= (bind) and return.

infixl 1 >>, >>=

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

return :: a -> m a

fail :: String -> m a

m >> k = m >>= \_ -> k

The bind operations, >> and >>=, combine two monadic values while the return operation injects
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a value into the monad (container). The signature of >>= helps us to understand this operation:
ma >>= \v -> mb combines a monadic value ma containing values of type a and a function which
operates on a value v of type a, returning the monadic value mb. The result is to combine ma and
mb into a monadic value containing b. The >> function is used when the function does not need
the value produced by the �rst monadic operator.

The precise meaning of binding depends, of course, on the monad. For example, in the IO
monad, x >>= y performs two actions sequentially, passing the result of the �rst into the second.
For the other built-in monads, lists and the Maybe type, these monadic operations can be understood
in terms of passing zero or more values from one calculation to the next. We will see examples of
this shortly.

The do syntax provides a simple shorthand for chains of monadic operations. The essential
translation of do is captured in the following two rules:

do e1 ; e2 = e1 >> e2

do p <- e1; e2 = e1 >>= \p -> e2

When the pattern in this second form of do is refutable, pattern match failure calls the fail

operation. This may raise an error (as in the IO monad) or return a \zero" (as in the list monad).
Thus the more complex translation is

do p <- e1; e2 = e1 >>= (\v -> case v of p -> e2; _ -> fail "s")

where "s" is a string identifying the location of the do statement for possible use in an error
message. For example, in the I/O monad, an action such as 'a' <- getChar will call fail if the
character typed is not 'a'. This, in turn, terminates the program since in the I/O monad fail calls
error.

The laws which govern >>= and return are:

return a >>= k = k a

m >>= return = m

xs >>= return . f = fmap f xs

m >>= (\x -> k x >>= h) = (m >>= k) >>= h

The class MonadPlus is used for monads that have a zero element and a plus operation:

class (Monad m) => MonadPlus m where

mzero :: m a

mplus :: m a -> m a -> m a

The zero element obeys the following laws:

m >>= \x -> mzero = mzero

mzero >>= m = mzero

For lists, the zero value is [], the empty list. The I/O monad has no zero element and is not a
member of this class.

The laws governing the mplus operator are as follows:

m `mplus` mzero = m

mzero `mplus` m = m

The mplus operator is ordinary list concatenation in the list monad.
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9.2 Built-in Monads

Given the monadic operations and the laws that govern them, what can we build? We have already
examined the I/O monad in detail so we start with the two other built-in monads.

For lists, monadic binding involves joining together a set of calculations for each value in the
list. When used with lists, the signature of >>= becomes:

(>>=) :: [a] -> (a -> [b]) -> [b]

That is, given a list of a's and a function that maps an a onto a list of b's, binding applies this
function to each of the a's in the input and returns all of the generated b's concatenated into a
list. The return function creates a singleton list. These operations should already be familiar:
list comprehensions can easily be expressed using the monadic operations de�ned for lists. These
following three expressions are all di�erent syntax for the same thing:

[(x,y) | x <- [1,2,3] , y <- [1,2,3], x /= y]

do x <- [1,2,3]

y <- [1,2,3]

True <- return (x /= y)

return (x,y)

[1,2,3] >>= (\ x -> [1,2,3] >>= (\y -> return (x/=y) >>=

(\r -> case r of True -> return (x,y)

_ -> fail "")))

This de�nition depends on the de�nition of fail in this monad as the empty list. Essentially, each
<- is generating a set of values which is passed on into the remainder of the monadic computation.
Thus x <- [1,2,3] invokes the remainder of the monadic computation three times, once for each
element of the list. The returned expression, (x,y), will be evaluated for all possible combinations
of bindings that surround it. In this sense, the list monad can be thought of as describing functions
of multi-valued arguments. For example, this function:

mvLift2 :: (a -> b -> c) -> [a] -> [b] -> [c]

mvLift2 f x y = do x' <- x

y' <- y

return (f x' y')

turns an ordinary function of two arguments (f) into a function over multiple values (lists of
arguments), returning a value for each possible combination of the two input arguments. For
example,

mvLift2 (+) [1,3] [10,20,30] ) [11,21,31,13,23,33]

mvLift2 (\a b->[a,b]) "ab" "cd" ) ["ac","ad","bc","bd"]

mvLift2 (*) [1,2,4] [] ) []

This function is a specialized version of the LiftM2 function in the monad library. You can think
of it as transporting a function from outside the list monad, f, into the list monad in which
computations take on multiple values.

The monad de�ned for Maybe is similar to the list monad: the value Nothing serves as [] and
Just x as [x].
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9.3 Using Monads

Explaining the monadic operators and their associated laws doesn't really show what monads are
good for. What they really provide is modularity. That is, by de�ning an operation monadically,
we can hide underlying machinery in a way that allows new features to be incorporated into the
monad transparently. Wadler's paper [10] is an excellent example of how monads can be used to
construct modular programs. We will start with a monad taken directly from this paper, the state
monad, and then build a more complex monad with a similar de�nition.

Brie
y, a state monad built around a state type S looks like this:

data SM a = SM (S -> (a,S)) -- The monadic type

instance Monad SM where

-- defines state propagation

SM c1 >>= fc2 = SM (\s0 -> let (r,s1) = c1 s0

SM c2 = fc2 r in

c2 s1)

return k = SM (\s -> (k,s))

-- extracts the state from the monad

readSM :: SM S

readSM = SM (\s -> (s,s))

-- updates the state of the monad

updateSM :: (S -> S) -> SM () -- alters the state

updateSM f = SM (\s -> ((), f s))

-- run a computation in the SM monad

runSM :: S -> SM a -> (a,S)

runSM s0 (SM c) = c s0

This example de�nes a new type, SM, to be a computation that implicitly carries a type S. That
is, a computation of type SM t de�nes a value of type t while also interacting with (reading and
writing) the state of type S. The de�nition of SM is simple: it consists of functions that take a
state and produce two results: a returned value (of any type) and an updated state. We can't use
a type synonym here: we need a type name like SM that can be used in instance declarations. The
newtype declaration is often used here instead of data.

This instance declaration de�nes the `plumbing' of the monad: how to sequence two com-
putations and the de�nition of an empty computation. Sequencing (the >>= operator) de�nes a
computation (denoted by the constructor SM) that passes an initial state, s0, into c1, then passes
the value coming out of this computation, r, to the function that returns the second computation,
c2. Finally, the state coming out of c1 is passed into c2 and the overall result is the result of c2.

The de�nition of return is easier: return doesn't change the state at all; it only serves to bring
a value into the monad.

While >>= and return are the basic monadic sequencing operations, we also need some monadic
primitives. A monadic primitive is simply an operation that uses the insides of the monad abstrac-
tion and taps into the `wheels and gears' that make the monad work. For example, in the IOmonad,
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operators such as putChar are primitive since they deal with the inner workings of the IO monad.
Similarly, our state monad uses two primitives: readSM and updateSM. Note that these depend on
the inner structure of the monad - a change to the de�nition of the SM type would require a change
to these primitives.

The de�nition of readSM and updateSM are simple: readSM brings the state out of the monad
for observation while updateSM allows the user to alter the state in the monad. (We could also
have used writeSM as a primitive but update is often a more natural way of dealing with state).

Finally, we need a function that runs computations in the monad, runSM. This takes an initial
state and a computation and yields both the returned value of the computation and the �nal state.

Looking at the bigger picture, what we are trying to do is de�ne an overall computation as
a series of steps (functions with type SM a), sequenced using >>= and return. These steps may
interact with the state (via readSM or updateSM) or may ignore the state. However, the use (or
non-use) of the state is hidden: we don't invoke or sequence our computations di�erently depending
on whether or not they use S.

Rather than present any examples using this simple state monad, we proceed on to a more
complex example that includes the state monad. We de�ne a small embedded language of resource-
using calculations. That is, we build a special purpose language implemented as a set of Haskell
types and functions. Such languages use the basic tools of Haskell, functions and types, to build a
library of operations and types speci�cally tailored to a domain of interest.

In this example, consider a computation that requires some sort of resource. If the resource is
available, computation proceeds; when the resource is unavailable, the computation suspends. We
use the type R to denote a computation using resources controlled by our monad. The de�nition
of R is as follows:

data R a = R (Resource -> (Resource, Either a (R a)))

Each computation is a function from available resources to remaining resources, coupled with either
a result, of type a, or a suspended computation, of type R a, capturing the work done up to the
point where resources were exhausted.

The Monad instance for R is as follows:

instance Monad R where

R c1 >>= fc2 = R (\r -> case c1 r of

(r', Left v) -> let R c2 = fc2 v in

c2 r'

(r', Right pc1) -> (r', Right (pc1 >>= fc2)))

return v = R (\r -> (r, (Left v)))

The Resource type is used in the same manner as the state in the state monad. This de�nition
reads as follows: to combine two `resourceful' computations, c1 and fc2 (a function producing c2),
pass the initial resources into c1. The result will be either

� a value, v, and remaining resources, which are used to determine the next computation (the
call fc2 v), or

� a suspended computation, pc1, and resources remaining at the point of suspension.
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The suspension must take the second computation into consideration: pc1 suspends only the �rst
computation, c1, so we must bind c2 to this to produce a suspension of the overall computation.
The de�nition of return leaves the resources unchanged while moving v into the monad.

This instance declaration de�nes the basic structure of the monad but does not determine how
resources are used. This monad could be used to control many types of resource or implement many
di�erent types of resource usage policies. We will demonstrate a very simple de�nition of resources
as an example: we choose Resource to be an Integer, representing available computation steps:

type Resource = Integer

This function takes a step unless no steps are available:

step :: a -> R a

step v = c where

c = R (\r -> if r /= 0 then (r-1, Left v)

else (r, Right c))

The Left and Right constructors are part of the Either type. This function continues computation
in R by returning v so long as there is at least one computational step resource available. If no steps
are available, the step function suspends the current computation (this suspension is captured in
c) and passes this suspended computation back into the monad.

So far, we have the tools to de�ne a sequence of \resourceful" computations (the monad) and
we can express a form of resource usage using step. Finally, we need to address how computations
in this monad are expressed.

Consider an increment function in our monad:

inc :: R Integer -> R Integer

inc i = do iValue <- i

step (iValue+1)

This de�nes increment as a single step of computation. The <- is necessary to pull the argument
value out of the monad; the type of iValue is Integer instead of R Integer.

This de�nition isn't particularly satisfying, though, compared to the standard de�nition of the
increment function. Can we instead \dress up" existing operations like + so that they work in our
monadic world? We'll start with a set of lifting functions. These bring existing functionality
into the monad. Consider the de�nition of lift1 (this is slightly di�erent from the liftM1 found
in the Monad library):

lift1 :: (a -> b) -> (R a -> R b)

lift1 f = \ra1 -> do a1 <- ra1

step (f a1)

This takes a function of a single argument, f, and creates a function in R that executes the lifted
function in a single step. Using lift1, inc becomes

inc :: R Integer -> R Integer

inc i = lift1 (i+1)

This is better but still not ideal. First, we add lift2:
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lift2 :: (a -> b -> c) -> (R a -> R b -> R c)

lift2 f = \ra1 ra2 -> do a1 <- ra1

a2 <- ra2

step (f a1 a2)

Notice that this function explicitly sets the order of evaluation in the lifted function: the compu-
tation yielding a1 occurs before the computation for a2.

Using lift2, we can create a new version of == in the R monad:

(==*) :: Ord a => R a -> R a -> R Bool

(==*) = lift2 (==)

We had to use a slightly di�erent name for this new function since == is already taken but in some
cases we can use the same name for the lifted and unlifted function. This instance declaration
allows all of the operators in Num to be used in R:

instance Num a => Num (R a) where

(+) = lift2 (+)

(-) = lift2 (-)

negate = lift1 negate

(*) = lift2 (*)

abs = lift1 abs

fromInteger = return . fromInteger

The fromInteger function is applied implicitly to all integer constants in a Haskell program (see
Section 10.3); this de�nition allows integer constants to have the type R Integer. We can now,
�nally, write increment in a completely natural style:

inc :: R Integer -> R Integer

inc x = x + 1

Note that we cannot lift the Eq class in the same manner as the Num class: the signature of ==* is
not compatible with allowable overloadings of == since the result of ==* is R Bool instead of Bool.

To express interesting computations in R we will need a conditional. Since we can't use if (it
requires that the test be of type Bool instead of R Bool), we name the function ifR:

ifR :: R Bool -> R a -> R a -> R a

ifR tst thn els = do t <- tst

if t then thn else els

Now we're ready for a larger program in the R monad:

fact :: R Integer -> R Integer

fact x = ifR (x ==* 0) 1 (x * fact (x-1))

Now this isn't quite the same as an ordinary factorial function but still quite readable. The idea
of providing new de�nitions for existing operations like + or if is an essential part of creating an
embedded language in Haskell. Monads are particularly useful for encapsulating the semantics of
these embedded languages in a clean and modular way.

We're now ready to actually run some programs. This function runs a program in M given a
maximum number of computation steps:
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run :: Resource -> R a -> Maybe a

run s (R p) = case (p s) of

(_, Left v) -> Just v

_ -> Nothing

We use the Maybe type to deal with the possibility of the computation not �nishing in the allotted
number of steps. We can now compute

run 10 (fact 2) ) Just 2

run 10 (fact 20) ) Nothing

Finally, we can add some more interesting functionality to this monad. Consider the following
function:

(|||) :: R a -> R a -> R a

This runs two computations in parallel, returning the value of the �rst one to complete. One
possible de�nition of this function is:

c1 ||| c2 = oneStep c1 (\c1' -> c2 ||| c1')

where

oneStep :: R a -> (R a -> R a) -> R a

oneStep (R c1) f =

R (\r -> case c1 1 of

(r', Left v) -> (r+r'-1, Left v)

(r', Right c1') -> -- r' must be 0

let R next = f c1' in

next (r+r'-1))

This takes a step in c1, returning its value of c1 complete or, if c1 returns a suspended computation
(c1'), it evaluates c2 ||| c1'. The oneStep function takes a single step in its argument, either
returning an evaluated value or passing the remainder of the computation into f. The de�nition
of oneStep is simple: it gives c1 a 1 as its resource argument. If a �nal value is reached, this is
returned, adjusting the returned step count (it is possible that a computation might return after
taking no steps so the returned resource count isn't necessarily 0). If the computation suspends, a
patched up resource count is passed to the �nal continuation.

We can now evaluate expressions like run 100 (fact (-1) ||| (fact 3)) without looping
since the two calculations are interleaved. (Our de�nition of fact loops for -1). Many variations
are possible on this basic structure. For example, we could extend the state to include a trace of
the computation steps. We could also embed this monad inside the standard IO monad, allowing
computations in M to interact with the outside world.

While this example is perhaps more advanced than others in this tutorial, it serves to illustrate
the power of monads as a tool for de�ning the basic semantics of a system. We also present
this example as a model of a small Domain Speci�c Language, something Haskell is particularly
good at de�ning. Many other DSLs have been developed in Haskell; see haskell.org for many
more examples. Of particular interest are Fran, a language of reactive animations, and Haskore, a
language of computer music.
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10 Numbers

Haskell provides a rich collection of numeric types, based on those of Scheme [7], which in turn
are based on Common Lisp [8]. (Those languages, however, are dynamically typed.) The standard
types include �xed- and arbitrary-precision integers, ratios (rational numbers) formed from each
integer type, and single- and double-precision real and complex 
oating-point. We outline here the
basic characteristics of the numeric type class structure and refer the reader to x6.4 for details.

10.1 Numeric Class Structure

The numeric type classes (class Num and those that lie below it) account for many of the standard
Haskell classes. We also note that Num is a subclass of Eq, but not of Ord; this is because the order
predicates do not apply to complex numbers. The subclass Real of Num, however, is a subclass of
Ord as well.

The Num class provides several basic operations common to all numeric types; these include,
among others, addition, subtraction, negation, multiplication, and absolute value:

(+), (-), (*) :: (Num a) => a -> a -> a

negate, abs :: (Num a) => a -> a

[negate is the function applied by Haskell's only pre�x operator, minus; we can't call it (-), because
that is the subtraction function, so this name is provided instead. For example, -x*y is equivalent
to negate (x*y). (Pre�x minus has the same syntactic precedence as in�x minus, which, of course,
is lower than that of multiplication.)]

Note that Num does not provide a division operator; two di�erent kinds of division operators are
provided in two non-overlapping subclasses of Num:

The class Integral provides whole-number division and remainder operations. The standard
instances of Integral are Integer (unbounded or mathematical integers, also known as \bignums")
and Int (bounded, machine integers, with a range equivalent to at least 29-bit signed binary). A
particular Haskell implementation might provide other integral types in addition to these. Note
that Integral is a subclass of Real, rather than of Num directly; this means that there is no attempt
to provide Gaussian integers.

All other numeric types fall in the class Fractional, which provides the ordinary division
operator (/). The further subclass Floating contains trigonometric, logarithmic, and exponential
functions.

The RealFrac subclass of Fractional and Real provides a function properFraction, which
decomposes a number into its whole and fractional parts, and a collection of functions that round
to integral values by di�ering rules:

properFraction :: (Fractional a, Integral b) => a -> (b,a)

truncate, round,

floor, ceiling: :: (Fractional a, Integral b) => a -> b
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The RealFloat subclass of Floating and RealFrac provides some specialized functions for
eÆcient access to the components of a 
oating-point number, the exponent and signi�cand. The
standard types Float and Double fall in class RealFloat.

10.2 Constructed Numbers

Of the standard numeric types, Int, Integer, Float, and Double are primitive. The others are
made from these by type constructors.

Complex (found in the library Complex) is a type constructor that makes a complex type in
class Floating from a RealFloat type:

data (RealFloat a) => Complex a = !a :+ !a deriving (Eq, Text)

The ! symbols are strictness 
ags; these were discussed in Section 6.3. Notice the context
RealFloat a, which restricts the argument type; thus, the standard complex types are Complex Float

and Complex Double. We can also see from the data declaration that a complex number is written
x :+ y ; the arguments are the cartesian real and imaginary parts, respectively. Since :+ is a data
constructor, we can use it in pattern matching:

conjugate :: (RealFloat a) => Complex a -> Complex a

conjugate (x:+y) = x :+ (-y)

Similarly, the type constructor Ratio (found in the Rational library) makes a rational type in
class RealFrac from an instance of Integral. (Rational is a type synonym for Ratio Integer.)
Ratio, however, is an abstract type constructor. Instead of a data constructor like :+, rationals
use the `%' function to form a ratio from two integers. Instead of pattern matching, component
extraction functions are provided:

(%) :: (Integral a) => a -> a -> Ratio a

numerator, denominator :: (Integral a) => Ratio a -> a

Why the di�erence? Complex numbers in cartesian form are unique|there are no nontrivial
identities involving :+. On the other hand, ratios are not unique, but have a canonical (reduced)
form that the implementation of the abstract data type must maintain; it is not necessarily the
case, for instance, that numerator (x%y) is equal to x, although the real part of x:+y is always x.

10.3 Numeric Coercions and Overloaded Literals

The Standard Prelude and libraries provide several overloaded functions that serve as explicit
coercions:
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fromInteger :: (Num a) => Integer -> a

fromRational :: (Fractional a) => Rational -> a

toInteger :: (Integral a) => a -> Integer

toRational :: (RealFrac a) => a -> Rational

fromIntegral :: (Integral a, Num b) => a -> b

fromRealFrac :: (RealFrac a, Fractional b) => a -> b

fromIntegral = fromInteger . toInteger

fromRealFrac = fromRational . toRational

Two of these are implicitly used to provide overloaded numeric literals: An integer numeral
(without a decimal point) is actually equivalent to an application of fromInteger to the value of
the numeral as an Integer. Similarly, a 
oating numeral (with a decimal point) is regarded as
an application of fromRational to the value of the numeral as a Rational. Thus, 7 has the type
(Num a) => a, and 7.3 has the type (Fractional a) => a. This means that we can use numeric
literals in generic numeric functions, for example:

halve :: (Fractional a) => a -> a

halve x = x * 0.5

This rather indirect way of overloading numerals has the additional advantage that the method of
interpreting a numeral as a number of a given type can be speci�ed in an Integral or Fractional
instance declaration (since fromInteger and fromRational are operators of those classes, respec-
tively). For example, the Num instance of (RealFloat a) => Complex a contains this method:

fromInteger x = fromInteger x :+ 0

This says that a Complex instance of fromInteger is de�ned to produce a complex number whose
real part is supplied by an appropriate RealFloat instance of fromInteger. In this manner, even
user-de�ned numeric types (say, quaternions) can make use of overloaded numerals.

As another example, recall our �rst de�nition of inc from Section 2:

inc :: Integer -> Integer

inc n = n+1

Ignoring the type signature, the most general type of inc is (Num a) => a->a. The explicit type
signature is legal, however, since it is more speci�c than the principal type (a more general type
signature would cause a static error). The type signature has the e�ect of restricting inc's type,
and in this case would cause something like inc (1::Float) to be ill-typed.

10.4 Default Numeric Types

Consider the following function de�nition:

rms :: (Floating a) => a -> a -> a

rms x y = sqrt ((x^2 + y^2) * 0.5)

The exponentiation function (^) (one of three di�erent standard exponentiation operators with
di�erent typings, see x6.8.5) has the type (Num a, Integral b) => a -> b -> a, and since 2 has
the type (Num a) => a, the type of x^2 is (Num a, Integral b) => a. This is a problem; there
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is no way to resolve the overloading associated with the type variable b, since it is in the context,
but has otherwise vanished from the type expression. Essentially, the programmer has speci�ed
that x should be squared, but has not speci�ed whether it should be squared with an Int or an
Integer value of two. Of course, we can �x this:

rms x y = sqrt ((x ^ (2::Integer) + y ^ (2::Integer)) * 0.5)

It's obvious that this sort of thing will soon grow tiresome, however.

In fact, this kind of overloading ambiguity is not restricted to numbers:

show (read "xyz")

As what type is the string supposed to be read? This is more serious than the exponentiation
ambiguity, because there, any Integral instance will do, whereas here, very di�erent behavior can
be expected depending on what instance of Text is used to resolve the ambiguity.

Because of the di�erence between the numeric and general cases of the overloading ambiguity
problem, Haskell provides a solution that is restricted to numbers: Each module may contain
a default declaration, consisting of the keyword default followed by a parenthesized, comma-
separated list of numeric monotypes (types with no variables). When an ambiguous type variable
is discovered (such as b, above), if at least one of its classes is numeric and all of its classes are
standard, the default list is consulted, and the �rst type from the list that will satisfy the context
of the type variable is used. For example, if the default declaration default (Int, Float) is in
e�ect, the ambiguous exponent above will be resolved as type Int. (See x4.3.4 for more details.)

The \default default" is (Integer, Double), but (Integer, Rational, Double) may also be
appropriate. Very cautious programmers may prefer default (), which provides no defaults.

11 Modules

A Haskell program consists of a collection of modules. A module in Haskell serves the dual purpose
of controlling name-spaces and creating abstract data types.

The top level of a module contains any of the various declarations we have discussed: �xity
declarations, data and type declarations, class and instance declarations, type signatures, function
de�nitions, and pattern bindings. Except for the fact that import declarations (to be described
shortly) must appear �rst, the declarations may appear in any order (the top-level scope is mutually
recursive).

Haskell's module design is relatively conservative: the name-space of modules is completely 
at,
and modules are in no way \�rst-class." Module names are alphanumeric and must begin with an
uppercase letter. There is no formal connection between a Haskell module and the �le system that
would (typically) support it. In particular, there is no connection between module names and �le
names, and more than one module could conceivably reside in a single �le (one module may even
span several �les). Of course, a particular implementation will most likely adopt conventions that
make the connection between modules and �les more stringent.

Technically speaking, a module is really just one big declaration which begins with the keyword
module; here's an example for a module whose name is Tree:
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module Tree ( Tree(Leaf,Branch), fringe ) where

data Tree a = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a -> [a]

fringe (Leaf x) = [x]

fringe (Branch left right) = fringe left ++ fringe right

The type Tree and the function fringe should be familiar; they were given as examples in Section
2.2.1. [Because of the where keyword, layout is active at the top level of a module, and thus the
declarations must all line up in the same column (typically the �rst). Also note that the module
name is the same as that of the type; this is allowed.]

This module explicitly exports Tree, Leaf, Branch, and fringe. If the export list following the
module keyword is omitted, all of the names bound at the top level of the module would be exported.
(In the above example everything is explicitly exported, so the e�ect would be the same.) Note that
the name of a type and its constructors have be grouped together, as in Tree(Leaf,Branch). As
short-hand, we could also write Tree(..). Exporting a subset of the constructors is also possible.
The names in an export list need not be local to the exporting module; any name in scope may be
listed in an export list.

The Tree module may now be imported into some other module:

module Main (main) where

import Tree ( Tree(Leaf,Branch), fringe )

main = print (fringe (Branch (Leaf 1) (Leaf 2)))

The various items being imported into and exported out of a module are called entities. Note the
explicit import list in the import declaration; omitting it would cause all entities exported from
Tree to be imported.

11.1 Quali�ed Names

There is an obvious problem with importing names directly into the namespace of module. What if
two imported modules contain di�erent entities with the same name? Haskell solves this problem
using quali�ed names . An import declaration may use the qualified keyword to cause the im-
ported names to be pre�xed by the name of the module imported. These pre�xes are followed by
the `.' character without intervening whitespace. [Quali�ers are part of the lexical syntax. Thus,
A.x and A . x are quite di�erent: the �rst is a quali�ed name and the second a use of the in�x `.'
function.] For example, using the Tree module introduced above:
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module Fringe(fringe) where

import Tree(Tree(..))

fringe :: Tree a -> [a] -- A different definition of fringe

fringe (Leaf x) = [x]

fringe (Branch x y) = fringe x

module Main where

import Tree ( Tree(Leaf,Branch), fringe )

import qualified Fringe ( fringe )

main = do print (fringe (Branch (Leaf 1) (Leaf 2)))

print (Fringe.fringe (Branch (Leaf 1) (Leaf 2)))

Some Haskell programmers prefer to use quali�ers for all imported entities, making the source
of each name explicit with every use. Others prefer short names and only use quali�ers when
absolutely necessary.

Quali�ers are used to resolve con
icts between di�erent entities which have the same name. But
what if the same entity is imported from more than one module? Fortunately, such name clashes
are allowed: an entity can be imported by various routes without con
ict. The compiler knows
whether entities from di�erent modules are actually the same.

11.2 Abstract Data Types

Aside from controlling namespaces, modules provide the only way to build abstract data types
(ADTs) in Haskell. For example, the characteristic feature of an ADT is that the representation
type is hidden; all operations on the ADT are done at an abstract level which does not depend
on the representation. For example, although the Tree type is simple enough that we might not
normally make it abstract, a suitable ADT for it might include the following operations:

data Tree a -- just the type name

leaf :: a -> Tree a

branch :: Tree a -> Tree a -> Tree a

cell :: Tree a -> a

left, right :: Tree a -> Tree a

isLeaf :: Tree a -> Bool

A module supporting this is:

module TreeADT (Tree, leaf, branch, cell,

left, right, isLeaf) where

data Tree a = Leaf a | Branch (Tree a) (Tree a)

leaf = Leaf

branch = Branch

cell (Leaf a) = a

left (Branch l r) = l

right (Branch l r) = r

isLeaf (Leaf _) = True

isLeaf _ = False
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Note in the export list that the type name Tree appears alone (i.e. without its constructors). Thus
Leaf and Branch are not exported, and the only way to build or take apart trees outside of the
module is by using the various (abstract) operations. Of course, the advantage of this information
hiding is that at a later time we could change the representation type without a�ecting users of
the type.

11.3 More Features

Here is a brief overview of some other aspects of the module system. See the report for more details.

� An import declaration may selectively hide entities using a hiding clause in the import
declaration. This is useful for explicitly excluding names that are used for other purposes
without having to use quali�ers for other imported names from the module.

� An import may contain an as clause to specify a di�erent quali�er than the name of the
importing module. This can be used to shorten quali�ers from modules with long names or
to easily adapt to a change in module name without changing all quali�ers.

� Programs implicitly import the Prelude module. An explicit import of the Prelude overrides
the implicit import of all Prelude names. Thus,

import Prelude hiding length

will not import length from the Standard Prelude, allowing the name length to be de�ned
di�erently.

� Instance declarations are not explicitly named in import or export lists. Every module exports
all of its instance declarations and every import brings all instance declarations into scope.

� Class methods may be named either in the manner of data constructors, in parentheses
following the class name, or as ordinary variables.

Although Haskell's module system is relatively conservative, there are many rules concerning the
import and export of values. Most of these are obvious|for instance, it is illegal to import two
di�erent entities having the same name into the same scope. Other rules are not so obvious|for
example, for a given type and class, there cannot be more than one instance declaration for that
combination of type and class anywhere in the program. The reader should read the Report for
details (x5).

12 Typing Pitfalls

This short section give an intuitive description of a few common problems that novices run into
using Haskell's type system.
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12.1 Let-Bound Polymorphism

Any language using the Hindley-Milner type system has what is called let-bound polymorphism,
because identi�ers not bound using a let or where clause (or at the top level of a module) are
limited with respect to their polymorphism. In particular, a lambda-bound function (i.e., one passed
as argument to another function) cannot be instantiated in two di�erent ways. For example, this
program is illegal:

let f g = (g [], g 'a') -- ill-typed expression

in f (\x->x)

because g, bound to a lambda abstraction whose principal type is a->a, is used within f in two
di�erent ways: once with type [a]->[a], and once with type Char->Char.

12.2 Numeric Overloading

It is easy to forget at times that numerals are overloaded, and not implicitly coerced to the various
numeric types, as in many other languages. More general numeric expressions sometimes cannot
be quite so generic. A common numeric typing error is something like the following:

average xs = sum xs / length xs -- Wrong!

(/) requires fractional arguments, but length's result is an Int. The type mismatch must be
corrected with an explicit coercion:

average :: (Fractional a) => [a] -> a

average xs = sum xs / fromIntegral (length xs)

12.3 The Monomorphism Restriction

The Haskell type system contains a restriction related to type classes that is not found in ordinary
Hindley-Milner type systems: the monomorphism restriction. The reason for this restriction is
related to a subtle type ambiguity and is explained in full detail in the Report (x4.5.5). A simpler
explanation follows:

The monomorphism restriction says that any identi�er bound by a pattern binding (which in-
cludes bindings to a single identi�er), and having no explicit type signature, must be monomorphic.
An identi�er is monomorphic if is either not overloaded, or is overloaded but is used in at most one
speci�c overloading and is not exported.

Violations of this restriction result in a static type error. The simplest way to avoid the problem
is to provide an explicit type signature. Note that any type signature will do (as long it is type
correct).

A common violation of the restriction happens with functions de�ned in a higher-order manner,
as in this de�nition of sum from the Standard Prelude:

sum = foldl (+) 0
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As is, this would cause a static type error. We can �x the problem by adding the type signature:

sum :: (Num a) => [a] -> a

Also note that this problem would not have arisen if we had written:

sum xs = foldl (+) 0 xs

because the restriction only applies to pattern bindings.

13 Arrays

Ideally, arrays in a functional language would be regarded simply as functions from indices to values,
but pragmatically, in order to assure eÆcient access to array elements, we need to be sure we can
take advantage of the special properties of the domains of these functions, which are isomorphic
to �nite contiguous subsets of the integers. Haskell, therefore, does not treat arrays as general
functions with an application operation, but as abstract data types with a subscript operation.

Two main approaches to functional arrays may be discerned: incremental and monolithic def-
inition. In the incremental case, we have a function that produces an empty array of a given size
and another that takes an array, an index, and a value, producing a new array that di�ers from
the old one only at the given index. Obviously, a naive implementation of such an array semantics
would be intolerably ineÆcient, either requiring a new copy of an array for each incremental rede�-
nition, or taking linear time for array lookup; thus, serious attempts at using this approach employ
sophisticated static analysis and clever run-time devices to avoid excessive copying. The monolithic
approach, on the other hand, constructs an array all at once, without reference to intermediate
array values. Although Haskell has an incremental array update operator, the main thrust of the
array facility is monolithic.

Arrays are not part of the Standard Prelude|the standard library contains the array operators.
Any module using arrays must import the Array module.

13.1 Index types

The Ix library de�nes a type class of array indices:

class (Ord a) => Ix a where

range :: (a,a) -> [a]

index :: (a,a) a -> Int

inRange :: (a,a) -> a -> Bool

Instance declarations are provided for Int, Integer, Char, Bool, and tuples of Ix types up to length
5; in addition, instances may be automatically derived for enumerated and tuple types. We regard
the primitive types as vector indices, and tuples as indices of multidimensional rectangular arrays.
Note that the �rst argument of each of the operations of class Ix is a pair of indices; these are
typically the bounds (�rst and last indices) of an array. For example, the bounds of a 10-element,
zero-origin vector with Int indices would be (0,9), while a 100 by 100 1-origin matrix might have
the bounds ((1,1),(100,100)). (In many other languages, such bounds would be written in a
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form like 1:100, 1:100, but the present form �ts the type system better, since each bound is of
the same type as a general index.)

The range operation takes a bounds pair and produces the list of indices lying between those
bounds, in index order. For example,

range (0,4) ) [0,1,2,3,4]

range ((0,0),(1,2)) ) [(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)]

The inRange predicate determines whether an index lies between a given pair of bounds. (For a
tuple type, this test is performed component-wise.) Finally, the index operation allows a particular
element of an array to be addressed: given a bounds pair and an in-range index, the operation yields
the zero-origin ordinal of the index within the range; for example:

index (1,9) 2 ) 1

index ((0,0),(1,2)) (1,1) ) 4

13.2 Array Creation

Haskell's monolithic array creation function forms an array from a pair of bounds and a list of
index-value pairs (an association list):

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b

Here, for example, is a de�nition of an array of the squares of numbers from 1 to 100:

squares = array (1,100) [(i, i*i) | i <- [1..100]]

This array expression is typical in using a list comprehension for the association list; in fact, this
usage results in array expressions much like the array comprehensions of the language Id [6].

Array subscripting is performed with the in�x operator !, and the bounds of an array can be
extracted with the function bounds:

squares!7 ) 49

bounds squares ) (1,100)

We might generalize this example by parameterizing the bounds and the function to be applied to
each index:

mkArray :: (Ix a) => (a -> b) -> (a,a) -> Array a b

mkArray f bnds = array bnds [(i, f i) | i <- range bnds]

Thus, we could de�ne squares as mkArray (\i -> i * i) (1,100).

Many arrays are de�ned recursively; that is, with the values of some elements depending on the
values of others. Here, for example, we have a function returning an array of Fibonacci numbers:

fibs :: Int -> Array Int Int

fibs n = a where a = array (0,n) ([(0, 1), (1, 1)] ++

[(i, a!(i-2) + a!(i-1)) | i <- [2..n]])
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Another example of such a recurrence is the n by n wavefront matrix, in which elements of the
�rst row and �rst column all have the value 1 and other elements are sums of their neighbors to
the west, northwest, and north:

wavefront :: Int -> Array (Int,Int) Int

wavefront n = a where

a = array ((1,1),(n,n))

([((1,j), 1) | j <- [1..n]] ++

[((i,1), 1) | i <- [2..n]] ++

[((i,j), a!(i,j-1) + a!(i-1,j-1) + a!(i-1,j))

| i <- [2..n], j <- [2..n]])

The wavefront matrix is so called because in a parallel implementation, the recurrence dictates that
the computation can begin with the �rst row and column in parallel and proceed as a wedge-shaped
wave, traveling from northwest to southeast. It is important to note, however, that no order of
computation is speci�ed by the association list.

In each of our examples so far, we have given a unique association for each index of the array
and only for the indices within the bounds of the array, and indeed, we must do this in general
for an array be fully de�ned. An association with an out-of-bounds index results in an error; if an
index is missing or appears more than once, however, there is no immediate error, but the value of
the array at that index is then unde�ned, so that subscripting the array with such an index yields
an error.

13.3 Accumulation

We can relax the restriction that an index appear at most once in the association list by specifying
how to combine multiple values associated with a single index; the result is called an accumulated
array:

accumArray :: (Ix a) -> (b -> c -> b) -> b -> (a,a) -> [Assoc a c] -> Array a b

The �rst argument of accumArray is the accumulating function, the second is an initial value (the
same for each element of the array), and the remaining arguments are bounds and an association
list, as with the array function. Typically, the accumulating function is (+), and the initial value,
zero; for example, this function takes a pair of bounds and a list of values (of an index type) and
yields a histogram; that is, a table of the number of occurrences of each value within the bounds:

hist :: (Ix a, Integral b) => (a,a) -> [a] -> Array a b

hist bnds is = accumArray (+) 0 bnds [(i, 1) | i <- is, inRange bnds i]

Suppose we have a collection of measurements on the interval [a; b), and we want to divide the
interval into decades and count the number of measurements within each:

decades :: (RealFrac a) => a -> a -> [a] -> Array Int Int

decades a b = hist (0,9) . map decade

where decade x = floor ((x - a) * s)

s = 10 / (b - a)
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13.4 Incremental updates

In addition to the monolithic array creation functions, Haskell also has an incremental array update
function, written as the in�x operator //; the simplest case, an array a with element i updated to
v, is written a // [(i, v)]. The reason for the square brackets is that the left argument of (//)
is an association list, usually containing a proper subset of the indices of the array:

(//) :: (Ix a) => Array a b -> [(a,b)] -> Array a b

As with the array function, the indices in the association list must be unique for the values to be
de�ned. For example, here is a function to interchange two rows of a matrix:

swapRows :: (Ix a, Ix b, Enum b) => a -> a -> Array (a,b) c -> Array (a,b) c

swapRows i i' a = a // ([((i ,j), a!(i',j)) | j <- [jLo..jHi]] ++

[((i',j), a!(i ,j)) | j <- [jLo..jHi]])

where ((iLo,jLo),(iHi,jHi)) = bounds a

The concatenation here of two separate list comprehensions over the same list of j indices is,
however, a slight ineÆciency; it's like writing two loops where one will do in an imperative language.
Never fear, we can perform the equivalent of a loop fusion optimization in Haskell:

swapRows i i' a = a // [assoc | j <- [jLo..jHi],

assoc <- [((i ,j), a!(i',j)),

((i',j), a!(i, j))] ]

where ((iLo,jLo),(iHi,jHi)) = bounds a

13.5 An example: Matrix Multiplication

We complete our introduction to Haskell arrays with the familiar example of matrix multiplication,
taking advantage of overloading to de�ne a fairly general function. Since only multiplication and
addition on the element type of the matrices is involved, we get a function that multiplies matrices
of any numeric type unless we try hard not to. Additionally, if we are careful to apply only (!)

and the operations of Ix to indices, we get genericity over index types, and in fact, the four row
and column index types need not all be the same. For simplicity, however, we require that the left
column indices and right row indices be of the same type, and moreover, that the bounds be equal:

matMult :: (Ix a, Ix b, Ix c, Num d) =>

Array (a,b) d -> Array (b,c) d -> Array (a,c) d

matMult x y = array resultBounds

[((i,j), sum [x!(i,k) * y!(k,j) | k <- range (lj,uj)])

| i <- range (li,ui),

j <- range (lj',uj') ]

where ((li,lj),(ui,uj)) = bounds x

((li',lj'),(ui',uj')) = bounds y

resultBounds

| (lj,uj)==(li',ui') = ((li,lj'),(ui,uj'))

| otherwise = error "matMult: incompatible bounds"
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As an aside, we can also de�ne matMult using accumArray, resulting in a presentation that more
closely resembles the usual formulation in an imperative language:

matMult x y = accumArray (+) 0 resultBounds

[((i,j), x!(i,k) * y!(k,j))

| i <- range (li,ui),

j <- range (lj',uj')

k <- range (lj,uj) ]

where ((li,lj),(ui,uj)) = bounds x

((li',lj'),(ui',uj')) = bounds y

resultBounds

| (lj,uj)==(li',ui') = ((li,lj'),(ui,uj'))

| otherwise = error "matMult: incompatible bounds"

We can generalize further by making the function higher-order, simply replacing sum and (*)

by functional parameters:

genMatMult :: (Ix a, Ix b, Ix c) =>

([f] -> g) -> (d -> e -> f) ->

Array (a,b) d -> Array (b,c) e -> Array (a,c) g

genMatMult sum' star x y =

array resultBounds

[((i,j), sum' [x!(i,k) `star` y!(k,j) | k <- range (lj,uj)])

| i <- range (li,ui),

j <- range (lj',uj') ]

where ((li,lj),(ui,uj)) = bounds x

((li',lj'),(ui',uj')) = bounds y

resultBounds

| (lj,uj)==(li',ui') = ((li,lj'),(ui,uj'))

| otherwise = error "matMult: incompatible bounds"

APL fans will recognize the usefulness of functions like the following:

genMatMult maximum (-)

genMatMult and (==)

With the �rst of these, the arguments are numeric matrices, and the (i ; j )-th element of the result
is the maximum di�erence between corresponding elements of the i-th row and j -th column of the
inputs. In the second case, the arguments are matrices of any equality type, and the result is a
Boolean matrix in which element (i ; j ) is True if and only if the i-th row of the �rst argument and
j -th column of the second are equal as vectors.

Notice that the element types of genMatMult need not be the same, but merely appropriate
for the function parameter star. We could generalize still further by dropping the requirement
that the �rst column index and second row index types be the same; clearly, two matrices could
be considered conformable as long as the lengths of the columns of the �rst and the rows of the
second are equal. The reader may wish to derive this still more general version. (Hint: Use the
index operation to determine the lengths.)
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14 The Next Stage

A large collection of Haskell resources is available on the web at haskell.org. Here you will �nd
compilers, demos, papers, and much valuable information about Haskell and functional program-
ming. Haskell compilers or interpreters run on almost all hardware and operating systems. The
Hugs system is both small and portable { it is an excellent vehicle for learning Haskell.
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1 Introduction

This course is concerned with theλ-calculus and its close relative, combinatory
logic. Theλ-calculus is important to functional programming and to computer
science generally:

1. Variable bindingand scopingin block-structured languages can be mod-
elled.

2. Several function calling mechanisms —call-by-name, call-by-value, and
call-by-need— can be modelled. The latter two are also known asstrict
evaluationandlazy evaluation.

3. Theλ-calculus is Turing universal, and is probably the most natural model
of computation.Church’s Thesisasserts that the ‘computable’ functions are
precisely those that can be represented in theλ-calculus.

4. All the usualdata structuresof functional programming, including infinite
lists, can be represented. Computation on infinite objects can be defined
formally in theλ-calculus.

5. Its notions ofconfluence(Church-Rosser property),termination, andnor-
mal formapply generally in rewriting theory.

6. Lisp, one of the first major programming languages, was inspired by the
λ-calculus. Many functional languages, such as ML, consist of little more
than theλ-calculus with additional syntax.

7. The two main implementation methods, theSECD machine(for strict eval-
uation) andcombinator reduction(for lazy evaluation) exploit properties of
theλ-calculus.

8. Theλ-calculus and its extensions can be used to develop better type sys-
tems, such aspolymorphism, and to investigate theoretical issues such as
program synthesis.

9. Denotational semantics, which is an important method for formally speci-
fying programming languages, employs theλ-calculus for its notation.

Hindley and Seldin [6] is a concise introduction to theλ-calculus and com-
binators. Gordon [5] is oriented towards computer science, overlapping closely
with this course. Barendregt [1] is the last word on theλ-calculus.
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Acknowledgements. Reuben Thomas pointed out numerous errors in a previ-
ous version of these notes.

1.1 Theλ-Calculus

Around 1924, Scḧonfinkel developed a simple theory of functions. In 1934,
Church introduced theλ-calculus and used it to develop a formal set theory, which
turned out to be inconsistent. More successfully, he used it to formalize the syntax
of Whitehead and Russell’s massivePrincipia Mathematica. In the 1940s, Haskell
B. Curry introducedcombinatory logic, a variable-free theory of functions.

More recently, Roger Hindley developed what is now known astype inference.
Robin Milner extended this to develop the polymorphic type system of ML, and
published a proof that a well-typed program cannot suffer a run-time type error.
Dana Scott developed models of theλ-calculus. With hisdomain theory, he and
Christopher Strachey introduced denotational semantics.

Peter Landin used theλ-calculus to analyze Algol 60, and introduced ISWIM
as a framework for future languages. His SECD machine, with extensions,
was used to implement ML and other strict functional languages. Christopher
Wadsworth developedgraph reductionas a method for performing lazy evalu-
ation of λ-expressions. David Turner applied graph reduction tocombinators,
which led to efficient implementations of lazy evaluation.

Definition 1 The termsof theλ-calculus, known asλ-terms, are constructed re-
cursively from a given set ofvariablesx, y, z, . . . . They may take one of the
following forms:

x variable
(λx.M) abstraction, whereM is a term
(M N) application, whereM andN are terms

We use capital letters likeL, M , N, . . . for terms. We writeM ≡ N to state
that M andN are identicalλ-terms. The equality betweenλ-terms,M = N, will
be discussed later.

1.2 Variable Binding and Substitution

In (λx.M), we callx thebound variableandM thebody. Every occurrence ofx
in M is boundby the abstraction. An occurrence of a variable isfree if it is not
bound by some enclosing abstraction. For example,x occurs bound andy occurs
free in(λz.(λx.(yx)).
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Notations involving free and bound variables exist throughout mathematics.
Consider the integral

∫ b
a f (x)dx, wherex is bound, and the product5n

k=0 p(k),
wherek is bound. The quantifiers∀ and∃ also bind variables.

The abstraction(λx.M) is intended to represent the functionf such that
f (x) = M for all x. Applying f to N yields the result of substitutingN for
all free occurrences ofx in M . Two examples are

(λx.x) The identity function, which returns its argument un-
changed. It is usually calledI .

(λy.x) A constantfunction, which returnsx when applied to
any argument.

Let us make these concepts precise.

Definition 2 BV(M), the set of allbound variablesin M , is given by

BV(x) = ∅
BV(λx.M) = BV(M)

⋃
{x}

BV(M N) = BV(M)
⋃

BV(N)

Definition 3 FV(M), the set of allfree variablesin M , is given by

FV(x) = {x}
FV(λx.M) = FV(M)− {x}
FV(M N) = FV(M)

⋃
FV(N)

Definition 4 M [L/y], the result of substitutingL for all free occurrences ofy
in M , is given by

x[L/y] ≡
{

L if x ≡ y

x otherwise

(λx.M)[L/y] ≡
{
(λx.M) if x ≡ y

(λx.M [L/y]) otherwise

(M N)[L/y] ≡ (M [L/y] N[L/y])

The notations defined above are not themselves part of theλ-calculus. They
belong to the metalanguage: they are for talking about theλ-calculus.
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1.3 Avoiding Variable Capture in Substitution

Substitution must not disturb variable binding. Consider the term(λx.(λy.x)). It
should represent the function that, when applied to an argumentN, returns the
constant function(λy.N). Unfortunately, this does not work ifN ≡ y; we have
defined substitution such that(λy.x)[y/x] ≡ (λy.y). Replacingx by y in the
constant function transforms it into the identity function. The free occurrence
of x turns into a bound occurrence ofy — an example ofvariable capture. If this
were allowed to happen, theλ-calculus would be inconsistent. The substitution
M [N/x] is safe provided the bound variables ofM are disjoint from the free
variables ofN:

BV(M)
⋂

FV(N) = ∅.

We can always rename the bound variables ofM , if necessary, to make this
condition true. In the example above, we could change(λy.x) into (λz.x), then
obtain the correct substitution(λz.x)[y/x] ≡ (λz.y); the result is indeed a con-
stant function.

1.4 Conversions

The idea thatλ-abstractions represent functions is formally expressed through
conversion rules for manipulating them. There areα-conversions,β-conversions
andη-conversions.

Theα-conversion(λx.M)→α (λy.M [y/x]) renames the abstraction’s bound
variable fromx to y. It is valid providedy does not occur (free or bound) inM .
For example,(λx.(xz)) →α (λy.(yz)). We shall usually ignore the distinction
between terms that could be made identical by performingα-conversions.

The β-conversion((λx.M)N) →β M [N/x] substitutes the argument,N,
into the abstraction’s body,M . It is valid provided BV(M)

⋂
FV(N) =

∅. For example,(λx.(xx))(yz) →β ((yz)(yz)). Here is another example:
((λz.(zy))(λx.x))→β ((λx.x)y)→β y.

Theη-conversion(λx.(Mx))→η M collapses the trivial function(λx.(Mx))
down to M . It is valid providedx 6∈ FV(M). Thus, M does not depend
on x; the abstraction does nothing but applyM to its argument. For example,
(λx.((zy)x))→η (zy).

Observe that the functions(λx.(Mx)) andM always return the same answer,
(M N), when applied to any argumentN. Theη-conversion rule embodies a prin-
ciple ofextensionality: two functions are equal if they always return equal results
given equal arguments. In some situations, this principle (andη-conversions) are
dispensed with.
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1.5 Reductions

We say thatM → N, or M reduces toN, if M →β N or M →η N. (Becauseα-
conversions are not directional, and are not interesting, we generally ignore them.)
The reductionM → N may consist of applying a conversion to some subterm of
M in order to createN. More formally, we could introduce inference rules for→:

M → M ′

(λx.M)→ (λx.M ′)
M → M ′

(M N)→ (M ′N)
M → M ′

(L M)→ (L M ′)

If a term admits no reductions then it is innormal form. For example,λxy.y
andxyzare in normal form. Tonormalizea term means to apply reductions until
a normal form is reached. A termhas a normal formif it can be reduced to a term
in normal form. For example,(λx.x)y is not in normal form, but it has the normal
form y.

Many λ-terms cannot be reduced to normal form. For instance,
(λx.xx)(λx.xx) reduces to itself byβ-conversion. Although it is unaffected by
the reduction, it is certainly not in normal form. This term is usually calledÄ.

1.6 Curried Functions

The λ-calculus has only functions of one argument. A function with multiple
arguments is expressed using a function whose result is another function.

For example, suppose thatL is a term containing onlyx andy as free variables,
and we wish to formalize the functionf (x, y) = L. The abstraction(λy.L) con-
tainsx free; for eachx, it stands for a function overy. The abstraction(λx.(λy.L))
contains no free variables; when applied to the argumentsM andN, the result is
obtained by replacingx by M and y by N in L. Symbolically, we perform two
β-reductions (any necessaryα-conversions are omitted):

(((λx.(λy.L))M)N)→β ((λy.L[M/x])N)→β L[M/x][ N/y]

This technique is known ascurrying after Haskell B. Curry, and a function
expressed using nestedλs is known as acurried function. In fact, it was introduced
by Scḧonfinkel. Clearly, it works for any number of arguments.

Curried functions are popular in functional programming because they can be
applied to their first few arguments, returning functions that are useful in them-
selves.
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1.7 Bracketing Conventions

Abbreviating nested abstractions and applications will make curried functions eas-
ier to write. We shall abbreviate

(λx1.(λx2. . . . (λxn.M) . . . )) as (λx1x2 . . . xn.M)

(. . . (M1M2) . . .Mn) as (M1M2 . . .Mn)

Finally, we drop outermost parentheses and those enclosing the body of an ab-
straction. For example,

(λx.(x(λy.(yx)))) can be written asλx.x(λy.yx).

It is vital understand how bracketing works. We have the reduction

λz.(λx.M)N →β λz.M [N/x]

but the similar termλz.z(λx.M)N admits no reductions except those occurring
within M and N, becauseλx.M is not being applied to anything. Here is what
the application of a curried function (see above) looks like with most brackets
omitted:

(λxy.L)M N →β (λy.L[M/x])N →β L[M/x][ N/y]

Note thatλx.M N abbreviatesλx.(M N) rather than(λx.M)N. Also, xyz
abbreviates(xy)z rather thanx(yz).

Exercise 1 What happens in the reduction of(λxy.L)M N if y is free inM?

Exercise 2 Give two different reduction sequences that start at(λx.(λy.xy)z)y
and end with a normal form. (These normal forms must be identical: see below.)

2 Equality and Normalization

Theλ-calculus is an equational theory: it consists of rules for proving that two
λ-terms are equal. A key property is that two terms are equal just if they both can
be reduced to the same term.
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2.1 Multi-Step Reduction

Strictly speaking,M → N means thatM reduces toN by exactly one reduction
step, possibly applied to a subterm ofM . Frequently, we are interested in whether
M can be reduced toN by any number of steps. WriteM ³ N if

M → M1→ M2→ · · · → Mk ≡ N (k ≥ 0)

For example,((λz.(zy))(λx.x))³ y. Note that³ is the relation→∗, the reflex-
ive/transitive closure of→.

2.2 Equality Betweenλ-Terms

Informally, M = M ′ if M can be transformed intoM ′ by performing zero or
more reductions and expansions. (Anexpansionis the inverse of a reduction, for
instancey← (λx.x)y.) A typical picture is the following:

M M1 M2· · ·Mk−1 Mk = M ′
↘↘ ↙↙ ↘↘ ↙↙ ↘↘ ↙↙

N1 N2 · · · Nk

For example,a((λy.by)c) = (λx.ax)(bc) because both sides reduce toa(bc).
Note that= is the relation(→ ∪ →−1)∗, the least equivalence relation contain-
ing→.

Intuitively, M = M ′ means thatM andM ′ have the same value. Equality, as
defined here, satisfies all the standard properties. First of all, it is anequivalence
relation— it satisfies the reflexive, symmetric and associative laws:

M = M
M = N

N = M

L = M M = N

L = N

Furthermore, it satisfies congruence laws for each of the ways of constructing
λ-terms:

M = M ′

(λx.M) = (λx.M ′)
M = M ′

(M N) = (M ′N)
M = M ′

(L M) = (L M ′)

The six properties shown above are easily checked by constructing the appropri-
ate diagrams for each equality. They imply that two terms will be equal if we
construct them in the same way starting from equal terms. Put another way, if
M = M ′ then replacingM by M ′ in a term yields an equal term.

Definition 5 Equality ofλ-termsis the least relation satisfying the six rules given
above.
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2.3 The Church-Rosser Theorem

This fundamental theorem states that reduction in theλ-calculus isconfluent: no
two sequences of reductions, starting from oneλ-term, can reach distinct normal
forms. The normal form of a term is independent of the order in which reductions
are performed.

Theorem 6 (Church-Rosser) If M = N then there existsL such thatM ³ L
and N ³ L.
Proof See Barendregt [1] or Hindley and Seldin [6].

For instance,(λx.ax)((λy.by)c) has two different reduction sequences, both
leading to the same normal form. The affected subterm is underlined at each step:

(λx.ax)((λy.by)c)→ a((λy.by)c)→ a(bc)

(λx.ax)((λy.by)c)→ (λx.ax)(bc)→ a(bc)

The theorem has several important consequences.

• If M = N andN is in normal form, thenM ³ N; if a term can transform
into normal form using reductions and expansions, then the normal form
can be reached by reductions alone.

• If M = N where both terms are in normal form, thenM ≡ N (up to
renaming of bound variables). Conversely, ifM andN are in normal form
and are distinct, thenM 6= N; there is no way of transformingM into N.
For example,λxy.x 6= λxy.y.

An equational theory isinconsistentif all equations are provable. Thanks to
the Church-Rosser Theorem, we know that theλ-calculus is consistent. There is
no way we could reach two different normal forms by following different reduc-
tion strategies. Without this property, theλ-calculus would be of little relevance
to computation.

2.4 The Diamond Property

The key step in proving the Church-Rosser Theorem is demonstrating the diamond
property — if M ³ M1 and M ³ M2 then there exists a termL such that
M1³ L andM2³ L. Here is the diagram:

M
↙↙ ↘↘

M1 M2

↘↘ ↙↙
L
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The diamond property is vital: it says that no matter how far we go reducing a
term by two different strategies it will always be possible to come together again
by further reductions. As for the Church-Rosser Theorem, look again at the dia-
gram forM = M ′ and note that we can tile the region underneath with diamonds,
eventually reaching a common term:

M M1 M2· · ·Mk−1 Mk = M ′
↘↘ ↙↙ ↘↘ ↙↙ ↘↘ ↙↙

N1 N2 · · · Nk

↘↘ ↙↙ ↘↘ ↙↙
L1 L2 · · · Lk−1

↘↘ ↙↙ .. .

K1
. . . .. .

E

2.5 Proving the Diamond Property

Note that→ (one-step reduction) doesnot satisfy the diamond property

M
↙ ↘

M1 M2

↘ ↙
L

Consider the term(λx.xx)( I a), where I ≡ λx.x. In one step, it reduces to
(λx.xx)a or to( I a)( I a). These both reduce eventually toaa, but there is no way
to complete the diamond with a single-step reduction:

(λx.xx)( I a)
↙ ↘

( I a)( I a) (λx.xx)a
. . . ↙

aa

The problem, of course, is that(λx.xx) replicates its argument, which must
then be reduced twice. Note also that the difficult cases involve one possible
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reduction contained inside another. Reductions that do not overlap, such asM →
M ′ andN → N ′ in the termx M N, commute trivially to producex M′N ′.

The diamond property for³ can be proved with the help of a ‘strip lemma’,
which considers the case whereM → M1 (in one step) and alsoM ³ M2

(possiblymanysteps):

M
↙ ↘↘

M1 M2

↘↘ ↙↙
L

The ‘strips’ can then be pasted together to complete a diamond. The details
involve an extremely tedious case analysis of the possible reductions from various
forms of terms.

2.6 Possibility of Nontermination

Although different reduction sequences cannot yield different normal forms, they
can yield completely different outcomes: one could terminate while the other
runs forever! Typically, ifM has a normal form and admits an infinite reduction
sequence, it contains a subtermL having no normal form, andL can be erased by
a reduction.

For example, recall thatÄ reduces to itself, whereÄ ≡ (λx.xx)(λx.xx). The
reduction

(λy.a)Ä→ a

reaches normal form, erasing theÄ. This corresponds to acall-by-nametreatment
of functions: the argument is not reduced but substituted ‘as is’ into the body of
the abstraction.

Attempting to normalize the argument generates a nonterminating reduction
sequence:

(λy.a)Ä→ (λy.a)Ä→ · · ·
Evaluating the argument before substituting it into the body corresponds to a

call-by-valuetreatment of function application. In this example, the call-by-value
strategy never reaches the normal form.

2.7 Normal Order Reduction

Thenormal orderreduction strategy is, at each step, to perform the leftmost out-
ermostβ-reduction. (Theη-reductions can be left until last.)Leftmostmeans, for
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instance, to reduceL beforeN in L N. Outermostmeans, for instance, to reduce
(λx.M)N before reducingM or N.

Normal order reduction corresponds to call-by-name evaluation. By the Stan-
dardization Theorem, it always reaches a normal form if one exists. The proof
is omitted. However, note that reducingL first in L N may transformL into an
abstraction, sayλx.M . Reducing(λx.M)N may eraseN.

2.8 Lazy Evaluation

From a theoretical standpoint, normal order reduction is the optimal, since it al-
ways yields a normal form if one exists. For practical computation, it is hopelessly
inefficient. Assume that we have a coding of the natural numbers (for which see
the next section!) and define a squaring functionsqr ≡ λn.mult nn. Then

sqr ( sqr N)→ mult ( sqr N)( sqr N)→ mult (mult N N)(mult N N)

and we will have to evaluate four copies of the termN! Call-by-value would
have evaluatedN (only once) beforehand, but, as we have seen, it can result in
nontermination.

Note: multi-letter identifiers (likesqr ) are set in bold type, or underlined, in
order to prevent confusion with a series of separate variables (likesqr).

Lazy evaluation, orcall-by-need, never evaluates an argument more than once.
An argument is not evaluated unless the value is actually required to produce the
answer; even then, the argument is only evaluated to the extent needed (thereby
allowing infinite lists). Lazy evaluation can be implemented by representing the
term by a graph rather than a tree. Each shared graph node represents a subterm
whose value is needed more than once. Whenever that subterm is reduced, the
result overwrites the node, and the other references to it will immediately have
access to the replacement.

Graph reduction is inefficient for theλ-calculus because subterms typically
contain free variables. During eachβ-reduction, the abstraction’s body must be
copied. Graph reduction works much better for combinators, where there are no
variables. We shall return to this point later.

3 Encoding Data in theλ-Calculus

Theλ-calculus is expressive enough to encode boolean values, ordered pairs, nat-
ural numbers and lists — all the data structures we may desire in a functional
program. These encodings allow us to model virtually the whole of functional
programming within the simple confines of theλ-calculus.
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The encodings may not seem to be at all natural, and they certainly are not
computationally efficient. In this, they resemble Turing machine encodings and
programs. Unlike Turing machine programs, the encodings are themselves of
mathematical interest, and return again and again in theoretical studies. Many of
them involve the idea that the data can carry its control structure with it.

3.1 The Booleans

An encoding of the booleans must define the termstrue , false and if , satisfying
(for all M andN)

if true M N = M

if false M N = N.

The following encoding is usually adopted:

true ≡ λxy.x

false ≡ λxy.y

if ≡ λpxy.pxy

We havetrue 6= false by the Church-Rosser Theorem, sincetrue and false
are distinct normal forms. As it happens,if is not even necessary. The truth values
are their own conditional operators:

true M N ≡ (λxy.x)M N ³ M

falseM N ≡ (λxy.y)M N ³ N

These reductions hold for all termsM and N, whether or not they possess
normal forms. Note thatif L M N ³ L M N; it is essentially an identity function
on L. The equations given above even hold as reductions:

if true M N ³ M

if false M N ³ N.

All the usual operations on truth values can be defined as conditional operator.
Here are negation, conjunction and disjunction:

and ≡ λpq. if p q false

or ≡ λpq. if p true q

not ≡ λp. if p false true
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3.2 Ordered Pairs

Assume thattrue and false are defined as above. The functionpair , which
constructs pairs, and the projectionsfst and snd, which select the components
of a pair, are encoded as follows:

pair ≡ λxy f. f xy

fst ≡ λp.p true

snd ≡ λp.p false

Clearly, pair M N ³ λ f. f M N, packagingM and N together. A pair may
be applied to any 2-place function of the formλxy.L, returningL[M/x][ N/y];
thus, each pair is its own unpackaging operation. The projections work by this
unpackaging operation (which, perhaps, is more convenient in programming than
are the projections themselves!):

fst (pair M N) ³ fst (λ f. f M N)

→ (λ f. f M N) true

→ true M N

³ M

Similarly, snd(pair M N) ³ N. Observe that the components ofpair M N
are completely independent; either may be extracted even if the other has no nor-
mal form.

Orderedn-tuples could be defined analogously, but nested pairs are a simpler
encoding.

3.3 The Natural Numbers

The following encoding of the natural numbers is the original one developed by
Church. Alternative encodings are sometimes preferred today, but Church’s nu-
merals continue our theme of putting the control structure in with the data struc-
ture. Such encodings are elegant; moreover, they work in the second-orderλ-
calculus (presented in the Types course by Andrew Pitts).

Define

0 ≡ λ f x.x

1 ≡ λ f x. f x

2 ≡ λ f x. f ( f x)
...
...
...

n ≡ λ f x. f (· · · ( f︸ ︷︷ ︸
n times

x) · · · )
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Thus, for alln ≥ 0, the Church numeraln is the function that mapsf to f n.
Each numeral is an iteration operator.

3.4 Arithmetic on Church Numerals

Using this encoding, addition, multiplication and exponentiation can be defined
immediately:

add ≡ λmn f x.m f(n f x)

mult ≡ λmn f x.m(n f )x

expt ≡ λmn f x.nm f x

Addition is not hard to check:

add m n ³ λ f x.m f (n f x)

³ λ f x. f m( f nx)

≡ λ f x. f m+nx

≡ m+ n

Multiplication is slightly more difficult:

mult m n ³ λ f x.m (n f )x

³ λ f x.(n f )mx

³ λ f x.( f n)mx

≡ λ f x. f m×nx

≡ m× n

These derivations hold for all Church numeralsm and n , but not for all terms
M andN.

Exercise 3 Show thatexpt performs exponentiation on Church numerals.

3.5 The Basic Operations for Church Numerals

The operations defined so far are not sufficient to define all computable functions
on the natural numbers; what about subtraction? Let us begin with some simpler
definitions: the successor function and the zero test.

suc ≡ λn f x. f (n f x)

iszero ≡ λn.n(λx. false) true
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The following reductions hold for every Church numeraln :

suc n ³ n+ 1

iszero 0 ³ true

iszero(n+ 1) ³ false

For example,

iszero(n+ 1) ³ n+ 1(λx. false) true

³ (λx. false)n+1 true

≡ (λx. false)((λx. false)n true )

→ false

The predecessor function and subtraction are encoded as follows:

prefn ≡ λ f p.pair ( f ( fst p)) ( fst p)

pre ≡ λn f x. snd(n(prefn f )(pair xx))

sub ≡ λmn.npre m

Defining the predecessor function is difficult when each numeral is an iterator.
We must reduce ann + 1 iterator to ann iterator. Given f andx, we must find
someg andy such thatgn+1y computesf nx. A suitableg is a function on pairs
that maps(x, z) to ( f (x), x); then

gn+1(x, x) = ( f n+1(x), f n(x)).

The pair behaves like a one-element delay line.
Above, prefn f constructs the functiong. Verifying the following reductions

should be routine:

pre (n+ 1) ³ n

pre (0) ³ 0

For subtraction,sub m n computes thenth predecessor ofm .

Exercise 4 Show thatλmn.msucn performs addition on Church numerals.

3.6 Lists

Church numerals could be generalized to represent lists. The list [x1, x2, . . . , xn]
would essentially be represented by the function that takesf and y to
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f x1( f x2 . . . ( f xny) . . . ). Such lists would carry their own control structure with
them.

As an alternative, let us represent lists rather as Lisp and ML do — via pairing.
This encoding is easier to understand because it is closer to real implementations.
The list [x1, x2, . . . , xn] will be represented byx1 :: x2 :: . . . :: nil . To keep
the operations as simple as possible, we shall employ two levels of pairing. Each
‘cons cell’ x :: y will be represented by( false, (x, y)), where thefalse is a
distinguishing tag field. By rights,nil should be represented by a pair whose
first component istrue , such as( true , true ), but a simpler definition happens
to work. In fact, we could dispense with the tag field altogether.

Here is our encoding of lists:

nil ≡ λz.z

cons ≡ λxy.pair false(pair xy)

null ≡ fst

hd ≡ λz. fst ( sndz)

tl ≡ λz. snd( sndz)

The following properties are easy to verify; they hold for all termsM andN:

null nil ³ true

null ( consM N) ³ false

hd ( consM N) ³ M

tl ( consM N) ³ N

Note that null nil ³ true happens really by chance, while the other laws
hold by our operations on pairs.

Recall that laws likehd ( consM N) ³ M and snd(pair M N) ³ N hold
for all M and N, even for terms that have no normal forms! Thus,pair and
cons are ‘lazy’ constructors — they do not ‘evaluate their arguments’. Once we
introduction recursive definitions, we shall be able to compute with infinite lists.

Exercise 5 Modify the encoding of lists to obtain an encoding of the natural
numbers.

4 Writing Recursive Functions in theλ-calculus

Recursion is obviously essential in functional programming. With Church nu-
merals, it is possible to define ‘nearly all’ computable functions on the natural
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numbers.1 Church numerals have an inbuilt source of repetition. From this, we
can derive primitive recursion, which when applied using higher-order functions
defines a much larger class than the primitive recursive functions studied in Com-
putation Theory. Ackermann’s function is not primitive recursive in the usual
sense, but we can encode it using Church numerals. If we put

ack ≡ λm.m(λ f n.n f ( f 1)) suc

then we can derive the recursion equations of Ackermann’s function, namely

ack 0 n = n+ 1

ack(m+ 1)0 = ack m 1

ack(m+ 1)(n+ 1) = ack m (ack(m+ 1)n )

Let us check the first equation:

ack 0 n ³ 0(λ f n.n f ( f 1)) suc n

³ suc n

³ n+ 1

For the other two equations, note that

ack(m+ 1)n ³ (m+ 1)(λ f n.n f ( f 1)) suc n

³ (λ f n.n f ( f 1))(m (λ f n.n f ( f 1)) suc)n

= (λ f n.n f ( f 1))(ack m )n

³ n (ack m )(ack m 1)

We now check

ack(m+ 1)0 ³ 0(ack m )(ack m 1)

³ ack m 1

and

ack(m+ 1)(n+ 1) ³ n+ 1(ack m )(ack m 1)

³ ack m (n (ack m )(ack m 1))

= ack m (ack(m+ 1)n )

The key to this computation is the iteration of the functionack m .

1The precise meaning of ‘nearly all’ involves heavy proof theory, but all ‘reasonable’ functions
are included.
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4.1 Recursive Functions using Fixed Points

Our coding of Ackermann’s function works, but it hardly could be called per-
spicuous. Even worse would be the treatment of a function whose recursive calls
involved something other than subtracting one from an argument — performing
division by repeated subtraction, for example.

General recursion can be derived in theλ-calculus. Thus, we can model all
recursive function definitions, even those that fail to terminate for some (or all) ar-
guments. Our encoding of recursion is completely uniform and is independent of
the details of the recursive definition and the representation of the data structures
(unlike the above version of Ackermann’s function, which depends upon Church
numerals).

The secret is to use afixed point combinator— a term Y such thatY F =
F(Y F) for all terms F . Let us explain the terminology. Afixed pointof the
function F is any X such thatF X = X; here,X ≡ Y F . A combinatoris any
λ-term containing no free variables (also called a closed term). To code recursion,
F represents the body of the recursive definition; the lawY F = F(Y F) permits
F to be unfolded as many times as necessary.

4.2 Examples Using Y

We shall encode the factorial function, the append function on lists, and the infinite
list [0,0,0, . . . ] in theλ-calculus, realising the recursion equations

fact N = if ( iszeroN)1(mult N( fact (pre N)))

appendZW = if (null Z)W( cons(hd Z)(append( tl Z)W))

zeroes = cons0 zeroes

To realize these, we simply put

fact ≡ Y (λgn. if ( iszeron)1(mult n(g(pre n))))

append ≡ Y (λgzw. if (null z)w( cons(hd z)(g( tl z)w)))

zeroes ≡ Y (λg. cons0g)

In each definition, the recursive call is replaced by the variableg in
Y (λg. . . . ). Let us verify the recursion equation forzeroes; the others are simi-
lar:

zeroes ≡ Y (λg. cons0g)

= (λg. cons0g)(Y (λg. cons0g))

= (λg. cons0g) zeroes

→ cons0 zeroes
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4.3 Usage of Y

In general, the recursion equationM = P M, whereP is anyλ-term, is satisfied
by defining M ≡ Y P. Let us consider the special case whereM is to be an
n-argument function. The equationMx1 . . . xn = P M is satisfied by defining

M ≡ Y (λgx1 . . . xn.Pg)

for then

Mx1 . . . xn ≡ Y (λgx1 . . . xn.Pg)x1 . . . xn

= (λgx1 . . . xn.Pg)Mx1 . . . xn

³ P M

Let us realize the mutual recursive definition ofM andN, with corresponding
bodiesP andQ:

M = P M N

N = QM N

The idea is to take the fixed point of a functionF on pairs, such thatF(X,Y) =
(P XY, QXY). Using our encoding of pairs, define

L ≡ Y (λz.pair (P( fst z)( sndz))
(Q( fst z)( sndz)))

M ≡ fst L

N ≡ sndL

By the fixed point property,

L = pair (P( fst L)( sndL))
(Q( fst L)( sndL))

and by applying projections, we obtain the desired

M = P( fst L)( sndL) = P M N

N = Q( fst L)( sndL) = QM N.

4.4 Defining Fixed Point Combinators

The combinatorY was discovered by Haskell B. Curry. It is defined by

Y ≡ λ f.(λx. f (xx))(λx. f (xx))
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Let us calculate to show the fixed point property:

Y F → (λx.F(xx))(λx.F(xx))

→ F((λx.F(xx))(λx.F(xx)))

= F(Y F)

This consists of twoβ-reductions followed by aβ-expansion. No reduction
Y F ³ F(Y F) is possible! There are other fixed point combinators, such as
Alan Turing’s2:

A ≡ λxy.y(xxy)

2 ≡ AA

We indeed have the reduction2F ³ F(2F):

2F ≡ AAF³ F(AAF) ≡ F(2F)

Here is a fixed point combinator discovered by Klop:

£ ≡ λabcdef ghi jklmnopqstuvwxyzr.r (thisisa f i xedpointcombinator)

$ ≡ ££££££££££££££££££££££££££

The proof of $F ³ F($F) is left as an exercise. Hint: look at the occurrences
of r !

Any fixed point combinator can be used to make recursive definitions under
call-by-name reduction. Later, we shall modifyY to get a fixed point combinator
that works with a call-by-value interpreter for theλ-calculus. In practical com-
pilers, recursion should be implemented directly because fixed point combinators
are inefficient.

4.5 Head Normal Form

If M = x M then M has no normal form. For ifM ³ N whereN is in nor-
mal form, thenN = x N. Sincex N is also in normal form, the Church-Rosser
Theorem gives usN ≡ x N. But clearlyN cannot contain itself as a subterm!

By similar reasoning, ifM = P M thenM usually has no normal form, unless
P is something like a constant function or identity function. So anything defined
with the help of a fixed point combinator, such asfact , is unlikely to have a
normal form.

Although fact has no normal form, we can still compute with it;fact 5 does
have a normal form, namely 120. We can use infinite objects (including func-
tions as above, and also lazy lists) by computing with them for a finite time and
requesting a finite part of the result. To formalize this practice, let us define the
notion ofhead normal form(hnf).
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Definition 7 A term is inhead normal form(hnf) if and only if it looks like this:

λx1 . . . xm.yM1 . . .Mk (m, k ≥ 0)

Examples of terms in hnf include

x λx.yÄ λx y.x λz.z((λx.a)c)

But λy.(λx.a)y is not in hnf because it admits the so-calledhead reduction

λy.(λx.a)y→ λy.a.

Let us note some obvious facts. A term in normal form is also in head normal
form. Furthermore, if

λx1 . . . xm.yM1 . . .Mk ³ N

thenN musthave the form

λx1 . . . xm.yN1 . . . Nk

whereM1³ N1, . . . , Mk ³ Nk. Thus, a head normal form fixes the outer struc-
ture of any further reductions and the final normal form (if any!). And since the
argumentsM1, . . . , Mk cannot interfere with one another, they can be evaluated
independently.

By reducing a termM to hnf we obtain a finite amount of information about
the value ofM . By further computing the hnfs ofM1, . . . , Mk we obtain the next
layer of this value. We can continue evaluating to any depth and can stop at any
time.

For example, defineze≡ 2(pair 0). This is analogous tozeroes, but uses
pairs:ze= (0, (0, (0, . . . ))). We have

ze ³ pair 0ze

≡ (λxy f. f xy)0ze

³ λ f. f 0ze

³ λ f. f 0(λ f. f 0ze)

³ · · ·

With λ f. f 0ze we reached a head normal form, which we continued to reduce.
We havefst (ze) ³ 0 and fst ( snd(ze)) ³ 0, since the same reductions work
if ze is a function’s argument. These are examples of useful finite computations
involving an infinite value.
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Some terms do not even have a head normal form. RecallÄ, defined byÄ =
(λx.xx)(λx.xx). A term is reduced to hnf by repeatedly performing leftmost
reductions. WithÄ we can only doÄ→ Ä, which makes no progress towards an
hnf. Another term that lacks an hnf isλy.Ä; we can only reduceλy.Ä→ λy.Ä.

It can be shown that ifM N has an hnf then so doesM . Therefore, ifM has
no hnf then neither does any term of the formM N1N2 . . . Nk. A term with no hnf
behaves like atotally undefined function: no matter what you supply as arguments,
evaluation never returns any information. It is not hard to see that ifM has no hnf
then neither doesλx.M or M [N/x], so M really behaves like a black hole. The
only way to get rid ofM is by a reduction such as(λx.a)M → a. This motivates
the following definition.

Definition 8 A term is definedif and only if it can be reduced to head normal
form; otherwise it isundefined.

The exercises below, some of which are difficult, explore this concept more
deeply.

Exercise 6 Are the following terms defined? (HereK ≡ λxy.x.)

Y Y not K Y I xÄ Y K Y (K x) n

Exercise 7 A term M is calledsolvableif and only if there exist variablesx1,
. . . , xm and termsN1, . . . , Nn such that

(λx1 . . . xm.M)N1 . . . Nn = I .

Investigate whether the terms given in the previous exercise are solvable.

Exercise 8 Show that ifM has an hnf thenM is solvable. Wadsworth proved
that M is solvable if and only ifM has an hnf, but the other direction of the
equivalence is much harder.

4.6 Aside: An Explanation of Y

For the purpose of expressing recursion, we may simply exploitY F = F(Y F)
without asking why it holds. However, the origins ofY have interesting connec-
tions with the development of mathematical logic.

Alonzo Church invented theλ-calculus to formalize a new set theory. Bertrand
Russell had (much earlier) demonstrated the inconsistency of naive set theory. If
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we are allowed to construct the setR ≡ {x | x 6∈ x}, thenR ∈ R if and only if
R 6∈ R. This became known as Russell’s Paradox.

In his theory, Church encoded sets by their characteristic functions (equiva-
lently, as predicates). The membership testM ∈ N was coded by the application
N(M), which might be true or false. The set abstraction{x | P} was coded by
λx.P, whereP was someλ-term expressing a property ofx.

Unfortunately for Church, Russell’s Paradox was derivable in his system! The
Russell set is encoded byR ≡ λx.not (xx). This implied RR = not (RR),
which was a contradiction if viewed as a logical formula. In fact,RRhas no head
normal form: it is an undefined term likeÄ.

Curry discovered this contradiction. The fixed point equation forY follows
from RR= not (RR) if we replacenot by an arbitrary termF . Therefore,Y is
often called the Paradoxical Combinator.

Because of the paradox, theλ-calculus survives only as an equational theory.
Thetypedλ-calculus does not admit any known paradoxes and is used to formalize
the syntax of higher-order logic.

4.7 Summary: theλ-Calculus Versus Turing Machines

The λ-calculus can encode the common data structures, such as booleans and
lists, such that they satisfy natural laws. Theλ-calculus can also express recursive
definitions. Because the encodings are technical, they may appear to be unworthy
of study, but this is not so.

• The encoding of the natural numbers via Church numerals is valuable in
more advanced calculi, such as the second-orderλ-calculus.

• The encoding of lists via ordered pairs models their usual implementation
on the computer.

• As just discussed, the definition ofY formalizes Russell’s Paradox.

• Understanding recursive definitions as fixed points is the usual treatment in
semantic theory.

These constructions and concepts are encountered throughout theoretical com-
puter science. That cannot be said of any Turing machine program!

5 Theλ-Calculus and Computation Theory

Theλ-calculus is one of the classical models of computation, along with Turing
machines and general recursive functions.Church’s Thesisstates that the com-
putable functions are precisely those that areλ-definable. Below, we shall see that
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theλ-calculus has the same power as the (total) recursive functions. We shall also
see some strong undecidability results forλ-terms. The following definition is
fundamental.

Definition 9 If f is ann-place function over the natural numbers, thenf is λ-
definableif there exists someλ-term F such that, for allk1, . . . , kn ∈ N,

F k1 . . . kn = f (k1, . . . , kn) .

In other words,F maps numerals for arguments to numerals forf ’s results.
By the Church-Rosser Theorem, since numerals are in normal form, we have the
reduction

F k1 . . . kn ³ f (k1, . . . , kn) .

Thus, we can compute the value off (k1, . . . , kn) by normalizing the term
F k1 . . . kn .

5.1 The Primitive Recursive Functions

In computation theory, the primitive recursive functions are built up from the fol-
lowing basic functions:

0 the constant zero
suc the successor function
Ui

n the projection functions,Ui
n(x1, . . . , xn) = xi

New functions are constructed bysubstitutionandprimitive recursion. Sub-
stitution, or generalized composition, takes anm-place functiong and then-place
functionsh1, . . . , hm; it yields then-place functionf such that

f (x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)).

Primitive recursion takes ann-place functiong and an(n + 2)-place functionh;
it yields the(n+ 1)-place functionf such that

f (0, x1, . . . , xn) = g(x1, . . . , xn)

f ( suc(y), x1, . . . , xn) = h( f (y, x1, . . . , xn), y, x1, . . . , xn)

5.2 Representing the Primitive Recursive Functions

The functions are defined in theλ-calculus in the obvious way. The proof that they
are correct (with respect to our definition ofλ-definability) is left as an exercise.

Here are the basic functions:
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• For 0 use 0, namelyλ f x.x.

• For suc usesuc, namelyλn f x.n f ( f x).

• ForUi
n useλx1 . . . xn.xi .

To handle substitution, suppose that them-place functiong andn-place func-
tionsh1, . . . , hm areλ-defined byG, H1, . . . , Hm, respectively. Then, their com-
position f is λ-defined by

F ≡ λx1 . . . xn.G(H1x1 . . . xn) . . . (Hmx1 . . . xn).

To handle primitive recursion, suppose that then-place functiong and(n+2)-
place functionh areλ-defined byG andH , respectively. The primitive recursive
function f is λ-defined by

F ≡ Y
(
λ f yx1 . . . xn. if ( iszeroy)

(Gx1 . . . xn)

(H( f (pre y)x1 . . . xn)(pre y)x1 . . . xn))
)
.

5.3 The General Recursive Functions

Starting with the primitive recursive functions, the so-calledgeneral recursive
functionsare obtained by adding theminimisation operator, or function inversion.
Given ann-place functiong it yields then-place functionf such that

f (x1, . . . , xn) = the leasty such that [g(y, x2, . . . , xn) = x1]

and is undefined if no suchy exists.
Thus, minimisation may yield a partial function. This leads to certain difficul-

ties.

• The notion ofundefinedis complicated in theλ-calculus. It is tedious to
show that theλ-encoding of minimisation yields an undefined term if and
only if the corresponding function fails to terminate.

• Composition in theλ-calculus is non-strict. For example, consider the par-
tial functionsr ands such thatr (x) = 0 ands(x) is undefined for allx. We
mayλ-definer ands by R≡ λx.0 andS≡ λx.Ä. Now, r (s(0)) should be
undefined, butR(S0)→ 0. Defining the strict composition ofR andS is
tricky.
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Let us restrict attention to thetotal recursive functions. If for allx1, . . . , xn

there is somey such thatg(y, x2, . . . , xn) = x1, then the inverse ofg is total.
Suppose thatG is a term thatλ-definesg. Then the inverse isλ-defined by

F ≡ λx1 . . . xn.Y
(
λhy. if (equalsx1(Gyx2 . . . xn)

y

(h( sucy))
)

0

This sets up a recursive function that tests whether(Gyx2 . . . xn) equalsx1

for increasing values ofy. To start the search, this function is applied to 0. The
equality test for natural numbers can be defined in many ways, such as

equals≡ λm n. iszero(add(subm n)(subn m))

This works becausesubmn = 0 if m ≤ n. The equality relation between
arbitraryλ-terms (not just for Church numerals) is undecidable and cannot be
expressed in theλ-calculus.

Exercise 9 Find another definition of the equality test on the natural numbers.

5.4 Theλ-Definable Functions are Recursive

We have just shown that all total recursive functions areλ-definable. The converse
is not particularly difficult and we only sketch it. The key is to assign a unique (and
recursively computable!) G̈odel number #M to eachλ-termM . First, assume that
the set of variables has the formx1, x2, x3, . . . , so that each variable is numbered.
The definition of #M is quite arbitrary; for example, we could put

#xi = 2i

#(λxi .M) = 3i 5#M

#(M N) = 7#M11#N

To show that allλ-definable functions are recursive, suppose that we are given
a λ-term F ; we must find a recursive functionf such thatf (k1, . . . , kn) = k if
and only if F k1 . . . kn = k . We can do this in a uniform fashion by writing
an interpreter for theλ-calculus using the language of total recursive functions,
operating upon the G̈odel numbers ofλ-terms. This is simply a matter of pro-
gramming. The resulting program is fairly long but much easier to understand
than its Turing machine counterpart, namely the Universal Turing Machine.
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Exercise 10 (Composition of partial functions.) Show thatn I = I for every
Church numeraln . Use this fact to show that the termH defined by

H ≡ λx.G x I (F(G x))

λ-defines the compositionf ◦ g of the functionsf andg, providedF λ-definesf
andG λ-definesg. What can be said aboutH M if G M is undefined? Hint: recall
the definition ofsolvablefrom Exercise 7.

5.5 The Second Fixed Point Theorem

We shall formalize theλ-calculus in itself in order to prove some undecidability
results. The G̈odel numbering is easily coded and decoded by arithmetic opera-
tions. In particular, there exist computable functions Ap and Num, operating on
natural numbers, such that

Ap(#M,#N) = #(M N)

= 7#M11#N

Num(n) = #(n )

= #λx2 x1. x2(· · · (x2︸ ︷︷ ︸
n

x1) · · · )

These can beλ-defined by termsAP and NUM , operating on Church nu-
merals. Let us writepMq for (#M) , which is the Church numeral for the Gödel
number ofM . This itself is aλ-term. Using this notation,AP and NUM satisfy

AP pMqpNq = pM Nq
NUM n = pn q (wheren is any Church numeral)

PuttingpMq for n in the latter equation yields a crucial property:

NUM pMq = ppMqq.

Theorem 10 (Second Fixed Point)If F is anyλ-term then there exists a termX
such that

FpXq = X.

Proof Make the following definitions:

W ≡ λx.F(AP x(NUM x))

X ≡ WpWq
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Then, by aβ-reduction and by the laws forAP and NUM , we get

X → F(AP pWq(NUM pWq))
³ F(AP pWqppWqq)
³ F(pWpWqq)
≡ F(pXq)

ThereforeX = F(pXq). ut

Exercise 11 How do we know that the steps in the proof are actually reductions,
rather than mere equalities?

What was the First Fixed Point Theorem? IfF is anyλ-term then there ex-
ists a termX such thatF X = X. Proof: putX ≡ Y F . Note the similarity
betweenY F and theX constructed above. We use fixed point combinators toλ-
define recursive functions; we shall use the Second Fixed Point Theorem to prove
undecidability of the halting problem.

5.6 Undecidability Results for theλ-Calculus

We can show that the halting problem, as expressed in theλ-calculus, is undecid-
able.

Theorem 11 There is noλ-term halts such that

haltspMq =
{

true if M has a normal form
false if M has no normal form

Proof Assume the contrary, namely thathalts exists. Put

D ≡ λx. if (haltsx)Ä0 ;
by the Second Fixed Point Theorem, there existsX such that

X = DpXq = if (haltspXq)Ä0 .

There are two possible cases; both lead to a contradiction:

• If X has a normal form thenX = if true Ä0 = Ä, which has no normal
form!

• If X has no normal form thenX = if falseÄ0 = 0, which does have a
normal form!

ut
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The proof is a typical diagonalisation argument. The theorem is strong: al-
though haltspMq can do anything it likes with the code ofM , analysing the
term’s structure, it cannot determine whetherM has a normal form. Assuming
Church’s Thesis — the computable functions are precisely theλ-definable ones
— the theorem states that the halting problem for the normalization ofλ-terms is
computationally undecidable.

Much stronger results are provable. Dana Scott has shown that

• if A is anynon-trivial set ofλ-terms (which means thatA is neither empty
nor the set of allλ-terms), and

• if A is closed under equality (which means thatM ∈ A andM = N imply
N ∈ A)

then the test for membership inA is undecidable. The halting problem follows as
a special case, taking

A = {M | M = N andN is in normal form}

See Barendregt [1, page 143], for more information.

6 ISWIM: The λ-calculus as a Programming Lan-
guage

Peter Landin was one of the first computer scientists to take notice of theλ-
calculus and relate it to programming languages. He observed that Algol 60’s
scope rules and call-by-name rule had counterparts in theλ-calculus. In his pa-
per [8], he outlined a skeletal programming languages based on theλ-calculus.
The title referred to the 700 languages said to be already in existence; in principle,
they could all share the sameλ-calculus skeleton, differing only in their data types
and operations. Landin’s language, ISWIM (If you See What I Mean), dominated
the early literature on functional programming, and was the model for ML.

Lisp also takes inspiration from theλ-calculus, and appeared many years be-
fore ISWIM. But Lisp made several fatal mistakes: dynamic variable scoping,
an imperative orientation, and no higher-order functions. Although ISWIM al-
lows imperative features, Lisp is essentially an imperative language, because all
variables may be updated.

ISWIM was designed to be extended with application-specific data and oper-
ations. It consisted of theλ-calculus plus a few additional constructs, and could
be translated back into the pureλ-calculus. Landin called the extra constructs
syntactic sugarbecause they made theλ-calculus more palatable.



30 6 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

6.1 Overview of ISWIM

ISWIM started with theλ-calculus:

x variable
(λx.M) abstraction
(M N) application

It also allowed local declarations:

let x = M in N simple declaration
let f x1 · · · xk = M in N function declaration
letrec f x1 · · · xk = M in N recursive declaration

Local declarations could be post-hoc:

N where x = M
N where f x1 · · · xk = M
N whererec f x1 · · · xk = M

The meanings of local declarations should be obvious. They can be translated into
the pureλ-calculus:

let x = M in N ≡ (λx.N)M
let f x1 · · · xk = M in N ≡ (λ f.N)(λx1 · · · xk.M)
letrec f x1 · · · xk = M in N≡ (λ f.N)(Y (λ f x1 · · · xk.M))

Programmers were not expected to encode data using Church numerals and the
like. ISWIM provided primitive data structures: integers, booleans and ordered
pairs. There being no type system, lists could be constructed by repeated pairing,
as in Lisp. The constants included

0 1−1 2−2 . . . integers
+ − × / arithmetic operators
= 6= < > ≤ ≥ relational operators
true false booleans
and or not boolean connectives
if E then M elseN conditional

6.2 Call-by-value in ISWIM

Thecall-by-valuerule, rather thancall-by-name, was usually adopted. This was
(and still is) easier to implement; we shall shortly see how this was done, using
the SECD machine. Call-by-value is indispensable in the presence of imperative
operations.
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Call-by-value gives more intuitive and predictable behaviour generally. Clas-
sical mathematics is based on strict functions; an expression is undefined unless
all its parts are defined. Under call-by-name we can define a functionf such that
if f (x) = 0 for all x, with even f (1/0) = 0. Ordinary mathematics cannot cope
with such functions; putting them on a rigorous basis requires complex theories.

Under call-by-value,if -then-elsemust be taken as a special form of expres-
sion. Treatingif as a function makesfact run forever:

letrec fact(n) = if (n= 0) 1 (n× fact(n− 1))

The arguments toif are always evaluated, including the recursive call; whenn =
0 it tries to computefact(−1). Therefore, we take conditional expressions as
primitive, with evaluation rules that returnM or N unevaluated:

if E then M elseN → M

if E then M elseN → N

Our call-by-value rule never reduces anything enclosed by aλ. So we can
translate the conditional expression to the application of anif -function:

if E then M elseN ≡ if E (λu.M) (λu.N) 0

Choosing some variableu not free inM or N, enclosing those expressions inλ
delays their evaluation; finally, the selected one is applied to 0.

6.3 Pairs, Pattern-Matching and Mutual Recursion

ISWIM includes ordered pairs:

(M, N) pair constructor
fst snd projection functions

For pattern-matching, letλ(p1, p2).E abbreviate

λz.(λp1 p2.E)( fst z)( sndz)

wherep1 and p2 may themselves be patterns. Thus, we may write

let (x, y) = M in E taking apartM ’s value
let f (x, y) = E in N defining f on pairs

The translation iterates to handle things like

let (w, (x, (y, z))) = M in E.
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We may introducen-tuples, writing(x1, . . . , xn−1, xn) for the nested pairs

(x1, . . . , (xn−1, xn) . . . ).

The mutually recursive function declaration

letrec f1 Ex1 = M1

and f2 Ex2 = M2
...

and fk Exk = Mk

in N

can be translated to an expression involving pattern-matching:

(λ( f1, . . . , fk).N)(Y (λ( f1, . . . , fk).(λEx1.M1, λEx2.M2, . . . , λExk.Mk)))

We can easily handle the general case ofk mutually recursive functions, each with
any number of arguments. Observe the power of syntactic sugar!

6.4 From ISWIM to ML

Practically all programming language features, including go to statements and
pointer variables, can be formally specified in theλ-calculus, using the techniques
of denotational semantics. ISWIM is much simpler than that; it is programming
directly in theλ-calculus. To allow imperative programming, we can even define
sequential execution, lettingM; N abbreviate(λx.N)M ; the call-by-value rule
will evaluateM beforeN. However, imperative operations must be adopted as
primitive; they cannot be defined by simple translation into theλ-calculus.

ISWIM gives us all the basic features of a programming language — variable
scope rules, function declarations, and local declarations. (Thelet declaration is
particularly convenient; many languages still make us write assignments for this
purpose!) To get a real programming language, much more needs to be added, but
the languages so obtained will have a common structure.

ISWIM was far ahead of its time and never found mainstream acceptance. Its
influence on ML is obvious. Standard ML has changed the syntax of declarations,
added polymorphic types, exceptions, fancier pattern-matching and modules —
but much of the syntax is still defined by translation. A French dialect of ML,
called CAML, retains much of the traditional ISWIM syntax [3].

6.5 The SECD Machine

Landin invented the SECD machine, an interpreter for theλ-calculus, in order to
execute ISWIM programs [2, 4, 7]. A variant of the machine executes instructions
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compiled fromλ-terms. With a few optimisations, it can be used to implement
real functional languages, such as ML. SECD machines can be realized as byte-
code interpreters, their instructions can be translated to native code, and they can
be implemented directly on silicon. The SECD machine yields strict evaluation,
call-by-value. A lazy version is much slower than graph reduction of combinators,
which we shall consider later.

It is tempting to say that avalueis any fully evaluatedλ-term, namely a term
in normal form. This is a poor notion of value in functional programming, for two
reasons:

1. Functions themselves should be values, but many functions have no nor-
mal form. Recursive functions, coded asY F , satisfy Y F = F(Y F) =
F(F(Y F)) = · · · . Although they have no normal form, they may well
yield normal forms as results when they are applied to arguments.

2. Evaluating the body of aλ-abstraction, namely theM in λx.M , serve little
purpose; we are seldom interested in the internal structure of a function.
Only when it is applied to some argumentN do we demand the result and
evaluateM [N/x].

Re (2), we clearly cannot use encodings likeλx y.x for true andλ f x.x for
0, since our evaluation rule will not reduce function bodies. We must take the
integers, booleans, pairs, etc., as primitive constants. Their usual functions (+,−,
×, . . . ) must also be primitive constants.

6.6 Environments and Closures

Consider the reduction sequence

(λxy.x + y)3 5→ (λy.3+ y)5→ 3+ 5→ 8.

Theβ-reduction eliminates the free occurrence ofx in λy.x + y by substitution
for x. Substitution is too slow to be effective for parameter passing; instead, the
SECD machine recordsx = 3 in anenvironment.

With curried functions,(λxy.x + y)3 is a legitimate value. The SECD ma-
chine represents it by aclosure, packaging theλ-abstraction with its current envi-
ronment:

Clo( y
↑

bound variable

, x + y
↑

function body

, x = 3
↑

environment

)

When the SECD machine applies this function value to the argument 5, it restores
the environment tox = 3, adds the bindingy = 5, and evaluatesx + y in this
augmented environment.
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A closure is so-called because it “closes up” the function body over its free
variables. This operation is costly; most programming languages forbid using
functions as values. Until recently, most versions of Lisp let a function’s free
variables pick up any values they happened to have in the environment of the call
(not that of the function’s definition!); with this approach, evaluating

let g(y) = x + y in
let f (x) = g(1) in
f (17)

would return 18, using 17 as the value ofx in g! This is dynamic binding, as
opposed to the usualstatic binding. Dynamic binding is confusing because the
scope ofx in f (x) can extend far beyond the body off — it includes all code
reachable fromf (includingg in this case).

Common Lisp, now the dominant version, corrects this long-standing Lisp
deficiency by adopting static binding as standard. It also allows dynamic binding,
though.

6.7 The SECD State

The SECD machine has a state consisting of four componentsS, E, C, D:

1. TheStackis a list of values, typically operands or function arguments; it
also returns the result of a function call.

2. TheEnvironmenthas the formx1 = a1; · · · ; xn = an, expressing that the
variablesx1, . . . , xn have the valuesa1, . . . ,an, respectively.

3. TheControl is a list of commands. For the interpretive SECD machine, a
command is aλ-term or the wordapp; the compiled SECD machine has
many commands.

4. The Dump is empty (−) or is another machine state of the form
(S, E,C, D). A typical state looks like

(S1, E1,C1, (S2, E2,C2, . . . (Sn, En,Cn,−) . . . ))

It is essentially a list of triples(S1, E1,C1), (S2, E2,C2), . . . , (Sn, En,Cn)

and serves as the function call stack.
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6.8 State Transitions

Let us write SECD machine states as boxes:

Stack
Environment

Control
Dump

To evaluate theλ-term M , the machine begins execution an theinitial state
whereM is the Control:

S −
E −
C M
D −

If the Control is non-empty, then its first command triggers a state transition.
There are cases for constants, variables, abstractions, applications, and theapp
command.

A constant is pushed on to the Stack:

S
E

k;C
D

7−→
k; S
E
C
D

The value of a variable is taken from the Environment and pushed on to the
Stack. If the variable isx andE containsx = a thena is pushed:

S
E

x;C
D

7−→
a; S
E
C
D

A λ-abstraction is converted to a closure, then pushed on to the Stack. The
closure contains the current Environment:

S
E

λx.M;C
D

7−→
Clo(x,M, E); S

E
C
D
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A function application is replaced by code to evaluate the argument and the
function, with an explicitapp instruction:

S
E

M N;C
D

7−→
S
E

N;M;app;C
D

Theapp command calls the function on top of the Stack, with the next Stack
element as its argument. A primitive function, like+ or ×, delivers its result
immediately:

f ;a; S
E

app;C
D

7−→
f (a); S

E
C
D

The closureClo(x,M, E′) is called by creating a new state to evaluateM in
the EnvironmentE′, extended with a binding for the argument. The old state is
saved in the Dump:

Clo(x,M, E′);a; S
E

app;C
D

7−→
−

x = a; E′
M

(S, E,C, D)

The function call terminates in a state where the Control is empty but the
Dump is not. To return from the function, the machine restores the state
(S, E,C, D) from the Dump, then pushesa on to the Stack. This is the following
state transition:

a
E′
−

(S, E,C, D)

7−→
a; S
E
C
D

The result of the evaluation, saya, is obtained from afinal statewhere the
Control and Dump are empty, anda is the sole value on the Stack:

S a
E −
C −
D −
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6.9 A Sample Evaluation

To demonstrate how the SECD machine works, let us evaluate the expres-
sion twice sqr 3, where twice is λ f x. f ( f x) and sqr is a built-in squaring
function. (Note thattwice is just the Church numeral 2). We start from the
initial state:

−
−

twice sqr 3
−

applic7−→
−
−

3; twice sqr ;app
−

const7−→
3
−

twice sqr ;app
−

applic7−→

3
−

sqr ; twice;app;app
−

const7−→
sqr ;3
−

twice;app;app
−

abstr7−→

Clo( f, λx. f ( f x),−); sqr ;3
−

app;app
−

app7−→
−

f = sqr
λx. f ( f x)

(3,−,app,−)

abstr7−→

Clo(x, f ( f x), f = sqr )
f = sqr
−

(3,−,app,−)

return7−→
Clo(x, f ( f x), f = sqr );3

−
app
−

app7−→

−
x = 3; f = sqr

f ( f x)
(−,−,−,−)

applic7−→
−

x = 3; f = sqr
f x; f ;app
(−,−,−,−)

applic7−→

−
x = 3; f = sqr

x; f ;app; f ;app
(−,−,−,−)

var7−→
3

x = 3; f = sqr
f ;app; f ;app
(−,−,−,−)

var7−→
sqr ;3

x = 3; f = sqr
app; f ;app
(−,−,−,−)

apply7−→

9
x = 3; f = sqr

f ;app
(−,−,−,−)

var7−→
sqr ;9

x = 3; f = sqr
app

(−,−,−,−)

app7−→
81

x = 3; f = sqr
−

(−,−,−,−)

return7−→
81
−
−
−
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The machine terminates in a final state, giving a value of 81.

6.10 The Compiled SECD Machine

It takes 17 steps to evaluate((λx y.x+ y)3)5! Much faster execution is obtained
by first compiling theλ-term. Write [[M ]] for the list of commands produced by
compiling M ; there are cases for each of the four kinds ofλ-term.

Constants are compiled to theconstcommand, which will (during later exe-
cution of the code) push a constant onto the Stack:

[[k]] = const(k)

Variables are compiled to thevar command, which will push the variable’s
value, from the Environment, onto the Stack:

[[x]] = var(x)

Abstractions are compiled to theclosurecommand, which will push a closure
onto the Stack. The closure will include the current Environment and will holdM
as a list of commands, from compilation:

[[λx.M ]] = closure(x, [[ M ]])

Applications are compiled to theapp command at compile time. Under the
interpreted SECD machine, this work occurred at run time:

[[ M N]] = [[ N]] ; [[ M ]] ;app

We could add further instructions, say forconditionals. Let test(C1,C2) be
replaced byC1 or C2, depending upon whether the value on top of the Stack is
true or false:

[[ if E then M elseN]] = [[ E]] ; test([[ M ]] , [[ N]])

To allow built-in 2-place functions such as+ and× could be done in several
ways. Those functions could be made to operate upon ordered pairs, constructed
using apair instruction. More efficient is to introduce arithmetic instructions
such asadd and mult , which pop both their operands from the Stack. Now
((λx y.x + y)3)5 compiles to

const(5); const(3); closure(x,C0);app;app

and generates two further lists of commands:

C0 = closure(y,C1)

C1 = var(y); var(x); add
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Many further optimisations can be made, leading to an execution model quite
close to conventional hardware. Variable names could be removed from the Envi-
ronment, and bound variables referred to by depth rather than by name. Special
instructionsenter andexit could efficiently handle functions that are called imme-
diately (say, those created by the declarationletx = NinM), creating no closure:

[[(λx.M)N]] = [[ N]] ;enter; [[ M ]] ;exit

Tail recursive (sometimes callediterative) function calls could be compiled to
thetailapp command, which would cause the following state transition:

Clo(x,C, E′);a
E

tailapp
D

7−→
−

x = a; E′
C
D

The useless state(−, E,−, D) is never stored on the dump, and the function
return aftertailapp is never executed — the machine jumps directly toC!

6.11 Recursive Functions

The usual fixed point combinator,Y , fails under the SECD machine; it always
loops. A modified fixed point combinator, including extraλ’s to delay evaluation,
does work:

λ f.(λx. f (λy.x x y)(λy.x x y))

But it is hopelessly slow! Recursive functions are best implemented by creating a
closure with a pointer back to itself.

Suppose thatf (x) = M is a recursive function definition. The value off is
represented byY (λ f x.M). The SECD machine should interpretY (λ f x.M) in
a special manner, applying the closure forλ f x.M to a dummy value,⊥. If the
current Environment isE then this yields the closure

Clo(x, M, f = ⊥; E)
Then the machine modifies the closure, replacing the⊥ by a pointer looping back
to the closure itself:

Clo(x, M, f = ·; E)
When the closure is applied, recursive calls tof in M will re-apply the same
closure. The cyclic environment supports recursion efficiently.
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The technique is called “tying the knot” and works only for function defini-
tions. It does not work for recursive definitions of data structures, such as the
infinite list [0,0,0, . . . ], defined asY (λl . cons0 l ). Therefore strict languages
like ML allow only functions to be recursive.

7 Lazy Evaluation via Combinators

The SECD machine employs call-by-value. It can be modified for call-by-need
(lazy evaluation), as follows. When a function is called, its argument is stored
unevaluatedin a closure containing the current environment. Thus, the callM N
is treated something likeM(λu.N), whereu does not appear inN. This closure
is called asuspension. When a strict, built-in function is called, such as+, its
argument is evaluated in the usual way.

It is essential that no argument be evaluated more than once, no matter how
many times it appears in the function’s body:

let sqr n= n× n in N
sqr(sqr(sqr 2))

If this expression were evaluated by repeatedly duplicating the argument ofsqr,
the waste would be intolerable. Therefore, the lazy SECD machine updates the
environment with the value of the argument, after it is evaluated for the first time.
But the cost of creating suspensions makes this machine ten times slower than the
strict SECD machine, according to David Turner, and compilation can give little
improvement.

7.1 Graph Reduction in theλ-Calculus

Another idea is to work directly withλ-terms, using sharing and updating to en-
sure that no argument is evaluated more than once. For instance, the evaluation of
(λn.n× n)M might be represented by thegraph reduction

mult n

n

M

mult M
nλ
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The difficulty here is thatλ-abstractions may themselves be shared. We may
not modify the body of the abstraction, replacing the bound variable by the ac-
tual argument. Instead, we must copy the body — including parts containing no
occurrence of the bound variable — when performing the substitution.

Both the lazy SECD machine and graph reduction ofλ-terms suffer because of
the treatment of bound variables. Combinators have the same expressive power as
theλ-calculus, but no bound variables. Graph reduction in combinators does not
require copying. David Turner found an efficient method of translatingλ-terms
into combinators, for evaluation by graph reduction [9]. Offshoots of his methods
have been widely adopted for implementing lazy functional languages.

7.2 Introduction to Combinators

In the simplest version, there are only two combinators,K and S. Combinators
are essentially constants. It is possible to defineK and S in theλ-calculus, but
combinatory logic (CL) exists as a theory in its own right.2

The terms of combinatory logic, writtenP, Q, R, . . . , are built from K
and S using application. They may contain free variables, but no bound variables.
A typical CL term is K x(S K x)(K S K y)S. Although CL is not particularly
readable, it is powerful enough to code all the computable functions!

The combinators obey the following reductions:

K P Q →w P
S P Q R →w P R(Q R)

Thus, the combinators could have been defined in theλ-calculus by

K ≡ λx y.x

S ≡ λx y z.x z(y z)

But note thatS K does not reduce — becauseS requires three arguments —
while the correspondingλ-term does. For this reason, combinator reduction is
known asweak reduction(hence the “w” in→w).

Here is an example of weak reduction:

S K K P→w K P(K P)→w P

Thus S K K P ³w P for all combinator termsP; let us define the identity com-
binator by I ≡ S K K .

Many of the concepts of theλ-calculus carry over to combinators. A com-
binator termP is in normal formif it admits no weak reductions. Combinators

2It is called combinatory logic for historical reasons; we shall not treat it as a logic.
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satisfy a version of the Church-Rosser Theorem: ifP = Q (by any number of
reductions, forwards or backwards) then there exists a termZ such thatP ³w Z
andQ³w Z.

7.3 Abstraction on Combinators

Any λ-term may be transformed into a roughly equivalent combinatory term. (The
meaning of “roughly” is examined below.) The key is the transformation of a com-
binatory termP into another combinator term, written asλ∗x.P since it behaves
like aλ-abstraction.3

Definition 12 The operationλ∗x, wherex is a variable, is defined recursively as
follows:

λ∗x.x ≡ I
λ∗x.P ≡ K P (x not free inP)
λ∗x.P Q ≡ S(λ∗x.P)(λ∗x.Q)

Finally, λ∗x1 . . . xn.P abbreviatesλ∗x1.(. . . λ
∗xn.P . . . ).

Note thatλ∗x is not part of the syntax of combinatory logic, but stands for
the term constructed as according to the definition above. Here is an example of
combinatory abstraction:

λ∗x y.y x ≡ λ∗x.(λ∗y.y x)

≡ λ∗x.S(λ∗y.y)(λ∗y.x)
≡ λ∗x.(S I )(K x)

≡ S(λ∗x.S I )(λ∗x.K x)

≡ S(K (S I ))(S(λ∗x.K )(λ∗x.x))
≡ S(K (S I ))(S(K K ) I )

Eachλ∗ candoublethe number of applications in a term; in general, growth is
exponential. Turner discovered a better abstraction method, discussed in the next
section. First, let us show that combinatory abstraction behaves like itsλ-calculus
cousin. Let FV be defined for combinatory terms in an analogous manner to
Definition 3.

Theorem 13 For every combinatory termP we have

FV(λ∗x.P) = FV(P)− {x}
(λ∗x.P)x ³w P

3Some authors write [x] P for λ∗x.P.
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Proof We prove both properties independently, by structural induction onP.
There are three cases.

If P is the variablex, thenλ∗x.x ≡ I . Clearly

FV(λ∗x.x) = FV( I ) = ∅ = FV(x)− {x}
(λ∗x.x)x ≡ I x ³w x

If P is any term not containingx, thenλ∗x.P ≡ K P and

FV(λ∗x.P) = FV(K P) = FV(P)

(λ∗x.P)x ≡ K Px→w P

If P ≡ Q R, andx is free inQ or R, thenλ∗x.P ≡ S(λ∗x.Q)(λ∗x.R). This
case is the inductive step and we may assume, as induction hypotheses, that the
theorem holds forQ andR:

FV(λ∗x.Q) = FV(Q)− {x}
FV(λ∗x.R) = FV(R)− {x}
(λ∗x.Q)x ³w Q

(λ∗x.R)x ³w R

We now consider the set of free variables:

FV(λ∗x.Q R) = FV(S(λ∗x.Q)(λ∗x.R))
= (FV(Q)− {x})

⋃
(FV(R)− {x})

= FV(Q R)− {x}
Finally, we consider application:

(λ∗x.P)x ≡ S(λ∗x.Q)(λ∗x.R)x
→w (λ∗x.Q)x((λ∗x.R)x)
³w Q((λ∗x.R)x)
³w Q R

ut
Using(λ∗x.P)x ³w P, we may derive an analogue ofβ-reduction for com-

binatory logic. We also get a strong analogue ofα-conversion — changes in the
abstraction variable are absolutely insignificant, yielding identical terms.

Theorem 14 For all combinatory termsP and Q,

(λ∗x.P)Q ³w P[Q/x]

λ∗x.P ≡ λ∗y.P[y/x] if y 6∈ FV(P)

Proof Both statements are routine structural inductions; the first can also be de-
rived from the previous theorem by a general substitution theorem [1]. ut
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7.4 The Relation Betweenλ-Terms and Combinators

The mapping( )C L converts aλ-term into a combinator term. It simply appliesλ∗
recursively to all the abstractions in theλ-term; note that the innermost abstrac-
tions are performed first! The inverse mapping,( )λ, converts a combinator term
into aλ-term.

Definition 15 The mappings( )C L and( )λ are defined recursively as follows:

(x)C L ≡ x

(M N)C L ≡ (M)C L(N)C L

(λx.M)C L ≡ λ∗x.(M)C L

(x)λ ≡ x

(K )λ ≡ λx y.x

(S)λ ≡ λx y z.x z(y z)

(P Q)λ ≡ (P)λ(Q)λ

Different versions of combinatory abstraction yield different versions of( )C L;
the present one causes exponential blow-up in term size, but it is easy to reason
about. Let us abbreviate(M)C L asMC L and(P)λ as Pλ. It is easy to check that
( )C L and( )λ do not add or delete free variables:

FV(M) = FV(MC L) FV(P) = FV(Pλ)

Equality is far more problematical. The mappings do give a tidy correspon-
dence between theλ-calculus and combinatory logic, provided we assume the
principle ofextensionality. This asserts that two functions are equal if they return
equal results for every argument value. In combinatory logic, extensionality takes
the form of a new rule for proving equality:

Px = Qx

P = Q
(x not free inP or Q)

In theλ-calculus, extensionality can be expressed by a similar rule or by introduc-
ing η-reduction:

λx.Mx→η M (x not free inM)

Assuming extensionality, the mappings preserve equality [1]:

(MC L)λ = M in theλ-calculus

(Pλ)C L = P in combinatory logic

M = N ⇐⇒ MC L = NC L

P = Q ⇐⇒ Pλ = Qλ
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Normal forms and reductions are not preserved. For instance,S K is a normal
form of combinatory logic; no weak reductions apply to it. But the corresponding
λ-term is not in normal form:

(S K )λ ≡ (λx y z.x z(y z))(λx y.x)³ λy z.z

There are even combinatory terms in normal form whose correspondingλ-term
has no normal form! Even where both terms follow similar reduction sequences,
reductions in combinatory logic have much finer granularity than those in the
λ-calculus; consider how many steps are required to simulate aβ-reduction in
combinatory logic.

Normal forms are the outputs of functional programs; surely, they ought to
be preserved. Reduction is the process of generating the outputs. Normally we
should not worry about this, but lazy evaluation has to deal with infinite outputs
that cannot be fully evaluated. Thus, the rate and granularity of reduction is im-
portant. Despite the imperfect correspondence betweenλ-terms and combinators,
compilers based upon combinatory logic appear to work. Perhaps the things not
preserved are insignificant for computational purposes. More research needs to be
done in the operational behaviour of functional programs.

8 Compiling Methods Using Combinators

Combinator abstraction gives us a theoretical basis for removing variables from
λ-terms, and will allow efficient graph reduction. But first, we require a mapping
from λ-terms to combinators that generates more compact results. Recall thatλ∗
causes exponential blowup:

λ∗x y.y x ≡ S(K (S I ))(S(K K ) I )

The improved version of combinatory abstraction relies on two new combina-
tors, B and C , to handle special cases ofS:

B P Q R →w P(Q R)
C P Q R →w P R Q

Note thatB P Q Ryields the function composition ofP and Q. Let us call the
new abstraction mappingλT , after David Turner, its inventor:

λT x.x ≡ I
λT x.P ≡ K P (x not free inP)
λT x.P x ≡ P (x not free inP)
λT x.P Q ≡ B P(λT x.Q) (x not free inP)
λT x.P Q ≡ C (λT x.P)Q (x not free inQ)
λT x.P Q ≡ S(λT x.P)(λT x.Q) (x free in P andQ)
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AlthoughλT is a bit more complicated thanλ∗, it generates much better code
(i.e. combinators). The third case, forP x, takes advantage of extensionality; note
its similarity toη-reduction. The next two cases abstract overP Q according to
whether or not the abstraction variable is actually free inP or Q. Let us do our
example again:

λT x y.y x ≡ λT x.(λT y.y x)

≡ λT x.C (λT y.y)x

≡ λT x.C I x

≡ C I

The size of the generated code has decreased by a factor of four! Here is another
example, from Paper 6 of the 1993 Examination. Let us translate theλ-encoding
of the ordered pair operator:

λT x.λT y.λT f. f x y ≡ λT x.λT y.C (λT f. f x) y

≡ λT x.λT y.C (C (λT f. f ) x) y

≡ λT x.λT y.C (C I x) y

≡ λT x.C (C I x)

≡ B C (λT x.C I x)

≡ B C (C I ).

Unfortunately,λT can still cause a quadratic blowup in code size; additional
primitive combinators should be introduced (See Field and Harrison [4, page 286].
Furthermore, all the constants of the functional language — numbers, arithmetic
operators,. . . — must be taken as primitive combinators.

Introducing more and more primitive combinators makes the code smaller and
faster. This leads to the method ofsuper combinators, where the set of primitive
combinators is extracted from the program itself.

Exercise 12 Show B P I = P using extensionality.

Exercise 13 Verify that C I behaves like theλ-termλx y.y x when applied to
two arguments.

Exercise 14 What wouldλT x y.y x yield if we did not apply the third case in
the definition ofλT?
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8.1 Combinator Terms as Graphs

Consider the ISWIM program

let sqr(n) = n× n in sqr(5)

Let us translate it to combinators:

(λT f. f 5)(λTn.mult n n) ≡ C I 5(S(λTn.mult n)(λTn.n))

≡ C I 5(S mult I )

This is aclosedterm — it contains no free variables (and no bound variables, of
course). Therefore it can be evaluated by reducing it to normal form.

Graph reduction works on the combinator term’s graph structure. This resem-
bles a binary tree with branching at each application. The graph structure for
C I 5(S mult I ) is as follows:

C I

5

S mult

I

Repeated arguments cause sharing in the graph, ensuring that they are never
evaluated more than once.

8.2 The Primitive Graph Transformations

Graph reduction deals with terms that contain no variables. Each term, and its
subterms, denote constant values. Therefore we may transform the graphs de-
structively — operands are never copied. The graph isreplacedby its normal
form!

The primitive combinators reduce as shown in Figure 1. The sharing in the
reduction forS is crucial, for it avoids copyingR.

We also require graph reduction rules for the built-in functions, such asmult .
Becausemult is a strict function, the graph formult P Q can only be reduced
after P andQ have been reduced to numeric constantsm andn. Then mult m n
is replaced by the constant whose value ism× n. Graph reduction proceeds by
walking down the graph’s leftmost branch, seeking something to reduce. If the
leftmost symbol is a combinator likeI , K , S, B , or C , with the requisite num-
ber of operands, then it applies the corresponding transformation. If the leftmost
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I P
P

K P

Q
P

S P

Q

R

P Q

R

B P

Q

R

RQ

P

C P

Q

R

P

Q

R

Figure 1: Graph reduction for combinators
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C I

5

S mult

I
I

5

S mult

I

5

S mult

I

5

mult I

5
mult

25

Figure 2: A graph reduction sequence

symbol is a strict combinator likemult , then it recursively traverses the operands,
attempting to reduce them to numbers.

Figure 2 presents the graph reduction sequence for the ISWIM program

let sqr(n) = n× n in sqr(5).
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The corresponding term reductions are as follows:

C I 5(S mult I ) → I (S mult I )5

→ S mult I 5

→ mult 5( I 5)

→ mult 5 5

→ 25

Clearly visible in the graphs, but not in the terms, is that the two copies of 5 are
shared. If, instead of 5, the argument ofsqr had been a large combinatory termP
compiled from the program, thenP would have been evaluated only once. Graph
reduction can also discard terms by the ruleK P Q →w P; here Q is never
evaluated.

8.3 Booleans and Pairing

The λ-calculus encodings of ordered pairs, Church numerals and so forth work
with combinators, but are impractical to use for compiling a functional language.
New combinators and new reductions are introduced instead.

With lazy evaluation, if-then-else can be treated like a function, with the two
reductions

if true P Q →w P

if false P Q →w Q.

These reductions discardP or Q if it is not required; there is no need for tricks to
delay their evaluation. The first reduction operates on graphs as shown.

Q

if true

P

P

Pairing is also lazy, as it is in theλ-calculus; we introduce the reductions

fst (pair P Q) →w P

snd(pair P Q) →w Q.

The corresponding graph reductions should be obvious:
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fst

pair

Q

P

P

8.4 Recursion: Cyclic Graphs

Translating Y into combinator form will work, yielding a mult-step reduction
resembling4

Y P

Y
P

This is grossly inefficient;Y must repeat its work at every recursive invoca-
tion! Instead, takeY as a primitive combinator satisfyingY P→w P(Y P) and
adopt a graph reduction rule that replaces theY by acycle:

Y P P

SinceP is never copied, reductions that occur in it yield permanent simplifi-
cations — they are not repeated when the function is entered recursively.

To illustrate this, consider the ISWIM program

letrec from(n) = pair n(from(1+ n)) in from(1).

The result should be the infinite list(1, (2, (3, . . . ))). We translatefrom into com-
binators, starting with

Y (λT f n.pair n( f (add1n))

and obtain (verify this)

Y (B (S pair )(C B (add1)))

Figures 3 and 4 give the graph reductions. A cyclic node, labelledθ , quickly
appears. Its rather tortuous transformations generate a recursive occurrence of

4The picture is an over-simplification; recall that we do not haveY P ³ P(Y P)!
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from deeper in the graph. The series of reductions presumes that the environment
is demanding evaluation of the result; in lazy evaluation, nothing happens until it
is forced to happen.

Graph reduction will leave the termadd1 1 unevaluated until something de-
mands its value; the result offrom(1) is really(1, (1+1, (1+1+1, . . . ))). Graph
reduction works a bit like macro expansion. Non-recursive function calls get ex-
panded once and for all the first time they are encountered; thus, programmers are
free to define lots of simple functions in order to aid readability. Similarly, con-
stant expressions are evaluated once and for all when they are first encountered.
Although this behaviour avoids wasteful recomputation, it can cause the graph to
grow and grow, consuming all the store — aspace leak. The displayed graph
reduction illustrates how this could happen.

Exercise 15 TranslateY to combinators and do some steps of the reduction of
Y P.
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B

B

Y

1

S pair C B add 1

1

S pair C B add 1

from

1

S pair

C B add 1

from

Figure 3: Reductions involving recursion
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pair 1

S pair

from

B add 1

1

fromB

C

pair

add 1

from

add 1

1
pair

Figure 4: Reductions involving recursion (continued)
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Abstract. We describe lambda calculus reduction strategies, such as
call-by-value, call-by-name, normal order, and applicative order, using
big-step operational semantics. We show how to simply and efficiently
trace such reductions, and use this in a web-based lambda calculus re-
ducer available at 〈http://www.dina.kvl.dk/˜sestoft/lamreduce/〉.

1 Introduction

The pure untyped lambda calculus is often taught as part of the computer sci-
ence curriculum. It may be taught in a computability course as a classical com-
putation model. It may be taught in a semantics course as the foundation for
denotational semantics. It may be taught in a functional programming course
as the archetypical minimal functional programming language. It may be taught
in a programming language course for the same reason, or to demonstrate that
a very small language can be universal, e.g. can encode arithmetics (as well as
data structures, recursive function definitions and so on), using encodings such
as these:

two ≡ λf.λx.f(fx)
four ≡ λf.λx.f(f(f(fx)))

add ≡ λm.λn.λf.λx.mf(nfx)
(1)

This paper is motivated by the assumption that to appreciate the operational
aspects of pure untyped lambda calculus, students must experiment with it, and
that tools encourage experimentation with encodings and reduction strategies
by making it less tedious and more fun.

In this paper we describe a simple way to create a tool for demonstrating
lambda calculus reduction. Instead of describing a reduction strategy by a pro-
cedure for locating the next redex to be contracted, we describe it by a big-step
operational semantics. We show how to trace the β-reductions performed during
reduction.

To do this we also precisely define and clarify the relation between program-
ming language concepts such as call-by-name and call-by-value, and lambda cal-
culus concepts such as normal order reduction and applicative order reduction.
These have been given a number of different interpretations in the literature.

In T. Mogensen, D. Schmidt, I. H. Sudburough (editors): The Essence of Computation:

Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones. Lecture

Notes in Computer Science 2566, pages 420-435. Springer-Verlag 2002.



2 Motivation and Related Work

Much has been written about the lambda calculus since Church developed it
as a foundation for mathematics [6]. Landin defined the semantics of program-
ming languages in terms of the lambda calculus [11], and gave a call-by-value
interpreter for it: the secd-machine [10]. Strachey used lambda calculus as a
meta-language for denotational semantics, and Scott gave models for the pure
untyped lambda calculus, making sure that self-application could be assigned a
meaning; see Stoy [22]. Self-application (x x) of a term x is used when encoding
recursion, for instance in Church’s Y combinator:

Y ≡ λh.(λx.h (x x)) (λx.h (x x)) (2)

Plotkin studied the call-by-value lambda calculus corresponding to the func-
tional language iswim [12] implemented by Landin’s secd-machine, and also a
related call-by-name lambda calculus, and observed that one characteristic of a
functional programming language was the absence of reduction under lambda
abstractions [19].

Barendregt [4] is the standard reference on the untyped lambda calculus,
with emphasis on models and proof theory, not programming languages.

Many textbooks on functional programming or denotational semantics present
the pure untyped lambda calculus, show how to encode numbers and algebraic
data types, and define evaluators for it. One example is Paulson’s ML textbook
[16], which gives interpreters for call-by-name as well as call-by-value.

So is there really a need for yet another paper on lambda calculus reduction?
We do think so, because it is customary to look at the lambda calculus either
from the programming language side or from the calculus or model side, leaving
the relations between the sides somewhat unclear.

For example, Plotkin [19] defines call-by-value reduction as well as call-by-
name reduction, but the call-by-name rules take free variables into account only
to a limited extent. By the rules, x ((λz.z) v) reduces to x v, but (x y) ((λz.z) v)
does not reduce to x y v [19, page 146]. Similarly, the call-by-value strategy de-
scribed by Felleisen and Hieb using evaluation contexts [8, Section 2] would not
reduce (x y) ((λz.z) v) to x y v, since there is no evaluation context of the form
(x y) [ ]. This is unproblematic because, following Landin, these researchers were
interested only in terms with no free variables, and in reduction only outside
lambda abstractions.

But it means that the reduction rules are not immediately useful for terms
that have free variables, and therefore not useful for experimentation with the
terms that result from encoding programming language constructs in the pure
lambda calculus.

Conversely, Paulson [16] presents call-by-value and call-by-name interpreters
for the pure lambda calculus that do handle free variables. However, they also
perform reduction under lambda abstractions (unlike functional programming
languages), and the evaluation order is not leftmost outermost: under call-by-
name, an application (e1 e2) is reduced by first reducing e1 to head normal form,
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so redexes inside e1 may be contracted before an enclosing leftmost redex. This
makes the relation between Paulson’s call-by-name and normal order (leftmost
outermost) reduction strategies somewhat unclear.

Therefore we find that it may be useful to contrast the various reduction
strategies, present them using big-step operational semantics, present their (naive)
implementation in ML, and show how to obtain a trace of the reduction.

3 The Pure Untyped Lambda Calculus

We use the pure untyped lambda calculus [4]. A lambda term is a variable x,
a lambda abstraction λx.e which binds x in e, or an application (e1 e2) of a
‘function’ e1 to an ‘argument’ e2:

e ::= x | λx.e | e1 e2 (3)

Application associates to the left, so (e1 e2 e3) means ((e1 e2) e3). A lambda term
may have free variables, not bound by any enclosing lambda abstraction. Term
identity e1 ≡ e2 is taken modulo renaming of lambda-bound variables. The
notation e[ex/x] denotes substitution of ex for x in e, with renaming of bound
variables in e if necessary to avoid capture of free variables in ex.

A redex is a subterm of the form ((λx.e) e2); the contraction of a redex pro-
duces e[e2/x], substituting the argument e2 for every occurrence of the parameter
x in e. By e −→β e′ we denote β-reduction, the contraction of some redex in e
to obtain e′.

A redex is to the left of another redex if its lambda abstractor appears
further to the left. The leftmost outermost redex (if any) is the leftmost redex
not contained in any other redex. The leftmost innermost redex (if any) is the
leftmost redex not containing any other redex.

4 Functional Programming Languages

In practical functional programming languages such as Scheme [20], Standard
ML [14] or Haskell [18], programs cannot have free variables, and reductions are
not performed under lambda abstractions or other variable binders, because this
would considerably complicate their efficient implementation [17].

However, an implementation of lambda calculus reduction must perform re-
ductions under lambda abstractions. Otherwise, add two two would not reduce
to four using the encodings (1), which would disappoint students.

Because free variables and reduction under abstraction are absent in func-
tional languages, it is unclear what the programming language concepts call-by-
value and call-by-name mean in the lambda calculus. In particular, how should
free variables be handled, and to what normal form should call-by-value and
call-by-name evaluate? We propose the following answers:
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– A free variable is similar to a data constructor (in Standard ML or Haskell),
that is, an uninterpreted function symbol. If the free variable x is in function
position (x e2), then call-by-value should reduce the argument expression e2,
whereas call-by-name should not. This is consistent with constructors being
strict in strict languages (e.g. ML) and non-strict in non-strict languages
(e.g. Haskell).

– Functional languages perform no reduction under abstractions, and thus
reduce terms to weak normal forms only. In particular, call-by-value reduces
to weak normal form, and call-by-name reduces to weak head normal form.
Section 6 define these normal forms.

5 Lazy Functional Programming Languages

Under lazy evaluation, a variable-bound term is evaluated at most once, regard-
less how often the variable is used [17]. Thus an argument term may not be
duplicated before it has been reduced, and may be reduced only if actually used.
This evaluation mechanism may be called call-by-need, or call-by-name with
sharing of argument evaluation. The equational theory of call-by-need lambda
calculus has been studied by Ariola and Felleisen [2] among others. (By con-
trast, the lazy lambda calculus of Abramsky and Ong [1] is not lazy in the sense
discussed here; rather, it is the theory of call-by-name lambda calculus, without
reduction under abstractions.)

Lazy functional languages also permit the creation of cyclic terms, or cycles
in the heap. For instance, this declaration creates a finite (cyclic) representation
of an infinite list of 1’s:

val ones = 1 :: ones

Thus to be true also to the intensional properties of lazy languages (such as time
and space consumption), a model should be able to describe such constant-size
cyclic structures. Substitution of terms for variables cannot truly model them,
only approximate them by unfolding of a recursive term definition, possibly
encoded using a recursion combinator such as (2). To properly express sharing
of subterm evaluation, and the creation of cyclic terms, one must extend the
syntax (3) with mutually recursive bindings:

e ::= x | λx.e | e e | letrec {xi = ei} in e (4)

The sharing of subterm evaluation and the dynamic creation of cyclic terms may
be modelled using graph reduction, as suggested by Wadsworth [24] and used in
subsequent work [3, 17, 23], or using an explicit heap [13, 21].

Thus a proper modelling of lazy evaluation, with sharing of argument evalu-
ation and cyclic data structures, requires syntactic extensions as well as a more
elaborate evaluation model than just term rewriting. We shall not consider lazy
evaluation any further in this paper, and shall consider only the syntax in (3)
above.
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6 Normal Forms

We need to distinguish four different normal forms, depending on whether we
reduce under abstractions or not (in functional programming languages), and
depending on whether we reduce the arguments before substitution (in strict
languages) or not (in non-strict languages).

Figure 1 summarizes the four normal forms using four context-free grammars.
In each grammar, the symbol E denotes a term in the relevant normal form, e
denotes an arbitrary lambda term generated by (3), and n ≥ 0. Note how the two
dichotomies generate the four normal forms just by varying the form of lambda
abstraction bodies and application arguments.

Reduce under abstractions

Reduce args Yes No

Yes Normal form
E ::= λx.E | xE1 . . . En

Weak normal form
E ::= λx.e | x E1 . . . En

No Head normal form
E ::= λx.E | x e1 . . . en

Weak head normal form
E ::= λx.e | x e1 . . . en

Fig. 1. Normal forms. The ei denote arbitrary lambda terms generated by (3).

7 Reduction Strategies and Reduction Functions

We present several reduction strategies using big-step operational semantics, or
natural semantics [9], and their implementation in Standard ML. The premises
of each semantic rule are assumed to be evaluated from left to right, although
this is immaterial to their logical interpretation. We exploit that Standard ML
evaluates a function’s arguments before calling the function, evaluates the right-
hand side of let-bindings before binding the variable, and evaluates subterms
from left to right [14].

We model lambda terms x, λx.e and (e e) as ML constructed data, repre-
senting variable names by strings:

datatype lam = Var of string

| Lam of string * lam

| App of lam * lam

We also assume an auxiliary function subst : lam -> lam -> lam that imple-
ments capture-free substitution, so subst ex (Lam(x, e)) is the ML represen-
tation of e[ex/x], the result of contracting the redex (λx.e) ex.
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7.1 Call-by-Name Reduction to Weak Head Normal Form

Call-by-name reduction e
bn
−→ e′ reduces the leftmost outermost redex not inside

a lambda abstraction first. It treats free variables as non-strict data constructors.
For terms without free variables, it coincides with Plotkin’s call-by-name reduc-
tion [19, Section 5], and is closely related to Engelfriet and Schmidt’s outside-in
derivation (in context-free tree grammars, or first-order recursion equations) [7,
page 334].

x
bn
−→ x

(λx.e)
bn
−→ (λx.e)

e1
bn
−→ (λx.e) e[e2/x]

bn
−→ e′

-----------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

bn
−→ e′

e1
bn
−→ e′1 6≡ λx.e

---------------------------------------------------------------------------------
(e1 e2)

bn
−→ (e′1 e2)

(5)

It is easy to see that all four rules generate terms in weak head normal form. In
particular, in the last rule e′1 must have form y e′11 . . . e′1n for some n ≥ 0, so
(e′1 e2) is a weak head normal form. Assuming that the rule premises are read
and ‘executed’ from left to right, it is also clear that only leftmost redexes are
contracted. No reduction is performed under abstractions.

The following ML function cbn computes the weak head normal form of
a lambda term, contracting redexes in the order implied by the operational
semantics (5) above:

fun cbn (Var x) = Var x

| cbn (Lam(x, e)) = Lam(x, e)

| cbn (App(e1, e2)) =

case cbn e1 of

Lam (x, e) => cbn (subst e2 (Lam(x, e)))

| e1’ => App(e1’, e2)

The first function clause above handles variables x and implements the first
semantics rule. Similarly, the second function clause handles lambda abstractions
(λx.e) and implements the second semantics rule. In both cases, the given term
is returned unmodified. The third function clause handles applications (e1 e2)
and implements the third and fourth semantics rule by discriminating on the
result of reducing e1. If the result is a lambda abstraction (λx.e) then the cbn

function is called to reduce the expression e[e2/x]; but if the result is any other
expression e′1, the application (e′1 e2) is returned.

In all cases, this is exactly what the semantics rules in (5) describe. In fact,

one can see that e
bn
−→ e′ if and only if cbn e terminates and returns e′.
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7.2 Normal Order Reduction to Normal Form

Normal order reduction e
no
−→ e′ reduces the leftmost outermost redex first. In an

application (e1 e2) the function term e1 must be reduced using call-by-name (5).
Namely, if e1 reduces to an abstraction (λx.e), then the redex ((λx.e) e2) must
be reduced before redexes in e, if any, because they would not be outermost.

x
no
−→ x

e
no
−→ e′

-------------------------------------------------------------------------------
(λx.e)

no
−→ (λx.e′)

e1
bn
−→ (λx.e) e[e2/x]

no
−→ e′

-----------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

no
−→ e′

e1
bn
−→ e′1 6≡ (λx.e) e′1

no
−→ e′′1 e2

no
−→ e′2

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

no
−→ (e′′1 e′2)

(6)

It is easy to see that these rules generate normal form terms only. In particular,
in the last rule e′1 must have form y e′11 . . . e′1n for some n ≥ 0, so e′′1 must have
form y E′′

11 . . . E′′

1n for some normal forms E ′′

1i, and therefore (e′′1 e′2) is a normal
form. Any redex contracted is the leftmost one not contained in any other redex;
this relies on the use of call-by-name in the application rules. Reductions are per-
formed also under lambda abstractions. Normal order reduction is normalizing :
if the term e has a normal form, then normal order reduction of e will terminate
(with the normal form as result).

The Standard ML function nor : lam -> lam below implements the reduc-
tion strategy. Note that it uses the function cbn defined in Section 7.1:

fun nor (Var x) = Var x

| nor (Lam (x, e)) = Lam(x, nor e)

| nor (App(e1, e2)) =

case cbn e1 of

Lam(x, e) => nor (subst e2 (Lam(x, e)))

| e1’ => let val e1’’ = nor e1’

in App(e1’’, nor e2) end

Again the first two cases of the function implement the first two reduction rules.
The third case implements the third and fourth rules by evaluating e1 using
call-by-name cbn and then discriminating on whether the result is a lambda
abstraction or not, as in the third and fourth rule in (6).
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7.3 Call-by-Value Reduction to Weak Normal Form

Call-by-value reduction e
bv
−→ e′ reduces the leftmost innermost redex not inside

a lambda abstraction first. It treats free variables as strict data constructors. For
terms without free variables, it coincides with call-by-value reduction as defined
by Plotkin [19, Section 4] and Felleisen and Hieb [8]. It is closely related to
Engelfriet and Schmidt’s inside-out derivations (in context-free tree grammars,
or first-order recursion equations) [7, page 334]. It differs from call-by-name
(Section 7.1) only by reducing the argument e2 of an application (e1 e2) before
contracting the redex, and before building an application term:

x
bv
−→ x

(λx.e)
bv
−→ (λx.e)

e1
bv
−→ (λx.e) e2

bv
−→ e′2 e[e′2/x]

bv
−→ e′

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

bv
−→ e′

e1
bv
−→ e′1 6≡ (λx.e) e2

bv
−→ e′2--------------------------------------------------------------------------------------------------------------------------------------------

(e1 e2)
bv
−→ (e′1 e′2)

(7)

It is easy to see that these rules generate weak normal form terms only. In
particular, in the last rule e′1 must have form y E′

11 . . . E′

1n for some n ≥ 0
and weak normal forms E ′

1i, and therefore (e′1 e′2) is a weak normal form too.
No reductions are performed under lambda abstractions. This is Paulson’s eval
auxiliary function [16, page 390]. The implementation of the rules by an ML
function is straightforward and is omitted.

7.4 Applicative Order Reduction to Normal Form

Applicative order reduction e
ao
−→ e′ reduces the leftmost innermost redex first. It

differs from call-by-value (Section 7.3) only by reducing also under abstractions:

x
ao
−→ x

e
ao
−→ e′

-------------------------------------------------------------------------------
(λx.e)

ao
−→ (λx.e′)

e1
ao
−→ (λx.e) e2

ao
−→ e′2 e[e′2/x]

ao
−→ e′

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

ao
−→ e′

e1
ao
−→ e′1 6≡ (λx.e) e2

ao
−→ e′2--------------------------------------------------------------------------------------------------------------------------------------------

(e1 e2)
ao
−→ (e′1 e′2)

(8)
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It is easy to see that the rules generate only normal form terms. As before, note
that in the last rule e′1 must have form y E′

11 . . . E′

1n for some n ≥ 0 and normal
forms E′

1i. Also, it is clear that when a redex ((λx.e) e′2) is contracted, it contains
no other redex, and it is the leftmost redex with this property.

Applicative order reduction is not normalizing; with Ω ≡ (λx.(x x))(λx.(x x))
it produces an infinite reduction ((λx.y) Ω) −→β ((λx.y) Ω) −→β . . . although
the term has normal form y.

In fact, applicative order reduction fails to normalize applications of functions
defined using recursion combinators, even with recursion combinators designed
for call-by-value, such as Yv :

Yv ≡ λh.(λx.λa.h (x x) a) (λx.λa.h (x x) a) (9)

7.5 Hybrid Applicative Order Reduction to Normal Form

Hybrid applicative order reduction is a hybrid of call-by-value and applicative
order reduction. It reduces to normal form, but reduces under lambda abstrac-
tions only in argument positions. Therefore the usual call-by-value versions of
the recursion combinator, such as (9) above, may be used with this reduction
strategy. Thus the hybrid applicative order strategy normalizes more terms than
applicative order reduction, while using fewer reduction steps than normal order
reduction. The hybrid applicative order strategy relates to call-by-value in the
same way that the normal order strategy relates to call-by-name. It resembles
Paulson’s call-by-value strategy, which works in two phases: first reduce the term

by
bv
−→ , then normalize the bodies of any remaining lambda abstractions [16,

page 391].

x
ha
−→ x

e
ha
−→ e′

-------------------------------------------------------------------------------
(λx.e)

ha
−→ (λx.e′)

e1
bv
−→ (λx.e) e2

ha
−→ e′2 e[e′2/x]

ha
−→ e′

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

ha
−→ e′

e1
bv
−→ e′1 6≡ (λx.e) e′1

ha
−→ e′′1 e2

ha
−→ e′2--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(e1 e2)
ha
−→ (e′′1 e′2)

(10)
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7.6 Head Spine Reduction to Head Normal Form

The head spine strategy performs reductions inside lambda abstractions, but
only in head position. This is the reduction strategy implemented by Paulson’s
headNF function [16, page 390].

x
he
−→ x

e
he
−→ e′

-------------------------------------------------------------------------------
(λx.e)

he
−→ (λx.e′)

e1
he
−→ (λx.e) e[e2/x]

he
−→ e′

-----------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

he
−→ e′

e1
he
−→ e′1 6≡ (λx.e)

---------------------------------------------------------------------------------
(e1 e2)

he
−→ (e′1 e2)

(11)

It is easy to see that the rules generate only head normal form terms. Note
that this is not a head reduction as defined by Barendregt [4, Definition 8.3.10]:
In a (leftmost) head reduction only head redexes are contracted, where a redex
((λx.e0) e1) is a head redex if it is preceded to the left only by lambda abstractors
of non-redexes, as in λx1. . . . λxn.(λx.e0) e1 . . . em, with n ≥ 0 and m ≥ 1.

To define head reduction, one should use e1
bn
−→ e′1 in the above application

rules (11) to avoid premature reduction of inner redexes, similar to the use of
bn
−→ in the definition of

no
−→ .

7.7 Hybrid Normal Order Reduction to Normal Form

Hybrid normal order reduction is a hybrid of head spine reduction and normal
order reduction. It differs from normal order reduction only by reducing the

function e1 in an application to head normal form (by
he
−→ ) instead of weak

head normal form (by
bn
−→ ) before applying it to the argument e2.

The hybrid normal order strategy resembles Paulson’s call-by-name strategy,

which works in two phases: first reduce the term by
he
−→ to head normal form,

then normalize unevaluated arguments and bodies of any remaining lambda
abstractions [16, page 391].
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x
hn
−→ x

e
hn
−→ e′

-------------------------------------------------------------------------------
(λx.e)

hn
−→ (λx.e′)

e1
he
−→ (λx.e) e[e2/x]

hn
−→ e′

-----------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

hn
−→ e′

e1
he
−→ e′1 6≡ (λx.e) e′1

hn
−→ e′′1 e2

hn
−→ e′2--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(e1 e2)
hn
−→ (e′′1 e′2)

(12)

These rules generate normal form terms only. The strategy is normalizing, be-
cause if the term (e1 e2) has a normal form, then it has a head normal form, and
then so has e1 [4, Proposition 8.3.13].

8 Properties of the Reduction Strategies

The relation defined by each reduction strategy is idempotent. For instance, if

e
bn
−→ e′ then e′

bn
−→ e′. To see this, observe that e′ is in weak head normal form,

so it has form λx.e′′ or x e1 . . . en, where e′′ and e1, . . . , en are arbitrary lambda
terms. In the first case, e′ reduces to itself by the second rule of (5). In the second
case, an induction on n shows that e′ reduces to itself by the first and third rule
of (5). Similar arguments can be made for the other reduction strategies.

Figure 2 classifies the seven reduction strategies presented in Sections 7.1
to 7.7 according the normal forms (Figure 1) they produce.

Reduce under abstractions

Reduce args Yes No

Yes Normal form
ao, no, ha, ho

Weak normal form
bv

No Head normal form
he

Weak head normal form
bn

Fig. 2. Classification of reduction strategies by the normal forms they produce.
The ‘uniform’ reduction strategies are shown in boldface, the ‘hybrid’ ones in italics.

Inspection of the big-step semantics rules shows that four of the reduction
strategies (ao,bn,bv,he, shown in bold in Figure 2) are ‘uniform’: their defini-
tion involves only that reduction strategy itself. The remaining three (no, ha, hn)
are ‘hybrid’: each uses one of the ‘uniform’ strategies for the reduction of the
expression e1 in function position in applications (e1 e2). Figure 3 shows how the
‘hybrid’ and ‘uniform’ strategies are related.
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Hybrid Uniform

no bn

ha bv

hn he

Fig. 3. Derivation of hybrid strategies from uniform ones.

9 Tracing: Side-Effecting Substitution, and Contexts

The reducers defined in ML in Section 7 perform the substitutions e[e2/x] in the
same order as prescribed by the operational semantics, thanks to Standard ML
semantics: strict evaluation and left-to-right evaluation. But they only return
the final reduced lambda term; they do not trace the intermediate steps of the
reduction, which is often more interesting from a pedagogical point of view.

ML permits expressions to have side effects, so we can make the substitu-
tion function report (e.g. print) the redex just before contracting it. To do this
we define a modified substitution function csubst which takes as argument an-
other function c and applies it to the redex App(Lam(x, e), ex) representing
(λx.e) ex, just before contracting it:

fun csubst (c : lam -> unit) ex (Lam(x, e)) =

(c (App(Lam(x, e), ex));

subst ex (Lam(x, e)))

The function c : lam -> unit is evaluated for its side effect only, as shown
by the trivial result type unit. Evaluating csubst c ex (Lam(x, e)) has the
effect of calling c on the redex ((λx.e) ex), and its result is the result of the
substitution e[ex/x], which is the contracted redex.

We could define a function printlam : lam -> unit that prints the given
lambda term as a side effect. Then replacing the call subst e2 (Lam(x, e)) in
function cbn of Section 7.1 by csubst printlam e2 (Lam(x, e)) will cause the
reduction of a term by cbn to produce a printed trace of all redexes ((λx.e) ex),
in the order in which they are contracted.

This still does not give us a usable trace of the evaluation: we do not know
where in the current term the printed redex occurs. This is because the function
printlam is applied only to the redex itself; the term surrounding the redex is
implicit. To make the term surrounding the redex explicit, we can use a context,
a term with a single hole, such as λx.[ ] or (e1 [ ]) or ([ ] e2), where the hole is
denoted by [ ]. Filling the hole of a context with a lambda term produces a
lambda term. The following grammar generates all single-hole contexts:

C ::= [ ] | λx.C | e C | C e (13)

A context can be represented by an ML function of type lam -> lam. The four
forms of contexts (13) can be created using four ML context-building functions:
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fun id e = e

fun Lamx x e = Lam(x, e)

fun App2 e1 e2 = App(e1, e2)

fun App1 e2 e1 = App(e1, e2)

For instance, (App1 e2) is the ML function fn e1 => App(e1, e2) which rep-
resents the context ([ ] e2). Filling the hole with the term e1 is done by computing
(App1 e2) e1 which evaluates to App(e1, e2), representing the term (e1 e2).

Function composition (f o g) composes contexts. For instance, the compo-
sition of contexts λx.[ ] and ([ ] e2) is Lamx x o App1 e2, which represents the
context λx.([ ] e2). Similarly, the composition of the contexts ([ ] e2) and λx.[ ] is
App1 e2 o Lamx x, which represents ((λx.[ ]) e2).

10 Reduction in Context

To produce a trace of the reduction, we modify the reduction functions defined
in Section 7 to take an extra context argument c and to use the extended sub-
stitution function csubst, passing c to csubst. Then csubst will apply c to the
redex before contracting it. We take the call-by-name reduction function cbn

(Section 7.1) as an example; the other reduction functions are handled similarly.
The reduction function must build up the context c as it descends into the term.
It does so by composing the context with the appropriate context builder (in
this case, only in the App branch):

fun cbnc c (Var x) = Var x

| cbnc c (Lam(x, e)) = Lam(x, e)

| cbnc c (App(e1, e2)) =

case cbnc (c o App1 e2) e1 of

Lam (x, e) => cbnc c (csubst c e2 (Lam(x, e)))

| e1’ => App(e1’, e2)

By construction, if c : lam -> lam and the evaluation of cbnc c e involves a
call cbnc c′ e′, then c[e] −→∗

β c′[e′]. Also, whenever a call cbnc c′ (e1 e2) is

evaluated, and e1
bn
−→ (λx.e), then function c′ is applied to the redex ((λx.e) e2)

just before it is contracted. Hence a trace of the reduction of term e can be
obtained just by calling cbnc as follows:

cbnc printlam e

where printlam : lam -> unit is a function that prints the lambda term as
a side effect. In fact, computing cbnc printlam (App (App add two) two),
using the encodings from (1), prints the two intermediate terms below. The
third term shown is the final result (a weak head normal form):

(\m.\n.\f.\x.m f (n f x)) (\f.\x.f (f x)) (\f.\x.f (f x))

(\n.\f.\x.(\f.\x.f (f x)) f (n f x)) (\f.\x.f (f x))

\f.\x.(\f.\x.f (f x)) f ((\f.\x.f (f x)) f x)
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The trace of a reduction can be defined also by direct instrumentation of the
operational semantics (5). Let us define a trace to be a finite sequence of lambda
terms, denote the empty trace by ε, and denote the concatenation of traces s

and t by s · t. Now we define the relation e
bn
−→

s

C e′ to mean: under call-by-name,
the expression e reduces to e′, and if e appears in context C, then s is the trace
of the reduction. The trace s will be empty if no redex was contracted in the
reduction. If some redex was contracted, the first term in the trace will be e.

The tracing relation corresponding to call-by-name reduction (5) can be de-
fined as shown below:

x
bn
−→

ε

C x

(λx.e)
bn
−→

ε

C (λx.e)

e1
bn
−→

s

C[[ ] e2] (λx.e) e[e2/x]
bn
−→

t

C e′
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(e1 e2)
bn
−→

s·C[(λx.e) e2]·t

C e′

e1
bn
−→

s

C[[ ] e2] e′1 6≡ λx.e
---------------------------------------------------------------------------------------------------

(e1 e2)
bn
−→

s

C (e′1 e2)

(14)

Thus reduction of a variable x or a lambda abstraction (λx.e) produces the empty
trace ε. When e1 reduces to a lambda abstraction, reduction of the application
(e1 e2) produces the trace s · C[(λx.e) e2] · t, where s traces the reduction of e1

and t traces the reduction of the contracted redex e[e2/x].
Tracing versions of the other reduction strategies can be defined analogously.

11 Single-Stepping Reduction

For experimentation it is useful to be able to perform one beta-reduction at a
time, or in other words, to single-step the reduction. Again, this can be achieved
using side effects in the implementation language. We simply make the context
function c count the number of redexes contracted (substitutions performed),
and set a step limit N before evaluation is started.

When N redexes have been contracted, c aborts the reduction by raising an
exception Enough e′, which carries as its argument the term e′ that had been
obtained after N reductions. An enclosing exception handler returns e′ as the
result of the reduction. The next invocation of the reduction function simply
sets the step limit N one higher, and so on. Thus the reduction of the original
term starts over for every new step, but we create the illusion of reducing the
term one step at a time.

The main drawback of this approach is that the total time spent performing
n steps of reduction is O(n2). In practice, this does not matter: noboby wants
to single-step very long computations.
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12 A Web-Based Interface to the Reduction Functions

A web-based interface to the tracing reduction functions can be implemented as
an ordinary CGI script. The lambda term to be reduced, the name of the desired
reduction strategy, the kind of computation (tracing, single-stepping, etc.) and
the step limit are passed as parameters to the script.

Such an implementation has been written in Moscow ML [15] and is available
at 〈http://www.dina.kvl.dk/˜sestoft/lamreduce/〉. The implementation uses the
Mosmlcgi library to access CGI parameters, and the Msp library for efficient
structured generation of HTML code.

For tracing, the script uses a function htmllam : lam -> unit that prints
a lambda term as HTML code, which is then sent to the browser by the web
server. Calling cbnc (or any other tracing reduction function) with htmllam as
argument will display a trace of the reduction in the browser.

A trick is used to make the next redex into a hyperlink in the browser.
The implementation’s representation of lambda terms is extended with labelled
subterms, and csubst attaches labels 0, 1, . . . to redexes in the order in which
they are contracted. When single-stepping a reduction, the last labelled redex
inside the term can be formatted as a hyperlink. Clicking on the hyperlink will
call the CGI script again to perform one more step of reduction, creating the
illusion of single-stepping the reduction as explained above.

13 Conclusion

We have described a simple way to implement lambda calculus reduction, de-
scribing reduction strategies using big-step operational semantics, implementing
reduction by straightforward reduction functions in Standard ML, and instru-
menting them to produce a trace of the reduction, using contexts. This approach
is easily extended to other reduction strategies describable by big-step opera-
tional semantics.

We find that big-step semantics provides a clear presentation of the reduction
strategies, highlighting their differences and making it easy to see what normal
forms they produce.

The extension to lazy evaluation, whether using graph reduction or an explicit
heap, would be complicated mostly by the need to represent the current term
graph or heap, and to print it in a comprehensible way.

The functions for reduction in context were useful for creating a web inter-
face also, running the reduction functions as a CGI script written in ML. The
web interface provides a simple platform for students’ experiments with lambda
calculus encodings and reduction strategies.

Acknowledgements Thanks for Dave Schmidt for helpful comments that have
improved contents as well as presentation.
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expressiveness of fold
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Abstract

In functional programming, fold is a standard operator that encapsulates a simple pattern of
recursion for processing lists. This article is a tutorial on two key aspects of the fold operator
for lists. First of all, we emphasize the use of the universal property of fold both as a proof
principle that avoids the need for inductive proofs, and as a definition principle that guides
the transformation of recursive functions into definitions using fold. Secondly, we show that
even though the pattern of recursion encapsulated by fold is simple, in a language with tuples
and functions as first-class values the fold operator has greater expressive power than might
first be expected.

Capsule Review

Within the last ten to fifteen years, the algebra of datatypes has become a stable and well
understood element of the mathematics of program construction. Graham Hutton’s paper is
a highly readable, elementary introduction to the algebra centred on the well-known function
on lists. The paper distinguishes itself by focusing on how the properties are used for the
crucial task of ‘constructing’ programs, rather than on the post hoc verification of existing
programs. Several well-chosen examples are given, beginning at an elementary level and
progressing to more advanced applications. The paper concludes with a good overview and
bibliography of recent literature which develops the theory and its applications in more
depth.

1 Introduction

Many programs that involve repetition are naturally expressed using some form of

recursion, and properties proved of such programs using some form of induction.

Indeed, in the functional approach to programming, recursion and induction are the

primary tools for defining and proving properties of programs.

Not surprisingly, many recursive programs will share a common pattern of recur-

sion, and many inductive proofs will share a common pattern of induction. Repeating

the same patterns again and again is tedious, time consuming, and prone to error.

Such repetition can be avoided by introducing special recursion operators and proof

principles that encapsulate the common patterns, allowing us to concentrate on the

parts that are different for each application.

In functional programming, fold (also known as foldr) is a standard recursion
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operator that encapsulates a common pattern of recursion for processing lists.

The fold operator comes equipped with a proof principle called universality , which

encapsulates a common pattern of inductive proof concerning lists. Fold and its

universal property together form the basis of a simple but powerful calculational

theory of programs that process lists. This theory generalises from lists to a variety

of other datatypes, but for simplicity we restrict our attention to lists.

This article is a tutorial on two key aspects of the fold operator for lists. First of

all, we emphasize the use of the universal property of fold (together with the derived

fusion property) both as proof principles that avoid the need for inductive proofs,

and as definition principles that guide the transformation of recursive functions into

definitions using fold. Secondly, we show that even though the pattern of recursion

encapsulated by fold is simple, in a language with tuples and functions as first-class

values the fold operator has greater expressive power than might first be expected,

thus permitting the powerful universal and fusion properties of fold to be applied

to a larger class of programs. The article concludes with a survey of other work on

recursion operators that we do not have space to pursue here.

The article is aimed at a reader who is familiar with the basics of functional

programming, say to the level of Bird and Wadler (1988) and Bird (1998). All

programs in the article are written in Haskell (Peterson et al., 1997), the standard

lazy functional programming language. However, no special features of Haskell are

used, and the ideas can easily be adapted to other functional languages.

2 The fold operator

The fold operator has its origins in recursion theory (Kleene, 1952), while the use

of fold as a central concept in a programming language dates back to the reduction

operator of APL (Iverson, 1962), and later to the insertion operator of FP (Backus,

1978). In Haskell, the fold operator for lists can be defined as follows:

fold :: (α → β → β) → β → ([α] → β)

fold f v [ ] = v

fold f v (x : xs) = f x ( fold f v xs)

That is, given a function f of type α → β → β and a value v of type β, the function

fold f v processes a list of type [α] to give a value of type β by replacing the nil

constructor [ ] at the end of the list by the value v, and each cons constructor (:)

within the list by the function f. In this manner, the fold operator encapsulates a

simple pattern of recursion for processing lists, in which the two constructors for lists

are simply replaced by other values and functions. A number of familiar functions

on lists have a simple definition using fold . For example:

sum :: [Int] → Int product :: [Int] → Int

sum = fold (+) 0 product = fold (×) 1

and :: [Bool ] → Bool or :: [Bool ] → Bool

and = fold (∧) True or = fold (∨) False
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Recall that enclosing an infix operator ⊕ in parentheses (⊕) converts the operator

into a prefix function. This notational device, called sectioning , is often useful when

defining simple functions using fold . If required, one of the arguments to the operator

can also be enclosed in the parentheses. For example, the function (++) that appends

two lists to give a single list can be defined as follows:

(++) :: [α] → [α] → [α]

(++ ys) = fold (:) ys

In all our examples so far, the constructor (:) is replaced by a built-in function.

However, in most applications of fold the constructor (:) will be replaced by a

user-defined function, often defined as a nameless function using the λ notation, as

in the following definitions of standard list-processing functions:

length :: [α] → Int

length = fold (λx n → 1 + n) 0

reverse :: [α] → [α]

reverse = fold (λx xs → xs ++ [x]) [ ]

map :: (α → β) → ([α] → [β])

map f = fold (λx xs → f x : xs) [ ]

filter :: (α → Bool ) → ([α] → [α])

filter p = fold (λx xs → if p x then x : xs else xs) [ ]

Programs written using fold can be less readable than programs written using

explicit recursion, but can be constructed in a systematic manner, and are better

suited to transformation and proof. For example, we will see later on in the article

how the above definition for map using fold can be constructed from the standard

definition using explicit recursion, and more importantly, how the definition using

fold simplifies the process of proving properties of the map function.

3 The universal property of fold

As with the fold operator itself, the universal property of fold also has its origins

in recursion theory. The first systematic use of the universal property in functional

programming was by Malcolm (1990a), in his generalisation of Bird and Meerten’s

theory of lists (Bird, 1989; Meertens, 1983) to arbitrary regular datatypes. For

finite lists, the universal property of fold can be stated as the following equivalence

between two definitions for a function g that processes lists:

g [ ] = v

g (x : xs) = f x (g xs)
⇔ g = fold f v

In the right-to-left direction, substituting g = fold f v into the two equations for g

gives the recursive definition for fold . Conversely, in the left-to-right direction the

two equations for g are precisely the assumptions required to show that g = fold f v
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using a simple proof by induction on finite lists (Bird, 1998). Taken as a whole,

the universal property states that for finite lists the function fold f v is not just a

solution to its defining equations, but in fact the unique solution.

The key to the utility of the universal property is that it makes explicit the two

assumptions required for a certain pattern of inductive proof. For specific cases then,

by verifying the two assumptions (which can typically be done without the need for

induction) we can then appeal to the universal property to complete the inductive

proof that g = fold f v. In this manner, the universal property of fold encapsulates

a simple pattern of inductive proof concerning lists, just as the fold operator itself

encapsulates a simple pattern of recursion for processing lists.

The universal property of fold can be generalised to handle partial and infinite

lists (Bird, 1998), but for simplicity we only consider finite lists in this article.

3.1 Universality as a proof principle

The primary application of the universal property of fold is as a proof principle

that avoids the need for inductive proofs. As a simple first example, consider the

following equation between functions that process a list of numbers:

(+1) · sum = fold (+) 1

The left-hand function sums a list and then increments the result. The right-hand

function processes a list by replacing each (:) by the addition function (+) and the

empty list [ ] by the constant 1. The equation asserts that these two functions always

give the same result when applied to the same list.

To prove the above equation, we begin by observing that it matches the right-hand

side g = fold f v of the universal property of fold , with g = (+1) · sum, f = (+),

and v = 1. Hence, by appealing to the universal property, we conclude that the

equation to be proved is equivalent to the following two equations:

((+1) · sum) [ ] = 1

((+1) · sum) (x : xs) = (+) x (((+1) · sum) xs)

At first sight, these may seem more complicated than the original equation. However,

simplifying using the definitions of composition and sectioning gives

sum [ ] + 1 = 1

sum (x : xs) + 1 = x + (sum xs + 1)

which can now be verified by simple calculations, shown here in two columns:

sum [ ] + 1 sum (x : xs) + 1

= { Definition of sum } = { Definition of sum }
0 + 1 (x + sum xs) + 1

= { Arithmetic } = { Arithmetic }
1 x + (sum xs + 1)

This completes the proof. Normally this proof would have required an explicit use of

induction. However, in the above proof the use of induction has been encapsulated
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in the universal property of fold , with the result that the proof is reduced to a

simplification step followed by two simple calculations.

In general, any two functions on lists that can be proved equal by induction can

also be proved equal using the universal property of the fold operator, provided, of

course, that the functions can be expressed using fold . The expressive power of the

fold operator will be addressed later on in the article.

3.2 The fusion property of fold

Now let us generalise from the sum example and consider the following equation

between functions that process a list of values:

h · fold g w = fold f v

This pattern of equation occurs frequently when reasoning about programs written

using fold . It is not true in general, but we can use the universal property of fold

to calculate conditions under which the equation will indeed be true. The equation

matches the right-hand side of the universal property, from which we conclude that

the equation is equivalent to the following two equations:

(h · fold g w) [ ] = v

(h · fold g w) (x : xs) = f x ((h · fold g w) xs)

Simplifying using the definition of composition gives

h ( fold g w [ ]) = v

h ( fold g w (x : xs)) = f x (h ( fold g w xs))

which can now be further simplified by two calculations:

h ( fold g w [ ]) = v

⇔ { Definition of fold }
h w = v

and

h ( fold g w (x : xs)) = f x (h ( fold g w xs))

⇔ { Definition of fold }
h (g x ( fold g w xs)) = f x (h ( fold g w xs))

⇐ { Generalising ( fold g w xs) to a fresh variable y }
h (g x y) = f x (h y)

That is, using the universal property of fold we have calculated – without an explicit

use of induction – two simple conditions that are together sufficient to ensure for

all finite lists that the composition of an arbitrary function and a fold can be fused

together to give a single fold . Following this interpretation, this property is called

the fusion property of the fold operator, and can be stated as follows:

h w = v

h (g x y) = f x (h y)
⇒ h · fold g w = fold f v
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The first systematic use of the fusion property in functional programming was again

by Malcolm (1990a), generalising earlier work by Bird (1989) and Meertens (1983).

As with the universal property, the primary application of the fusion property is

as a proof principle that avoids the need for inductive proofs. In fact, for many

practical examples the fusion property is often preferable to the universal property.

As a simple first example, consider again the equation:

(+1) · sum = fold (+) 1

In the previous section this equation was proved using the universal property of

fold . However, the proof is simpler using the fusion property. First, we replace the

function sum by its definition using fold given earlier:

(+1) · fold (+) 0 = fold (+) 1

The equation now matches the conclusion of the fusion property, from which we

conclude that the equation follows from the following two assumptions:

(+1) 0 = 1

(+1) ((+) x y) = (+) x ((+1) y)

Simplifying these equations using the definition of sectioning gives 0 + 1 = 1 and

(x + y) + 1 = x + (y + 1), which are true by simple properties of arithmetic. More

generally, by replacing the use of addition in this example by an arbitrary infix

operator ⊕ that is associative, a simple application of fusion shows that:

(⊕ a) · fold (⊕) b = fold (⊕) (b ⊕ a)

For a more interesting example, consider the following well-known equation,

which asserts that the map operator distributes over function composition (·):

map f · map g = map (f · g)

By replacing the second and third occurrences of the map operator in the equation

by its definition using fold given earlier, the equation can be rewritten in a form

that matches the conclusion of the fusion property:

map f · fold (λx xs → g x : xs) [ ]

=

fold (λx xs → (f · g) x : xs) [ ]

Appealing to the fusion property and then simplifying gives the following two

equations, which are trivially true by the definitions of map and (·):

map f [ ] = [ ]

map f (g x : y) = (f · g) x : map f y

In addition to the fusion property, there are a number of other useful properties

of the fold operator that can be derived from the universal property (Bird, 1998).

However, the fusion property suffices for many practical cases, and one can always

revert to the full power of the universal property if fusion is not appropriate.
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3.3 Universality as a definition principle

As well as being used as a proof principle, the universal property of fold can also be

used as a definition principle that guides the transformation of recursive functions

into definitions using fold . As a simple first example, consider the recursively defined

function sum that calculates the sum of a list of numbers:

sum :: [Int] → Int

sum [ ] = 0

sum (x : xs) = x + sum xs

Suppose now that we want to redefine sum using fold . That is, we want to solve the

equation sum = fold f v for a function f and a value v. We begin by observing that

the equation matches the right-hand side of the universal property, from which we

conclude that the equation is equivalent to the following two equations:

sum [ ] = v

sum (x : xs) = f x (sum xs)

From the first equation and the definition of sum, it is immediate that v = 0. From

the second equation, we calculate a definition for f as follows:

sum (x : xs) = f x (sum xs)

⇔ { Definition of sum }
x + sum xs = f x (sum xs)

⇐ { † Generalising (sum xs) to y }
x + y = f x y

⇔ { Functions }
f = (+)

That is, using the universal property we have calculated that:

sum = fold (+) 0

Note that the key step (†) above in calculating a definition for f is the generalisation

of the expression sum xs to a fresh variable y. In fact, such a generalisation step is

not specific to the sum function, but will be a key step in the transformation of any

recursive function into a definition using fold in this manner.

Of course, the sum example above is rather artificial, because the definition of

sum using fold is immediate. However, there are many examples of functions whose

definition using fold is not so immediate. For example, consider the recursively

defined function map f that applies a function f to each element of a list:

map :: (α → β) → ([α] → [β])

map f [ ] = [ ]

map f (x : xs) = f x : map f xs

To redefine map f using fold we must solve the equation map f = fold g v for a

function g and a value v. By appealing to the universal property, we conclude that

this equation is equivalent to the following two equations:
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map f [ ] = v

map f (x : xs) = g x (map f xs)

From the first equation and the definition of map it is immediate that v = [ ]. From

the second equation, we calculate a definition for g as follows:

map f (x : xs) = g x (map f xs)

⇔ { Definition of map }
f x : map f xs = g x (map f xs)

⇐ { Generalising (map f xs) to ys }
f x : ys = g x ys

⇔ { Functions }
g = λx ys → f x : ys

That is, using the universal property we have calculated that:

map f = fold (λx ys → f x : ys) [ ]

In general, any function on lists that can be expressed using the fold operator can

be transformed into such a definition using the universal property of fold .

4 Increasing the power of fold: generating tuples

As a simple first example of the use of fold to generate tuples, consider the function

sumlength that calculates the sum and length of a list of numbers:

sumlength :: [Int] → (Int , Int)

sumlength xs = (sum xs, length xs)

By a straightforward combination of the definitions of the functions sum and

length using fold given earlier, the function sumlength can be redefined as a single

application of fold that generates a pair of numbers from a list of numbers:

sumlength = fold (λn (x, y) → (n + x, 1 + y)) (0, 0)

This definition is more efficient than the original definition, because it only makes a

single traversal over the argument list, rather than two separate traversals. General-

ising from this example, any pair of applications of fold to the same list can always

be combined to give a single application of fold that generates a pair, by appealing

to the so-called ‘banana split’ property of fold (Meijer, 1992). The strange name of

this property derives from the fact that the fold operator is sometimes written using

brackets (| |) that resemble bananas, and the pairing operator is sometimes called

split. Hence, their combination can be termed a banana split!

As a more interesting example, let us consider the function dropWhile p that

removes initial elements from a list while all the elements satisfy the predicate p:

dropWhile :: (α → Bool ) → ([α] → [α])

dropWhile p [ ] = [ ]

dropWhile p (x : xs) = if p x then dropWhile p xs else x : xs
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Suppose now that we want to redefine dropWhile p using the fold operator. By

appealing to the universal property, we conclude that the equation dropWhile p =

fold f v is equivalent to the following two equations:

dropWhile p [ ] = v

dropWhile p (x : xs) = f x (dropWhile p xs)

¿From the first equation it is immediate that v = [ ]. From the second equation, we

attempt to calculate a definition for f in the normal manner:

dropWhile p (x : xs) = f x (dropWhile p xs)

⇔ { Definition of dropWhile }
if p x then dropWhile p xs else x : xs = f x (dropWhile p xs)

⇐ { Generalising (dropWhile p xs) to ys }
if p x then ys else x : xs = f x ys

Unfortunately, the final line above is not a valid definition for f, because the variable

xs occurs freely. In fact, it is not possible to redefine dropWhile p directly using fold .

However, it is possible indirectly, because the more general function

dropWhile′ :: (α → Bool ) → ([α] → ([α], [α]))

dropWhile′ p xs = (dropWhile p xs, xs)

that pairs up the result of applying dropWhile p to a list with the list itself can be

redefined using fold . By appealing to the universal property, we conclude that the

equation dropWhile′ p = fold f v is equivalent to the following two equations:

dropWhile′ p [ ] = v

dropWhile′ p (x : xs) = f x (dropWhile′ p xs)

A simple calculation from the first equation gives v = ([ ], [ ]). From the second

equation, we calculate a definition for f as follows:

dropWhile′ p (x : xs) = f x (dropWhile′ p xs)

⇔ { Definition of dropWhile′ }
(dropWhile p (x : xs), x : xs) = f x (dropWhile p xs, xs)

⇔ { Definition of dropWhile }
(if p x then dropWhile p xs else x : xs, x : xs)

= f x (dropWhile p xs, xs)

⇐ { Generalising (dropWhile p xs) to ys }
(if p x then ys else x : xs, x : xs) = f x (ys, xs)

Note that the final line above is a valid definition for f, because all the variables

are bound. In summary, using the universal property we have calculated that:

dropWhile′ p = fold f v

where

f x (ys, xs) = (if p x then ys else x : xs, x : xs)

v = ([ ], [ ])
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This definition satisfies the equation dropWhile′ p xs = (dropWhile p xs, xs), but

does not make use of dropWhile in its definition. Hence, the function dropWhile itself

can now be redefined simply by dropWhile p = fst · dropWhile′ p.

In conclusion, by first generalising to a function dropWhile′ that pairs the desired

result with the argument list, we have now shown how the function dropWhile can

be redefined in terms of fold , as required. In fact, this result is an instance of a

general theorem (Meertens, 1992) that states that any function on finite lists that is

defined by pairing the desired result with the argument list can always be redefined

in terms of fold , although not always in a way that does not make use of the original

(possibly recursive) definition for the function.

4.1 Primitive recursion

In this section we show that by using the tupling technique from the previous section,

every primitive recursive function on lists can be redefined in terms of fold . Let us

begin by recalling that the fold operator captures the following simple pattern of

recursion for defining a function h that processes lists:

h [ ] = v

h (x : xs) = g x (h xs)

Such functions can be redefined by h = fold g v. We will generalise this pattern

of recursion to primitive recursion in two steps. First of all, we introduce an extra

argument y to the function h, which in the base case is processed by a new function

f, and in the recursive case is passed unchanged to the functions g and h. That is,

we now consider the following pattern of recursion for defining a function h:

h y [ ] = f y

h y (x : xs) = g y x (h y xs)

By simple observation, or a routine application of the universal property of fold ,

the function h y can be redefined using fold as follows:

h y = fold (g y) (f y)

For the second step, we introduce the list xs as an extra argument to the auxiliary

function g. That is, we now consider the following pattern for defining h:

h y [ ] = f y

h y (x : xs) = g y x xs (h y xs)

This pattern of recursion on lists is called primitive recursion (Kleene, 1952). Tech-

nically, the standard definition of primitive recursion requires that the argument y

is a finite sequence of arguments. However, because tuples are first-class values in

Haskell, treating the case of a single argument y is sufficient.

In order to redefine primitive recursive functions in terms of fold , we must solve

the equation h y = fold i j for a function i and a value j. This is not possible

directly, but is possible indirectly, because the more general function

k y xs = (h y xs, xs)
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that pairs up the result of applying h y to a list with the list itself can be redefined

using fold . By appealing to the universal property of fold , we conclude that the

equation k y = fold i j is equivalent to the following two equations:

k y [ ] = j

k y (x : xs) = i x (k y xs)

A simple calculation from the first equation gives j = (f y, [ ]). ¿From the second

equation, we calculate a definition for i as follows:

k y (x : xs) = i x (k y xs)

⇔ { Definition of k }
(h y (x : xs), x : xs) = i x (h y xs, xs)

⇔ { Definition of h }
(g y x xs (h y xs), x : xs) = i x (h y xs, xs)

⇐ { Generalising (h y xs) to z }
(g y x xs z, x : xs) = i x (z, xs)

In summary, using the universal property we have calculated that:

k y = fold i j

where

i x (z, xs) = (g y x xs z, x : xs)

j = (f y, [ ])

This definition satisfies the equation k y xs = (h y xs, xs), but does not make

use of h in its definition. Hence, the primitive recursive function h itself can now be

redefined simply by h y = fst · k y. In conclusion, we have now shown how an

arbitrary primitive recursive function on lists can be redefined in terms of fold .

Note that the use of tupling to define primitive recursive functions in terms

of fold is precisely the key to defining the predecessor function for the Church

numerals (Barendregt, 1984). Indeed, the intuition behind the representation of the

natural numbers (or more generally, any inductive datatype) in the λ-calculus is the

idea of representing each number by its fold operator. For example, the number

3 = succ (succ (succ zero)) is represented by the term λf x → f (f (f x)), which is

the fold operator for 3 in the sense that the arguments f and x can be viewed as

the replacements for the succ and zero constructors respectively.

5 Using fold to generate functions

Having functions as first-class values increases the power of primitive recursion,

and hence the power of the fold operator. As a simple first example of the use of

fold to generate functions, the function compose that forms the composition of a

list of functions can be defined using fold by replacing each (:) in the list by the

composition function (·), and the empty list [ ] by the identity function id:

compose :: [α → α] → (α → α)

compose = fold (·) id
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As a more interesting example, let us consider the problem of summing a list of

numbers. The natural definition for such a function, sum = fold (+) 0, processes

the numbers in the list in right-to-left order. However, it is also possible to define a

function suml that processes the numbers in left-to-right order. The suml function is

naturally defined using an auxiliary function suml′ that is itself defined by explicit

recursion and makes use of an accumulating parameter n:

suml :: [Int] → Int

suml xs = suml′ xs 0

where

suml′ [ ] n = n

suml′ (x : xs) n = suml′ xs (n + x)

Because the addition function (+) is associative and the constant 0 is unit for

addition, the functions suml and sum always give the same result when applied to

the same list. However, the function suml has the potential to be more efficient,

because it can easily be modified to run in constant space (Bird, 1998).

Suppose now that we want to redefine suml using the fold operator. This is not

possible directly, but is possible indirectly, because the auxiliary function

suml′ :: [Int] → (Int → Int)

can be redefined using fold . By appealing to the universal property, we conclude

that the equation suml′ = fold f v is equivalent to the following two equations:

suml′ [ ] = v

suml′ (x : xs) = f x (suml′ xs)

A simple calculation from the first equation gives v = id. From the second equation,

we calculate a definition for the function f as follows:

suml′ (x : xs) = f x (suml′ xs)

⇔ { Functions }
suml′ (x : xs) n = f x (suml′ xs) n

⇔ { Definition of suml′ }
suml′ xs (n + x) = f x (suml′ xs) n

⇐ { Generalising (suml′ xs) to g }
g (n + x) = f x g n

⇔ { Functions }
f = λx g → (λn → g (n + x))

In summary, using the universal property we have calculated that:

suml′ = fold (λx g → (λn → g (n + x))) id

This definition states that suml′ processes a list by replacing the empty list [ ] by

the identity function id on lists, and each constructor (:) by the function that takes

a number x and a function g, and returns the function that takes an accumulator

value n and returns the result of applying g to the new accumulator value n + x.

Note that the structuring of the arguments to suml′ :: [Int] → (Int → Int) is

crucial to its definition using fold . In particular, if the order of the two arguments is
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swapped or they are supplied as a pair, then the type of suml′ means that it can no

longer be defined directly using fold . In general, some care regarding the structuring

of arguments is required when aiming to redefine functions using fold . Moreover,

at first sight one might imagine that fold can only be used to define functions that

process the elements of lists in right-to-left order. However, as the definition of suml′

using fold shows, the order in which the elements are processed depends on the

arguments of fold , not on fold itself.

In conclusion, by first redefining the auxiliary function suml′ using fold , we have

now shown how the function suml can be redefined in terms of fold , as required:

suml xs = fold (λx g → (λn → g (n + x))) id xs 0

We end this section by remarking that the use of fold to generate functions

provides an elegant technique for the implementation of ‘attribute grammars’ in

functional languages (Fokkinga et al., 1991; Swierstra et al., 1998).

5.1 The foldl operator

Now let us generalise from the suml example and consider the standard operator

foldl that processes the elements of a list in left-to-right order by using a function f

to combine values, and a value v as the starting value:

foldl :: (β → α → β) → β → ([α] → β)

foldl f v [ ] = v

foldl f v (x : xs) = foldl f (f v x) xs

Using this operator, suml can be redefined simply by suml = foldl (+) 0. Many other

functions can be defined in a simple way using foldl . For example, the standard

function reverse can redefined using foldl as follows:

reverse :: [α] → [α]

reverse = foldl (λxs x → x : xs) [ ]

This definition is more efficient than our original definition using fold , because it

avoids the use of the inefficient append operator (++) for lists.

A simple generalisation of the calculation in the previous section for the function

suml shows how to redefine the function foldl in terms of fold :

foldl f v xs = fold (λx g → (λa → g (f a x))) id xs v

In contrast, it is not possible to redefine fold in terms of foldl , due to the fact that

foldl is strict in the tail of its list argument but fold is not. There are a number

of useful ‘duality theorems’ concerning fold and foldl , and also some guidelines for

deciding which operator is best suited to particular applications (Bird, 1998).

5.2 Ackermann’s function

For our final example of the power of fold , consider the function ack that processes

two lists of integers, and is defined using explicit recursion as follows:
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ack :: [Int] → ([Int] → [Int])

ack [ ] ys = 1 : ys

ack (x : xs) [ ] = ack xs [1]

ack (x : xs) (y : ys) = ack xs (ack (x : xs) ys)

This is Ackermann’s function, converted to operate on lists rather than natural

numbers by representing each number n by a list with n arbitrary elements. This

function is the classic example of a function that is not primitive recursion in a

first-order programming language. However, in a higher-order language such as

Haskell, Ackermann’s function is indeed primitive recursive (Reynolds, 1985). In

this section we show how to calculate the definition ack in terms of fold .

First of all, by appealing to the universal property of fold , the equation ack =

fold f v is equivalent to the following two equations:

ack [ ] = v

ack (x : xs) = f x (ack xs)

A simple calculation from the first equation gives the definition v = (1 :). From the

second equation, proceeding in the normal manner does not result in a definition

for the function f, as the reader may wish to verify. However, progress can be

made by first using fold to redefine the function ack (x : xs) on the left-hand

side of the second equation. By appealing to the universal property, the equation

ack (x : xs) = fold g w is equivalent to the following two equations:

ack (x : xs) [ ] = w

ack (x : xs) (y : ys) = g y (ack (x : xs) ys)

The first equation gives w = ack xs [1], and from the second:

ack (x : xs) (y : ys) = g y (ack (x : xs) ys)

⇔ { Definition of ack }
ack xs (ack (x : xs) ys) = g y (ack (x : xs) ys)

⇐ { Generalising (ack (x : xs) ys) to zs }
ack xs zs = g y zs

⇔ { Functions }
g = λy → ack xs

That is, using the universal property we have calculated that:

ack (x : xs) = fold (λy → ack xs) (ack xs [1])

Using this result, we can now calculate a definition for f:

ack (x : xs) = f x (ack xs)

⇔ { Result above }
fold (λy → ack xs) (ack xs [1]) = f x (ack xs)

⇐ { Generalising (ack xs) to g }
fold (λy → g) (g [1]) = f x g

⇔ { Functions }
f = λx g → fold (λy → g) (g [1])

In summary, using the universal property twice we have calculated that:

ack = fold (λx g → fold (λy → g) (g [1])) (1 :)
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6 Other work on recursion operators

In this final section we briefly survey a selection of other work on recursion operators

that we did not have space to pursue in this article.

Fold for regular datatypes. The fold operator is not specific to lists, but can

be generalised in a uniform way to ‘regular’ datatypes. Indeed, using ideas from

category theory, a single fold operator can be defined that can be used with any

regular datatype (Malcolm, 1990b; Meijer et al., 1991; Sheard and Fegaras, 1993).

Fold for nested datatypes. The fold operator can also be generalised in a natural

way to ‘nested’ datatypes. However, the resulting operator appears to be too general

to be widely useful. Finding solutions to this problem is the subject of current

research (Bird and Meertens, 1998; Jones and Blampied, 1998).

Fold for functional datatypes. Generalising the fold operator to datatypes that

involve functions gives rise to technical problems, due to the contravariant nature

of function types. Using ideas from category theory, a fold operator can be defined

that works for such datatypes (Meijer and Hutton, 1995a), but the the use of this

operator is not well understood, and practical applications are lacking. However,

a simpler but less general solution has given rise to some interesting applications

concerning cyclic structures (Fegaras and Sheard, 1996).

Monadic fold. In a series of influential articles, Wadler showed how pure functional

programs that require imperative features such as state and exceptions can be

modelled using monads (Wadler, 1990, 1992a, 1992b). Building on this work, the

notion of a ‘monadic fold’ combines the use of fold operators to structure the

processing of recursive values with the use of monads to structure the use of

imperative features (Fokkinga, 1994; Meijer and Jeuring, 1995b).

Relational fold. The fold operator can also be generalised in a natural way from

functions to relations. This generalisation supports the use of fold as a specification

construct, in addition to its use as a programming construct. For example, a relational

fold is used in the circuit design calculus Ruby (Jones and Sheeran, 1990; Jones,

1990), the Eindhoven spec calculus (Aarts et al., 1992), and in a recent textbook on

the algebra of programming (Bird and de Moor, 1997).

Other recursion operators. The fold operator is not the only useful recursion oper-

ator. For example, the dual operator unfold for constructing rather than processing

recursive values has been used for specification purposes (Jones, 1990; Bird and

de Moor, 1997), to program reactive systems (Kieburtz, 1998), to program opera-

tional semantics (Hutton, 1998), and is the subject of current research. Other in-

teresting recursion operators include the so-called paramorphisms (Meertens, 1992),

hylomorphisms (Meijer, 1992), and zygomorphisms (Malcolm, 1990a).

Automatic program transformation. Writing programs using recursion operators can

simplify the process of optimisation during compilation. For example, eliminating

the use of intermediate data structures in programs (deforestation) in considerably

simplified when programs are written using recursion operators rather than general

recursion (Wadler, 1981; Launchbury and Sheard, 1995; Takano and Meijer, 1995).

A generic system for transforming programs written using recursion operators is

currently under development (de Moor and Sittampalan, 1998).
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Polytypic programming. Defining programs that are not specific to particular

datatypes has given rise to a new field, called polytypic programming (Backhouse

et al., 1998). Formally, a polytypic program is one that is parameterised by one

or more datatypes. Polytypic programs have already been defined for a number of

applications, including pattern matching (Jeuring, 1995), unification (Jansson and

Jeuring, 1998), and various optimisation problems (Bird and de Moor, 1997).

Programming languages. A number of experimental programming languages have

been developed that focus on the use of recursion operators rather than general re-

cursion. Examples include the algebraic design language ADL (Kieburtz and Lewis,

1994), the categorical programming language Charity (Cockett and Fukushima,

1992), and the polytypic programming language PolyP (Jansson and Jeuring, 1997).
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1 Introduction

Rewriting is a fundamental technique both in algebra and in programming languages. These notes
are aimed at giving a brief introduction to rewriting theory on algebraic systems.

The main topics covered are:

• Termination using well-founded orderings;

• Local confluence and confluence: Newman’s lemma that termination and local confluence
implies confluence;

• Equality and confluence: the uniqueness of normal forms;

• The confluence of left-linear orthogonal rewrite systems;

• Standardization: normal forms for rewriting sequences;

• A brief discussion of combinatory logic and functional completeness.

2 Rewriting on algebraic systems

An algebraic system is determined by:

• A set of function symbols Ω each of which has an associated arity:

arity : Ω −→ N; f 7→ arity(f)

• A set of terms, TΩ(X) built inductively from a set of variables X as follows:

x ∈ X
x ∈ TΩ(X)

variable

t1, ..., tn ∈ TΩ(X) arity(f) = n

f(t1, .., tn) ∈ TΩ(X)
function application

1



A rewriting system on an algebraic system is generated by a set of primitive rewritings

R ⊆ TΩ(X)× TΩ(X)

where we require, when (t1, t2) ∈ R, that FV (t1) ⊇ FV (t2), that is the (free) variables of t1 contain
those of t2. The primitive rewritings generate a (larger) relation, which we shall write t1 −−→

R
t2,

on the terms TΩ(X) as follows:

(t1, t2) ∈ R σ a substitution

t1[σ] −−→
R

t2[σ]
substitution

s1, .., ŝi, .., sn ∈ TΩ(X) t −−→
R

t′ arity(f) = n

f(s1, ..., t, ..., sn) −−→
R

f(s1, ..., t
′, ..., sn)

application

We shall denote by t −−→
R

+ t′ the transitive closure of the above relation and by t −−→
R

∗ t′ the

transitive, reflexive closure of the relation. In the sequel we shall drop the R as it will be understood
from the context.

2.1 Examples of rewriting systems

2.1.1 Monoids

A monoid is an algebraic system with a binary multiplication, · , and a unit, sfe, which is a
constant (this means the arity is 0):

arity : Ω = {·, e} −→ N;
· 7→ 2
7→ 0

a monoid must satisfy equations which here we orient to create a rewriting system:

(x · y) · z −→ x · (y · z) (1)

e · x −→ x (2)

x · e −→ x (3)

Examples of monoids include: the natural numbers under addition (unit is 0), scalars under mul-
tiplication (unit is 1), matrices under multiplication (unit is the diagonal matrix).

2.1.2 Groups

A group is a monoid which adds one more operation called inverse which is a unary operation ( )−1

written traditionally as a superscript. We than have:

arity : Ω = {·, e, ( )−1} −→ N;
· 7→ 2
e 7→ 0
( )−1 7→ 1

2



a group must satisfy equations, which includes those of a monoid which here we orient to create a
rewriting system:

(x · y) · z −→ x · (y · z)

e · x −→ x

x · e −→ x

x · x−1 −→ e

x−1 · x −→ e

Neither the natural numbers under addition nor the scalars under multiplication form groups as
they lack inverses (the former because of the lack of negative numbers and the latter because 0
does not have an inverse). However, the non-zero scalars (of a field) from a group and the integers
under addition form a group. Also the invertible matrices under multiplication form a group.

2.1.3 Combinatory algebra

A combinatory algebra consists of a binary operation, called application, written as • and two
constants k and s:

arity : Ω = {•, k, s} −→ N;
• 7→ 2
k 7→ 0
s 7→ 0

These must satisfy two equations which we orient:

(k • x) • y −→ x

((s • x) • y) • z −→ (x • z) • (y • z)

The main example of a combinator algebra which we have is the closed terms of the λ-calculus
where application is application and

k = λxy.x and s = λxyz.xz(yz).

Clearly β-reduction corresponds to the rewritings above ...

2.1.4 BCK-algebra

A variant on a combinatory algebra consists is a BCK-algebra. Again there is a binary operation,
called application, written as • but this time three constants k and b, c and k:

arity : Ω = {•, b, c, k} −→ N;

• 7→ 2
b 7→ 0
c 7→ 0
k 7→ 0

These must satisfy the equations which we orient:

((b • x) • y) • z −→ (x • z) • y

((c • x) • y) • z −→ x • (y • z)

(k • x) • y −→ x

BCK-algebras have a particularly simple rewriting theory.
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3 Termination

A rewriting system is terminating if the rewriting relation is well-founded in the sense that
every non-empty set has a least element (this is a normal form relative to that set). This means
equivalently that there are no infinite chain of rewrites

t −→ t1 −→ t2 −→ t3 −→ ...

as such would not have a minimal element. So, for example, β-reduction on the λ-calculus is not
terminating.

Lemma 3.1 If a relation is well-founded its transitive closure (here t
+
−−→ t′) is also well-founded.

Proof: Suppose S is a subset we must find a minimal element in the set ... However, we do not
change this minimal element if we upclose the set

⇑ S = {t
+
−−→ t′|t′ ∈ S}.

This set has a minimal element with respect to the original −→ as it is well-founded which must

also therefore be minimal with respect to
+
−−→. 2

In the case that the number of possible rewrites leaving any term is always finite (this means
the term contains a finite number of redexes) then there is a bound on the number of rewrites which
a chain leaving that term can have. Having a bound is, logically, a strictly stronger property than
being well-founded. However, in many rewrite systems finding an explicit bound (that is a natural
number) on the number of rewrites is quite straightforward.

Lemma 3.2 A rewriting system R is terminating if and only if there is a well-founded set (W,<)
and a map α : TΩ(X) −→W such that:

• α(ri) > α(ci) for each ri −→ ci ∈ R;

• If α(t) > α(t′) then α(t[σ]) > α(t′[σ]);

• If α(ti) > α(t′i) then α(f(t1, ..., ti, ..., tn)) > α(f(t1, ..., t
′

i, ..., tn)).

Proof: If the rewriting system is terminating then t
=
−−→ t′ is well founded so we take α to be the

identity map. Conversely given such an α suppose ∅ 6= S ⊆ TΩ(X) then the set {α(s)|s ∈ S} ⊆W
is non-empty and therefore has a minimal element α(t0). However if t0 −→ t′0 is a reduction step
which has t′0 ∈ S then α(t′0) < α(t0) contradicting the minimality of α(t0). Thus, t0 is a minimal
element in S with respect to the reduction order showing this order is well-founded. 2

Thus, to demonstrate that a rewrite system terminates it suffices to exhibit a map α satisfying
the conditions of this lemma.
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3.1 Examples of termination arguments

3.1.1 Rewriting for monoids

The rewrite system for monoids is terminating:
Consider the “cost” function b : TΩ(X) −→ N given by:

α(x) = 1

α(e) = 1

α(t · t′) = 2α(t) + α(t′)

I claim this gives a bound for the rewriting. To see this it suffices to show that if t −→ t′ then
b(t) < b(t) so that each rewriting strictly decreases the cost. As N is well-founded this ensures the
rewriting is well founded.

Note that (a) each terms has cost at least 1 (b) decreasing the cost of a subterm will result in
at least that amount of cost decrease for the whole term. This means that it suffices to check that
the rewrites applied at the root of the term always strictly decrease the cost. However, this is a
simple calculation:

α((t1 · t2) · t3) = 4α(t1) + 2α(t2) + α(t3) > 2α(t1) + 2α(t2) + α(t3) = α(t1 · (t2 · t3)

α(e · t) = 2 + α(t) > α(t)

α(t · e) = 2α(t) + 1 > α(t).

3.2 Rewriting for BCK-algebras

Consider the cost function which simply counts occurrences of b, c, and k:

α(x) = 1 x is a variable

α(b) = α(c) = α(k) = = 1

α(t1 • t2) = α(t1) + α(t2)

It is easy to see that this cost function descreases across all the rewrites for BCK-algebras.

3.3 Well-founded strict partial orders

In constructing more sophisticated termination arguments it is often useful to use more complex
well-founded orders. The gandfather of all well-founded orders is the (strict) order on the natural
numbers (this is also a stricttotal order). There are a number of important ways of constructing
well-founded strict partial orders from other well-founded strict partial orders:

3.3.1 Lexicographical orderings on strings

If P is well-founded then P ∗ with the lexicographical ordering. The lexicographical ordering is
given by [] is minimal and x : xs < y : ys if either x < y or if x = y and xs < ys.

Lemma 3.3 The lexicographical relation on P ∗ derived from a well-founder relation on P is itself
well-founded.
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Proof: This strict inequality is well-founded as given any X ⊂ P ∗ if the empty list is in there is
automatically a minimal element otherwise choose a minimal element x0 ∈ P in the first entry and
consider the tails Tailx0

(X) = {xs|x0 : xs ∈ X}, if there is a minimal element in this set then there
is a minimal element in X: in fact, if we continue this process this amounts to asking that one of
the tails sets contains the empty list. Suppose for contradiction that this never happens then we
would have an element p0 ∈ P ∗ which is in all the sets

X ⊇ x0 : Tailx0
(X) ⊇ x0 : x1 : Tailx0

(Tailx0
(X)) ⊇ x0 : x1 : x2 : Tailx2

(Tailx1
(Tailx0

(X))) ⊇ ...

but p0 has a finite length so one of these sets must contain the empty list. 2

3.3.2 Lexicographical ordering of Rose trees

We consider trees with entries at the nodes and a finite list of subtrees ( that is data Rose a = (;)

a [Rose a]) these are called Rose trees. Rose trees of a well-founded poset form a well-founded
set. We set x;xs < y; ys if x < y or if x = y and xs < ys (where we use the lexicographical ordering
of the subtrees).

Lemma 3.4 The lexiographical relation on Rose trees, Rose(P ) based on a well-founded relation
on P is itself well-founded.

Proof: The argument that this strict ordering is well-founded is almost identical to the argument
we have just done: in any set of rose trees there are trees with a minimal element element at
the root we may than consider the set of lists of arguments Tailsx0

(X) if this contains a minimal
element we are done. At any rate either this contains the empty list (so we are done) or we may
choose a lexicographically least list of first elements. This allows us to grow a prefix of a Rose tree
agreeing with elements in X which are minimal so far. The same argument as before shows that
this growing process must close off with empty lists of argments as a given Rose tree which is in all
these sets is finite. 2

3.3.3 Bags ordering

A bag is an unordered list: this means repetitions are allowed: {[x, y, x]} = {[y, x, x]} 6= {[x, y]} but
the order in which the elements occur does not matter. The set Bag(P ) of bags of elements of a
set P with a well founded relation can be endowed with a well-founded realtion. One bag is less
than another in case:

• The empty bag {[]} is minimal.

• {[x]} ⊔ b1 < {[x]} ⊔ b2 if b1 < b2;

• {[x1, .., xn]} ⊔ b < {[y]} ⊔ b whenever each xi < y.

Thus we may determine whether one bag is (strictly) less than the other by first removing the
elements in common and then for each element in the bigger bag removing all elements in the
smaller bag which are strictly less than it. The smaller bag will be emptied by this process.

Intuitively to construct an element strictly smaller than a given b we are allowed to pick an
element from the bag and either remove it or replace it with a bag of elements each of which is
individually strictly smaller than the element removed. It is not so obvious that this process must
always end as you may replace the element with a very large bag of smaller elements!
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Proposition 3.5 If P is a well founded set then the induced relation on Bag(P ) given above is
well founded.

Proof: To prove this is well-founded is not so easy (Dershowitz and Manna). Here is a sketch:
suppose there is an infinite descending chain of bags b0 < b1 < b2 < ... then we may build a forest
with roots x ∈ b0 the children of x are the bag {x1, .., xn} of elements which eventually replace x
that is bi < bi+1 (for some i) introduces this strict replacement of x (if this never happens then x
is a leaf). Every step in the sequence must do one (or more) replacements of this nature. However,
this tree is finitely branching and has all its paths of finite length so itself is finite (Konigs lemma).
This means the sequence itself must be finite. 2

3.3.4 Bag trees:

A bag tree is a rose tree in which the order of the children does not matter (that is morally data

BagTree a = (.) a (Bag (Bagtree a))). If P is a well-founded set then BagTree(P ) is also
well-founded. The order is given inductively using the bag ordering: x.{[t1, .., tn]} ≤ y.{[s1, ..., sm]}
if x < y or when x = y when {[t1, .., tn]} < {[s1, ..., sm]}.

Now, in fact, an unordered tree may equally be represented by its bag of paths. The ordering I
have just described is just the bag ordering on the lexicographical ordering on the paths! Therefore
it is certainly well-founded.

3.3.5 Recursive path ordering

There is a more sophisticated family of well-founded ordering on unordered trees which are called
recursive path orderings they may be given (following Klop) by the transitive closure of a rewrite
system between unordered trees (where one adds a unary operation ( )∗) restricted to the unordered
trees (so you must eventually remove the added symbol!).

n.b −→ n∗.b

n∗.b −→ m.{[n∗.b, ..., n∗.b]} m < n

n∗.{[m.b]} ⊔ b′ −→ n.{[m∗.b, ...,m∗b]} ⊔ b′ (where any number of copies is permitted)

n∗.{[m.b]} ⊔ b′ −→ m.b

See Klop for the proof.
Here is an exercise to show that the rewriting system determined on terms by x · (x + y)

−→ (x · x) + (x · y) and (x + y) + z −→ x + (y + z) is terminating?
An illustration of recursive path ordering (Klop) is for the rewrite system

¬¬y −→ y

¬(x ∨ y) −→ (¬x) ∧ (¬y)

¬(x ∧ y) −→ (¬x) ∨ (¬y)

x ∧ (y ∨ z) −→ (x ∧ y) ∨ (x ∧ z)

(y ∨ z) ∧ x −→ (y ∧ x) ∨ (z ∧ x)

We map terms to unordered trees on the natural numbers:

V (x ∨ y) = 1.{[V (x), V (y)]} V (x ∧ y) = 2.{[V (x), V (y)]} V (¬x) = 3.{[V (x)]}
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then check that each rule is a reduction here are some of the verifications (exercise complete the
set):

¬¬x = 3.{[3.{[V (x)]}]} −→ 3∗.{[3.{[V (x)]}]} −→ 3.{[V (x)]} −→ 3∗.{[V (x)]} −→ V (x)

¬(x ∨ y) = 3.{[1.{[V (x), V (y)]}]} −→ 3∗.{[1.{[V (x), V (y)]}]}

−→ 1.{[3∗.{[1.{[V (x), V (y)]}]}, 3∗ .{[1.{[V (x), V (y)]}]}]}

−→ 2.{[3.{[1∗ .{[V (x), V (y)]}]}, 3.{[1∗ .{[V (x), V (y)]}]}]}

−→ 2.{[3.{[V (x)]}, 3.{[V (y)]}]} = V ((¬x) ∧ (¬y))

It is worth noting that recursive path ordering cannot, in general, handle associative laws.
One way to recover this ability is to add subscripts to the operation indicating its left depth (for
example) ...

4 Confluence

We shall say that a rewriting system is locally confluent if every one-step divergence

t

����
��

��
��

��>
>>

>>
>>

>

t1 t2

has a (possibly) multi-step convergence:

t1

∗
��>

>>
>>

>>
t2

∗
����

��
��

�

t′

We shall say that a rewriting is confluent if every multi-step divergence

t
∗

����
��

��
��

∗

��>
>>

>>
>>

>

t1 t2

has a convergence as above. Some examples of divergences are:

1. Two one-step divergences from the example of monoids are:

(x · e) · y

zzuu
uuu

uuu
uu

&&MMMMMMMMMM

x · y x · (e · y)

((x · y) · z) · w

vvmmmmmmmmmmmmm

((QQQQQQQQQQQQQ

(x · (y · z)) · w (x · y) · (z · w)
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For each there are, in this case, corresponding convergences. Note that the first uses the
reflexivity non-trivially while the second requires more than on rewriting step on one of the
legs:

x · y

FF
FF

FF
FF

F

FF
FF

FF
FF

F
x(·e · y)

zzttttttttt

x · y

(x · (y · z)) · w

��

(x · y) · (z · w)

}}zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

z

x · ((y · z) · w)

((QQQQQQQQQQQQQ

x · (y · (z · w))

2. A one step divergence from the example of groups is:

(x−1 · x) · y

yyssssssssss

''OOOOOOOOOOO

e · y x−1 · (x · y)

Notice that this divergence has no corresponding convergence with respect to the rewrite
system given so that this rewrite system is not confluent.

With respect to a rewriting relation a term t is said to be in normal form if it is minimal in
the sense that there is no rewriting t −→ t′.

When rewrite systems become more sophisticated then the fundamental use of termination, in
the sense of the rewrite relation being well-founded, becomes more essential. To show termination of
simple rewrite systems, often, a cost function into the natural numbers, as above, will do the trick.
In this case a standard induction will do the trick. However, assuming that the one-step rewriting
is just well-founded forces us to do well-founded inductions. This uses the following principal:

Principle of well-founded induction: Given a well-founded relation (here the one-step rewrit-
ing or its transitive closure) we have the following inference for any property:

∀t.(∀t′.t > t′ ⇒ P (t′))⇒ P (t)

∀t.P (t)
wf-ind

Notice that this means that the property must be true, in particular, for all t which are minimal
(i.e. are in normal form) as these have no elements below them.

Lemma 4.1 (Newman) Any terminating rewriting system which is locally confluent is confluent.

Proof: The property P we wish to prove is “every divergence leaving t has a convergence. This
is therefore certainly true of any elements in normal form. Suppose t is such that whenever t′ has

t
+
−−→ t′ then t′ has this property then we argue as follows to show that t has the property:

Consider a divergence

t
∗

����
��

��
��

∗

��>
>>

>>
>>

>

t1 t2
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if either of the arms is trivial (i.e involves no steps) then there is an obvious convergence. So we
may assume that each arm has at least one step. So the divergence is now of the form:

t

����
��
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��

��=
==

==
==

=

t′1
∗

����
��

��
�

t′2
∗

��>
>>

>>
>>

t1 t2

However, everything strictly below t satisfies the induction hypothesis so that:

t

loc. conf
��?
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t′2
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��
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??
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?

t2

∗����
��

��

t′1
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∗

����
��

��
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??
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?

t′

ind

∗����
��

��
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??
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t21

∗����
��

��

t1

∗ ��?
??

??
?

t12

∗ ��?
??

??
?

t′′

2

Notice that if a system is confluent then each t has at most one normal form associated with
it (there may be none: remember the λ-calculus). This is because suppose that t has two distinct

normal forms s1 and s2 with t
∗
−−→ s1 and t

∗
−−→ s2 then this constitutes a divergence. However the

convergence forces s1 = s2. So in a confluent system normal forms are unique.
Here is a rewriting system (between constants in an algebraic theory), in which local confluence

holds yet confluence does not hold, in which there are objects with no normal form and with two
normal forms (the example follows Huet):

•

�� ��@
@@

@@
@@

•

��~~
~~

~~
~

��
•

��

•

��
•

??~~~~~~~
•

__@@@@@@@

•

��

(( •hh

��
• •

Given a rewriting system if we treat the rewrites as equalities (of an algebraic system) this gives
the following observation which explains the preoccupation with confluence:

Lemma 4.2 In a confluent rewriting system t1 = t2 if and only if there is a convergence

t1

∗
��>

>>
>>

>>
t2

∗
����

��
��

�

t′
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Proof: t1 equals t2 if and only if there is a zigzag of rewritings:

t1
∗
←−− s1

∗
−−→ s′1

∗
←−− s2

∗
−−→ s′2

∗
←−− ...sn

∗
−−→ t2

We argue by the number of zigs (in this case n). If n is 0 the result is immediate. It is nice, though
not necessary, to observe that when n = 1 then it is given by the confluence. We suppose the result
true for N and consider a zigzag with N + 1 zigs.

s1

∗
��?

??
??

??
?

∗
����

��
��

��
s2

∗
!!C

CC
CC

CC
C

∗
����

��
��

��
s5

∗
��?

??
??

??
?

∗
}}{{

{{
{{

{{
sN

∗
""EE

EE
EE

EE
E

sN+1

∗
!!DD

DD
DD

DD
D

∗
||yyyyyyyy

t1

∗

!!C
CC

CC
CC

CC
CC

CC
CC

CCC
CC

CC
CC

CC
CC

CCC
CC

CC
CC

CC
C s′1 s′2 s′3 ... s′N

∗

||xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
t2

∗

{{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Ind.

confl.

•

∗
""FF

FF
FF

FF
F

•

Using the induction hypothesis and confluence shows that the result holds for N . 2

Corollary 4.3 In a confluent terminating rewriting system

(i) Every term has a normal form;

(ii) Two terms are equal if and only if they have the same normal form.

5 Critical pairs

In an algebraic system there are (usually) infinitely many terms so that it is not practical to
check every divergence for a convergence. It is therefore important to understand which (one step)
divergences one actually has to check. To understand this it is useful to understand what a redex is:
it is the part of the term that a rewriting rule removes in order to replace it with the contractum.
A redex indicates where in the term a primitive rewriting could be applied and the part of the
subterm standing at that place which will be affected by the rewriting.

We say that two rewritings t −→ t1 and t −→ t2 are independent in case the redexes of the
primitive rewritings they embody are disjoint. This can happen in two different ways: firstly the
redexes can be in parallel parts of the term (i.e. they are below different arguments of some function
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symbol). We may write this situation as t(r1[σ1], r2[σ2]) where r1 −→ c1 and r2 −→ c2 are the two
rewritings. In this situation it is clear that:

t(r1[σ1], r2[σ2])

����
��

��
��

��
��

��?
??

??
??

??
??

?

t(c1[σ1], r2[σ2])

����
��

��
��

��
��

t(r1[σ1], c2[σ2])

��?
??

??
??

??
??

?

t(c1[σ1], c2[σ2])

so that local confluence is assured.
The other possibility is that one redex is below the other which we represent as t(r1[t

′(r2[σ2])/x, σ1]).
There is immediately a little subtly concerning this situation which we should be clear about: in
the redex r1 the variable x may occur more an once. Thus r2 may occur in multiple (parallel)
places and it is only one of these redexes which is the actual second redex we had in mind when
we started. However, we do have the following:

t(r1[t
′(r2[σ2])/x, σ1])

∗

����
��
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��

��
��
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??

??
??

??
??

?

t(c1[t
′(r2[σ2])/x, σ1])

∗

����
��

��
��

��
��

t(r1[t
′(c2[σ2])/x, σ1])

��?
??

??
??

??
??

?

t(c1[t
′(c2[σ2])/x, σ1])

and from this we can obtain our local confluence by replacing the downward arrow by a sequence
of rewrites the first of which is the chosen rewrite.

We have now shown that:

Lemma 5.1 In any rewrite system over an algebraic system, rewrites with independent redexes are
locally confluent.

The importance of this is that in order to establish local confluence it suffices to check the cases
when the redexes overlap. However, we can go further: clearly all the rewriting takes place on
the term below where the first redex starts so we need only consider the subterm at which that
redex starts. Finally, notice that the terms which are just the overlapping redexes themselves will
exhibit the divergence (in fact, in a minimal way). Furthermore, when this minimal divergence
has a convergence any substitution of it will also have a convergence. Thus, by solving such
a divergence, which we certainly must do anyway, we will have solved all the cases where this
pattern of overlapping redexes occur. Thus, it suffices to check the divergences arising from these
overlapping redexes for convergence. These minimal divergences are called critical divergences
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(the two feet are called a critical pair). When the rewriting system is terminating we may rewrite
the two feet of a critical divergence into a common normal form.

To form critical pairs involves identifying a subterm in a redex (which can be the whole term) at
which the overlap will happen. Thus given a redex r1 one splits it into r1 = r′1(s), where s is not a
variable, and next one finds a most general substitution, that is a the most general unifier, σ, such
that r2[σ] = s[σ], where r2 and s are assumed to have no variables in common. The divergence:

r1[σ] = r′1(s)[σ]

''PPPPPPPPPPPP

xxppppppppppp

c1[σ] r′1(c2)[σ]

is then a critical pair. Notice that this whole construction is more delicate as r1 can have repeated
variables, as in the rewrite x ·x−1 −→ sfe above for example, so that simply overlapping r1 and r2 in
the obvious manner may destroy the redex for r2 as it requires that two subterms are equal. Using
unification maintains this and delivers the minimal way to do this. Thus, the critical divergence
from (x · y) · z and x · x−1 −→ e is

x · (y · (x · y)−1)←− (x cot y) · (x · y)−1 −→ e.

Proposition 5.2 A rewrite system over an algebraic system is locally confluent if and only if all
critical divergences can be converged.

This reduces testing a (finitely presented) system for local conflence to a finite number of tests.
Thus it is an easily decidable question.

5.1 Examples of determining confluence

5.1.1 Confluence for monoids

Consider the rewriting system for monoids:
At this stage we know the rewriting system is terminating so it remains to look at the critical

pairs that is minimal terms in which there are overlapping redexes. It is useful here to visualize
the terms as trees so that one can see what is going on. There are five critical pairs:

1. Rules (2) and (1) have a critical pair arising from the following overlapping redexes:

·
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>>
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y

e x

This critical pair is resolved as follows:

(e · x) · y

(2)

��

(1)
// e · (x · y)

(2)

��
x · y x · y
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2. Rules (3) and (1) have a first critical pair arising from the following overlapping redexes:

·
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x e

This critical pair is resolved as follows:

(x · e) · y

(3)

��

(1)
// x · (e · y)

(2)

��
x · y x · y

3. Rules (1) and (3) have a critical pair arising from the following overlapping redexes:

·
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x y

This critical pair is resolved as follows:

(x · y) · e

(3)

��

(1)
// x · (y · e)

(3)

��
x · y x · y

4. Rules (3) and (2) have a critical pair arising from the following overlapping redexes:

·
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e e

This critical pair is (trivially) resolved as follows:

e · e

(2)
��

(3)
// e

e e
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5. Rules (1) and (1) have a critical pair arising from the following overlapping redexes:

·
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·
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x y

This critical pair is resolved as follows (this is actually an instance of something very famous
sometimes called “the MacLane pentagon”):

((x · y) · z) · w

((QQQQQQQQQQQQQ

vvlllllllllllll

(x · (y · z)) · w

��

(x · y) · (z · w)

��
x · (((y · z) · w) // x · (y · (z · w))

5.1.2 The rewriting system for BCK-algebras is confluent

We have seen that the rewriting for BCK-algebras is terminating. An inspection of the rewrites
quickly shows that there are no critical pairs for this rewrite system. In fact as we shall shortly see
it is an example of an orthogonal rewrite system (which are always confluent). However, even at
this stage we can conclude that this rewrite system is confluent and, in fact, rewriting will produce
a normal form in linear time.

5.1.3 The rewriting for groups is not confluent

The divergence, mentioned earlier, for the rewriting system for groups:

(x−1 · x) · y

yyssssssssss

''OOOOOOOOOOO

e · y x−1 · (x · y)

is a critical divergence which has no convergence. Thus this rewriting system as it stands is not
confluent.

5.2 Knuth Bendix completion

A natural further step is to try to complete a rewriting system to make it confluent. This is
the Knuth-Bendix completion procedure: the basic idea is as follows: suppose one starts with a
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well-founded rewrite system on the terms which agrees with given rewrites and one discovers that a
critical divergence cannot be resolved then one adds a rewrite to the system across the pair oriented
in the direction of the well-order. This results in an expanded system of rewrites, next one removes
any rewrites which are now implied. One then keeps going like this until there are no unresolved
critical pairs.

Of course there is no guarantee that this procedure will terminate. However, it gives a very
effective way of searching for a confluent rewrite system which often does terminate.

Consider the example of groups. We know the rewriting system as it stands is not confluent as
certain critical pairs cannot be resolved:

e · y ←− (x−1 · x) · y −→ x−1 · (x · y)

e · y ←− (x · x−1) · y −→ x · (x−1 · y)

e←− e · e−1 −→ e−1

e−1 ←− e−1 · e −→ e

These cause us to add to the system the oriented equations:

x−1 · (x · y) −→ y

x · (x−1 · y) −→ y

e−1 −→ e

(where notice we have reduced each term in the critical pairs to a normal form). Adding these
equations introduce more critical pairs in particular:

x · e←− x · (x−1 · (x−1)−1) −→ (x−1)−1

x · (y · (x · y)−1 ←− (x · y) · (x · y)−1 −→ e

which causes us to add (among other things)

(x−1)−1 −→ x

x · (y · (x · y)−1 −→ e

This gives
y · (x · y)−1 ←− ·x−1 · (x · (y · (x · y)−1) −→ x−1 · e

which causes the addition of the rewrite

y · (x · y)−1 −→ x−1

this rewrite gives rise to the critical pair

(x · y)−1 ←− y−1 · (y · (x · y)−1) −→ y−1 · x−1.

which causes the rewrite
(x · y)−1 −→ y−1 · x−1
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to be added. Finally this gives a confluent set of rewritings for groups:

(x · y) · z −→ x · (y · z)

e · x −→ x

x · e −→ x

x · x−1 −→ e

x−1 · x −→ e

e−1 −→ e

x · (x−1 · y) −→ y

x−1 · (x · y) −→ y

(x−1)−1 −→ x

(x · y)−1 −→ y−1 · x−1

Exercise: show that this is locally confluent and terminating.

6 Orthogonal rewriting systems

A very basic result in rewriting theory is that all left-linear orthogonal rewriting systems are
confluent. A rewrite rule is left-linear in case the lefthand side does not contain any repeated
variables (recall the problems these gave above) and contains all the variable of the righthand side.
The rewriting system is orthogonal in case the redexes never overlap unless they are the same.
An example of such a rewriting system is the system for combinatory algebra above.

Theorem 6.1 Every left-linear orthogonal system is confluent.

It is clear that such a system must be locally confluent, so if the system is terminating, it already
implies that the system is confluent. However, proving termination can be non-trivial so that even
when the system is terminating this is a useful observation. The force of this result, however, is for
non-terminating systems:

Corollary 6.2 The rewriting system on combinatory algebra is confluent.

The remainder of this section is dedicated to proving this result in some detail. We shall use a
labeling argument similar to the the one used to establish the confluence of the λ calculus.

Let R = {ri −→ ci|i ∈ I} be a left-linear orthogonal rewriting system on a set of terms TΩ(X).
Then we may augment the system with a set of labeled operations corresponding to the redexes of
the rewrite rules

Ω(R) = Ω ∪ {λ∗(x1, ..., xn).ri|ri −→ ci ∈ R, FV (ri) = {x1, ..., xn}}

to get a set of terms TΩ(R)(X). In addition we may add a set of labeled rewrites corresponding to
the original rewrites but starting at the labeled operations

R∗ = R∪ {(λ∗(x1, ..., xn).ri)(x1, ..., xn) −→ ci|ri −→ ci ∈ R}.
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Thus we regard λ∗(x1, ..., xn).ri as a new operation symbol which has arity n for the system which
also has associated rewrite rules as above.

There is an obvious mapping ε : TΩ(∗R)(X) −→ TΩ(X) which simply removes the labeling. This
is defined by:

ε(x) = x x ∈ X

ε(f(t1, ..., tn)) = f(ϕ(t1), ..., ϕ(tn))

ε((λ∗(x1, ..., xn).ri)(t1, ..., tn)) = ri[ε(t1)/x1, ..., ε(tn)/xn]

Given a term t in this labeled system we may also define a function ϕ : TΩ(R)(X) −→ TΩ(X) which
performs all the labeled rewrites as follows:

ϕ(x) = x x ∈ X

ϕ(f(t1, ..., tn)) = f(ϕ(t1), ..., ϕ(tn))

ϕ((λ∗(x1, ..., xn).ri)(t1, ..., tn)) = ci[ϕ(t1)/x1, ..., ϕ(tn)/xn]

Notice this is a “by-value” evaluation strategy.
An important observation concerning this latter function is:

Lemma 6.3 ϕ(t[t′/x]) = ϕ(t)[ϕ(t′)/x].

Proof: We do a structural induction on t. There are three cases to consider:

(a) t is a variable: in this case the result is immediate.

(b) t = f(t1, ..., tn) then we have:

ϕ(f(t1, ..., tn))[ϕ(t′)/x] = f(ϕ(t1), ..., ϕ(tn))[ϕ(t′)/x]

= f(ϕ(t1)[ϕ(t′)/x], ..., ϕ(tn)[ϕ(t′)/x])

= f(ϕ(t1[t
′/x]), ..., ϕ(tn[t′/x]))

= ϕ(f(t1[t
′/x], .., tn[t′/x]))

= ϕ(f(t1, .., tn)[t′/x])

(c) t = (λ∗(x1, ..., xn).r1)(t1, .., tn) then we have:

ϕ((λ∗(x1, ..., xn).r1)(t1, ..., tn))[ϕ(t′)/x] = ci[ϕ(t1)/x1, ..., ϕ(tn)/xn][ϕ(t′)/x]

= ci[ϕ(t1)[ϕ(t′)/x]/x1, ..., ϕ(tn)[ϕ(t′)/x]/xn]

= ci[ϕ(t1[t
′/x])/x1, ..., ϕ(tn[t′/x])/xn]

= ci[ϕ(t1[t
′/x])/x1, ..., ϕ(tn[t′/x])/xn]

= ϕ(ci[t1[t
′/x]/x1, ..., tn[t′/x]/xn])

= ϕ(ci[t1/x1, ..., tn/xn][t′/x]).

2

This has an important consequence:
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Lemma 6.4 The following are valid rewriting diagrams:

(i)

ri[t1/x1, ..., tn/xn]
∗

ϕ //

ri

��

ϕ(ri[t1/x1, ..., tn/xn])

ri

��
ci[t1/x1, ..., tn/xn]

∗

ϕ
// ϕ(ci[t1/x1, ..., tn/xn])

(ii)

t[ri[t1/x1, ..., tn/xn]/y]
∗

ϕ //

∗t[ri/y]
��

ϕ(t[ri[t1/x1, ..., tn/xn]/y])

∗ ϕ(t)[ri/y]
��

t[ci[t1/x1, ..., tn/xn]/y]
∗

ϕ
// ϕ(t[ci[t1/x1, ..., tn/xn]/y])

(iii)

t[(λx̃.ri)(t1, ..., tn)/y]

∗

ϕ

**VVVVVVVVVVVVVVVVVV

t[(λx̃.ri)/y] ∗

��
t[ci[t1/x1, ..., tn/xn]/y]

∗

ϕ
// ϕ(t[(λx̃.ri)(t1, ..., tn)/y])

Proof:

(i) This follows as ϕ(ri[t1/x1, ..., tn/xn]) = ri[ϕ(t1)/x1, ..., ϕ(tn)/xn] and ϕ(ci[t1/x1, ..., tn/xn]) =
ci[ϕ(t1)/x1, ..., ϕ(tn)/xn] as there is no labeled material in either ri or ci.

(ii) This time we make use of the above lemma as:

ϕ(t[ri[t1/x1, ..., tn/xn]/y]) = ϕ(t)[ri[ϕ(t1)/x1, ..., ϕ(tn)/xn]/y]

and
ϕ(t[ci[t1/x1, ..., tn/xn]/y]) = ϕ(t)[ci[ϕ(t1)/x1, ..., ϕ(tn)/xn]/y].

(iii) We need to show
ϕ(t[(λ∗x̃.ri)(t1, ..., tn)/y]) = ϕ(t[ci(t1, ..., tn)/y]).

The proof is by a structural induction on t. There are three cases:

(a) If t is a variable then either it is y and one can directly use the definition of ϕ or it is
distinct and the result is immediate.

(b) t = f(t′1, ..., t
′
n) where the result holds for t′1, ... t′n then we have:

ϕ(f(t′1, ..., t
′

n)[(λ∗x̃.ri)(t1, ..., tn)/y])

= ϕ(f(t′1[(λ
∗x̃.ri)(t1, ..., tn)/y], ..., t′n[(λ∗x̃.ri)(t1, ..., tn)/y]))

= f(ϕ(t′1[(λ
∗x̃.ri)(t1, ..., tn)/y]), ..., ϕ(tn [(λ∗x̃.ri)(t1, ..., tn)/y]))

= f(ϕ(t′1)[ci[x1/ϕ(t1), ..., xn/ϕ(tn)]/y]), ..., ϕ(t′n)[ci[ϕ(t1)/x1, ..., ϕ(tn))/y]))

= f(ϕ(t′1)[ci[x1/ϕ(t1), ..., xn/ϕ(tn)]/y]), ..., ϕ(t′n)[ci[ϕ(t1)/x1, ..., ϕ(tn))/y]))

= ϕ(f(t′1, ..., t
′

n))[ci[x1/ϕ(t1), ..., xn/ϕ(tn)]/y]
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(c) Lastly for t = (λ∗ỹ.rj)(t
′
1, ..., t

′
n) we have:

ϕ((λ ∗ ỹ.rj)(t
′

1, ..., t
′

m)[(λ∗x̃.ri)(t1, ..., tn)/y])

= ϕ((λ ∗ ỹ.rj)(t
′

1[(λ
∗x̃.ri)(t1, ..., tn)/y], ..., t′m[(λ∗x̃.ri)(t1, ..., tn)/y]))

= cj [ϕ(t′1[(λ
∗x̃.ri)(t1, ..., tn)/y])/y1, ..., ϕ(t′n[(λ∗x̃.ri)(t1, ..., tn)/y])/ym]

= cj [ϕ(t′1)[ci[ϕ(t1)/x1, ...ϕ(tn)/xn]/y])/y1, ..., ϕ(t′n)[ci[ϕ(t1)/x1, ...ϕ(tn)/xn]/y]/ym]

= ϕ(cj [t
′

1/y1, ..., tm/ym])[ci[ϕ(t1)/x1, ...ϕ(tn)/xn]/y].

2

Notice the above lemmas do not use the assumption that the rewrites are left linear or orthog-
onal.

Now suppose that we wish to determine whether a divergence of the form:

t //

∗

��

t′′

t′′

Then we may label the one step rewriting so that it may be viewed as t
ϕ
−−→ ϕ(t) = t′′ Note

that in doing this labeling we may have to turn some of the rewritings on the multi-step leg into
labeled rewritings. Here the importance of orthogonality comes into play as we must be assured
that by labeling a redex we do not block a reduction but merely are forced to label it. Furthermore,
introducing a label in this manner can stop a rule which is not left-linear from being applicable.
So if the rules are not left-linear there is no guarantee that after labeling we can reconstruct the
rewriting. Thus, at this stage we use both assumptions.

Once the labeling has been done we may argue using the induction hypothesis that when the
multi-step rewriting (down) has length N or less then there is a convergence of the form:

t
ϕ

∗
//

∗

��

ϕ(t)

∗

��

t′ ϕ
∗ // ϕ(t′)

Considering an N + 1 step rewriting we may split it as

t
ϕ

∗
//

��

ϕ(t)

∗

��
t1

Ind.∗

��

ϕ
∗ // ϕ(t1)

∗

��

t′ ϕ
∗ // ϕ(t′)

where the first square comes into two flavors depending on whether the rewrite downward is a
labeled or not. Both cases, however, are covered by the lemma above. Removing the labeling gives:
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Lemma 6.5 (Strip lemma) In an orthogonal left-linear system every divergence of a one-step
rewriting against a multi-step rewriting has a convergence

t //

∗

��

t′′

t′′

The main theorem now follows easily from this lemma by pasting together the strips to obtain
a convergence for a divergence in which the horizontal rewrite is multi-steps as well.

t1

∗

��

// t2

∗

��

// t3

∗

��

// ... // tn

∗

��
t′1

// t′2
// t′3

// ... // t′n

7 Standard reductions

Recall that in the λ-calculus even when one has confluence that one must be careful about the
order in which one reduces if one wants to be assured of finding a normal form.

We shall say that a reduction path

t −→ t1 −→ t2 −→ .... −→ tn

for an orthogonal left-linear system is standard if it is never the case that for ti
ri−−→ ti+1

ri+1

−−−−→ ti+2

the redex of ri+1 is above that of ri. As the rewriting system is non-overlapping then ri will either
be parallel to ri+1 or completely above. Notice that if the reductions are in the wrong order in a
chain that we can swap the reduction order:

ti = t(r1(t1, .., tj(r2(s1, ..., sm)), ..., tn)

r1

��

r2 // t(r1(t1, .., tj(c2[s1/y1, ..., sm/ym]), ..., tn))

r1

��
t(c1[t1/x1, ..., tj(r2(s1, ..., sm))/xi, ...xn/tn]) r2

∗ // t(c1[t1/x1, ..., tj(c2[s1/y1, ..., sm/ym])/xi, ...xn/tn])

Note that the left-linearity is used here and allow us to deal with an arbitrary pair of reductions.
Putting the reductions in standard order can increase the number of reductions (when the variable
xi occurs more than once in c1) but also, importantly, it can reduce the number of reductions
(especially when there are infinitely many possible reductions from tj(c2[s1/y1, ..., sm/ym])) as the
variable xi may not occur in ci.
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Notice that in the modified reduction chain that the maximal number of sequential reductions
never increases. Two reductions are sequential (as opposed to parallel) when one occurs in a
subterm of the other. This means the process of standardizing a reduction sequence will always
terminate.

Proposition 7.1 In a left-linear orthogonal rewriting system

(i) every reduction sequence can be transformed into a standard reduction sequence;

(ii) If a term has a normal form it can be obtained by a standard reduction.

The cost of doing a standard reduction is apparently that one may have to do more reductions.
However, notice that the increase in the number of reductions can be completely mitigated if one
holds the term so that the substitutions do not replicate rewrites. This is usually done by regarding
the terms as graphs so that subterms can be shared and, more importantly, the reductions on that
subterm are shared (so only done once). This is essentially the idea behind graph reduction.
Formally this means that these left-linear systems have an optimal rewriting strategy.

8 Combinatory algebra

As mentioned above a combinatory algebra is a model for an algebraic system with a binary oper-
ation, called application, and two constants k and s. These are subject to the following equations
which we orient as rewrites:

(k • x) • y −→ x

((s • x) • y) • z) −→ ((x • z) • (y • z)

As we have seen above these rewrite rules form an orthogonal left-linear rewriting system.
Therefore, this is a confluent system in which standard reductions are guaranteed to find normal
forms. It is also a non-trivial system as s•k 6= k. The system, in fact, satisfies some quite remarkable
properties which we now briefly explore.

An applicative system is a set A with a single binary operation

• : A×A −→ A; (x, y) 7→ x • y.

Clearly a combinatory algebra is an example of a applicative system as one can simply forget about
k and s. An applicative system is said to be functionally complete if whenever there is a polynomial
expression p(x1, ..., xn) in n variable

p −→ x1|x2|...|xn|a ∈ A|p • p

then there is an element p̂ such that for every substitution of the variables by elements of A

(...((p̂ • x1) • ...) • xn = p(x1, ..., xn)

Proposition 8.1 Combinatory algebra is functionally complete. Furthermore, a combinatory com-
plete applicative system is a combinatory algebra

22



Proof: The proof involves the introduction of an abstraction mechanism which is a mechanism
for building constants with the desired property for functional completeness. Suppose, therefore,
we have a polynomial p which involves free variables X = x1, ..., xn and then define λ∗xi.p as the
following polynomial in which the variable xi has been removed:

λ∗x.x = (s • k) • k

λ∗x.z = k • z z is s or k or a variable

λ∗x.(p1 • p2) = (s • (λ∗x.p1)) • (λ∗x.p2)

Observe that (λ ∗ x.p) •M = p[M/x] which can be seen by a structural induction:

(λ∗x.x) •M = ((s • k) • k) •M

= (k) •M) • (k) •M) = M = x[M/x]

(λ∗x.z) •M = (k • z) •M = z = z[M/x]

λ∗x.(p1 • p2) •M = ((s • (λ∗x.p1)) • (λ∗x.p2)) •M

= ((λ∗x.p1) •M) • ((λ∗x.p2) •M)

= p1[M/x] • p2[M/x] = (p1 • p2)[M/x]

Also we observe that (λ∗x.p)[M/y] = (λ∗x.p[M/y]) when x 6∈ FV (p) again a proof by strutural
induction is required which we leave to the reader). This now shows that we can take

p̂ := (λ∗x1.(λ
∗x2....(λ

∗xn.p)...)

to obtain:

((((λ∗x1.(λ
∗x2....(λ

∗xn.p)...)) •M1) •M2) • ...) •Mn

= (((λ∗x2.(...(λ
∗xn.p)...)[M1/x1]) •M2) • ...) •Mn

= ((λ∗x2.(...(λ
∗xn.p[M1/x1])...) •M2) • ...) •Mn

= p[M1/x1, ...Mn/xn]

For the converse it suffices to show that a combinatory algebra which is functionally complete has
a k and an s. However, the equations for these combinators are functional completeness equations
so this must be so! 2

These observations suggest that in combinatory algebra, following the λ-calculus

Ω = (λ∗x.x • x) • (λ∗x.x • x)

should have a non-terminating reduction. This is easily checked to be the case. However, it should
not be imagined that the two systems are equivalent: in combinatory algebra:

N = M 6⇒ λ∗x.M = λ∗x.N

Thus (k • x) • y = x but

λ∗x.(k • x) • y = (s • (λ∗x.k • x)) • (λ∗x.y)

= (s • ((s • (λ∗x.k)) • (λ∗x.x))) • (λ∗x.y)

= (s • ((s • (k • k)) • ((s • k) • k))) • (k • y)

6= (s • k) • k = λ∗x.x
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So that combinatory logic is much weaker. Combinatory logic is important as a system as it one of
the simplest systems in which all (partial) computable functions can be simulated. The encoding
technique follows the techniques of the λ-calculus.
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Monads for functional programming

Philip Wadler, University of Glasgow?

Department of Computing Science, University of Glasgow, G12 8QQ, Scotland
(wadler@dcs.glasgow.ac.uk)

Abstract. The use of monads to structure functional programs is de-
scribed. Monads provide a convenient framework for simulating effects
found in other languages, such as global state, exception handling, out-
put, or non-determinism. Three case studies are looked at in detail: how
monads ease the modification of a simple evaluator; how monads act as
the basis of a datatype of arrays subject to in-place update; and how
monads can be used to build parsers.

1 Introduction

Shall I be pure or impure?
The functional programming community divides into two camps. Pure lan-

guages, such as Miranda0 and Haskell, are lambda calculus pure and simple.
Impure languages, such as Scheme and Standard ML, augment lambda calculus
with a number of possible effects, such as assignment, exceptions, or continu-
ations. Pure languages are easier to reason about and may benefit from lazy
evaluation, while impure languages offer efficiency benefits and sometimes make
possible a more compact mode of expression.

Recent advances in theoretical computing science, notably in the areas of type
theory and category theory, have suggested new approaches that may integrate
the benefits of the pure and impure schools. These notes describe one, the use
of monads to integrate impure effects into pure functional languages.

The concept of a monad, which arises from category theory, has been applied
by Moggi to structure the denotational semantics of programming languages [13,
14]. The same technique can be applied to structure functional programs [21,
23].

The applications of monads will be illustrated with three case studies. Sec-
tion 2 introduces monads by showing how they can be used to structure a simple
evaluator so that it is easy to modify. Section 3 describes the laws satisfied by
? Appears in: J. Jeuring and E. Meijer, editors, Advanced Functional Programming,

Proceedings of the B̊astad Spring School, May 1995, Springer Verlag Lecture Notes
in Computer Science 925. A previous version of this note appeared in: M. Broy,
editor, Program Design Calculi, Proceedings of the Marktoberdorf Summer School,
30 July–8 August 1992. Some errata fixed August 2001; thanks to Dan Friedman for
pointing these out.

0 Miranda is a trademark of Research Software Limited.



monads. Section 4 shows how monads provide a new solution to the old prob-
lem of providing updatable state in pure functional languages. Section 5 applies
monads to the problem of building recursive descent parsers; this is of interest in
its own right, and because it provides a paradigm for sequencing and alternation,
two of the central concepts of computing.

It is doubtful that the structuring methods presented here would have been
discovered without the insight afforded by category theory. But once discov-
ered they are easily expressed without any reference to things categorical. No
knowledge of category theory is required to read these notes.

The examples will be given in Haskell, but no knowledge of that is required
either. What is required is a passing familiarity with the basics of pure and im-
pure functional programming; for general background see [3, 12]. The languages
refered to are Haskell [4], Miranda [20], Standard ML [11], and Scheme [17].

2 Evaluating monads

Pure functional languages have this advantage: all flow of data is made explicit.
And this disadvantage: sometimes it is painfully explicit.

A program in a pure functional language is written as a set of equations.
Explicit data flow ensures that the value of an expression depends only on its
free variables. Hence substitution of equals for equals is always valid, making
such programs especially easy to reason about. Explicit data flow also ensures
that the order of computation is irrelevant, making such programs susceptible
to lazy evaluation.

It is with regard to modularity that explicit data flow becomes both a blessing
and a curse. On the one hand, it is the ultimate in modularity. All data in
and all data out are rendered manifest and accessible, providing a maximum of
flexibility. On the other hand, it is the nadir of modularity. The essence of an
algorithm can become buried under the plumbing required to carry data from
its point of creation to its point of use.

Say I write an evaluator in a pure functional language.

– To add error handling to it, I need to modify each recursive call to check
for and handle errors appropriately. Had I used an impure language with
exceptions, no such restructuring would be needed.

– To add a count of operations performed to it, I need to modify each recursive
call to pass around such counts appropriately. Had I used an impure language
with a global variable that could be incremented, no such restructuring would
be needed.

– To add an execution trace to it, I need to modify each recursive call to
pass around such traces appropriately. Had I used an impure language that
performed output as a side effect, no such restructuring would be needed.

Or I could use a monad.
These notes show how to use monads to structure an evaluator so that the

changes mentioned above are simple to make. In each case, all that is required
is to redefine the monad and to make a few local changes.



This programming style regains some of the flexibility provided by various
features of impure languages. It also may apply when there is no corresponding
impure feature. It does not eliminate the tension between the flexibility afforded
by explicit data and the brevity afforded by implicit plumbing; but it does ame-
liorate it to some extent.

The technique applies not just to evaluators, but to a wide range of functional
programs. For a number of years, Glasgow has been involved in constructing a
compiler for the functional language Haskell. The compiler is itself written in
Haskell, and uses the structuring technique described here. Though this paper
describes the use of monads in a program tens of lines long, we have experience
of using them in a program three orders of magnitude larger.

We begin with the basic evaluator for simple terms, then consider variations
that mimic exceptions, state, and output. We analyse these for commonalities,
and abstract from these the concept of a monad. We then show how each of the
variations fits into the monadic framework.

2.1 Variation zero: The basic evaluator

The evaluator acts on terms, which for purposes of illustration have been taken
to be excessively simple.

data Term = Con Int | Div Term Term

A term is either a constant Con a, where a is an integer, or a quotient, Div t u,
where t and u are terms.

The basic evaluator is simplicity itself.

eval :: Term → Int
eval (Con a) = a
eval (Div t u) = eval t ÷ eval u

The function eval takes a term to an integer. If the term is a constant, the
constant is returned. If the term is a quotient, its subterms are evaluated and
the quotient computed. We use ‘÷’ to denote integer division.

The following will provide running examples.

answer , error :: Term
answer = (Div (Div (Con 1972 ) (Con 2 )) (Con 23 ))
error = (Div (Con 1 ) (Con 0 ))

Computing eval answer yields the value of ((1972 ÷ 2 )÷ 23 ), which is 42 . The
basic evaluator does not incorporate error handling, so the result of eval error
is undefined.

2.2 Variation one: Exceptions

Say it is desired to add error checking, so that the second example above returns
a sensible error message. In an impure language, this is easily achieved with the
use of exceptions.



In a pure language, exception handling may be mimicked by introducing a
type to represent computations that may raise an exception.

data M a = Raise Exception | Return a
type Exception = String

A value of type M a either has the form Raise e, where e is an exception, or
Return a, where a is a value of type a. By convention, a will be used both as a
type variable, as in M a, and as a variable ranging over values of that type, as
in Return a.

(A word on the difference between ‘data’ and ‘type’ declarations. A ‘data’
declaration introduces a new data type, in this case M , and new constructors for
values of that type, in this case Raise and Return. A ‘type’ declaration introduces
a new name for an existing type, in this case Exception becomes another name
for String .)

It is straightforward, but tedious, to adapt the evaluator to this representa-
tion.

eval :: Term → M Int
eval (Con a) = Return a
eval (Div t u) = case eval t of

Raise e → Raise e
Return a →

case eval u of
Raise e → Raise e
Return b →

if b == 0
then Raise “divide by zero”
else Return (a ÷ b)

At each call of the evaluator, the form of the result must be checked: if an
exception was raised it is re-raised, and if a value was returned it is processed.
Applying the new evaluator to answer yields (Return 42 ), while applying it to
error yields (Raise “divide by zero”).

2.3 Variation two: State

Forgetting errors for the moment, say it is desired to count the number of divi-
sions performed during evaluation. In an impure language, this is easily achieved
by the use of state. Set a given variable to zero initially, and increment it by one
each time a division occurs.

In a pure language, state may be mimicked by introducing a type to represent
computations that act on state.

type M a = State → (a,State)
type State = Int

Now a value of type M a is a function that accepts the initial state, and returns
the computed value paired with the final state.



Again, it is straightforward but tedious to adapt the evaluator to this repre-
sentation.

eval :: Term → M Int
eval (Con a) x = (a, x )
eval (Div t u) x = let (a, y) = eval t x in

let (b, z ) = eval u y in
(a ÷ b, z + 1 )

At each call of the evaluator, the old state must be passed in, and the new state
extracted from the result and passed on appropriately. Computing eval answer 0
yields (42 , 2 ), so with initial state 0 the answer is 42 and the final state is 2 ,
indicating that two divisions were performed.

2.4 Variation three: Output

Finally, say it is desired to display a trace of execution. In an impure language,
this is easily done by inserting output commands at appropriate points.

In a pure language, output may be mimicked by introducing a type to rep-
resent computations that generate output.

type M a = (Output , a)
type Output = String

Now a value of type M a consists of the output generated paired with the value
computed.

Yet again, it is straightforward but tedious to adapt the evaluator to this
representation.

eval :: Term → M Int
eval (Con a) = (line (Con a) a, a)
eval (Div t u) = let (x , a) = eval t in

let (y , b) = eval u in
(x ++ y ++ line (Div t u) (a ÷ b), a ÷ b)

line :: Term → Int → Output
line t a = “eval (” ++ showterm t ++ “)⇐ ” ++ showint a ++ “←↩”

At each call of the evaluator, the outputs must be collected and assembled to
form the output of the enclosing call. The function line generates one line of the
output. Here showterm and showint convert terms and integers to strings, ++
concatenates strings, and “←↩” represents the string consisting of a newline.

Computing eval answer returns the pair (x , 42 ), where x is the string

eval (Con 1972 )⇐ 1972
eval (Con 2 )⇐ 2
eval (Div (Con 1972 ) (Con 2 ))⇐ 986
eval (Con 23 )⇐ 23
eval (Div (Div (Con 1972 ) (Con 2 )) (Con 23 )))⇐ 42



which represents a trace of the computation.
From the discussion so far, it may appear that programs in impure languages

are easier to modify than those in pure languages. But sometimes the reverse
is true. Say that it was desired to modify the previous program to display the
execution trace in the reverse order:

eval (Div (Div (Con 1972 ) (Con 2 )) (Con 23 )))⇐ 42
eval (Con 23 )⇐ 23
eval (Div (Con 1972 ) (Con 2 ))⇐ 986
eval (Con 2 )⇐ 2
eval (Con 1972 )⇐ 1972

This is simplicity itself to achieve with the pure program: just replace the term

x ++ y ++ line (Div t u) (a ÷ b)

with the term
line (Div t u) (a ÷ b) ++ y ++ x .

It is not so easy to modify the impure program to achieve this effect. The problem
is that output occurs as a side-effect of computation, but one now desires to
display the result of computing a term before displaying the output generated
by that computation. This can be achieved in a variety of ways, but all require
substantial modification to the impure program.

2.5 A monadic evaluator

Each of the variations on the interpreter has a similar structure, which may be
abstracted to yield the notion of a monad.

In each variation, we introduced a type of computations. Respectively, M
represented computations that could raise exceptions, act on state, and generate
output. By now the reader will have guessed that M stands for monad.

The original evaluator has the type Term → Int , while in each variation its
type took the form Term → M Int . In general, a function of type a → b is
replaced by a function of type a → M b. This can be read as a function that
accepts an argument of type a and returns a result of type b, with a possible
additional effect captured by M . This effect may be to act on state, generate
output, raise an exception, or what have you.

What sort of operations are required on the type M ? Examination of the
examples reveals two. First, we need a way to turn a value into the computation
that returns that value and does nothing else.

unit :: a → M a

Second, we need a way to apply a function of type a → M b to a computation of
type M a. It is convenient to write these in an order where the argument comes
before the function.

(?) :: M a → (a → M b)→ M b



A monad is a triple (M , unit , ?) consisting of a type constructor M and two
operations of the given polymorphic types. These operations must satisfy three
laws given in Section 3.

We will often write expressions in the form

m ? λa.n

where m and n are expressions, and a is a variable. The form λa.n is a lambda
expression, with the scope of the bound variable a being the expression n. The
above can be read as follows: perform computation m, bind a to the resulting
value, and then perform computation n. Types provide a useful guide. From the
type of (?), we can see that expression m has type M a, variable a has type a,
expression n has type M b, lambda expression λa.n has type a → M b, and the
whole expression has type M b.

The above is analogous to the expression

let a = m in n.

In an impure language, this has the same reading: perform computation m, bind
a to the resulting value, then perform computation n and return its value. Here
the types say nothing to distinguish values from computations: expression m has
type a, variable a has type a, expression n has type b, and the whole expression
has type b. The analogy with ‘let’ explains the choice of the order of arguments
to ?. It is convenient for argument m to appear before the function λa.n, since
computation m is performed before computation n.

The evaluator is easily rewritten in terms of these abstractions.

eval :: Term → M Int
eval (Con a) = unit a
eval (Div t u) = eval t ? λa. eval u ? λb. unit (a ÷ b)

A word on precedence: lambda abstraction binds least tightly and application
binds most tightly, so the last equation is equivalent to the following.

eval (Div t u) = ((eval t) ? (λa. ((eval u) ? (λb. (unit (a ÷ b))))))

The type Term → M Int indicates that the evaluator takes a term and performs a
computation yielding an integer. To compute (Con a), just return a. To compute
(Div t u), first compute t , bind a to the result, then compute u, bind b to the
result, and then return a ÷ b.

The new evaluator is a little more complex than the original basic evaluator,
but it is much more flexible. Each of the variations given above may be achieved
by simply changing the definitions of M , unit , and ?, and by making one or two
local modifications. It is no longer necessary to re-write the entire evaluator to
achieve these simple changes.



2.6 Variation zero, revisited: The basic evaluator

In the simplest monad, a computation is no different from a value.

type M a = a

unit :: a → I a
unit a = a

(?) :: M a → (a → M b)→ M b
a ? k = k a

This is called the identity monad: M is the identity function on types, unit is
the identity function, and ? is just application.

Taking M , unit , and ? as above in the monadic evaluator of Section 2.5 and
simplifying yields the basic evaluator of Section 2.1

2.7 Variation one, revisited: Exceptions

In the exception monad, a computation may either raise an exception or return
a value.

data M a = Raise Exception | Return a
type Exception = String

unit :: a → M a
unit a = Return a

(?) :: M a → (a → M b)→ M b
m ? k = case m of

Raise e → Raise e
Return a → k a

raise :: Exception → M a
raise e = Raise e

The call unit a simply returns the value a. The call m ? k examines the result
of the computation m: if it is an exception it is re-raised, otherwise the function
k is applied to the value returned. Just as ? in the identity monad is function
application, ? in the exception monad may be considered as a form of strict
function application. Finally, the call raise e raises the exception e.

To add error handling to the monadic evaluator, take the monad as above.
Then just replace unit (a ÷ b) by

if b == 0
then raise “divide by zero”
else unit (a ÷ b)

This is commensurate with change required in an impure language.
As one might expect, this evaluator is equivalent to the evaluator with ex-

ceptions of Section 2.2. In particular, unfolding the definitions of unit and ? in
this section and simplifying yields the evaluator of that section.



2.8 Variation two, revisited: State

In the state monad, a computation accepts an initial state and returns a value
paired with the final state.

type M a = State → (a,State)
type State = Int

unit :: a → M a
unit a = λx . (a, x )

(?) :: M a → (a → M b)→ M b
m ? k = λx . let (a, y) = m x in

let (b, z ) = k a y in
(b, z )

tick :: M ()
tick = λx . ((), x + 1 )

The call unit a returns the computation that accept initial state x and returns
value a and final state x ; that is, it returns a and leaves the state unchanged.
The call m ? k performs computation m in the initial state x , yielding value a
and intermediate state y ; then performs computation k a in state y , yielding
value b and final state z . The call tick increments the state, and returns the
empty value (), whose type is also written ().

In an impure language, an operation like tick would be represented by a
function of type ()→ (). The spurious argument () is required to delay the effect
until the function is applied, and since the output type is () one may guess that
the function’s purpose lies in a side effect. In contrast, here tick has type M ():
no spurious argument is needed, and the appearance of M explicitly indicates
what sort of effect may occur.

To add execution counts to the monadic evaluator, take the monad as above.
Then just replace unit (a ÷ b) by

tick ? λ(). unit (a ÷ b)

(Here λ . e is equivalent to λx . e where x :: () is some fresh variable that does not
appear in e; it indicates that the value bound by the lambda expression must be
().) Again, this is commensurate with change required in an impure language.
Simplifying yields the evaluator with state of Section 2.3.



2.9 Variation three, revisited: Output

In the output monad, a computation consists of the output generated paired
with the value returned.

type M a = (Output , a)
type Output = String

unit :: a → M a
unit a = (“ ”, a)

(?) :: M a → (a → M b)→ M b
m ? k = let (x , a) = m in

let (y , b) = k a in
(x ++ y , b)

out :: Output → M ()
out x = (x , ())

The call unit a returns no output paired with a. The call m ? k extracts output
x and value a from computation m, then extracts output y and value b from
computation k a, and returns the output formed by concatenating x and y paired
with the value b. The call out x returns the computation with output x and
empty value ().

To add execution traces to the monadic evaluator, take the monad as above.
Then in the clause for Con a replace unit a by

out (line (Con a) a) ? λ(). unit a

and in the clause for Div t u replace unit (a ÷ b) by

out (line (Div t u) (a ÷ b)) ? λ(). unit (a ÷ b)

Yet again, this is commensurate with change required in an impure language.
Simplifying yields the evaluator with output of Section 2.4.

To get the output in the reverse order, all that is required is to change the
definition of ?, replacing x ++ y by y ++ x . This is commensurate with the change
required in the pure program, and rather simpler than the change required in
an impure program.

You might think that one difference between the pure and impure versions is
that the impure version displays output as it computes, while the pure version
will display nothing until the entire computation completes. In fact, if the pure
language is lazy then output will be displayed in an incremental fashion as the
computation occurs. Furthermore, this will also happen if the order of output is
reversed, which is much more difficult to arrange in an impure language. Indeed,
the easiest way to arrange it may be to simulate lazy evaluation.

3 Monad laws

The operations of a monad satisfy three laws.



– Left unit. Compute the value a, bind b to the result, and compute n. The
result is the same as n with value a substituted for variable b.

unit a ? λb.n = n[a/b].

– Right unit. Compute m, bind the result to a, and return a. The result is the
same as m.

m ? λa. unit a = m.

– Associative. Compute m, bind the result to a, compute n, bind the result to
b, compute o. The order of parentheses in such a computation is irrelevant.

m ? (λa.n ? λb. o) = (m ? λa.n) ? λb. o.

The scope of the variable a includes o on the left but excludes o on the right,
so this law is valid only when a does not appear free in o.

A binary operation with left and right unit that is associative is called a monoid.
A monad differs from a monoid in that the right operand involves a binding
operation.

To demonstrate the utility of these laws, we prove that addition is associative.
Consider a variant of the evaluator based on addition rather than division.

data Term = Con Int | Add Term Term

eval :: Term → M Int
eval (Con a) = unit a
eval (Add t u) = eval t ? λa. eval u ? λb. unit (a ÷ b)

We show that evaluation of

Add t (Add u v) and Add (Add t u) v ,

both compute the same result. Simplify the left term:

eval (Add t (Add u v))
= { def’n eval }

eval t ? λa. eval (Add u v) ? λx . unit (a + x )
= { def’n eval }

eval t ? λa. (eval u ? λb. eval v ? λc. unit (b + c)) ? λx . unit (a + x )
= { associative }

eval t ? λa. eval u ? λb. eval v ? λc. unit (b + c) ? λx . unit (a + x )
= { left unit }

eval t ? λa. eval u ? λb. eval v ? λc. unit (a + (b + c))

Simplify the right term similarly:

eval (Add (Add t u) v)
= { as before }

eval t ? λa. eval u ? λb. eval v ? λc. unit ((a + b) + c)



The result follows by the associativity of addition. This proof is trivial; without
the monad laws, it would be impossible.

The proof works in any monad: exception, state, output. This assumes that
the code is as above: if it is modified then the proof also must be modified. Sec-
tion 2.3 modified the program by adding calls to tick . In this case, associativity
still holds, as can be demonstrated using the law

tick ? λ().m = m ? λ(). tick

which holds so long at tick is the only action on state within m. Section 2.4
modified the program by adding calls to line. In this case, the addition is no
longer associative, in the sense that changing parentheses will change the trace,
though the computations will still yield the same value.

As another example, note that for each monad we can define the following
operations.

map :: (a → b)→ (M a → M b)
map f m = m ? λa. unit (f a)

join :: M (M a)→ M a
join z = z ? λm.m

The map operation simply applies a function to the result yielded by a compu-
tation. To compute map f m, first compute m, bind a to the result, and then
return f a. The join operation is trickier. Let z be a computation that itself
yields a computation. To compute join z , first compute z , binds m to the result,
and then behaves as computation m. Thus, join flattens a mind-boggling double
layer of computation into a run-of-the-mill single layer of computation. As we
will see in Section 5.1, lists form a monad, and for this monad map applies a
function to each element of a list, and join concatenates a list of lists.

Using id for the identity function (id x = x ), and (·) for function composition
((f · g) x = f (g x )), one can then formulate a number of laws.

map id = id
map (f · g) = map f ·map g

map f · unit = unit · f
map f · join = join ·map (map f )

join · unit = id
join ·map unit = id
join ·map join = join · join

m ? k = join (map k m)

The proof of each is a simple consequence of the definitions of map and join and
the three monad laws.

Often, monads are defined not in terms of unit and ?, but rather in terms
of unit , join, and map [10, 13]. The three monad laws are replaced by the first
seven of the eight laws above. If one defines ? by the eighth law, then the three
monad laws follow. Hence the two definitions are equivalent.



4 State

Arrays play a central role in computing because they closely match current
architectures. Programs are littered with array lookups such as x [i ] and array
updates such as x [i ] := v . These operations are popular because array lookup is
implemented by a single indexed fetch instruction, and array update by a single
indexed store.

It is easy to add arrays to a functional language, and easy to provide efficient
array lookup. How to provide efficient array update, on the other hand, is a
question with a long history. Monads provide a new answer to this old question.

Another question with a long history is whether it is desirable to base pro-
grams on array update. Since so much effort has gone into developing algorithms
and architectures based on arrays, we will sidestep this debate and simply assume
the answer is yes.

There is an important difference between the way monads are used in the
previous section and the way monads are used here. The previous section showed
monads help to use existing language features more effectively; this section shows
how monads can help define new language features. No change to the program-
ming language is required, but the implementation must provide a new abstract
data type, perhaps as part of the standard prelude.

Here monads are used to manipulate state internal to the program, but
the same techniques can be use to manipulate extenal state: to perform in-
put/output, or to communicate with other programming languages. The Glas-
gow implementation of Haskell uses a design based on monads to provide in-
put/output and interlanguage working with the imperative programming lan-
guage C [15]. This design has been adopted for version 1.3 of the Haskell stan-
dard.

4.1 Arrays

Let Arr be the type of arrays taking indexes of type Ix and yielding values of
type Val . The key operations on this type are

newarray :: Val → Arr ,
index :: Ix → Arr → Val ,
update :: Ix → Val → Arr → Arr .

The call newarray v returns an array with all entries set to v ; the call index i x
returns the value at index i in array x ; and the call update i v x returns an array
where index i has value v and the remainder is identical to x . The behaviour of
these operations is specified by the laws

index i (newarray v) = v ,
index i (update i v x ) = v ,
index i (update j v x ) = index i x , if i 6= j .



In practice, these operations would be more complex; one needs a way to specify
the index bounds, for instance. But the above suffices to explicate the main
points.

The efficient way to implement the update operation is to overwrite the
specified entry of the array, but in a pure functional language this is only safe
if there are no other pointers to the array extant when the update operation is
performed. An array satisfying this property is called single threaded, following
Schmidt [18].

Consider building an interpreter for a simple imperative language. The ab-
stract syntax for this language is represented by the following data types.

data Term = Var Id | Con Int | Add Term Term
data Comm = Asgn Id Term | Seq Comm Comm | If Term Comm Comm
data Prog = Prog Comm Term

Here Id : baastad .tex , v1 .1 .1 .11996/02/2915 : 17 : 01wadlerExp is an unspeci-
fied type of identifiers. A term is a variable, a constant, or the sum of two terms;
a command is an assignment, a sequence of two commands, or a conditional;
and a program consists of a command followed by a term.

The current state of execution will be modelled by an array where the indexes
are identifiers and the corresponding values are integers.

type State = Arr
type Ix = Id
type Val = Int

Here is the interpreter.

eval :: Term → State → Int
eval (Var i) x = index i x
eval (Con a) x = a
eval (Add t u) x = eval t x + eval u x

exec :: Comm → State → State
exec (Asgn i t) x = update i (eval t x ) x
exec (Seq c d) x = exec d (exec c x )
exec (If t c d) x = if eval t x == 0 then exec c x else exec d x

elab :: Prog → Int
elab (Prog c t) = eval t (exec c (newarray 0 ))

This closely resembles a denotational semantics. The evaluator for terms takes a
term and a state and returns an integer. Evaluation of a variable is implemented
by indexing the state. The executor for commands takes a command and the
initial state and returns the final state. Assignment is implemented by updating
the state. The elaborator for programs takes a program and returns an integer.
It executes the command in an initial state where all identifiers map to 0 , then
evaluates the given expression in the resulting state and returns its value.



The state in this interpreter is single threaded: at any moment of execution
there is only one pointer to the state, so it is safe to update the state in place.
In order for this to work, the update operation must evaluate the new value
before placing it in the array. Otherwise, the array may contain a closure that
itself contains a pointer to the array, violating the single threading property. In
semantic terms, one says that update is strict in all three of its arguments.

A number of researchers have proposed analyses that determine whether a
given functional program uses an array in a single threaded manner, with the
intent of incorporating such an analysis into an optimising compiler. Most of
these analyses are based on abstract interpretation [1]. Although there has been
some success in this area, the analyses tend to be so expensive as to be intractable
[2, 7].

Even if such analyses were practicable, their use may be unwise. Optimising
update can affect a program’s time and space usage by an order of magnitude or
more. The programmer must be assured that such an optimisation will occur in
order to know that the program will run adequately fast and within the available
space. It may be better for the programmer to indicate explicitly that an array
should be single threaded, rather than leave it to the vagaries of an optimising
compiler.

Again, a number of researchers have proposed techniques for indicating that
an array is single threaded. Most of these techniques are based on type systems
[6, 19, 22]. This area seems promising, although the complexities of these type
systems remain formidable.

The following section presents another way of indicating explicitly the in-
tention that an array be single threaded. Naturally, it is based on monads. The
advantage of this method is that it works with existing type systems, using only
the idea of an abstract data type.

4.2 Array transformers

The monad of array transformers is simply the monad of state transformers,
with the state taken to be an array. The definitions of M , unit , ? are as before.

type M a = State → (a,State)
type State = Arr

unit :: a → M a
unit a = λx . (a, x )

(?) :: M a → (a → M b)→ M b
m ? k = λx . let (a, y) = m x in

let (b, z ) = k a y in
(b, z )

Previously, our state was an integer and we had an additional operation tick act-
ing upon the state. Now our state is an array, and we have additional operations



corresponding to array creation, indexing, and update.

block :: Val → M a → a
block v m = let (a, x ) = m (newarray v) in a

fetch :: Ix → M Val
fetch i = λx . (index i x , x )

assign :: Ix → Val → M ()
assign i v = λx . ((), update i v x )

The call block v m creates a new array with all locations initialised to v , applies
monad m to this initial state to yield value a and final state x , deallocates the
array, and returns a. The call fetch i returns the value at index i in the current
state, and leaves the state unchanged. The call assign i v returns the empty value
(), and updates the state so that index i contains value v .

A little thought shows that these operations are indeed single threaded. The
only operation that could duplicate the array is fetch, but this may be imple-
mented as follows: first fetch the entry at the given index in the array, and then
return the pair consisting of this value and the pointer to the array. In semantic
terms, fetch is strict in the array and the index, but not in the value located
at the index, and assign is strict in the array and the index, but not the value
assigned.

(This differs from the previous section, where in order for the interpreter to
be single threaded it was necessary for update to be strict in the given value. In
this section, as we shall see, this strictness is removed but a spurious sequenc-
ing is introduced for evaluation of terms. In the following section, the spurious
sequencing is removed, but the strictness will be reintroduced.)

We may now make M into an abstract data type supporting the five operations
unit , ?, block , fetch, and assign. The operation block plays a central role, as it is
the only one that does not have M in its result type. Without block there would
be no way to write a program using M that did not have M in its output type.

Making M into an abstract data type guarantees that single threading is
preserved, and hence it is safe to implement assignment with an in-place update.
The use of data abstraction is essential for this purpose. Otherwise, one could
write programs such as

λx . (assign i v x , assign i w x )

that violate the single threading property.



The interpreter may now be rewritten as follows.

eval :: Term → M Int
eval (Var i) = fetch i
eval (Con a) = unit a
eval (Add t u) = eval t ? λa. eval u ? λb. unit (a + b)

exec :: Comm → M ()
exec (Asgn i t) = eval t ? λa. assign i a
exec (Seq c d) = exec c ? λ(). exec d ? λ(). unit ()
exec (If t c d) = eval t ? λa.

if a == 0 then exec c else exec d

elab :: Prog → Int
elab (Prog c t) = block 0 (exec c ? λ(). eval t ? λa. unit a)

The types show that evaluation of a term returns an integer and may access or
modify the state, and that execution of a term returns nothing and may access
or modify the state. In fact, evaluation only accesses the state and never alters
it — we will consider shortly a more refined system that allows us to indicate
this.

The abstract data type for M guarantees that it is safe to perform updates
in place – no special analysis technique is required. It is easy to see how the
monad interpreter can be derived from the original, and (using the definitions
given earlier) the proof of their equivalence is straightforward.

The rewritten interpreter is slightly longer than the previous version, but
perhaps slightly easier to read. For instance, execution of (Seq c d) can be read:
compute the execution of c, then compute the execution of d , then return noth-
ing. Compare this with the previous version, which has the unnerving property
that exec d appears to the left of exec c.

One drawback of this program is that it introduces too much sequencing.
Evaluation of (Add t u) can be read: compute the evaluation of t , bind a to the
result, then compute the evaluation of u, bind b to the result, then return a + b.
This is unfortunate, in that it imposes a spurious ordering on the evaluation of t
and u that was not present in the original program. The order does not matter
because although eval depends on the state, it does not change it. To remedy
this we will augment the monad of state transformers M with a second monad
M ′ of state readers.

4.3 Array readers

Recall that the monad of array transformers takes an initial array and returns
a value and a final array.

type M a = State → (a,State)
type State = Arr



The corresponding monad of array readers takes an array and returns a value.
No array is returned because it is assumed identical to the original array.

type M ′ a = State → a

unit ′ :: a → M ′ a
unit ′ a = λx . a

(?′) :: M ′ a → (a → M ′ b)→ M ′ b
m ?′ k = λx . let a = m x in k a x

fetch ′ :: Ix → M ′Val
fetch ′ i = λx . index i x

The call unit ′ a ignores the given state x and returns a. The call m ?′ k performs
computation m in the given state x , yielding value a, then performs computation
k a in the same state x . Thus, unit ′ discards the state and ?′ duplicates it. The
call fetch ′ i returns the value in the given state x at index i .

Clearly, computations that only read the state are a subset of the computa-
tions that may read and write the state. Hence there should be a way to coerce
a computation in monad M ′ into one in monad M .

coerce :: M ′ a → M a
coerce m = λx . let a = m x in (a, x )

The call coerce m performs computation m in the initial state x , yielding a,
and returns a paired with state x . The function coerce enjoys a number of
mathematical properties to be discussed shortly.

Again, these operations maintain single threading if suitably implemented.
The definitions of ?′ and coerce must both be strict in the intermediate value
a. This guarantees that when coerce m is performed in state x , the computation
of m x will reduce to a form a that contains no extant pointers to the state x
before the pair (a, x ) is returned. Hence there will be only one pointer extant to
the state whenever it is updated.

A monad is commutative if it satisfies the law

m ? λa.n ? λb. o = n ? λb.m ? λa. o.

The scope of a includes n on the right and not on the left, so this law is valid
only when a does not appear free in n. Similarly, b must not appear free in m.
In a commutative monad the order of computation does not matter.

The state reader monad is commutative, while the state transfomer monad
is not. So no spurious order is imposed on computations in the state reader
monad. In particular, the call m ?′ k may safely be implemented so that m and
k a are computed in parallel. However, the final result must still be strict in
a. For instance, with the annotations used in the GRIP processor, ?′ could be
defined as follows.

m ?′ k = λx . let a = m x in
let b = k a x in
par a (par b (seq a b))



The two calls to par spark parallel computations of a and b, and the call to seq
waits for a to reduce to a non-bottom value before returning b.

These operations may be packaged into two abstract data types, M and M ′,
supporting the eight operations unit , ?, unit ′, ?′, block , assign, fetch ′, and coerce.
The abstraction guarantees single threading, so assign may be implemented by
an in-place update.

The interpreter may be rewritten again.

eval :: Term → M ′ Int
eval (Var i) = fetch ′ i
eval (Con a) = unit ′ a
eval (Add t u) = eval t ?′ λa. eval u ?′ λb. unit ′ (a + b)

exec :: Comm → M ()
exec (Asgn i t) = coerce (eval t) ? λa. assign i a
exec (Seq c d) = exec c ? λ(). exec d ? λ(). unit ()
exec (If t c d) = coerce (eval t) ? λa.

if a == 0 then exec c else exec d

elab :: Prog → Int
elab (Prog c t) = block 0 (exec c ? λ(). coerce (eval t) ? λa. unit a)

This differs from the previous version in that eval is written in terms of M ′

rather than M , and calls to coerce surround the calls of eval in the other two
functions. The new types make it clear that eval depends upon the state but
does not alter it, while exec may both depend upon and alter the state.

The excessive sequencing of the previous version has been eliminated. In the
evaluation of (Add t u) the two subexpressions may be evaluated in either order
or concurrently.

A monad morphism from a monad M ′ to a monad M is a function h ::
M ′ a → M a that preserves the monad structure:

h (unit ′ a) = unit a,
h (m ?′ λa.n) = (h m) ? λa. (h n).

It often happens that one wishes to use a combination of monads to achieve a
purpose, and monad morphisms play the key role of converting from one monad
to another [9].

In particular, coerce is a monad morphism, and it follows immediately from
this that the two versions of the interpreter are equivalent.

4.4 Conclusion

How a functional language may provide in-place array update is an old problem.
This section has presented a new solution, consisting of two abstract data types
with eight operations between them. No change to the programming language
is required, other than to provide an implementation of these types, perhaps as
part of the standard prelude. The discovery of such a simple solution comes as



a surpise, considering the plethora of more elaborate solutions that have been
proposed.

A different way of expressing the same solution, based on continuation passing
style, has subsequently been proposed by Hudak [8]. But Hudak’s solution was
inspired by the monad solution, and the monad solution still appears to have
some small advantages [15].

Why was this solution not discovered twenty years ago? One possible reason is
that the data types involve higher-order functions in an essential way. The usual
axiomatisation of arrays involves only first-order functions, and so perhaps it did
not occur to anyone to search for an abstract data type based on higher-order
functions. That monads led to the discovery of the solution must count as a
point in their favour.

5 Parsers

Parsers are the great success story of theoretical computing. The BNF formalism
provides a concise and precise way to describe the syntax of a programming
language. Mathematical tests can determine if a BNF grammar is ambiguous or
vacuous. Transformations can produce an equivalent grammar that is easier to
parse. Compiler-compilers can turn a high-level specification of a grammar into
an efficient program.

This section shows how monads provide a simple framework for constructing
recursive descent parsers. This is of interest in its own right, and also because
the basic structures of parsing – sequencing and alternation – are fundamental
to all of computing. It also provides a demonstration of how monads can model
backtracking (or angelic non-determinism).

5.1 Lists

Our representation of parsers depends upon lists. Lists are ubiquitous in func-
tional programming, and it is surprising that we have managed to get by so
far while barely mentioning them. Actually, they have appeared in disguise, as
strings are simply lists of characters.

We review some notation. We write [a] for the type of a list with elements
all of type a, and : for ‘cons’. Thus [1 , 2 , 3 ] = 1 : 2 : 3 : [ ], and both have type
[Int ]. Strings are lists of characters, so String and [Char ] are equivalent, and
“monad” is just an abbreviation for [‘m’, ‘o’, ‘n’, ‘a’, ‘d’].

It is perhaps not suprising that lists form a monad.

unit :: a → [a]
unit a = [a]

(?) :: [a]→ (a → [b])→ [b]
[ ] ? k = [ ]
(a : x ) ? k = k a ++ (x ? k)



The call unit a simply forms the unit list containing a. The call m ? k applies k
to each element of the list m, and appends together the resulting lists.

If monads encapsulate effects and lists form a monad, do lists correspond to
some effect? Indeed they do, and the effect they correspond to is choice. One
can think of a computation of type [a] as offering a choice of values, one for each
element of the list. The monadic equivalent of a function of type a → b is a
function of type a → [b]. This offers a choice of results for each argument, and
hence corresponds to a relation. The operation unit corresponds to the identity
relation, which associates each argument only with itself. If k :: a → [b] and
h :: b → [c], then

λa. k a ? λb. h b :: a → [c]

corresponds to the relational composition of k and h.
The list comprehension notation provides a convenient way of manipulating

lists. The behaviour is analogous to set comprehensions, except the order is
significant. For example,

[ sqr a | a ← [1 , 2 , 3 ] ] = [1 , 4 , 9 ]
[ (a, b) | a ← [1 , 2 ], b ← “list” ] = [(1 , ‘l’), (1 , ‘i’), (1 , ‘s’), (1 , ‘t’),

(2 , ‘l’), (2 , ‘i’), (2 , ‘s’), (2 , ‘t’)]

The list comprehension notation translates neatly into monad operations.

[ t | x ← u ] = u ? λx . unit t
[ t | x ← u, y ← v ] = u ? λx . v ? λy . unit t

Here t is an expression, x and y are variables (or more generally patterns), and u
and v are expressions that evaluate to lists. Connections between comprehensions
and monads have been described at length elsewhere [21].

5.2 Representing parsers

Parsers are represented in a way similar to state transformers.

type M a = State → [(a,State)]
type State = String

That is, the parser for type a takes a state representing a string to be parsed,
and returns a list of containing the value of type a parsed from the string, and
a state representing the remaining string yet to be parsed. The list represents
all the alternative possible parses of the input state: it will be empty if there is
no parse, have one element if there is one parse, have two elements if there are
two different possible parses, and so on.

Consider a simple parser for arithmetic expressions, which returns a tree of
the type considered previously.

data Term = Con Int | Div Term Term



Say we have a parser for such terms.

term :: M Term

Here are some examples of its use.

term “23 ” = [(Con 23 , “ ”)]
term “23 and more” = [(Con 23 , “ and more”)]
term “not a term” = [ ]
term “((1972 ÷ 2 )÷ 23 )” = [(Div (Div (Con 1972 ) (Con 2 )) (Con 23 )), “ ”)]

A parser m is unambiguous if for every input x the list of possible parses m x
is either empty or has exactly one item. For instance, term is unambiguous. An
ambiguous parser may return a list with two or more alternative parsings.

5.3 Parsing an item

The basic parser returns the first item of the input, and fails if the input is
exhausted.

item :: M Char
item [ ] = [ ]
item (a : x ) = [(a, x )]

Here are two examples.

item “ ” = [ ]
item “monad” = [(‘m’, “onad”)]

Clearly, item is unambiguous.

5.4 Sequencing

To form parsers into a monad, we require operations unit and ?.

unit :: a → M a
unit a x = [(a, x )]

(?) :: M a → (a → M b)→ M b
(m ? k) x = [(b, z ) | (a, y)← m x , (b, z )← k a y ]

The parser unit a accepts input x and yields one parse with value a paired with
remaining input x . The parser m ? k takes input x ; parser m is applied to input
x yielding for each parse a value a paired with remaining input y ; then parser
k a is applied to input y , yielding for each parse a value b paired with final
remaining output z .

Thus, unit corresponds to the empty parser, which consumes no input, and
? corresponds to sequencing of parsers.

Two items may be parsed as follows.

twoItems :: M (Char ,Char)
twoItems = item ? λa. item ? λb. unit (a, b)



Here are two examples.

twoItems “m” = [ ]
twoItems “monad” = [((‘m’, ‘o’), “nad”)]

The parse succeeds only if there are at least two items in the list.
The three monad laws express that the empty parser is an identity for se-

quencing, and that sequencing is associative.

unit a ? λb.n = n[a/b]
m ? λa. unit a = m

m ? (λa.n ? λb. o) = (m ? λa.n) ? λb. o

If m is unambiguous and k a is unambiguous for every a, then m ? k is also
unambiguous.

5.5 Alternation

Parsers may also be combined by alternation.

zero :: M a
zero x = [ ]

(⊕) :: M a → M a → M a
(m ⊕ n) x = m x ++ n x

The parser zero takes input x and always fails. The parser m ⊕ n takes input x
and yields all parses of m applied to input x and all parses of n applied to the
same input x .

Here is a parser that parses one or two items from the input.

oneOrTwoItems :: M String
oneOrTwoItems = (item ? λa. unit [a])

⊕ (item ? λa. item ? λb. unit [a, b])

Here are three examples.

oneOrTwoItems “ ” = [ ]
oneOrTwoItems “m” = [(“m”, “ ”)]
oneOrTwoItems “monad” = [(“m”, “onad”), (“mo”, “nad”)]

The last yields two alternative parses, showing that alternation can yield am-
biguous parsers.

The parser that always fails is the identity for alternation, and alternation is
associative.

zero ⊕ n = n
m ⊕ zero = m

m ⊕ (n ⊕ o) = (m ⊕ n)⊕ o



Furthermore, zero is indeed a zero of ?, and ? distributes through ⊕.

zero ? k = zero
m ? λa. zero = zero
(m ⊕ n) ? k = (m ? k)⊕ (n ? k)

It is not the case that ? distributes rightward through ⊕ only because we are
representing alternative parses by an ordered list; if we used an unordered bag,
then m ? λa. (k a ⊕ h a) = (m ? k)⊕ (m ? h) would also hold. An unambiguous
parser yields a list of length at most one, so the order is irrelevant, and hence
this law also holds whenever either side is unambiguous (which implies that both
sides are).

5.6 Filtering

A parser may be filtered by combining it with a predicate.

(�) :: M a → (a → Bool)→ M a
m � p = m ? λa. if p a then unit a else zero

Given a parser m and a predicate on values p, the parser m �p applies parser m
to yield a value a; if p a holds it succeeds with value a, otherwise it fails. Note
that filtering is written in terms of previously defined operators, and need not
refer directly to the state.

Let isLetter and isDigit be the obvious predicates. Here are two parsers.

letter :: M Char
letter = item � isLetter

digit :: M Int
digit = (item � isDigit) ? λa. unit (ord a − ord ‘0’)

The first succeeds only if the next input item is a letter, and the second succeeds
only if it is a digit. The second also converts the digit to its corresponding value,
using ord :: Char → Int to convert a character to its ASCII code. Assuming that
� has higher precedence than ? would allow some parentheses to be dropped
from the second definition.

A parser for a literal recognises a single specified character.

lit :: Char → M Char
lit c = item � (λa. a == c)

The parser lit c succeeds if the input begins with character c, and fails otherwise.

lit ‘m’ “monad” = [(‘m’, “onad”)]
lit ‘m’ “parse” = [ ]

From the previous laws, it follows that filtering preserves zero and distributes
through alternation.

zero � p = zero
(m ⊕ n) � p = (m � p)⊕ (n � p)

If m is an unambiguous parser, so is m � p.



5.7 Iteration

A single parser may be iterated, yielding a list of parsed values.

iterate :: M a → M [a]
iterate m = (m ? λa. iterate m ? λx . unit (a : x ))

⊕ unit [ ]

Given a parser m, the parser iterate m applies parser m in sequence zero or more
times, returning a list of all the values parsed. In the list of alternative parses,
the longest parse is returned first.

Here is an example.

iterate digit “23 and more” = [([2 , 3 ], “ and more”),
([2 ], “3 and more”),
([ ], “23 and more”)]

Here is one way to parse a number.

number :: M Int
number = digit ? λa. iterate digit ? λx . unit (asNumber (a : x ))

Here asNumber takes a list of one or more digits and returns the corresponding
number. Here is an example.

number “23 and more” = [(23 , “ and more”),
(2 , “3 and more”)]

This supplies two possible parses, one which parses both digits, and one which
parses only a single digit. A number is defined to contain at least one digit, so
there is no parse with zero digits.

As this last example shows, often it is more natural to design an iterator to
yield only the longest possible parse. The next section describes a way to achieve
this.

5.8 Biased choice

Alternation, written m ⊕ n, yields all parses yielded by m followed by all parses
yielded by n. For some purposes, it is more sensible to choose one or the other:
all parses by m if there are any, and all parses by n otherwise. This is called
biased choice.

(�) :: M a → M a → M a
(m � n) x = if m x 6== [ ] then m x else n x

Biased choice, written m�n, yields the same parses as m, unless m fails to yield
any parse, in which case it yields the same parses as n.



Here is iteration, rewritten with biased choice.

reiterate :: M a → M [a]
reiterate m = (m ? λa. reiterate m ? λx . unit (a : x ))

� unit [ ]

The only difference is to replace ⊕ with �. Instead of yielding a list of all possible
parses with the longest first, this yields only the longest possible parse.

Here is the previous example revisited.

reiterate digit “23 and more” = [([2 , 3 ], “ and more”)]

In what follows, number is taken to be rewritten with reiterate.

number :: M Int
number = digit ? λa. reiterate digit ? λx . unit (asNumber (a : x ))

Here is an example that reveals a little of how ambiguous parsers may be
used to search a space of possibilities. We use reiterate to find all ways of taking
one or two items from a string, zero or more times.

reiterate oneOrTwoItems “many” = [([“m”, “a”, “n”, “y”], “ ”),
([“m”, “a”, “ny”], “ ”),
([“m”, “an”, “y”], “ ”),
([“ma”, “n”, “y”], “ ”),
([“ma”, “ny”], “ ”)]

This combines alternation (in oneOrTwoItems) with biased choice (in reiterate).
There are several possible parses, but for each parse oneOrTwoItems has been
applied until the entire input has been consumed. Although this example is
somewhat fanciful, a similar technique could be used to find all ways of breaking
a dollar into nickels, dimes, and quarters.

If m and n are unambiguous, then m � n and reiterate m are also unam-
biguous. For unambiguous parsers, sequencing distributes right through biased
choice:

(m ? k)� (m ? h) = m ? λa. k a � h a

whenever m is unambiguous. Unlike with alternation, sequencing does not dis-
tribute left through biased choice, even for unambiguous parsers.

5.9 A parser for terms

It is now possible to write the parser for terms alluded to at the beginning. Here
is a grammar for fully parenthesised terms, expressed in BNF.

term ::= number | ‘(’ term ‘÷’ term ‘)’



This translates directly into our notation as follows. Note that our notation,
unlike BNF, specifies exactly how to construct the returned value.

term :: M Term
term = (number ? λa.

unit (Con a))
⊕ (lit ‘(’ ? λ .

term ? λt .
lit ‘÷’ ? λ .
term ? λu.
lit ‘)’ ? λ .
unit (Div t u))

(Here λ . e is equivalent to λx . e where x is some fresh variable that does not
appear in e; it indicates that the value bound by the lambda expression is not
of interest.) Examples of the use of this parser appeared earlier.

The above parser is written with alternation, but as it is unambiguous, it
could just as well have been written with biased choice. The same is true for all
the parsers in the next section.

5.10 Left recursion

The above parser works only for fully parenthesised terms. If we allow unparen-
thesised terms, then the operator ÷ should associate to the left. The usual way
to express such a grammar in BNF is as follows.

term ::= term ‘÷’ factor | factor
factor ::= number | ‘(’ term ‘)’

This translates into our notation as follows.

term :: M Term
term = (term ? λt .

lit ‘÷’ ? λ .
factor ? λu.
unit (Div t u))

⊕ factor

factor :: M Term
factor = (number ? λa.

unit (Con a))
⊕ (lit ‘(’ ? λ .

term ? λt .
lit ‘)’ ? λ .
unit t)

There is no problem with factor , but any attempt to apply term results in an
infinite loop. The problem is that the first step of term is to apply term, leading



to an infinite regress. This is called the left recursion problem. It is a difficulty
for all recursive descent parsers, functional or otherwise.

The solution is to rewrite the grammar for term in the following equivalent
form.

term ::= factor term ′

term ′ ::= ‘÷’ factor term ′ | unit

where as usual unit denotes the empty parser. This then translates directly into
our notation.

term :: M Term
term = factor ? λt . term ′ t

term ′ :: Term → M Term
term ′ t = (lit ‘÷’ ? λ .

factor ? λu.
term ′ (Div t u))

⊕ unit t

Here term ′ parses the remainder of a term; it takes an argument corresponding
to the term parsed so far.

This has the desired effect.

term “1972 ÷ 2 ÷ 23 ” = [((Div (Div (Con 1972 ) (Con 2 )) (Con 23 )), “ ”)]
term “1972 ÷ (2 ÷ 23 )” = [((Div (Con 1972 ) (Div (Con 2 ) (Con 23 ))), “ ”)]

In general, the left-recursive definition

m = (m ? k)⊕ n

can be rewritten as
m = n ? (closure k)

where
closure :: (a → M a)→ (a → M a)
closure k a = (k a ? closure k)⊕ unit a

Here m :: M a, n :: M a, and k :: a → M a.

5.11 Improving laziness

Typically, a program might be represented as a function from a list of characters
– the input – to another list of characters – the output. Under lazy evaluation,
usually only some of the input need be read before the first part of the output
list is produced. This ‘on line’ behavior is essential for some purposes.

In general, it is unreasonable to expect such behaviour from a parser, since
in general it cannot be known that the input will be successfully parsed until all
of it is read. However, in certain special cases one may hope to do better.

Consider applying reiterate m to a string beginning with an instance of m.
In this case, the parse cannot fail: regardless of the remainder of the string, one
would expect the parse yielded to be a list beginning with the parsed value. Under



lazy evaluation, one might expect to be able to generate output corresponding
to the first digit before the remaining input has been read.

But this is not what happens: the parser reads the entire input before any
output is generated. What is necessary is some way to encode that the parser
reiterate m always succeeds. (Even if the beginning of the input does not match
m, it will yield as a value the empty list.) This is provided by the function
guarantee.

guarantee :: M a → M a
guarantee m x = let u = m x in (fst (head u), snd (head u)) : tail u

Here fst (a, b) = a, snd (a, b) = b, head (a : x ) = a, and tail (a : x ) = x .
Here is reiterate with the guarantee added.

reiterate :: M a → M [a]
reiterate m = guarantee ( (m ? λa. reiterate m ? λx . unit (a : x ))

� unit [ ])

This ensures that reiterate m and all of its recursive calls return a list with
at least one answer. As a result, the behaviour under lazy evaluation is much
improved.

The preceding explanation is highly operational, and it is worth noting that
denotational semantics provides a useful alternative approach. Let ⊥ denote a
program that does not terminate. One can verify that with the old definition

reiterate digit (‘1’ : ⊥) = ⊥

while with the new definition

reiterate digit (‘1’ : ⊥) = ((‘1’ : ⊥),⊥) : ⊥

Thus, given that the input begins with the character ‘1’ but that the remainder
of the input is unknown, with the old definition nothing is known about the
output, while with the new definition it is known that the output yields at least
one parse, the value of which is a list which begins with the character ‘1’.

Other parsers can also benefit from a judicious use of guarantee, and in
particular iterate can be modified like reiterate.

5.12 Conclusion

We have seen that monads provide a useful framework for structuring recursive
descent parsers. The empty parser and sequencing correspond directly to unit
and ?, and the monads laws reflect that sequencing is associative and has the
empty parser as a unit. The failing parser and alternation correspond to zero
and ⊕, which satisfy laws reflecting that alternation is associative and has the
failing parser as a unit, and that sequencing distributes through alternation.

Sequencing and alternation are fundamental not just to parsers but to much
of computing. If monads capture sequencing, then it is reasonable to ask: what



captures both sequencing and alternation? It may be that unit , ?, zero, and ⊕,
together with the laws above, provide such a structure. Further experiments are
needed. One hopeful indication is that a slight variation of the parser monad
yields a plausible model of Dijkstra’s guarded command language.
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Preface

Now, that you have started with Haskell, have you written a program doing IO yet, like reading a
file or writing on the terminal? Then you have used the IO monad — but do you understand how
it works?

The standard explanation is, that the IO monad hides the non-functional IO actions —which do
have side effects— from the functional world of Haskell. It prevents pollution of the functional
programming style with side effects.

However, since most beginning Haskell programmers (i.e., everyone I know and including me)
lack knowledge about category theory, they have no clue about what a monad really is. Nor
how this “hiding” works, apart from having IO actions disappearing beyond the borders of our
knowledge.

This report scratches the surface of category theory, an abstract branch of algebra, just deep
enough to find the monad structure. On the way we discuss the relations to the purely func-
tional programming language Haskell. Finally it should become clear how the IO monad keeps
Haskell pure.

We do not explain how to use the IO monad, nor discuss all the functions available to the pro-
grammer. But we do talk about the theory behind it.

Intended audience Haskell programmers that stumbled across the IO monad, and now want to
look under the hood. Haskell experience and the ability to read math formulae are mandatory.

Many thanks to Sander Evers, Maarten Fokkinga, and Maurice van Keulen for reviewing, a lot
of discussions, helpful insights and suggestions.
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Chapter 1

Introduction

1.1 Motivation

Imagine you want to write a somewhat more sophisticated “hello world” program in Haskell,
which asks for the user’s name and then addresses him personally.

You probably end up with something like

main :: IO ()
main = do putStr "What’s your name? nn> "

x <- getLine
putStr . concat $ [ "Hello ", x, ". nn" ]

So what exactly does the “do” mean? Is “<- ” variable assignment? And what does the type “IO
() ” mean?

Having accepted the presence of “IO () ” in the type signatures of basic IO functions (like, e.g.,
putStr , getChar ), a lot of novice Haskell programmers try to get rid of it as soon as possible:

“I’ll just wrap the getLine in another function which only returns what I really need, maybe
convert the users’ input to an Int and return that.”

However, this is not possible since it would violate the referential transparency Haskell enforces
for all functions. Referential transparency guarantees that a function, given the same parameters,
always returns the same result.

How can IO be done at all, if a function is referential transparent and must not have side effects?
Try to write down the signatures of such a function that reads a character from the keyboard, and
a function that writes a character to the screen, both without using the IO monad.

The intention of this guide is to show how the Monad helps in doing IO in a purely functional
programming language, by illuminating the mathematical background of this structure.

1.2 Related work

This guide tries to fit exactly between the available theoretical literature about category theory on
the one side (e.g., [1], [2]) and literature about how to program with monads ([3], [4]) on the other.

However, the sheer amount of available literature on both sides of this report dooms any approach
to offer a complete list of related work to failure.
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Chapter 2

Notation

I tried to keep the notation as readable as possible, yet unambiguous. The meaning should be
clear immediately, and I hope that predicate logic people excuse some lack of purity.

1. Quite often proofs are interspersed with explanatory text, e.g., talking about integers we
might note

a+ b= �
operator ‘+’ is commutativeb+ a .

2. Function application is always noted in juxtaposition —i.e., the operand is just written be-
hind the function— to avoid a Lisp-like amount of parenthesis, i.e.

fx
�

�
by definitionf(x) .

3. Quantifiers have higher precedence than and and or (symbols ^; _), but lower than implica-
tion and equivalence ();,).

A quantifier ”binds” all the free variables in the following ‘;’-separated list of predicates
that are neither given in the context of the formula (constants), nor bound by an earlier
quantifier. I.e.,

8 m;n 2 N ; m < n 9 r 2 R m < r < n
�

�
next line is predicate logic

8m8n�m 2 N ^ n 2 N ^ m < n ) 9r(r 2 R ^ m < r < n)� .

4. Sometimes the exercise sign (✎) occurs, requesting the reader to verify something, or to
play with the Haskell code given.

5. A �-expression binding the free occurrences of y in expression e is written

(y 7! e) .

As a Haskell programmer, you should be familiar with �-expressions.

6. Unless stated otherwise, most programming code is Haskell-pseudocode. In contradiction to
this, Haskell-code that should be tried out by the user is referred to with a ✎-sign.
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Chapter 3

Categories

3.1 Categories in theory

Introductory example Let us start with a quite concrete example of a category: Sets (later called
objects) together with all the total functions on them (called morphisms):

� It is common practice to write f : A! B to denote that a function f maps from set A to setB. This is called the type of the function.

� Also, we can compose two functions f and g, if the target set of the former equals the source
set of the latter, i.e., if f :A! B and g :B ! C for some sets A, B, and C. The composition
is commonly denoted by g � f .

� For each set A, there is an identity function idA :A! A.

These are the properties of a category. While most things in this guide can be applied to the
category of sets, Definition 3.1.1 is more precise and general. In particular, category theory is not
restricted to sets and total functions, i.e., one can not assume that an object has elements (like sets
do), or that an element is mapped to another element.

3.1.1 Definition A category C = (OC ;MC ; TC ; �C ; IdC) is a structure consisting of morphismsMC ,
objectsOC , a composition �C of morphisms, and type information TC of the morphisms, which obey
to the following constraints.

Note, that we often omit the subscription with C if the category is clear from the context.

1. We assume the collection of objects O to be a set. Quite often the objects themselves
also are sets, however, category theory makes no assumption about that, and provides no
means to explore their structure.

2. The collection of morphismsM is also assumed to be a set in this guide.

3. The ternary relation T � M�O �O is called the type information of C. We want every
morphism to have a type, so a category requires

8 f 2M 9 A;B 2 O (f;A;B) 2 T .

We write f : A �!
C

B for (f;A;B) 2 TC . Also, we want the types to be unique, leading to

the claim

f :A! B ^ f :A0 ! B0 ) A = A0 ^ B = B0 .

This gives a notion of having a morphism to “map from one object to another”. The
uniqueness entitles us to give names to the objects involved in a morphism. For f :A! B
we call src f := A the source, and tgt f := B the target of f .

4. The partial function � : M �M ! M, written as a binary infix operator, is called the
composition of C. Alternative notations are f ; g := gf := g � f .

7



CHAPTER 3. CATEGORIES

Morphisms can be composed whenever the target of the first equals the source of the
second. Then the resulting morphism maps from the source of the first to the target of the
second:f :A! B ^ g :B ! C ) g � f :A! C
In the following, the notation g � f implies these type constraints to be fulfilled.
Composition is associative, i.e. f � (g � h) = (f � g) � h.

5. Each object A 2 O has associated a unique identity morphism idA. This is denoted by
defining the functionId : O �! MA 7�! idA ,
which automatically implies uniqueness.
The typing of the identity morphisms adheres to

8 A 2 O idA :A! A .

To deserve their name, the identity morphisms are —depending on the types— left or
right neutral with respect to composition, i.e.,f � idsrc f = f = idtgt f �f .

Another example Every set A with a partial order (�) on it yields a category, sayQ. To see this,
call the elements of A objects, and the relation morphisms:

OQ := A ,
MQ := f(x; y) j x; y 2 A ^ x � yg .

Now (✎ as an exercise) define the type information TQ, the composition �Q and the identities IdQ,
so that Q is a category indeed. Note, that this example does not assume the objects to have any
members.

More examples and a broader introduction to category theory (however, without discussing the
monad structure) can be found in [1].

3.2 Spot a category in Haskell

This guide looks at one particular category that can be recognised in the Haskell programming
language. There might be others of more or less interest, but for the purpose of explaining
Haskell’s Monad structure this narrow perspective is sufficient. For a more thorough discussion
about functional programming languages and category theory you might read [2].

With the last section in mind, where would you look for “the obvious” category? It is not required
that it models the whole Haskell language, instead it is enough to point at the things in Haskell
that behave like the objects and morphisms of a category.

We call our Haskell category H and use Haskell’s types —primitive as well as constructed— as
the objects OH of the category. Then, unary Haskell functions correspond to the morphismsMH,
with function signatures of unary functions corresponding to the type information TH.

f :: A -> B corresponds to f :A �!
H

B
Haskell’s function composition ‘. ’ corresponds to the composition of morphisms �H. The identity
in Haskell is typed

id :: forall a. a -> a

corresponding to

8 A 2 OH idA :A! A .

Note that we do not talk about n-ary functions for n 6= 1. You can consider a function like (+) to
map a number to a function that adds this number, a technique called currying which is widely
used by Haskell programmers. Within the context of this guide, we do not treat the resulting
function as a morphism, but as an object.
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Chapter 4

Functors

4.1 Functors in theory

One can define mappings between categories. If they “behave well”, i.e., preserve the structural
properties of being an object, morphism, identity, the types and composition, they are called
functors.

4.1.1 Definition Let A;B be categories. Then two mappings

FO :OA ! OB and FM :MA !MB

together form a functor F from A to B, written F : A ! B, iff

1. they preserve type information, i.e.,

8 f :A �!
A

B FMf : FOA �!B FOB ,

2. FM maps identities to identities, i.e.,

8 A 2 OA FM idA = idFOA ,

3. and application of FM distributes under composition of morphisms, i.e.,

8 f :A �!
A

B ; g :B �!
A

C FM(g �A f) = FMg �B FMf .

4.1.2 Notation Unless it is required to refer to only one of the mappings, the subscripts M and O
are usually omitted. It is clear from the context whether an object or a morphism is mapped by
the functor.

4.1.3 Definition Let A be a category. A functor F : A ! A is called endofunctor.

It is easy to define a “identity” on a category, by simply combining the identities on objects and
morphisms the same way we just have combined the functors. Also, applying one functor after
another —where the target category of the first must be the source category of the second— looks
like composition:

4.1.4 Definition Let A;B; C be categories, F : A ! B and G : B ! C. We define identities

IA := idOA]MA

and functor composition GF with

8 A 2 O (GF )A := G(FA)
8 f 2M (GF )f := G(Ff) .

Due to this definition, we can write GFA and GFf without ambiguity. Multiple application of
the same mapping is often noted with a superscript, i.e., we define F 2 := FF for any functor F .
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CHAPTER 4. FUNCTORS

4.1.5 Lemma The identity and composition just defined yield functors again: In the situation of
Definition 4.1.4,

IA : A ! A , GF : A ! C , IBF = F = FIA .

4.1.6 Proof is easy (✎). �

With that in mind, one can even consider categories to be the objects, and functors to be the
morphisms of some higher level category (a category of categories). Although we do not follow
this path, we do use composition of functors and identity functors in the sequel. However, we
use the suggestive notation GF instead of G � F since we do not discuss category theory by its
own means.

4.2 Functors implement structure

The objects of a category may not have any structure, the structure may not be known to us, or
the structure may not be suitable for our programming task, just as characters without additional
structure are not suitable to represent a string. Functors are the tool to add some structure to an
object.

A functor L may implement the List structure by mapping the object “integers” to the object “list
of integers”, and a function f that operates on integers, to a function Lf which applies f to each
element of the list, returning the list of results. The same —suitably defined— functor L would
map any object in the category to the corresponding list object, like the object “characters” to the
object “strings”, and booleans to bit-vectors.

In this example, a (not the) suitable category S for L : S ! S would be the category where the ob-
jects are all sets, and the morphisms are all total functions between sets — that is our introductory
example. Note, that the structure of the integers themselves is not affected by the functor appli-
cation, hence we can say that the structure is added on the outside of the object. The addition of
structure by application of a functor is often referred to using the term lifting, like in “the integers
are lifted to lists of integers” or “the lifted function now operates on lists.”

This vague explanation of how a functor describes a structure is refined during the remainder of
this guide. But already at this point, you can try to think about endofunctors that manifest struc-
tures like pairs, n-tuples, sets, and so on (✎ define some of these). Obviously, functor composition
implements the nesting of structures, leading to structures like “list of pairs”, “pair of lists”, etc.

4.3 Functors in Haskell

Following our idea of a Haskell category H, we can define an endofunctor F : H ! H by giving
a unary type constructor F, and a function fmap , constituting FO and FM respectively.

The type constructor F is used to construct new types from existing ones. This action corresponds
to mapping objects to objects in the H category. The definition of F shows how a functor imple-
ments the structure of the constructed type. The function fmap lifts each function with a signaturef :A! B to a function with signature Ff : FA! FB.

Hence, functor application on an object is a type level operation in Haskell, while functor applica-
tion on a morphism is a value level operation.

Haskell comes with the definition of a class

class Functor f where
fmap :: (a -> b) -> f a -> f b

which allows overloading of fmap for each functor.
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Functors in Haskell 4.3

✎ Working examples are the List or Maybe structures (see Lemma 4.3.1). Both are members of the
functor class, so you can enter the following lines into your interactive Haskell interpreter. The
:t prefix causes Hugs and GHCi to print the type information of the following expression. This
might not work in every environment. Understand the results returned by the Haskell interpreter.

--loading ’Char’ seems to be required in GHCi, but not in Hugs
:m Char

:t fmap ord
fmap ord ""
fmap ord "lambda"
:t fmap chr
fmap chr Nothing
fmap chr (Just 42)

The examples illustrate how the functions ord and chr (from Haskell’s Char module) are lifted
to work on Lists and Maybes instead of just atomic values.

You might stumble across the question what data constructors like Just , Nothing ,
(:) and [] actually are. At this point we are leaving category theory, and look into
the objects which indeed turn out to have set properties in Haskell.

A sound discussion of Haskell’s type system is far beyond the scope of this little guide,
so just imagine the data constructors to be some markers or tags to describe a member
of an object. I.e., Just "foo" describes a member of the Maybe String object, as
does the polymorphic Nothing .

The mapping function fmap differs from functor to functor. For the Maybe structure, it can be
written as

fmap :: (a -> b) -> Maybe a -> Maybe b
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

while fmap for the List structure can be written as

fmap :: (a -> b) -> [a] -> [b]
fmap f [] = []
fmap f (x:xs) = (f x):(fmap f xs)

Note, however, that having a type being a member of the Functor class does not imply to have
a functor at all. Haskell does not check validity of the functor properties, so we have to do it by
hand:

1. f :A! B ) Ff :FA! FB is fulfilled, since being a member of the Functor class implies
that a function fmap with the according signature is defined.

2. 8 A 2 O F idA = idFA translates to

fmap id == id

which must be checked for each type one adds to the class. Note, that Haskell overloads
the id function: The left occurrence corresponds to idA, while the right one corresponds toidFA.

3. F (g � f) = Fg � Ff translates to

fmap (g . f) == fmap g . fmap f

which has to be checked, generalising over all functions g and f of appropriate type.

One should never add a type constructor to the Functor class that does not obey these laws,
since this would be misleading for people reading the produced code.
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4.3.1 Lemma Maybe and List are both functors.

I.e., they are not only members of the class, but also behave as expected in theory. The proof is
easy (✎), and when ever you want to add a type to the functor class, you have to perform this
kind of proof. So do this as an exercise before reading ahead.

4.3.2 Proof The proof of Lemma 4.3.1 strictly follows the structure of the Haskell types, i.e., we
differentiate according to the data constructors used.
For the Maybe structure, the data constructors are Just and Nothing . So we prove the second
functor property, F idA = idFA, by

fmap id Nothing
== Nothing
== id Nothing

fmap id (Just y)
== Just (id y)
== Just y
== id (Just y) ,

and the third property, F (g � f) = Fg � Ff , by

(fmap g . fmap h) Nothing
== fmap g (fmap h Nothing)
== fmap g Nothing
== Nothing
== fmap (g . h) Nothing ,

(fmap g . fmap h) (Just y)
== fmap g (fmap h (Just y))
== fmap g (Just (h y))
== Just (g (h y))
== Just ((g . h) y)
== fmap (g . h) (Just y) .

Note, that List is —in contrast to Maybe— a recursive structure. This can be observed in the
according definition of fmap above, and it urges us to use induction in the proof: The second
property, F idA = idFA, is shown by

fmap id []
== []
== id []

fmap id (x:xs)
== (id x):(fmap id xs)
== (id x):(id xs) --here we use induction
== x:xs
== id (x:xs) ,

and the third property, F (g � f) = Fg � Ff can be observed in

fmap (g . f) []
== []
== fmap g []
== fmap g (fmap f [])
== (fmap g . fmap f) []

fmap (g . f) (x:xs)
== ((g . f) x):(fmap (g . f) xs)
== ((g . f) x):((fmap g . fmap f) xs) --induction
== (g (f x)):(fmap g (fmap f xs))
== fmap g ((f x):(fmap f xs))
== fmap g (fmap f xs)
== (fmap g . fmap f) xs .

�
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Chapter 5

Natural Transformations

5.1 Natural transformations in theory

A natural transformation is intended to transform from one structure to another, without effect-
ing, or being influenced by, the objects in the structure.

Imagine two functors F and G —imposing two structures— between the same categories A and
B. Then a natural transformation is a collection of morphisms in the target category B of both
functors, always mapping from an object FA to an object GA. In fact, for each object A in the
source category there is one such morphism in the target category:

5.1.1 Definition Let A;B be categories, F;G : A ! B. Then, a function

� : OA �! MBA 7�! �A
is called a transformation from F to G, iff

8 A 2 OA �A : FA �!
B

GA ,

and it is called a natural transformation, denoted � : F _�! G, iff

8 f :A �!
A

B �B �B Ff = Gf �B �A .

FA �A //

Ff

��

GA

Gf

��

A�F

aaCCCCCCCC ; G

=={{{{{{{{

f
��B;

F
}}{{
{{
{{
{{ �

G
!!C

CC
CC

CC
C

FB �B
// GB

_
�

OO

_
�

��

The definition says, that a natural transformation transforms
from a structure F to a structure G, without altering the be-
haviour of morphisms on objects. I.e., it does not play a role
whether a morphism f is lifted into the one or the other struc-
ture, when composed with the transformation.
In the drawing on the left, this means that the outer square com-
mutes, i.e., all directed paths with common source and target are
equal.

5.2 Natural transformations in Haskell

First note, that a unary function polymorphic in the same type on source and target side, in fact
is a transformation. For example, Haskell’s Just is typed

Just :: forall a. a -> Maybe a .

If we imagine this to be a mapping Just :OH !MH, the application on an object A 2 OH means
binding the type variable a to some Haskell type A. That is, Just maps an object A to a morphism
of type A! Maybe A.

13



CHAPTER 5. NATURAL TRANSFORMATIONS

To spot a transformation here, we still miss a functor on the source side of Just ’s type. This is
overcome by adding the identity functor IH, which leads to the transformation

Just : IH ! Maybe .

5.2.1 Lemma Just : IH _�! Maybe.

5.2.2 Proof Let f::A->B be an arbitrary Haskell function. Then we have to prove, that

Just . IH f == fmap f . Just

where the left Just refers to �B , and the right one refers to �A. In that line, we recognise the
definition of the fmap for Maybe (just drop the IH). �

Another example, this time employing two non-trivial functors, are the maybeToList and list-
ToMaybe functions. Their definitions read

maybeToList :: forall a. Maybe a -> [a]
maybeToList Nothing = []
maybeToList (Just x) = [x]

listToMaybe :: forall a. [a] -> Maybe a
listToMaybe [] = Nothing
listToMaybe (x:xs) = Just x .

Note, that the loss of information imposed by applying listToMaybe on a list with more than one
element does not contradict naturality, i.e., forgetting data is not altering data.

We do not go through the proof of their naturality here (✎ but, of course, you can do this on your
own). Instead, we discuss some more interesting examples in the next chapter (see Lemma 6.2.1).

5.3 Composing transformations and functors

To describe the Monad structure later on, we need to compose natural transformations with func-
tors and with other natural transformations. This is discussed in the remainder of this chapter.

Natural transformations and functors Just as in Definition 4.1.4, we can define a composition
between a natural transformation and a functor. Therefore, an object is first lifted by the functor
and then mapped to a morphism by the transformation, or it is first mapped to a morphism which
is then lifted:

5.3.1 Definition Let A;B; C;D be categories, E : A ! B, F;G : B ! C, and H : C ! D. Then, for
a natural transformation � : F _�! G, we define the transformations �E and H� with

(�E)A := �EA and (H�)B := H(�B) ,

where A varies over OA, and B varies over OB.

Again, due to the above definition, we can write �EA and H�B (for A and B objects in the
respective category) without ambiguity. The following pictures show the situation:

OA
E //

�E ""D
DD

DD
DD

D OB
�
��

OB
H�

""F
FF

FF
FF

F
�
��

MC MC H
//MD

5.3.2 Lemma In the situation of Definition 5.3.1,

H� : HF _�! HG and �E : FE _�! GE
hold. In (other) words, H� and �E are both natural transformations.
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Composing transformations and functors 5.3

5.3.3 Proof of Lemma 5.3.2

. Part I

� : F _�! G ,
)

�
definition of naturality

8 f :A �!
B

B �B � Ff = Gf � �A
)
8 f :A �!

B
B H(�B � Ff) = H(Gf � �A)

)
�

functor property
8 f :A �!

B
B H(�B) �H(Ff) = H(Gf) �H(�A)

)
�

Definition 5.3.1
8 f :A �!

B
B (H�)B � (HF )f = (HG)f � (H�)A

)
�

definition of naturalityH� : HF _�! HG ,

. Part II

� : F _�! G
)

�
definition of naturality

8 f :A �!
B

B �B � Ff = Gf � �A
)

�
choose f from category A

8 f :A �!
A

B �(EB) � F (Ef) = G(Ef) � �(EA)
)

�
Definition 5.3.1

8 f :A �!
A

B (�E)B � (FE)f = (GE)f � (�E)A
)

�
definition of naturality�E : FE _�! GH .

�

Composing natural transformations Even natural transformations can be composed with each
other. Since, however, transformations map objects to morphisms —instead of, e.g., objects to
objects— they can not be simply applied one after another. Instead, composition is defined com-
ponent wise, also called vertical composition.

5.3.4 Definition Let A;B be categories, F;G;H : A ! B and � : F _�! G, � : G _�! H . Then we
define the transformations

idF : OA �! MB and �� : OA �! MBA 7�! idFA A 7�! �A � �A .

FA
�A
��

��A

��

A GA
�A
��HA

3
� //

�

� //

The picture on the left (with A 2 OA) clarifies why this compo-
sition is called vertical.
All compositions defined before Definition 5.3.4 are called hor-
izontal. ✎ Why?

15



CHAPTER 5. NATURAL TRANSFORMATIONS

5.3.5 Lemma In the situation of Definition 5.3.4,

idF : F _�! F ,�� : F _�! H ,idG � = � = � idF
hold.

5.3.6 Proof of Lemma 5.3.5.
The naturality of idF is trivial (✎). For the naturality of �� consider any morphism f :A �!

A
B.

Then,

� : G _�! H ^ � : F _�! G
) Hf � �A = �B �Gf ^ Gf � �A = �B � Ff
)

�
apply �A on the left, �B on the right(Hf � �A) � �A = (�B �Gf) � �A ^ �B � (Gf � �A) = �B � (�B � Ff)

)
�

the two middle terms are equalHf � (�A � �A) = (�B � �B) � Ff
)

�
Definition 5.3.4Hf � ��A = ��B � Ff

) �� : F _�! H
�
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Chapter 6

Monads

6.1 Monads in theory

6.1.1 Definition Let C be a category, and F : C ! C. Consider two natural transformations� : IC _�! F and � : F 2 _�! F .

The triple (F; �; �) is called a monad, iff

�(F�) = �(�F ) and �(F�) = idF = �(�F ) .

(Mind, that the parenthesis group composition of natural transformations and functors. They do
not refer to function application. This is obvious due to the types of the expressions in question.)

The transformations � and � are somewhat contrary: While � adds one level of structure (i.e.,
functor application), � removes one. Note, however, that � transforms to F , while � transforms
from F 2. This is due to the fact that claiming the existence of a transformation from a functor F
to the identity IC would be too restrictive:

Consider the set category S and the list endofunctor L. Any transformation � from L to IS has to
map every object A to a morphism �A, which in turn maps the empty list to some element in A,
i.e.,

� : L! IS)
8 A 2 OS �A : LA! A

)
8 A 2 OS 9 c 2 A �A[ ] = c ,

where [ ] denotes the empty list. This, however, implies

8 A 2 OS A 6= ; .

The following drawings are intended to clarify Definition 6.1.1: The first equation of the definition
is equivalent to

8 A 2 O �A � F�A = �A � �FA .

So what are F�A and �FA? You can find them at the top of these drawings:

F 3A F�A // F 2A
F 2A �A // FA

A

_
F

OO

_
�

OO

F 3A �FA // F 2A
FA
A_

F
OO
_

�

OO

Since application of �A unnests a nested structure by one level, F�A pushes application of this
unnesting one level into the nested structure. We need at least two levels of nesting to apply �A.

17



CHAPTER 6. MONADS

So we need at least three levels of nesting to push the application of �A one level in. This justifies
the type of F�A.

The morphism �FA, however, applies the reduction on the outer level. The FA only assures that
there is one more level on the inside which, however, is not touched.

Hence, F�A and �FA depict the two possibilities to flatten a three-level nested structure into
a two-level nested structure through application of a mapping that flattens a two-level nested
structure into an one-level nested structure.

The statement �A � F�A = �A � �FA says, that after another step of unnesting (i.e., �A), it is
irrelevant which of the two inner structure levels has been removed by prior unnesting (i.e., F�A
or �FA).

Let us have a look at the second equation as well. It is equivalent to

8 A 2 OC �A � F�A = idFA = �A � �FA .

Again, we examine F�A and �FA, which are at the top of the drawings.

FA F�A // F 2A
A �A // FA

A^
�

NN������

_
F

OO FA �FA // F 2A
FA
A_

F
OO
^
�

NN������

Since �A adds one level of nesting to A, the morphism F�A imposes this lifting inside a flat
structure (FA), yielding a nested structure F 2A.

Also, �FA adds one level of nesting, however on the outside of a flat structure.

I.e., similar to the situation above, F�A and �FA reflect the two ways to add one level of nesting
to a flat structure: It can be done by lifting the whole structure, or by lifting the things within the
structure.

So �A � F�A = idFA = �A � �FA states, just as for the first equation, that after unnesting (i.e.,�A) it is not relevant whether additional structure has been added on the outside (�FA) or the
inside (F�A) of a flat structure FA. Additionally, it says that nesting followed by unnesting, is
the identity.

6.2 Monads in Haskell

The list structure (we use L to denote the according functor) provided by the Haskell language is
probably the most intuitive example to explain a monad. That it is a monad indeed is stated in
Lemma 6.2.1.

Imagine a list of lists of lists of natural numbers (i.e., L3N). With a transformation like list con-
catenation (� : L2 ! L) we can choose between two alternatives of flattening, considering L3 to
be a “list of (list of lists)” or a “(list of lists) of lists”:

�LA applies the concatenation of a list of lists to the outermost list of lists. Here, A refers to the
object LN corresponding to the third-level list structure, which is the topmost level in the
nested structure that is not effected by the transformation.

Application of �LA returns a new list, containing all the unchanged innermost lists. You
can try (✎)

concat [ [ [1,2], [3,4] ]
, [ [5,6], [7,8] ]
]

in your Haskell interpreter.

L�A lifts the concatenation of a list of lists into the outermost list, applying it to each of the second-
level lists of lists. Here, A refers to the object N, corresponding to the members of the third
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level list structure. N is the topmost level in the nested structure that is not effected by the
transformation.

Application of L�A returns the outermost list with its elements replaced by the results of
applying �A on them. You can observe this using (✎) the Haskell code

fmap concat [ [ [1,2], [3,4] ]
, [ [5,6], [7,8] ]
]

with your interpreter.

The monad property �(F�) = �(�F ) can be observed by applying concat to the results of the
two expressions given above. Both yield the same result.

Now, consider the transformation � : IC ! L, which, parametrised with an object A, maps a mem-
ber from A to the singleton list in LA containing that member. Again, we face two alternatives:

�LA applies the list making to the whole input list, returning a list which simply contains the
original input list as sole member. Feed (✎) the code

( nx -> [x]) [1,2,3]

to Haskell.

L�A applies the list making to each element in the input list, returning the input list with its
members replaced by the according singleton lists. You can type (✎)

fmap ( nx -> [x]) [1,2,3]

to verify this.

The monad property �(L�) = idL = �(�L) can be observed (✎) by applying concat to the
results of the two expressions given above. Both yield the same result.

6.2.1 Lemma Haskell’s List structure L, together with concatenation � and the creation of single-
ton lists �, forms a monad (L; �; �).

6.2.2 Proof We already know that L is a functor (Lemma 4.3.1). The remaining work to do is:
Prove the naturality of � and �, and show that the monad property holds.

We use the Haskell notation for lists, i.e., [ ] denotes the empty list, and x : x0 denotes the list x0
prepended with the element x. The definition of fmap yields

(Lf)[ ] = [ ](Lf)(x : x0) = x : (Lf)x0 .

Note, that concat is defined in terms of foldr and a binary concatenation operator (++) we
consider primitive:

concat = foldr (++) [] .

From this, we conclude �B(x : x0) = x++ �Bx0 and �B [ ] = [ ].
. Part I To prove that � is a natural transformation, we have to show that

8 f :A! B �B � L2f = Lf � �A
holds. We use induction on the structure of the list x.
Let x = [ ] 2 L2A. Then, we observe that

(�B � L2f)[ ] = (Lf � �A)[ ]
holds by looking at the definitions of fmap (L) and concat (�A and �B).
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Let x = y : y0, where y 2 LA and y0 2 L2A.

(�B � L2f)x= �B((L2f)(y : y0))= �
definition of fmap�B((Lf)y : (L2f)y0)= �
definition of concat(Lf)y ++ �B((L2f)y0)= �
induction: (�B � L2f)y0 = (Lf � �A)y0(Lf)y ++ (Lf)(�Ay0)= (Lf)(y ++ �Ay0)= �
definition concat(Lf)(�A(y : y0))= (Lf � �A)x

. Part II To prove that � is a natural transformation, we have to show that

8 f :A! B �B � f = Lf � �A
holds. The proof reads

(�B � f)x= �B(fx)= [fx]= (Lf)[x]= (Lf)(�Ax)= (Lf � �A)x .

. Part III Now we show that the monad properties for lists hold.
Again, we use induction on the structure of a list x.

. Part III.a Proof that �(L�) = �(�L).
Let x = [ ] 2 F 3A.

(�A � L�A)[ ]= �A((L�A)[ ])= �A[ ]= �A(�LA[ ])= (�A � �LA)[ ] .

Let x = y : y0, where y 2 L2A and y0 2 L3A.

(�A � L�A)x= �A((L�A)(y : y0))= �
definition of fmap�A(�Ay : (L�A)y0)= �
definition of concat�Ay ++ �A((L�A)y0)= �
induction�Ay ++ �A(�LAy0)= �
definition of concat
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�A(y ++ �LAy0)= �A(�LA(y : y0))= (�A � �LA)x .

. Part III.b Proof that �(L�) = idL = �(�L).
Let x = [ ] 2 LA.

(�A � L�A)[ ]= �A((L�A)[ ])= �
definition of fmap�A[ ]= �
definition of concat[ ]= �
definition of concat�A[[ ]]= �A(�LA[ ])= (�A � �LA)[ ]

Let x = y : y0, where y 2 A and y0 2 LA.

(�A � L�A)x= �A((L�A)(y : y0))= �
definition of fmap�A(�Ay : (L�A)y0)= �
definition of concat�Ay ++ �A((L�A)y0)= �
induction: �A � L�A = idLA�Ay ++ y0= y : y0= �A[y : y0]= �A(�LA(y : y0))= (�A � �LA)x .

�

6.3 An alternative definition of the monad

While the previous definition of the monad structure is quite intuitive, there is another one and,
in fact, that is the one Haskell uses for its Monad class.

First, we use the monad as introduced in Definition 6.1.1, to define a bind operator, and we prove
the three monad laws to hold for this definition. Then, we show that the three monad laws alone
imply all the properties required to form a monad, hence yield an alternative definition.

6.3.1 Definition Given (F; �; �), we define the binary infix operator bind by

! : FA � (A! FB) �! FBx ; f 7�! (�B � Ff)x .

Note, that we assume x to be a member of FA, which restricts us to categories which support this
— like, e.g., the category of sets, orH. In literature not related to the Haskell language a point-free
variant of the bind operator, called Kleisli star, is used:
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6.3.2 Definition The unary postfix operator Kleisli star, a point-free version of the bind operator,
is defined by

� : (A! FB) �! (FA! FB)f 7�! �B � Ff .

Obviously 8 x 2 FA ; f :A! FB x! f = f�x.

In fact, the bind operator is a special case of the Kleisli star, restricted to categories where the
objects have members. Ignoring the lack of elegance and generality, we stick to the bind notation
in the following, since this matches the Haskell notation. However, it is easy (✎) to reformulate
the following statements and proofs to the more general Kleisli notation.

The second argument of ! is a function f , which adds some structure F to what it returns. In-
tuitively, as defined above, the bind operator lifts the passed function f , applies it to the objectx 2 FA, and then applies � to remove one level of structure nesting.

The bind operator is used to formulate the three monad laws. We give them in the form of a lemma
and prove their correctness using the monad properties given in Definition 6.1.1.

6.3.3 Lemma The three monad laws are:

1. �A resembles a left identity with respect to the bind operator:

8 f :A! FB ; x 2 A �Ax! f = fx .

2. �A is a right identity with respect to the bind operator:

8 x 2 FA x! �A = x
3. The bind operator is quite close to being associative:

8 x 2 FA ; f :A! FB ; g :B ! FC(x! f)! g = x!(y 7! fy ! g)
Just as a hint for the exercise: Using Kleisli notation, the three monad laws read

1. 8 f :A! FB f� � �A = f
2. 8 A 2 O ��A = idFA
3. 8 f :A! FB ; g :B ! FC g� � f� = (g� � f)�

6.3.4 Proof of Lemma 6.3.3.

. Part I Let f :A! FB, and x 2 A.

�Ax! f= �
bind operator, Definition 6.3.1(�B � Ff)(�Ax)= (�B � Ff � �A)x= �
naturality of � means �FB � If = Ff � �A(�B � �FB � If)x= �
using the monad property �(�F ) = idF(idFB �f)x= fx

. Part II Let x 2 FA.

x! �A= �
using Definition 6.3.1 of the bind operator(�A � F�A)x= �
monad property �(F�) = idF
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idFA x= x
. Part III Let x 2 FA, f :A! FB, and g :B ! FC.

(x! f)! g= �
using Definition 6.3.1 of the bind operator((�B � Ff)x)! g= �
dito(�C � Fg)((�B � Ff)x)= (�C � Fg � �B � Ff)x= �
naturality of � means �FC � F 2g = Fg � �B(�C � �FC � F 2g � Ff)x= �
using the monad property �(�F ) = �(F�)(�C � F�C � F 2g � Ff)x= � F is a functor, so it distributes under composition.(�C � F (�C � Fg � f))x= �
the bind operator againx! �C � Fg � f= �
build a �-expressionx!(y 7! (�C � Fg � f)y)= x!(y 7! (�C � Fg)(fy))= �
the bind operator againx!(y 7! fy ! g)

�

Note, that the three monad laws do not make use of � or FM. In the following, it turns out that
defining (F; �; �) is equivalent to defining (FO; �;!), i.e., each of these tuples can be defined in
terms of the other: The one direction is obvious using Definition 6.3.1, the reverse is given in
Definition 6.3.6. Moreover, Theorem 6.3.5 states that the three monad laws are another way to
formulate the previously given monad properties (Definition 6.1.1).

6.3.5 Theorem Let C be a category, and FO : O ! O an arbitrary object mapping. Consider a
function (like a transformation)

� : O �! MA 7�! �A
with �A :A �!

C
FA, and an operator

! : FOA� (A! FOB) �! FOB .

Then, the triple (FO; �;!) forms a monad, iff the three monad laws (as given in Lemma 6.3.3)
hold.

Note, that � is not required to be a natural transformation. This turns out to be a result of the three
monad laws.

6.3.6 Definition In the situation of Theorem 6.3.5, we can define � and FM for all A 2 OC and allf :A �!
C

B by

�A : F 2
OA �! FOAx 7�! x! idFOA
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and

FMf : FOA �! FOBx 7�! x! �B � f .

Again, we write F for FO as well as for FM, since they hardly can be confused. Definition 6.3.6 is
used in the following, so bear in mind that we have to prove the monad properties of the (F; �; �)
tuple just defined, by using the three monad laws we claimed to hold in Theorem 6.3.5.

6.3.7 Proof of Theorem 6.3.5. Due to Lemma 6.3.3, we only need to show the functor properties
of F , that � is a natural transformation, and that we can conclude the monad properties given
in Definition 6.1.1 from the three monad laws given in Lemma 6.3.3.

. Part I First, we show the functor properties of F .

. Part I.a That FM preserves type information, i.e., that

8 f :A! B Ff : FA! FB
holds, follows directly from its definition.

. Part I.b FM preserves identities, since for all x 2 FA
(F idA)x = x! �A � idA = x! �A = x = idFA x

holds.

. Part I.c For the distribution of FM under composition we fix arbitrary x 2 FA, f : A ! B
and g :B ! C. Then

(Fg � Ff)x= �
Definition 6.3.6 of FM applied twice(x! �B � f)! �C � g= �
the 3rd monad lawx!(y 7! (�B � f)y ! �C � g)= �
the 1st monad lawx!(y 7! (�C � g � f)y)= �
removing the �-expressionx! �C � g � f= �
Definition 6.3.6 of FM applied to (g � f)(F (g � f))x .

Thus, 8 f :A! B ; g :B ! C F (g � f) = Ff �Gf .

Together, we conclude that F is an endofunctor in C.

. Part II Since F is a functor, � is a transformation from IC to F by definition. To show its
naturality, choose arbitrary x 2 A and f :A! B. Then

(Ff � �A)x= Ff(�Ax)= �
Definition 6.3.6 of FM�Ax! �B � f= �
the 1st monad law(�B � f)x= �
inserting the identity functor(�B � If)x
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Thus, � : IC _�! F .

. Part III To show �(�F ) = idF = �(F�), we prove the two equations separately for fixed
arbitrary A 2 O, and x 2 FA.

. Case III.a For the left hand side equation the proof reads

(�A � �FA)x= �A((�FA)x)= �
Definition 6.3.6 of �((�FA)x)! idFA

= �
Use that (�A0)x! f = fx for x 2 A0, f : A0 ! FB0, and assign A0 := FA,B0 := A and f := idFA.idFA x= x .

. Case III.b For the right hand side equation we calculate

(�A � F�A)x= (�A)((F�A)x)
= h

Definition 6.3.6 of FM with f := �A reads (F�A)y = y ! �FA��A, for y 2 FA.

(�A)(x! �FA � �A)= �
Definition 6.3.6 of �(x! �FA � �A)! idFA= �
the 3rd monad lawx!(y 7! (�FA � �A)y ! idFA)= �
Definition 6.3.6 of � used backwardsx!(y 7! �A((�FA � �A)y))= �
remove the �-expressionx! �A � �FA � �A= �
Part III.a: �(�F ) = idFx! �A= �
the 2nd monad lawx

. Part IV To show �(�F ) = �(F�) we fix arbitrary A 2 O and x 2 F 3A. Then,

(�A � �FA)x= (�A)((�FA)x)= �
Definition 6.3.6 of �, using FA instead of A there(�A)(x! idF 2A)= �
definition of � again(x! idF 2A)! idFA= �
the 3rd monad lawx!(y 7! idF 2A y ! idFA)= x!(y 7! y ! idFA)= �
definition of �x!(y 7! (�A)y)= �
removing the �-expressionx! �A=
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x! idFA ��A= �
Part III.a: �(�F ) = idFx! �A � �FA � �A= �
building a �-expressionx!(y 7! (�A)((�FA � �A)y))= �
definition of �x!(y 7! (�FA � �A)y ! idFA)= �
the 3rd monad law(x! �FA � �A)! idFA= �
definition of �(�A)(x! �FA � �A)= �
definition of FM, used backwards, with f := �A(�A)((F�A)x)= (�A � F�A)x

�

6.4 Haskell’s monad class and do-notation

Haskell provides the programmer with a class Monad, which uses the alternative definition given
above.

class Monad m :: (* -> *) where
(>>=) :: forall a b. m a -> (a -> m b) -> m b
return :: forall a. a -> m a;

In fact, there are two more functions defined —namely (>>) and fail — but we do not discuss
them here. The return function is Haskell’s equivalent to the natural transformation �. The op-
erator >>= simply is the bind operator. The type variable mis bound to a unary type constructor:
the functor.

As for the Functor class, being a member of Monad alone does not assure adherence to the
monad laws. This has to be checked by the programmer in advance. Luckily, Theorem 6.3.5 saves
us from doing this again, if we did it before.

Definition 6.3.1 directly shows how we could make Haskell’s List structure a member of the
Monad class — if it was not already:

instance Monad List where
return x = [x]
x >>= f = (concat . fmap f) x

Also, we could make Maybe a member of the Monad class:

instance Monad Maybe where
return = Just
Nothing >>= f = Nothing
(Just x) >>= f = f x

It is a nice —and easy— exercise, to verify the three monad laws for the Maybe monad as given
above.

Membership of the Monad class allows usage of the do-notation. This is a syntactic construct pro-
vided by the Haskell compiler which resembles imperative programming.

6.4.1 Definition The do-notation is defined (Section 3.14 of [5]) using the following recursive set
of rules (for brevity, we skip the definition of let clauses). To form a do-expression, the do
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keyword operates on a sequence of terms t0; : : : ; tn, where tn is a Haskell expression, and the ti
with 0 � i < n are either Haskell expressions as well, or pattern matching expressions vi  ei,
where vi are patterns introducing new variable names.

1. If the list of terms contains only one term —which then must be an expression— the do is
simply removed:do f e g := e .

2. If the first term is a pattern matching expression v  e, a �-expression is created bind-
ing the pattern v in a do-expression containing the remaining terms. The result of the
expression e is bound to the new �-expression:do f v  e; t1; : : : ; tn g := e!(v 7! do f t1; : : : ; tn g) .
Note, how this resembles variable assignment in an imperative programming language, and
also justifies the name of the bind operator.

3. If there are multiple terms in the sequence, but the first one does not contain a pattern
matching, we usedo f e; t1; : : : ; tn g := e!( 7! do f t1; : : : ; tn g) ,
which means that the value of e is not used in the remaining term.

Above, the sequence of terms is surrounded by curly braces, but it is also possible to use
Haskell’s two-dimensional syntax.

6.5 First step towards IO

As introduction, we build a monad that allows us to model IO operations. Assume our running
program to be connected to an input and an output character stream. We encapsulate their state
inside a monad structure and use imperative programming style to manipulate them. Hence, in
the following example, we do not use the “real” IO monad.

The state of the input and output streams is maintained in a pair of strings

(String,String)

where the former string models the characters waiting in the input stream, and the latter repre-
sents what was written to the output stream. Hence, a value of

("foo","bar")

means, that the output bar has been written already, and that foo has not been read from the
input yet.

Obviously, we can model IO by passing around a parameter containing the state of the world out-
side our Haskell program. In fact, this is what we’ll do, however encapsulating the state in a
monad structure.

Functions that change the state of the world, i.e., read or write the streams, are called state transfor-
mations. We use (✎) a data type

data ST a = ST( (String,String) -> ((String,String),a) )

to model them. The state transformations are equipped with a type parameter a. This is required,
because we want the state transformations to return data, depending on the change performed
to the world. E.g., reading a character from the input not only changes the input stream (by
removing that character), but also returns that character. Hence, we refer to a as return value of a
transformation.

With this, we can already define (✎) our primitive input and output routines:

getc :: ST Char
getc = ST( �((i:is),os) -> ((is,os),i) )

putc :: Char -> ST ()
putc c = ST( �(is,os) -> ((is,os++[c]),()) )
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The getc function takes the first character from the input stream, and returns it in i — note the
type parameter Char passed to ST. Clearly, getc transforms the input state, by removing one
character from the input stream. The output stream remains unchanged.

Writing to the output stream appends the character passed to the putc function to the already
written output os . We don’t want to return anything, which we model by returning Haskell’s
unit type value () .

So how do we define the monad? Since we want to use do-notation, we make the state transfor-
mation an instance of the monad class

instance Monad ST where
...

The natural transformation � is used to return a value, i.e., �A maps a value x 2 A to a state
transformation which returns x without altering the state of the world s0:

�Ax := s0 7! (s0; x) .

In Haskell syntax (✎), this reads

return :: a -> ST a
return val = ST ( �s0 -> (s0,val)) .

The bind operator is a bit more complex: Assuming S to be the functor that embodies the structure
ST of a state transformation, for a morphism f : A ! SB and a transformation t0 2 SA (which
returns a value in A) we define

t0 ! f := s0 7! t1s1 where (s1; v) = t0s0 and t1 = fv .

To understand this, observe that the binding of a state transformation t0 to a function f :A! SB
returns a new state transformation, which is assembled as follows:

The state transformation t0 is applied to the input state s0 of the generated transformation, re-
turning a new state s1 and a return value v. Applying f to this value leads to a new state trans-
formation t1 which is then applied to the new state s1.

It becomes clear now, how the return value is used: Transforming the input state s0 using t0
returns a value in v which is passed to f to create the new state transformation t1.

In Haskell syntax, the bind operator reads as follows:

(>>=) :: ST a -> (a -> ST b) -> ST b
(ST t0) >>= f = ST( �s0 -> let (s1,val) = t0 s0

(ST t1) = f val
in t1 s1

)

6.5.1 Theorem The triple (ST,return,>>=) is a monad.

6.5.2 Notation We introduce a bit of notation to increase readability of the following proof: Let[q]k address the k-th member of a tuple q if it contains at least k entries, i.e.,

8 k; n 2 N ; 1 � k � n [(a1; : : : an)]k = ak .

We use this notation to access the new state and the return value of a state transformation. The
definition of the ! operator for the ST structure now reads

t! f= s 7! ( f [ts]2 ) [ts]1
where [ts]1 refers to the new state, and [ts]2 refers to the return value.
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6.5.3 Proof that S forms a monad.

. Part I The first two parts are quite trivial. But let us get used to the [�]k-notation. We see the
first monad law by

t! �A= s 7! (�A[ts]2)[ts]1= �
definition of �s 7! (s0 7! (s0; [ts]2))[ts]1= s 7! ([ts]1; [ts]2)= s 7! ts= t .

. Part II And the second law is shown by

�Ax! f= �
definition of ! using Notation 6.5.2s 7! (f [(�Ax)s]2)[(�Ax)s]1= �
definition of �s 7! (f [(s0 7! (s0; x))s]2)[(s0 7! (s0; x))s]1= s 7! (f [(s; x)]2)[(s; x)]1= s 7! (fx)s= fx .

. Part III The least intuitive part is probably the third monad law:

(t! f)! g = t!(y 7! fy ! g)
(

�
definition of ! applied to its right occurrence on the left hand sides 7! (g[(t! f)s]2)[(t! f)s]1 = t!(y 7! fy ! g)

(
�

definition of ! applied to its left occurrence on the right hand sides 7! (g[(t! f)s]2)[t! f)s]1 = s 7! (f [ts]2 ! g)[ts]1
(

�
generalising over all s(g[(t! f)s]2)[(t! f)s]1 = (f [ts]2 ! g)[ts]1

(
�

definition of ! applied on the right hand side(g[(t! f)s]2)[(t! f)s]1 = (s2 7! (g[(f [ts]2)s2]2)[(f [ts]2)s2]1)[ts]1
(

�
resolving the �-expression on the right hand side(g[(t! f)s]2)[(t! f)s]1 = (g[(f [ts]2)[ts]1]2)[(f [ts]2)[ts]1]1

(
�

observing the (g[X]2)[Y ]1 skeleton on both sides(t! f)s = (f [ts]2)[ts]1 .

This is the definition of the ! operator after applying the �-expression.

�

Now let us have a look at some programs written in the imperative programming style offered
by the do-notation. To discuss the code, we use imperative style language, like “program” or
“assign”.
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CHAPTER 6. MONADS

✎ First example The code fragment

t0 = getVal (do initialise
)

is the shortest program simulating IO we can write so far. It does nothing, however we have
to understand this skeleton, which is also used below. The auxiliary functions getVal and
initialise are required in our model:

Since we only model IO operations —i.e., our program does not do real IO yet— we somehow
need to get an initial state of the input and output streams. This is done by

initialise :: ST ()
initialise = ST( � -> (("foo",""),()))

which sets the input stream to "foo" , and the output stream to be empty. This “setting the
state” is performed by creating a transformation, which ignores its input (hence � -> ... ) and
always returns the same state. Since initialisation shall not return a value, we return () .

When our program in do-notation has been executed, we access the state of the program via

getVal :: ST a -> ((String,String),a)
getVal (ST p) = (p undefined)

which passes some arbitrary state undefined to the transformation returned by the do-expres-
sion.

So evaluation (using for “reduces to”) of t0 reads

t0
 

getVal do f initialise g
 

getVal initialise
 

getVal ( 7! (( "foo" ; "" ); ()))
 ( 7! (( "foo" ; "" ); ())) undefined
 (( "foo" ; "" ); ())

✎ Second example Now we start to fill the skeleton given above. Let us just output one char-
acter:

t1 = getVal (do initialise
putc ’c’

)

After initialisation, this program writes c to the output stream. Setting t := initialise andf := putc ’c’ , the evaluation of the program body (i.e., the do-notation) reads

do f t; f g
 t!( 7! do f f g)
 t!( 7! f)
 

�
definition of ! using Notation 6.5.2s 7! (( 7! f)[ts]2)[ts]1

 s 7! f [ts]1
 

� t always maps to the initial state (( "foo" , "" ),())s 7! f( "foo" ; "" )
 

� f = putc ’c’s 7! (( "foo" ; "c" ); ())
So, the do-notation returns a transformation that transforms an arbitrary initial state s into the
state ( "foo" ; "c" ) and the return value (). The getVal function binds s to undefined , and
the state of the world after evaluation of the program is returned.
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✎ Third example This program prints the first input character to the output stream

t2 = getVal (do initialise
x <- getc
putc x

)

Again, setting t := initialise , f := getc , g := putc and s0 := (( "foo" ; "" ); ()), the
evaluation of the do-expression reads

do f t; x f ; gx g
 t!( 7! f !(x 7! gx))
 t!( 7! f ! g)
 s 7! (( 7! f ! g)[ts]2)[ts]1
 

�
since the �-expression ignores its arguments 7! (f ! g))[ts]1

 
�

using the definition of t which also ignores its input s
7! (f ! g) s0

 
7! ( s 7! (g[fs]2)[fs]1 ) s0

 
7! (g[fs0]2)[fs0]1

 
�

using fs0 = (( "oo" ; "" ); ’f’ )
7! (g ’f’ ) ( "oo" ; "" )

 
7! (( "oo" ; "f" ); ()) .

✎ Fourth example Since the do-notation works on a list of transformations, and also returns a
transformation, we can nest them. This leads to the ability to model subroutines in an imperative
style.

We define a (recursive) function that prints a string:

puts :: String -> ST ()
puts "" = return ()
puts (x:xs) = do putc x

puts xs --recursion

and then use it in

t3 = getVal (do initialise
getc
x <- getc
puts "2nd char is " --call puts
putc x

)

It should be clear how these functions are evaluated from the examples above. Therefore we do
not go through this now.

6.6 The IO monad

A closer look at the definition of the ST monad reveals, that the pair of strings we used to model
input and output streams is not mentioned at all. In fact, the definition of ST is a well known
method to pass around state information between function calls.

One might argue that these achievements are vile, providing nothing more than syntactic sugar
that avoids augmentation of function signatures to explicitly pass a state.

However, this is not entirely true.
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The big advantage is, that the monad structure may be some kind of “one-way” object. Neither
Definition 6.1.1, nor the definition given in Theorem 6.3.5, require a method to get things back out
of the monad. In the last section, we used a function getVal to reveal the innards of the monad,
but none of the laws and theorems mentioned above guarantees the existence of such a function.
The same applies to the function initialise .

Recall, that we accepted the structure of objects in a category to be unknown (Definition 3.1.1). If,
for example, we define a monad with a functor M , and apply M to an object A with well known
structure in our category, we end up with another object MA whose structure might be unknown.

And this is all there is about the IO monad. The Haskell programmer has no clue about its internal
structure, and it is not possible to access the state of the world. This protects one from doing funny
things, like, e.g., make a copy of the state of the world and transform both “versions” of the world
in different ways.

You may have noticed the similarity between the functions

getc :: ST Char
putc :: Char -> ST ()
puts :: String -> ST ()

defined above, and the standard IO functions

getChar :: IO Char
putChar :: Char -> IO ()
putStr :: String -> IO ()

provided by Haskell.

The main difference is that we do not know the internal structure of the IO monad. All we know
is how to pass an object in that monad (MA) to a morphism (f :A!MB) using the bind operator,
thereby applying f to the “value” of the passed object.
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Final remarks

This guide explored the theoretical backgrounds of Haskell’s IO monad. On the way we have
seen functors, natural transformations, and finally monads. All these purely theoretic concepts
appeared to have a quite practical correspondence in the Haskell programming language, as em-
phasized by the according examples.

It should be clear now, how the IO monad is used to pass around the state of the world, without
allowing the programmer to access it “too much”.

Recall the novice Haskell programmer mentioned in the introduction:

“I’ll just wrap the getLine in another function which only returns what I really need, maybe
convert the users’ input to an Int and return that.”

Now we can explain why the IO “thing” will always stick to a function that is somehow involved
in doing IO. But with the knowledge about the bind operator, we can also talk “monad-free”
functions into working on data returned from IO.

Also, we know why IO () denotes the type of a “void IO procedure”, and how the variable
assignment notation x<-... is translated into � abstraction.
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Abstract

In functional programming, a popular approach to building recursive descent parsers is
to model parsers as functions, and to define higher-order functions (or combinators) that
implement grammar constructions such as sequencing, choice, and repetition. Such parsers
form an instance of a monad , an algebraic structure from mathematics that has proved
useful for addressing a number of computational problems. The purpose of this article is
to provide a step-by-step tutorial on the monadic approach to building functional parsers,
and to explain some of the benefits that result from exploiting monads. No prior knowledge
of parser combinators or of monads is assumed. Indeed, this article can also be viewed as
a first introduction to the use of monads in programming.
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1 Introduction

In functional programming, a popular approach to building recursive descent parsers
is to model parsers as functions, and to define higher-order functions (or combina-
tors) that implement grammar constructions such as sequencing, choice, and repe-
tition. The basic idea dates back to at least Burge’s book on recursive programming
techniques (Burge, 1975), and has been popularised in functional programming by
Wadler (1985), Hutton (1992), Fokker (1995), and others. Combinators provide a
quick and easy method of building functional parsers. Moreover, the method has the
advantage over functional parser generators such as Ratatosk (Mogensen, 1993) and
Happy (Gill & Marlow, 1995) that one has the full power of a functional language
available to define new combinators for special applications (Landin, 1966).

It was realised early on (Wadler, 1990) that parsers form an instance of a monad ,
an algebraic structure from mathematics that has proved useful for addressing a
number of computational problems (Moggi, 1989; Wadler, 1990; Wadler, 1992a;
Wadler, 1992b). As well as being interesting from a mathematical point of view,
recognising the monadic nature of parsers also brings practical benefits. For exam-
ple, using a monadic sequencing combinator for parsers avoids the messy manip-
ulation of nested tuples of results present in earlier work. Moreover, using monad
comprehension notation makes parsers more compact and easier to read.

Taking the monadic approach further, the monad of parsers can be expressed in
a modular way in terms of two simpler monads. The immediate benefit is that the
basic parser combinators no longer need to be defined explicitly. Rather, they arise
automatically as a special case of lifting monad operations from a base monad m

to a certain other monad parameterised over m. This also means that, if we change
the nature of parsers by modifying the base monad (for example, limiting parsers
to producing at most one result), then new combinators for the modified monad of
parsers also arise automatically via the lifting construction.

The purpose of this article is to provide a step-by-step tutorial on the monadic
approach to building functional parsers, and to explain some of the benefits that
result from exploiting monads. Much of the material is already known. Our contri-
butions are the organisation of the material into a tutorial article; the introduction
of new combinators for handling lexical issues without a separate lexer; and a new
approach to implementing the offside rule, inspired by the use of monads.

Some prior exposure to functional programming would be helpful in reading this
article, but special features of Gofer (Jones, 1995b) — our implementation language
— are explained as they are used. Any other lazy functional language that supports
(multi-parameter) constructor classes and the use of monad comprehension notation
would do equally well. No prior knowledge of parser combinators or monads is
assumed. Indeed, this article can also be viewed as a first introduction to the use of
monads in programming. A library of monadic parser combinators taken from this
article is available from the authors, via the World-Wide-Web.
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2 Combinator parsers

We begin by reviewing the basic ideas of combinator parsing (Wadler, 1985; Hutton,
1992; Fokker, 1995). In particular, we define a type for parsers, three primitive
parsers, and two primitive combinators for building larger parsers.

2.1 The type of parsers

Let us start by thinking of a parser as a function that takes a string of characters as
input and yields some kind of tree as result, with the intention that the tree makes
explicit the grammatical structure of the string:

type Parser = String -> Tree

In general, however, a parser might not consume all of its input string, so rather
than the result of a parser being just a tree, we also return the unconsumed suffix
of the input string. Thus we modify our type of parsers as follows:

type Parser = String -> (Tree,String)

Similarly, a parser might fail on its input string. Rather than just reporting a
run-time error if this happens, we choose to have parsers return a list of pairs
rather than a single pair, with the convention that the empty list denotes failure of
a parser, and a singleton list denotes success:

type Parser = String -> [(Tree,String)]

Having an explicit representation of failure and returning the unconsumed part
of the input string makes it possible to define combinators for building up parsers
piecewise from smaller parsers. Returning a list of results opens up the possibility
of returning more than one result if the input string can be parsed in more than
one way, which may be the case if the underlying grammar is ambiguous.

Finally, different parsers will likely return different kinds of trees, so it is useful
to abstract on the specific type Tree of trees, and make the type of result values
into a parameter of the Parser type:

type Parser a = String -> [(a,String)]

This is the type of parsers we will use in the remainder of this article. One could
go further (as in (Hutton, 1992), for example) and abstract upon the type String

of tokens, but we do not have need for this generalisation here.

2.2 Primitive parsers

The three primitive parsers defined in this section are the building blocks of com-
binator parsing. The first parser is result v, which succeeds without consuming
any of the input string, and returns the single result v:

result :: a -> Parser a

result v = \inp -> [(v,inp)]
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An expression of the form \x -> e is called a λ-abstraction, and denotes the func-
tion that takes an argument x and returns the value of the expression e. Thus
result v is the function that takes an input string inp and returns the single-
ton list [(v,inp)]. This function could equally well be defined by result v inp

= [(v,inp)], but we prefer the above definition (in which the argument inp is
shunted to the body of the definition) because it corresponds more closely to the
type result :: a -> Parser a, which asserts that result is a function that takes
a single argument and returns a parser.

Dually, the parser zero always fails, regardless of the input string:

zero :: Parser a

zero = \inp -> []

Our final primitive is item, which successfully consumes the first character if the
input string is non-empty, and fails otherwise:

item :: Parser Char

item = \inp -> case inp of

[] -> []

(x:xs) -> [(x,xs)]

2.3 Parser combinators

The primitive parsers defined above are not very useful in themselves. In this section
we consider how they can be glued together to form more useful parsers. We take
our lead from the BNF notation for specifying grammars, in which larger gram-
mars are built up piecewise from smaller grammars using a sequencing operator —
denoted by juxtaposition — and a choice operator — denoted by a vertical bar |.
We define corresponding operators for combining parsers, such that the structure
of our parsers closely follows the structure of the underlying grammars.

In earlier (non-monadic) accounts of combinator parsing (Wadler, 1985; Hutton,
1992; Fokker, 1995), sequencing of parsers was usually captured by a combinator

seq :: Parser a -> Parser b -> Parser (a,b)

p ‘seq‘ q = \inp -> [((v,w),inp’’) | (v,inp’) <- p inp

, (w,inp’’) <- q inp’]

that applies one parser after another, with the results from the two parsers being
combined as pairs. The infix notation p ‘seq‘ q is syntactic sugar for seq p q; any
function of two arguments can used as an infix operator in this way, by enclosing
its name in backquotes. At first sight, the seq combinator might seem a natural
composition primitive. In practice, however, using seq leads to parsers with nested
tuples as results, which are messy to manipulate.

The problem of nested tuples can be avoided by adopting a monadic sequencing
combinator (commonly known as bind) which integrates the sequencing of parsers
with the processing of their result values:

bind :: Parser a -> (a -> Parser b) -> Parser b

p ‘bind‘ f = \inp -> concat [f v inp’ | (v,inp’) <- p inp]
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The definition for bind can be interpreted as follows. First of all, the parser p is
applied to the input string, yielding a list of (value,string) pairs. Now since f is a
function that takes a value and returns a parser, it can be applied to each value
(and unconsumed input string) in turn. This results in a list of lists of (value,string)
pairs, that can then be flattened to a single list using concat.

The bind combinator avoids the problem of nested tuples of results because the
results of the first parser are made directly available for processing by the second,
rather than being paired up with the other results to be processed later on. A
typical parser built using bind has the following structure

p1 ‘bind‘ \x1 ->

p2 ‘bind‘ \x2 ->

...

pn ‘bind‘ \xn ->

result (f x1 x2 ... xn)

and can be read operationally as follows: apply parser p1 and call its result value
x1; then apply parser p2 and call its result value x2; . . .; then apply the parser pn

and call its result value xn; and finally, combine all the results into a single value
by applying the function f. For example, the seq combinator can be defined by

p ‘seq‘ q = p ‘bind‘ \x ->

q ‘bind‘ \y ->

result (x,y)

(On the other hand, bind cannot be defined in terms of seq.)
Using the bind combinator, we are now able to define some simple but useful

parsers. Recall that the item parser consumes a single character unconditionally. In
practice, we are normally only interested in consuming certain specific characters.
For this reason, we use item to define a combinator sat that takes a predicate (a
Boolean valued function), and yields a parser that consumes a single character if it
satisfies the predicate, and fails otherwise:

sat :: (Char -> Bool) -> Parser Char

sat p = item ‘bind‘ \x ->

if p x then result x else zero

Note that if item fails (that is, if the input string is empty), then so does sat p,
since it can readily be observed that zero ‘bind‘ f = zero for all functions f of
the appropriate type. Indeed, this equation is not specific to parsers: it holds for
an arbitrary monad with a zero (Wadler, 1992a; Wadler, 1992b). Monads and their
connection to parsers will be discussed in the next section.

Using sat, we can define parsers for specific characters, single digits, lower-case
letters, and upper-case letters:

char :: Char -> Parser Char

char x = sat (\y -> x == y)
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digit :: Parser Char

digit = sat (\x -> ’0’ <= x && x <= ’9’)

lower :: Parser Char

lower = sat (\x -> ’a’ <= x && x <= ’z’)

upper :: Parser Char

upper = sat (\x -> ’A’ <= x && x <= ’Z’)

For example, applying the parser upper to the input string "Hello" succeeds with
the single successful result [(’H’,"ello")], since the upper parser succeeds with
’H’ as the result value and "ello" as the unconsumed suffix of the input. On the
other hand, applying the parser lower to the string "Hello" fails with [] as the
result, since ’H’ is not a lower-case letter.

As another example of using bind, consider the parser that accepts two lower-case
letters in sequence, returning a string of length two:

lower ‘bind‘ \x ->

lower ‘bind‘ \y ->

result [x,y]

Applying this parser to the string "abcd" succeeds with the result [("ab","cd")].
Applying the same parser to "aBcd" fails with the result [], because even though
the initial letter ’a’ can be consumed by the first lower parser, the following letter
’B’ cannot be consumed by the second lower parser.

Of course, the above parser for two letters in sequence can be generalised to a
parser for arbitrary strings of lower-case letters. Since the length of the string to
be parsed cannot be predicted in advance, such a parser will naturally be defined
recursively, using a choice operator to decide between parsing a single letter and
recursing, or parsing nothing further and terminating. A suitable choice combinator
for parsers, plus, is defined as follows:

plus :: Parser a -> Parser a -> Parser a

p ‘plus‘ q = \inp -> (p inp ++ q inp)

That is, both argument parsers p and q are applied to the same input string, and
their result lists are concatenated to form a single result list. Note that it is not
required that p and q accept disjoint sets of strings: if both parsers succeed on
the input string then more than one result value will be returned, reflecting the
different ways that the input string can be parsed.

As examples of using plus, some of our earlier parsers can now be combined to
give parsers for letters and alpha-numeric characters:

letter :: Parser Char

letter = lower ‘plus‘ upper

alphanum :: Parser Char

alphanum = letter ‘plus‘ digit
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More interestingly, a parser for words (strings of letters) is defined by

word :: Parser String

word = neWord ‘plus‘ result ""

where

neWord = letter ‘bind‘ \x ->

word ‘bind‘ \xs ->

result (x:xs)

That is, word either parses a non-empty word (a single letter followed by a word,
using a recursive call to word), in which case the two results are combined to form
a string, or parses nothing and returns the empty string.

For example, applying word to the input "Yes!" gives the result [("Yes","!"),
("Ye","s!"), ("Y","es!"), ("","Yes!")]. The first result, ("Yes","!"), is the
expected result: the string of letters "Yes" has been consumed, and the unconsumed
input is "!". In the subsequent results a decreasing number of letters are consumed.
This behaviour arises because the choice operator plus is non-deterministic: both
alternatives can be explored, even if the first alternative is successful. Thus, at each
application of letter, there is always the option to just finish parsing, even if there
are still letters left to be consumed from the start of the input.

3 Parsers and monads

Later on we will define a number of useful parser combinators in terms of the
primitive parsers and combinators just defined. But first we turn our attention to
the monadic nature of combinator parsers.

3.1 The parser monad

So far, we have defined (among others) the following two operations on parsers:

result :: a -> Parser a

bind :: Parser a -> (a -> Parser b) -> Parser b

Generalising from the specific case of Parser to some arbitrary type constructor
M gives the notion of a monad: a monad is a type constructor M (a function from
types to types), together with operations result and bind of the following types:

result :: a -> M a

bind :: M a -> (a -> M b) -> M b

Thus, parsers form a monad for which M is the Parser type constructor, and result

and bind are defined as previously. Technically, the two operations of a monad must
also satisfy a few algebraic properties, but we do not concern ourselves with such
properties here; see (Wadler, 1992a; Wadler, 1992b) for more details.

Readers familiar with the categorical definition of a monad may have expected
two operations map :: (a -> b) -> (M a -> M b) and join :: M (M a) -> M

a in place of the single operation bind. However, our definition is equivalent to the
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categorical one (Wadler, 1992a; Wadler, 1992b), and has the advantage that bind

generally proves more convenient for monadic programming than map and join.
Parsers are not the only example of a monad. Indeed, we will see later on how

the parser monad can be re-formulated in terms of two simpler monads. This raises
the question of what to do about the naming of the monadic combinators result

and bind. In functional languages based upon the Hindley-Milner typing system
(for example, Miranda1 and Standard ML) it is not possible to use the same names
for the combinators of different monads. Rather, one would have to use different
names, such as resultM and bindM, for the combinators of each monad M.

Gofer, however, extends the Hindley-Milner typing system with an overloading
mechanism that permits the use of the same names for the combinators of different
monads. Under this overloading mechanism, the appropriate monad for each use of
a name is calculated automatically during type inference.

Overloading in Gofer is accomplished by the use of classes (Jones, 1995c). A class
for monads can be declared in Gofer by:

class Monad m where

result :: a -> m a

bind :: m a -> (a -> m b) -> m b

This declaration can be read as follows: a type constructor m is a member of the
class Monad if it is equipped with result and bind operations of the specified types.
The fact that m must be a type constructor (rather than just a type) is inferred
from its use in the types for the operations.

Now the type constructor Parser can be made into an instance of the class Monad
using the result and bind from the previous section:

instance Monad Parser where

-- result :: a -> Parser a

result v = \inp -> [(v,inp)]

-- bind :: Parser a -> (a -> Parser b) -> Parser b

p ‘bind‘ f = \inp -> concat [f v out | (v,out) <- p inp]

We pause briefly here to address a couple of technical points concerning Gofer.
First of all, type synonyms such as Parser must be supplied with all their argu-
ments. Hence the instance declaration above is not actually valid Gofer code, since
Parser is used in the first line without an argument. The problem is easy to solve
(redefine Parser using data rather than type, or as a restricted type synonym),
but for simplicity we prefer in this article just to assume that type synonyms can be
partially applied. The second point is that the syntax of Gofer does not currently
allow the types of the defined functions in instance declarations to be explicitly
specified. But for clarity, as above, we include such types in comments.

Let us turn now to the following operations on parsers:

1 Miranda is a trademark of Research Software Ltd.
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zero :: Parser a

plus :: Parser a -> Parser a -> Parser a

Generalising once again from the specific case of the Parser type constructor, we
arrive at the notion of a monad with a zero and a plus, which can be encapsulated
using the Gofer class system in the following manner:

class Monad m => Monad0Plus m where

zero :: m a

(++) :: m a -> m a -> m a

That is, a type constructor m is a member of the class Monad0Plus if it is a member
of the class Monad (that is, it is equipped with a result and bind), and if it is also
equipped with zero and (++) operators of the specified types. Of course, the two
extra operations must also satisfy some algebraic properties; these are discussed
in (Wadler, 1992a; Wadler, 1992b). Note also that (++) is used above rather than
plus, following the example of lists: we will see later on that lists form a monad
for which the plus operation is just the familiar append operation (++).

Now since Parser is already a monad, it can be made into a monad with a zero
and a plus using the following definitions:

instance Monad0Plus Parser where

-- zero :: Parser a

zero = \inp -> []

-- (++) :: Parser a -> Parser a -> Parser a

p ++ q = \inp -> (p inp ++ q inp)

3.2 Monad comprehension syntax

So far we have seen one advantage of recognising the monadic nature of parsers: the
monadic sequencing combinator bind handles result values better than the conven-
tional sequencing combinator seq. In this section we consider another advantage of
the monadic approach, namely that monad comprehension syntax can be used to
make parsers more compact and easier to read.

As mentioned earlier, many parsers will have a structure as a sequence of binds
followed by single call to result:

p1 ‘bind‘ \x1 ->

p2 ‘bind‘ \x2 ->

...

pn ‘bind‘ \xn ->

result (f x1 x2 ... xn)

Gofer provides a special notation for defining parsers of this shape, allowing them
to be expressed in the following, more appealing form:

[ f x1 x2 ... xn | x1 <- p1
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, x2 <- p2

, ...

, xn <- pn ]

In fact, this notation is not specific to parsers, but can be used with any monad
(Jones, 1995c). The reader might notice the similarity to the list comprehension
notation supported by many functional languages. It was Wadler (1990) who first
observed that the comprehension notation is not particular to lists, but makes sense
for an arbitrary monad. Indeed, the algebraic properties required of the monad op-
erations turn out to be precisely those required for the notation to make sense. To
our knowledge, Gofer is the first language to implement Wadler’s monad compre-
hension notation. Using this notation can make parsers much easier to read, and
we will use the notation in the remainder of this article.

As our first example of using comprehension notation, we define a parser for
recognising specific strings, with the string itself returned as the result:

string :: String -> Parser String

string "" = [""]

string (x:xs) = [x:xs | _ <- char x, _ <- string xs]

That is, if the string to be parsed is empty we just return the empty string as
the result; [""] is just monad comprehension syntax for result "". Otherwise,
we parse the first character of the string using char, and then parse the remaining
characters using a recursive call to string. Without the aid of comprehension
notation, the above definition would read as follows:

string :: String -> Parser String

string "" = result ""

string (x:xs) = char x ‘bind‘ \_ ->

string xs ‘bind‘ \_ ->

result (x:xs)

Note that the parser string xs fails if only a prefix of the given string xs is
recognised in the input. For example, applying the parser string "hello" to the
input "hello there" gives the successful result [("hello"," there")]. On the
other hand, applying the same parser to "helicopter" fails with the result [],
even though the prefix "hel" of the input can be recognised.

In list comprehension notation, we are not just restricted to generators that bind
variables to values, but can also use Boolean-valued guards that restrict the values
of the bound variables. For example, a function negs that selects all the negative
numbers from a list of integers can be expressed as follows:

negs :: [Int] -> [Int]

negs xs = [x | x <- xs, x < 0]

In this case, the expression x < 0 is a guard that restricts the variable x (bound
by the generator x <- xs) to only take on values less than zero.

Wadler (1990) observed that the use of guards makes sense for an arbitrary
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monad with a zero. The monad comprehension notation in Gofer supports this use
of guards. For example, the sat combinator

sat :: (Char -> Bool) -> Parser Char

sat p = item ‘bind‘ \x ->

if p x then result x else zero

can be defined more succinctly using a comprehension with a guard:

sat :: (Char -> Bool) -> Parser Char

sat p = [x | x <- item, p x]

We conclude this section by noting that there is another notation that can be
used to make monadic programs easier to read: the so-called “do” notation (Jones,
1994; Jones & Launchbury, 1994). For example, using this notation the combinators
string and sat can be defined as follows:

string :: String -> Parser String

string "" = do { result "" }

string (x:xs) = do { char x ; string xs ; result (x:xs) }

sat :: (Char -> Bool) -> Parser Char

sat p = do { x <- item ; if (p x) ; result x }

The do notation has a couple of advantages over monad comprehension notation:
we are not restricted to monad expressions that end with a use of result; and
generators of the form <- e that do not bind variables can be abbreviated by e.
The do notation is supported by Gofer, but monad expressions involving parsers
typically end with a use of result (to compute the result value from the parser),
so the extra generality is not really necessary in this case. For this reason, and for
simplicity, in this article we only use the comprehension notation. It would be an
easy task, however, to translate our definitions into the do notation.

4 Combinators for repetition

Parser generators such as Lex and Yacc (Aho et al., 1986) for producing parsers
written in C, and Ratatosk (Mogensen, 1993) and Happy (Gill & Marlow, 1995) for
producing parsers written in Haskell, typically offer a fixed set of combinators for
describing grammars. In contrast, with the method of building parsers as presented
in this article the set of combinators is completely extensible: parsers are first-class
values, and we have the full power of a functional language at our disposal to define
special combinators for special applications.

In this section we define combinators for a number of common patterns of rep-
etition. These combinators are not specific to parsers, but can be used with an
arbitrary monad with a zero and plus. For clarity, however, we specialise the types
of the combinators to the case of parsers.

In subsequent sections we will introduce combinators for other purposes, includ-
ing handling lexical issues and Gofer’s offside rule.
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4.1 Simple repetition

Earlier we defined a parser word for consuming zero or more letters from the input
string. Using monad comprehension notation, the definition is:

word :: Parser String

word = [x:xs | x <- letter, xs <- word] ++ [""]

We can easily imagine a number of other parsers that exhibit a similar structure to
word. For example, parsers for strings of digits or strings of spaces could be defined
in precisely the same way, the only difference being be that the component parser
letter would be replaced by either digit or char ’ ’. To avoid defining a number
of different parsers with a similar structure, we abstract on the pattern of recursion
in word and define a general combinator, many, that parses sequences of items.

The combinator many applies a parser p zero or more times to an input string.
The results from each application of p are returned in a list:

many :: Parser a -> Parser [a]

many p = [x:xs | x <- p, xs <- many p] ++ [[]]

Different parsers can be made by supplying different arguments parsers p. For
example, word can be defined just as many letter, and the other parsers mentioned
above by many digit and many (char ’ ’).

Just as the original word parser returns many results in general (decreasing in
the number of letters consumed from the input), so does many p. Of course, in
most cases we will only be interested in the first parse from many p, in which p is
successfully applied as many times as possible. We will return to this point in the
next section, when we address the efficiency of parsers.

As another application of many, we can define a parser for identifiers. For sim-
plicity, we regard an identifier as a lower-case letter followed by zero or more alpha-
numeric characters. It would be easy to extend the definition to handle extra char-
acters, such as underlines or backquotes.

ident :: Parser String

ident = [x:xs | x <- lower, xs <- many alphanum]

Sometimes we will only be interested in non-empty sequences of items. For this
reason we define a special combinator, many1, in terms of many:

many1 :: Parser a -> Parser [a]

many1 p = [x:xs | x <- p, xs <- many p]

For example, applying many1 (char ’a’) to the input "aaab" gives the result
[("aaa","b"), ("aa","ab"), ("a","aab")], which is the same as for many (char

’a’), except that the final pair ("", "aaab") is no longer present. Note also that
many1 p may fail, whereas many p always succeeds.

Using many1 we can define a parser for natural numbers:

nat :: Parser Int

nat = [eval xs | xs <- many1 digit]
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where

eval xs = foldl1 op [ord x - ord ’0’ | x <- xs]

m ‘op‘ n = 10*m + n

In turn, nat can be used to define a parser for integers:

int :: Parser Int

int = [-n | _ <- char ’-’, n <- nat] ++ nat

A more sophisticated way to define int is as follows. First try and parse the negation
character ’-’. If this is successful then return the negation function as the result
of the parse; otherwise return the identity function. The final step is then to parse
a natural number, and use the function returned by attempting to parse the ’-’
character to modify the resulting number:

int :: Parser Int

int = [f n | f <- op, n <- nat]

where

op = [negate | _ <- char ’-’] ++ [id]

4.2 Repetition with separators

The many combinators parse sequences of items. Now we consider a slightly more
general pattern of repetition, in which separators between the items are involved.
Consider the problem of parsing a non-empty list of integers, such as [1,-42,17].
Such a parser can be defined in terms of the many combinator as follows:

ints :: Parser [Int]

ints = [n:ns | _ <- char ’[’

, n <- int

, ns <- many [x | _ <- char ’,’, x <- int]

, _ <- char ’]’]

As was the case in the previous section for the word parser, we can imagine a
number of other parsers with a similar structure to ints, so it is useful to abstract
on the pattern of repetition and define a general purpose combinator, which we
call sepby1. The combinator sepby1 is like many1 in that it recognises non-empty
sequences of a given parser p, but different in that the instances of p are separated
by a parser sep whose result values are ignored:

sepby1 :: Parser a -> Parser b -> Parser [a]

p ‘sepby1‘ sep = [x:xs | x <- p

, xs <- many [y | _ <- sep, y <- p]]

Note that the fact that the results of the sep parser are ignored is reflected in the
type of the sepby1 combinator: the sep parser gives results of type b, but this type
does not occur in the type [a] of the results of the combinator.

Now ints can be defined in a more compact form:
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ints = [ns | _ <- char ’[’

, ns <- int ‘sepby1‘ char ’,’

, _ <- char ’]’]

In fact we can go a little further. The bracketing of parsers by other parsers whose
results are ignored — in the case above, the bracketing parsers are char ’[’ and
char ’]’ — is common enough to also merit its own combinator:

bracket :: Parser a -> Parser b -> Parser c -> Parser b

bracket open p close = [x | _ <- open, x <- p, _ <- close]

Now ints can be defined just as

ints = bracket (char ’[’)

(int ‘sepby1‘ char ’,’)

(char ’]’)

Finally, while many1 was defined in terms of many, the combinator sepby (for
possibly-empty sequences) is naturally defined in terms of sepby1:

sepby :: Parser a -> Parser b -> Parser [a]

p ‘sepby‘ sep = (p ‘sepby1‘ sep) ++ [[]]

4.3 Repetition with meaningful separators

The sepby combinators handle the case of parsing sequences of items separated by
text that can be ignored. In this final section on repetition, we address the more
general case in which the separators themselves carry meaning. The combinators
defined in this section are due to Fokker (1995).

Consider the problem of parsing simple arithmetic expressions such as 1+2-(3+4),
built up from natural numbers using addition, subtraction, and parentheses. The
two arithmetic operators are assumed to associate to the left (thus, for example,
1-2-3 should be parsed as (1-2)-3), and have the same precedence. The standard
BNF grammar for such expressions is written as follows:

expr ::= expr addop factor | factor
addop ::= + | -

factor ::= nat | ( expr )

This grammar can be translated directly into a combinator parser:

expr :: Parser Int

addop :: Parser (Int -> Int -> Int)

factor :: Parser Int

expr = [f x y | x <- expr, f <- addop, y <- factor] ++ factor

addop = [(+) | _ <- char ’+’] ++ [(-) | _ <- char ’-’]

factor = nat ++ bracket (char ’(’) expr (char ’)’)
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In fact, rather than just returning some kind of parse tree, the expr parser above
actually evaluates arithmetic expressions to their integer value: the addop parser
returns a function as its result value, which is used to combine the result values
produced by parsing the arguments to the operator.

Of course, however, there is a problem with the expr parser as defined above.
The fact that the operators associate to the left is taken account of by expr being
left-recursive (the first thing it does is make a recursive call to itself). Thus expr

never makes any progress, and hence does not terminate.
As is well-known, this kind of non-termination for parsers can be solved by re-

placing left-recursion by iteration. Looking at the expr grammar, we see that an
expression is a sequence of factors, separated by addops. Thus the parser for ex-
pressions can be re-defined using many as follows:

expr = [... | x <- factor

, fys <- many [(f,y) | f <- addop, y <- factor]]

This takes care of the non-termination, but it still remains to fill in the “...” part
of the new definition, which computes the value of an expression.

Suppose now that the input string is "1-2+3-4". Then after parsing using expr,
the variable x will be 1 and fys will be the list [((-),2), ((+),3), ((-),4)].
These can be reduced to a single value 1-2+3-4 = ((1-2)+3)-4 = -2 by folding:
the built-in function foldl is such that, for example, foldl g a [b,c,d,e] =

((a ‘g‘ b) ‘g‘ c) ‘g‘ d) ‘g‘ e. In the present case, we need to take g as the
function \x (f,y) -> f x y, and a as the integer x:

expr = [foldl (\x (f,y) -> f x y) x fys

| x <- factor

, fys <- many [(f,y) | f <- addop, y <- factor]]

Now, for example, applying expr to the input string "1+2-(3+4)" gives the result
[(-4,""), (3,"-(3+4)", (1,"+2-(3+4)")], as expected.

Playing the generalisation game once again, we can abstract on the pattern of
repetition in expr and define a new combinator. The combinator, chainl1, parses
non-empty sequences of items separated by operators that associate to the left:

chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a

p ‘chainl1‘ op = [foldl (\x (f,y) -> f x y) x fys

| x <- p

, fys <- many [(f,y) | f <- op, y <- p]]

Thus our parser for expressions can now be written as follows:

expr = factor ‘chainl1‘ addop

addop = [(+) | _ <- char ’+’] ++ [(-) | _ <- char ’-’]

factor = nat ++ bracket (char ’(’) expr (char ’)’)

Most operator parsers will have a similar structure to addop above, so it is useful
to abstract a combinator for building such parsers:
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ops :: [(Parser a, b)] -> Parser b

ops xs = foldr1 (++) [[op | _ <- p] | (p,op) <- xs]

The built-in function foldr1 is such that, for example, foldr1 g [a,b,c,d] = a

‘g‘ (b ‘g‘ (c ‘g‘ d)). It is defined for any non-empty list. In the above case
then, foldr1 places the choice operator (++) between each parser in the list. Using
ops, our addop parser can now be defined by

addop = ops [(char ’+’, (+)), (char ’-’, (-))]

A possible inefficiency in the definition of the chainl1 combinator is the con-
struction of the intermediate list fys. This can be avoided by giving a direct re-
cursive definition of chainl1 that does not make use of foldl and many, using an
accumulating parameter to construct the final result:

chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a

p ‘chainl1‘ op = p ‘bind‘ rest

where

rest x = (op ‘bind‘ \f ->

p ‘bind‘ \y ->

rest (f x y)) ++ [x]

This definition has a natural operational reading. The parser p ‘chainl1‘ op first
parses a single p, whose result value becomes the initial accumulator for the rest

function. Then it attempts to parse an operator and a single p. If successful, the
accumulator and the result from p are combined using the function f returned from
parsing the operator, and the resulting value becomes the new accumulator when
parsing the remainder of the sequence (using a recursive call to rest). Otherwise,
the sequence is finished, and the accumulator is returned.

As another interesting application of chainl1, we can redefine our earlier parser
nat for natural numbers such that it does not construct an intermediate list of
digits. In this case, the op parser does not do any parsing, but returns the function
that combines a natural and a digit:

nat :: Parser Int

nat = [ord x - ord ’0’ | x <- digit] ‘chainl1‘ [op]

where

m ‘op‘ n = 10*m + n

Naturally, we can also define a combinator chainr1 that parses non-empty se-
quences of items separated by operators that associate to the right, rather than to
the left. For simplicity, we only give the direct recursive definition:

chainr1 :: Parser a -> Parser (a -> a -> a) -> Parser a

p ‘chainr1‘ op =

p ‘bind‘ \x ->

[f x y | f <- op, y <- p ‘chainr1‘ op] ++ [x]

That is, p ‘chainr1‘ op first parses a single p. Then it attempts to parse an oper-
ator and the rest of the sequence (using a recursive call to chainr1). If successful,
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the pair of results from the first p and the rest of the sequence are combined us-
ing the function f returned from parsing the operator. Otherwise, the sequence is
finished, and the result from p is returned.

As an example of using chainr1, we extend our parser for arithmetic expressions
to handle exponentiation; this operator has higher precedence than the previous
two operators, and associates to the right:

expr = term ‘chainl1‘ addop

term = factor ‘chainr1‘ expop

factor = nat ++ bracket (char ’(’) expr (char ’)’)

addop = ops [(char ’+’, (+)), (char ’-’, (-))]

expop = ops [(char ’^’, (^))]

For completeness, we also define combinators chainl and chainr that have the
same behaviour as chainl1 and chainr1, except that they can also consume no
input, in which case a given value v is returned as the result:

chainl :: Parser a -> Parser (a -> a -> a) -> a -> Parser a

chainl p op v = (p ‘chainl1‘ op) ++ [v]

chainr :: Parser a -> Parser (a -> a -> a) -> a -> Parser a

chainr p op v = (p ‘chainr1‘ op) ++ [v]

In summary then, chainl and chainr provide a simple way to build parsers for
expression-like grammars. Using these combinators avoids the need for transfor-
mations to remove left-recursion in the grammar, that would otherwise result in
non-termination of the parser. They also avoid the need for left-factorisation of the
grammar, that would otherwise result in unnecessary backtracking; we will return
to this point in the next section.

5 Efficiency of parsers

Using combinators is a simple and flexible method of building parsers. However,
the power of the combinators — in particular, their ability to backtrack and return
multiple results — can lead to parsers with unexpected space and time performance
if one does not take care. In this section we outline some simple techniques that can
be used to improve the efficiency of parsers. Readers interested in further techniques
are referred to Röjemo’s thesis (1995), which contains a chapter on the use of heap
profiling tools in the optimisation of parser combinators.
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5.1 Left factoring

Consider the simple problem of parsing and evaluating two natural numbers sepa-
rated by the addition symbol ‘+’, or by the subtraction symbol ‘-’. This specification
can be translated directly into the following parser:

eval :: Parser Int

eval = add ++ sub

where

add = [x+y | x <- nat, _ <- char ’+’, y <- nat]

sub = [x-y | x <- nat, _ <- char ’-’, y <- nat]

This parser gives the correct results, but is inefficient. For example, when parsing
the string "123-456" the number 123 will first be parsed by the add parser, that
will then fail because there is no ‘+’ symbol following the number. The correct parse
will only be found by backtracking in the input string, and parsing the number 123
again, this time from within the sub parser.

Of course, the way to avoid the possibility of backtracking and repeated parsing
is to left factorise the eval parser. That is, the initial use of nat in the component
parsers add and sub should be factorised out:

eval = [v | x <- nat, v <- add x ++ sub x]

where

add x = [x+y | _ <- char ’+’, y <- nat]

sub x = [x+y | _ <- char ’-’, y <- nat]

This new version of eval gives the same results as the original version, but requires
no backtracking. Using the new eval, the string "123-456" can now be parsed in
linear time. In fact we can go a little further, and right factorise the remaining
use of nat in both add and sub. This does not improve the efficiency of eval, but
arguably gives a cleaner parser:

eval = [f x y | x <- nat

, f <- ops [(char ’+’, (+)), (char ’-’, (-))]

, y <- nat]

In practice, most cases where left factorisation of a parser is necessary to improve
efficiency will concern parsers for some kind of expression. In such cases, manually
factorising the parser will not be required, since expression-like parsers can be built
using the chain combinators from the previous section, which already encapsulate
the necessary left factorisation.

The motto of this section is the following: backtracking is a powerful tool, but it
should not be used as a substitute for care in designing parsers.

5.2 Improving laziness

Recall the definition of the repetition combinator many:

many :: Parser a -> Parser [a]

many p = [x:xs | x <- p, xs <- many p] ++ [[]]



20 Graham Hutton and Erik Meijer

For example, applying many (char ’a’) to the input "aaab" gives the result
[("aaa","b"), ("aa","ab"), ("a","aab"),("","aaab")]. Since Gofer is lazy,
we would expect the a’s in the first result "aaa" to become available one at a time,
as they are consumed from the input. This is not in fact what happens. In practice
no part of the result "aaa" will be produced until all the a’s have been consumed.
In other words, many is not as lazy as we would expect.

But does this really matter? Yes, because it is common in functional programming
to rely on laziness to avoid the creation of large intermediate structures (Hughes,
1989). As noted by Wadler (1985; 1992b), what is needed to solve the problem with
many is a means to make explicit that the parser many p always succeeds. (Even
if p itself always fails, many p will still succeed, with the empty list as the result
value.) This is the purpose of the force combinator:

force :: Parser a -> Parser a

force p = \inp -> let x = p inp in

(fst (head x), snd (head x)) : tail x

Given a parser p that always succeeds, the parser force p has the same behaviour
as p, except that before any parsing of the input string is attempted the result of
the parser is immediately forced to take on the form (⊥,⊥):⊥, where ⊥ represents
a presently undefined value.

Using force, the many combinator can be re-defined as follows:

many :: Parser a -> Parser [a]

many p = force ([x:xs | x <- p, xs <- many p] ++ [[]])

The use of force ensures that many p and all of its recursive calls return at least
one result. The new definition of many now has the expected behaviour under lazy
evaluation. For example, applying many (char ’a’) to the partially-defined string
’a’:⊥ gives the partially-defined result (’a’:⊥,⊥):⊥. In contrast, with the old
version of many, the result for this example is the completely undefined value ⊥.

Some readers might wonder why force is defined using the following selection
functions, rather than by pattern matching?

fst :: (a,b) -> a head :: [a] -> a

snd :: (a,b) -> b tail :: [a] -> [a]

The answer is that, depending on the semantics of patterns in the particular im-
plementation language, a definition of force using patterns might not have the
expected behaviour under lazy evaluation.

5.3 Limiting the number of results

Consider the simple problem of parsing a natural number, or if no such number is
present just returning the number 0 as the default result. A first approximation to
such a parser might be as follows:

number :: Parser Int

number = nat ++ [0]
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However, this does not quite have the required behaviour. For example, applying
number to the input "hello" gives the correct result [(0,"hello")]. On the other
hand, applying number to "123" gives the result [(123,""), (0,"123")], whereas
we only really want the single result [(123,"")].

One solution to the above problem is to make use of deterministic parser com-
binators (see section 7.5) — all parsers built using such combinators are restricted
by construction to producing at most one result. A more general solution, however,
is to retain the flexibility of the non-deterministic combinators, but to provide a
means to make explicit that we are only interested in the first result produced by
certain parsers, such as number. This is the purpose of the first combinator:

first :: Parser a -> Parser a

first p = \inp -> case p inp of

[] -> []

(x:xs) -> [x]

Given a parser p, the parser first p has the same behaviour as p, except that
only the first result (if any) is returned. Using first we can define a deterministic
version (+++) of the standard choice combinator (++) for parsers:

(+++) :: Parser a -> Parser a -> Parser a

p +++ q = first (p ++ q)

Replacing (++) by (+++) in number gives the desired behaviour.
As well as being used to ensure the correct behaviour of parsers, using (+++) can

also improve their efficiency. As an example, consider a parser that accepts either
of the strings "yellow" or "orange":

colour :: Parser String

colour = p1 ++ p2

where

p1 = string "yellow"

p2 = string "orange"

Recall now the behaviour of the choice combinator (++): it takes a string, applies
both argument parsers to this string, and concatenates the resulting lists. Thus in
the colour example, if p1 is successfully applied then p2 will still be applied to the
same string, even though it is guaranteed to fail. This inefficiency can be avoided
using (+++), which ensures that if p1 succeeds then p2 is never applied:

colour = p1 +++ p2

where

p1 = string "yellow"

p2 = string "orange"

More generally, if we know that a parser of the form p ++ q is deterministic (only
ever returns at most one result value), then p +++ q has the same behaviour, but is
more efficient: if p succeeds then q is never applied. In the remainder of this article
it will mostly be the (+++) choice combinator that is used. For reasons of efficiency,
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in the combinator libraries that accompany this article, the repetition combinators
from the previous section are defined using (+++) rather than (++).

We conclude this section by asking why first is defined by pattern matching,
rather than by using the selection function take :: Int -> [a] -> [a] (where,
for example, take 3 "parsing" = "par"):

first p = \inp -> take 1 (p inp)

The answer concerns the behaviour under lazy evaluation. To see the problem, let
us unfold the use of take in the above definition:

first p = \inp -> case p inp of

[] -> []

(x:xs) -> x : take 0 xs

When the sub-expression take 0 xs is evaluated, it will yield []. However, under
lazy evaluation this computation will be suspended until its value is required. The
effect is that the list xs may be retained in memory for some time, when in fact
it can safely be discarded immediately. This is an example of a space leak . The
definition of first using pattern matching does not suffer from this problem.

6 Handling lexical issues

Traditionally, a string to be parsed is not supplied directly to a parser, but is
first passed through a lexical analysis phase (or lexer) that breaks the string into
a sequence of tokens (Aho et al., 1986). Lexical analysis is a convenient place to
remove white-space (spaces, newlines, and tabs) and comments from the input
string, and to distinguish between identifiers and keywords.

Since lexers are just simple parsers, they can be built using parser combinators,
as discussed by Hutton (1992). However, as we shall see in this section, the need
for a separate lexer can often be avoided (even for substantial grammars such as
that for Gofer), with lexical issues being handled within the main parser by using
some special purpose combinators.

6.1 White-space, comments, and keywords

We begin by defining a parser that consumes white-space from the beginning of a
string, with a dummy value () returned as result:

spaces :: Parser ()

spaces = [() | _ <- many1 (sat isSpace)]

where

isSpace x =

(x == ’ ’) || (x == ’\n’) || (x == ’\t’)

Similarly, a single-line Gofer comment can be consumed as follows:

comment :: Parser ()

comment = [() | _ <- string "--"

, _ <- many (sat (\x -> x /= ’\n’))]
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We leave it as an exercise for the reader to define a parser for consuming multi-line
Gofer comments {- ... -}, which can be nested.

After consuming white-space, there may still be a comment left to consume from
the input string. Dually, after a comment there may still be white-space. Thus we
are motivated to defined a special parser that repeatedly consumes white-space and
comments until no more remain:

junk :: Parser ()

junk = [() | _ <- many (spaces +++ comment)]

Note that while spaces and comment can fail, the junk parser always succeeds. We
define two combinators in terms of junk: parse removes junk before applying a
given parser, and token removes junk after applying a parser:

parse :: Parser a -> Parser a

parse p = [v | _ <- junk, v <- p]

token :: Parser a -> Parser a

token p = [v | v <- p, _ <- junk]

With the aid of these two combinators, parsers can be modified to ignore white-
space and comments. Firstly, parse is applied once to the parser as a whole, ensur-
ing that input to the parser begins at a significant character. And secondly, token
is applied once to all sub-parsers that consume complete tokens, thus ensuring that
the input always remains at a significant character.

Examples of parsers for complete tokens are nat and int (for natural numbers
and integers), parsers of the form string xs (for symbols and keywords), and
ident (for identifiers). It is useful to define special versions of these parsers — and
more generally, special versions of any user-defined parsers for complete tokens —
that encapsulate the necessary application of token:

natural :: Parser Int

natural = token nat

integer :: Parser Int

integer = token int

symbol :: String -> Parser String

symbol xs = token (string xs)

identifier :: [String] -> Parser String

identifier ks = token [x | x <- ident, not (elem x ks)]

Note that identifier takes a list of keywords as an argument, where a keyword
is a string that is not permitted as an identifier. For example, in Gofer the strings
“data” and “where” (among others) are keywords. Without the keyword check,
parsers defined in terms of identifier could produce unexpected results, or involve
unnecessary backtracking to construct the correct parse of the input string.
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6.2 A parser for λ-expressions

To illustrate the use of the new combinators given above, let us define a parser for
simple λ-expressions extended with a “let” construct for local definitions. Parsed
expressions will be represented in Gofer as follows:

data Expr = App Expr Expr -- application

| Lam String Expr -- lambda abstraction

| Let String Expr Expr -- local definition

| Var String -- variable

Now a parser expr :: Parser Expr can be defined by:

expr = atom ‘chainl1‘ [App]

atom = lam +++ local +++ var +++ paren

lam = [Lam x e | _ <- symbol "\\"

, x <- variable

, _ <- symbol "->"

, e <- expr]

local = [Let x e e’ | _ <- symbol "let"

, x <- variable

, _ <- symbol "="

, e <- expr

, _ <- symbol "in"

, e’ <- expr]

var = [Var x | x <- variable]

paren = bracket (symbol "(") expr (symbol ")")

variable = identifier ["let","in"]

Note how the expr parser handles white-space and comments by using the symbol

parser in place of string and char. Similarly, the keywords “let” and “in” are
handled by using identifier to define the parser for variables. Finally, note how
applications (f e1 e2 ... en) are parsed in the form (((f e1) e2) ... ) by
using the chainl1 combinator.

7 Factorising the parser monad

Up to this point in the article, combinator parsers have been our only example of
the notion of a monad. In this section we define a number of other monads related
to the parser monad, leading up to a modular reformulation of the parser monad
in terms of two simpler monads (Jones, 1995a). The immediate benefit is that, as
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we shall see, the basic parser combinators no longer need to be defined explicitly.
Rather, they arise automatically as a special case of lifting monad operations from
a base monad m to a certain other monad parameterised over m. This also means
that, if we change the nature of parsers by modifying the base monad (for example,
limiting parsers to producing at most one result), new combinators for the modified
monad of parsers are also defined automatically.

7.1 The exception monad

Before starting to define other monads, it is useful to first focus briefly on the
intuition behind the use of monads in functional programming (Wadler, 1992a).

The basic idea behind monads is to distinguish the values that a computation
can produce from the computation itself. More specifically, given a monad m and
a type a, we can think of m a as the type of computations that yield results of
type a, with the nature of the computation captured by the type constructor m.
The combinators result and bind (with zero and (++) if appropriate) provide a
means to structure the building of such computations:

result :: m a

bind :: m a -> (a -> m b) -> m b

zero :: m a

(++) :: m a -> m a -> m a

From a computational point of view, result converts values into computations
that yield those values; bind chains two computations together in sequence, with
results of the first computation being made available for use in the second; zero is
the trivial computation that does nothing; and finally, (++) is some kind of choice
operation for computations.

Consider, for example, the type constructor Maybe:

data Maybe a = Just a | Nothing

We can think of a value of type Maybe a as a computation that either succeeds with
a value of type a, or fails, producing no value. Thus, the type constructor Maybe

captures computations that have the possibility to fail.
Defining the monad combinators for a given type constructor is usually just a

matter of making the “obvious definitions” suggested by the types of the combina-
tors. For example, the type constructor Maybe can be made into a monad with a
zero and plus using the following definitions:

instance Monad Maybe where

-- result :: a -> Maybe a

result x = Just x

-- bind :: Maybe a -> (a -> Maybe b) -> Maybe b

(Just x) ‘bind‘ f = f x

Nothing ‘bind‘ f = Nothing



26 Graham Hutton and Erik Meijer

instance Monad0Plus Maybe where

-- zero :: Maybe a

zero = Nothing

-- (++) :: Maybe a -> Maybe a -> Maybe a

Just x ++ y = Just x

Nothing ++ y = y

That is, result converts a value into a computation that succeeds with this value;
bind is a sequencing operator, with a successful result from the first computation
being available for use in the second computation; zero is the computation that
fails; and finally, (++) is a (deterministic) choice operator that returns the first
computation if it succeeds, and the second otherwise.

Since failure can be viewed as a simple kind of exception, Maybe is sometimes
called the exception monad in the literature (Spivey, 1990).

7.2 The non-determinism monad

A natural generalisation of Maybe is the list type constructor []. While a value of
type Maybe a can be thought of as a computation that either succeeds with a single
result of type a or fails, a value of type [a] can be thought of as a computation
that has the possibility to succeed with any number of results of type a, including
zero (which represents failure). Thus the list type constructor [] can be used to
capture non-deterministic computations.

Now [] can be made into a monad with a zero and plus:

instance Monad [] where

-- result :: a -> [a]

result x = [x]

-- bind :: [a] -> (a -> [b]) -> [b]

[] ‘bind‘ f = []

(x:xs) ‘bind‘ f = f x ++ (xs ‘bind‘ f)

instance Monad0Plus [] where

-- zero :: [a]

zero = []

-- (++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

That is, result converts a value into a computation that succeeds with this single
value; bind is a sequencing operator for non-deterministic computations; zero al-
ways fails; and finally, (++) is a (non-deterministic) choice operator that appends
the results of the two argument computations.
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7.3 The state-transformer monad

Consider the (binary) type constructor State:

type State s a = s -> (a,s)

Values of type State s a can be interpreted as follows: they are computations that
take an initial state of type s, and yield a value of type a together with a new state
of type s. Thus, the type constructor State s obtained by applying State to a
single type s captures computations that involve state of type s. We will refer to
values of type State s a as stateful computations.

Now State s can be made into a monad:

instance Monad (State s) where

-- result :: a -> State s a

result v = \s -> (v,s)

-- bind :: State s a -> (a -> State s b) -> State s b

st ‘bind‘ f = \s -> let (v,s’) = st s in f v s’

That is, result converts a value into a stateful computation that returns that value
without modifying the internal state, and bind composes two stateful computations
in sequence, with the result value from the first being supplied as input to the
second. Thinking pictorially in terms of boxes and wires is a useful aid to becoming
familiar with these two operations (Jones & Launchbury, 1994).

The state-transformer monad State s does not have a zero and a plus. However,
as we shall see in the next section, the parameterised state-transformer monad over
a given based monad m does have a zero and a plus, provided that m does.

To allow us to access and modify the internal state, a few extra operations on
the monad State s are introduced. The first operation, update, modifies the state
by applying a given function, and returns the old state as the result value of the
computation. The remaining two operations are defined in terms of update: set
replaces the state with a new state, and returns the old state as the result; fetch
returns the state without modifying it.

update :: (s -> s) -> State s s

set :: s -> State s s

fetch :: State s s

update f = \s -> (s, f s)

set s = update (\_ -> s)

fetch = update id

In fact State s is not the only monad for which it makes sense to define these
operations. For this reason we encapsulate the extra operations in a class, so that
the same names can be used for the operations of different monads:

class Monad m => StateMonad m s where

update :: (s -> s) -> m s
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set :: s -> m s

fetch :: m s

set s = update (\_ -> s)

fetch = update id

This declaration can be read as follows: a type constructor m and a type s are
together a member of the class StateMonad if m is a member of the class Monad,
and if m is also equipped with update, set, and fetch operations of the specified
types. Moreover, the fact that set and fetch can be defined in terms of update is
also reflected in the declaration, by means of default definitions.

Now because State s is already a monad, it can be made into a state monad
using the update operation as defined earlier:

instance StateMonad (State s) s where

-- update :: (s -> s) -> State s s

update f = \s -> (s, f s)

7.4 The parameterised state-transformer monad

Recall now our type of combinator parsers:

type Parser a = String -> [(a,String)]

We see now that parsers combine two kinds of computation: non-deterministic com-
putations (the result of a parser is a list), and stateful computations (the state is the
string being parsed). Abstracting from the specific case of returning a list of results,
the Parser type gives rise to a generalised version of the State type constructor
that applies a given type constructor m to the result of the computation:

type StateM m s a = s -> m (a,s)

Now StateM m s can be made into a monad with a zero and a plus, by inheriting
the monad operations from the base monad m:

instance Monad m => Monad (StateM m s) where

-- result :: a -> StateM m s a

result v = \s -> result (v,s)

-- bind :: StateM m s a ->

-- (a -> StateM m s b) -> StateM m s b

stm ‘bind‘ f = \s -> stm s ‘bind‘ \(v,s’) -> f v s’

instance Monad0Plus m => Monad0Plus (StateM m s) where

-- zero :: StateM m s a

zero = \s -> zero

-- (++) :: StateM m s a -> StateM m s a -> StateM m s a

stm ++ stm’ = \s -> stm s ++ stm’ s
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That is, result converts a value into a computation that returns this value without
modifying the internal state; bind chains two computations together; zero is the
computation that fails regardless of the input state; and finally, (++) is a choice
operation that passes the same input state through to both of the argument com-
putations, and combines their results.

In the previous section we defined the extra operations update, set and fetch

for the monad State s. Of course, these operations can also be defined for the
parameterised state-transformer monad StateM m s. As previously, we only need
to define update, the remaining two operations being defined automatically via
default definitions:

instance Monad m => StateMonad (StateM m s) s where

-- update :: Monad m => (s -> s) -> StateM m s s

update f = \s -> result (s, f s)

7.5 The parser monad revisited

Recall once again our type of combinator parsers:

type Parser a = String -> [(a,String)]

This type can now be re-expressed using the parameterised state-transformer monad
StateM m s by taking [] for m, and String for s:

type Parser a = StateM [] String a

But why view the Parser type in this way? The answer is that all the basic parser
combinators no longer need to be defined explicitly (except one, the parser item for
single characters), but rather arise as an instance of the general case of extending
monad operations from a type constructor m to the type constructor StateM m s.
More specifically, since [] forms a monad with a zero and a plus, so does State []

String, and hence Gofer automatically provides the following combinators:

result :: a -> Parser a

bind :: Parser a -> (a -> Parser b) -> Parser b

zero :: Parser a

(++) :: Parser a -> Parser a -> Parser a

Moreover, defining the parser monad in this modular way in terms of StateM

means that, if we change the type of parsers, then new combinators for the modified
type are also defined automatically. For example, consider replacing

type Parser a = StateM [] String a

by a new definition in which the list type constructor [] (which captures non-
deterministic computations that can return many results) is replaced by the Maybe

type constructor (which captures deterministic computations that either fail, re-
turning no result, or succeed with a single result):
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data Maybe a = Just a | Nothing

type Parser a = StateM Maybe String a

Since Maybe forms a monad with a zero and a plus, so does the re-defined Parser

type constructor, and hence Gofer automatically provides result, bind, zero, and
(++) combinators for deterministic parsers. In earlier approaches that do not exploit
the monadic nature of parsers (Wadler, 1985; Hutton, 1992; Fokker, 1995), the basic
combinators would have to be re-defined by hand.

The only basic parsing primitive that does not arise from the monadic structure
of the Parser type is the parser item for consuming single characters:

item :: Parser Char

item = \inp -> case inp of

[] -> []

(x:xs) -> [(x,xs)]

However, item can now be re-defined in monadic style. We first fetch the current
state (the input string); if the string is empty then the item parser fails, otherwise
the first character is consumed (by applying the tail function to the state), and
returned as the result value of the parser:

item = [x | (x:_) <- update tail]

The advantage of the monadic definition of item is that it does not depend upon
the internal details of the Parser type. Thus, for example, it works equally well for
both the non-deterministic and deterministic versions of Parser.

8 Handling the offside rule

Earlier (section 6) we showed that the need for a lexer to handle white-space,
comments, and keywords can be avoided by using special combinators within the
main parser. Another task usually performed by a lexer is handling the Gofer offside
rule. This rule allows the grouping of definitions in a program to be indicated
using indentation, and is usually implemented by the lexer inserting extra tokens
(concerning indentation) into its output stream.

In this section we show that Gofer’s offside rule can be handled in a simple and
natural manner without a separate lexer, by once again using special combinators.
Our approach was inspired by the monadic view of parsers, and is a development
of an idea described earlier by Hutton (1992).

8.1 The offside rule

Consider the following simple Gofer program:

a = b + c

where

b = 10
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c = 15 - 5

d = a * 2

It is clear from the use of indentation that a and d are intended to be global
definitions, with b and c local definitions to a. Indeed, the above program can be
viewed as a shorthand for the following program, in which the grouping of definitions
is made explicit using special brackets and separators:

{ a = b + c

where

{ b = 10

; c = 15 - 5 }

; d = a * 2 }

How the grouping of Gofer definitions follows from their indentation is formally
specified by the offside rule. The essence of the rule is as follows: consecutive defi-
nitions that begin in the same column c are deemed to be part of the same group.
To make parsing easier, it is further required that the remainder of the text of each
definition (excluding white-space and comments, of course) in a group must occur
in a column strictly greater than c. In terms of the offside rule then, definitions a

and d in the example program above are formally grouped together (and similarly
for b and c) because they start in the same column as one another.

8.2 Modifying the type of parsers

To implement the offside rule, we will have to maintain some extra information
during parsing. First of all, since column numbers play a crucial role in the offside
rule, parsers will need to know the column number of the first character in their
input string. In fact, it turns out that parsers will also require the current line
number. Thus our present type of combinator parsers,

type Parser a = StateM [] String a

is revised to the following type, in which the internal state of a parser now contains
a (line,column) position in addition to a string:

type Parser a = StateM [] Pstring a

type Pstring = (Pos,String)

type Pos = (Int,Int)

In addition, parsers will need to know the starting position of the current defini-
tion being parsed — if the offside rule is not in effect, this definition position can
be set with a negative column number. Thus our type of parsers is revised once
more, to take the current definition position as an extra argument:

type Parser a = Pos -> StateM [] Pstring a
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Another option would have been to maintain the definition position in the parser
state, along with the current position and the string to be parsed. However, defini-
tion positions can be nested, and supplying the position as an extra argument to
parsers — as opposed to within the parser state — is more natural from the point
of view of implementing nesting of positions.

Is the revised Parser type still a monad? Abstracting from the details, the body
of the Parser type definition is of the form s -> m a (in our case s is Pos, m is the
monad StateM [] Pstring, and a is the parameter type a.) We recognise this as
being similar to the type s -> m (a,s) of parameterised state-transformers, the
difference being that the type s of states no longer occurs in the type of the result:
in other words, the state can be read, but not modified. Thus we can think of s ->

m a as the type of parameterised state-readers. The monadic nature of this type is
the topic of the next section.

8.3 The parameterised state-reader monad

Consider the type constructor ReaderM, defined as follows:

type ReaderM m s a = s -> m a

In a similar way to StateM m s, ReaderM m s can be made into a monad with a
zero and a plus, by inheriting the monad operations from the base monad m:

instance Monad m => Monad (ReaderM m s) where

-- result :: a -> ReaderM m s a

result v = \s -> result v

-- bind :: ReaderM m s a ->

-- (a -> ReaderM m s b) -> ReaderM m s b

srm ‘bind‘ f = \s -> srm s ‘bind‘ \v -> f v s

instance Monad0Plus m => Monad0Plus (ReaderM m s) where

-- zero :: ReaderM m s a

zero = \s -> zero

-- (++) :: ReaderM m s a ->

-- ReaderM m s a -> ReaderM m s a

srm ++ srm’ = \s -> srm s ++ srm’ s

That is, result converts a value into a computation that returns this value without
consulting the state; bind chains two computations together, with the same state
being passed to both computations (contrast with the bind operation for StateM,
in which the second computation receives the new state produced by the first com-
putation); zero is the computation that fails; and finally, (++) is a choice operation
that passes the same state to both of the argument computations.

To allow us to access and set the state, a couple of extra operations on the
parameterised state-reader monad ReaderM m s are introduced. As for StateM, we
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encapsulate the extra operations in a class. The operation env returns the state as
the result of the computation, while setenv replaces the current state for a given
computation with a new state:

class Monad m => ReaderMonad m s where

env :: m s

setenv :: s -> m a -> m a

instance Monad m => ReaderMonad (ReaderM m s) s where

-- env :: Monad m => ReaderM m s s

env = \s -> result s

-- setenv :: Monad m => s ->

-- ReaderM m s a -> ReaderM m s a

setenv s srm = \_ -> srm s

The name env comes from the fact that one can think of the state supplied to a
state-reader as being a kind of env ironment. Indeed, in the literature state-reader
monads are sometimes called environment monads.

8.4 The new parser combinators

Using the ReaderM type constructor, our revised type of parsers

type Parser a = Pos -> StateM [] Pstring a

can now be expressed as follows:

type Parser a = ReaderM (StateM [] Pstring) Pos a

Now since [] forms a monad with a zero and a plus, so does StateM [] Pstring,
and hence so does ReaderM (StateM [] Pstring) Pos. Thus Gofer automatically
provides result, bind, zero, and (++) operations for parsers that can handle the
offside rule. Since the type of parsers is now defined in terms of ReaderM at the top
level, the extra operations env and setenv are also provided for parsers. Moreover,
the extra operation update (and the derived operations set and fetch) from the
underlying state monad can be lifted to the new type of parsers — or more generally,
to any parameterised state-reader monad — by ignoring the environment:

instance StateMonad m a => StateMonad (ReaderM m s) a where

-- update :: StateMonad m a => (a -> a) -> ReaderM m s a

update f = \_ -> update f

Now that the internal state of parsers has been modified (from String to Pstring),
the parser item for consuming single characters from the input must also be mod-
ified. The new definition for item is similar to the old,

item :: Parser Char

item = [x | (x:_) <- update tail]
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except that the item parser now fails if the position of the character to be consumed
is not onside with respect to current definition position:

item :: Parser Char

item = [x | (pos,x:_) <- update newstate

, defpos <- env

, onside pos defpos]

A position is onside if its column number is strictly greater than the current defi-
nition column. However, the first character of a new definition begins in the same
column as the definition column, so this is handled as a special case:

onside :: Pos -> Pos -> Bool

onside (l,c) (dl,dc) = (c > dc) || (l == dl)

The remaining auxiliary function, newstate, consumes the first character from the
input string, and updates the current position accordingly (for example, if a newline
character was consumed, the current line number is incremented, and the current
column number is set back to zero):

newstate :: Pstring -> Pstring

newstate ((l,c),x:xs)

= (newpos,xs)

where

newpos = case x of

’\n’ -> (l+1,0)

’\t’ -> (l,((c ‘div‘ 8)+1)*8)

_ -> (l,c+1)

One aspect of the offside rule still remains to be addressed: for the purposes
of this rule, white-space and comments are not significant, and should always be
successfully consumed even if they contain characters that are not onside. This can
be handled by temporarily setting the definition position to (0,−1) within the junk
parser for white-space and comments:

junk :: Parser ()

junk = [() | _ <- setenv (0,-1) (many (spaces +++ comment))]

All that remains now is to define a combinator that parses a sequence of defini-
tions subject to the Gofer offside rule:

many1_offside :: Parser a -> Parser [a]

many1_offside p = [vs | (pos,_) <- fetch

, vs <- setenv pos (many1 (off p))]

That is, many1 offside p behaves just as many1 (off p), except that within this
parser the definition position is set to the current position. (There is no need to
skip white-space and comments before setting the position, since this will already
have been effected by proper use of the lexical combinators token and parse.) The
auxiliary combinator off takes care of setting the definition position locally for
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each new definition in the sequence, where a new definition begins if the column
position equals the definition column position:

off :: Parser a -> Parser a

off p = [v | (dl,dc) <- env

, ((l,c),_) <- fetch

, c == dc

, v <- setenv (l,dc) p]

For completeness, we also define a combinator many offside that has the same
behaviour as the combinator many1 offside, except that it can also parse an empty
sequence of definitions:

many_offside :: Parser a -> Parser [a]

many_offside p = many1_offside p +++ [[]]

To illustrate the use of the new combinators defined above, let us modify our
parser for λ-expressions (section 6.2) so that the “let” construct permits non-
empty sequences of local definitions subject to the offside rule. The datatype Expr of
expressions is first modified so that the Let constructor has type [(String,Expr)]
-> Expr instead of String -> Expr -> Expr:

data Expr = ...

| Let [(String,Expr)] Expr

| ...

The only part of the parser that needs to be modified is the parser local for local
definitions, which now accepts sequences:

local = [Let ds e | _ <- symbol "let"

, ds <- many1_offside defn

, _ <- symbol "in"

, e <- expr]

defn = [(x,e) | x <- identifier

, _ <- symbol "="

, e <- expr]

We conclude this section by noting that the use of the offside rule when laying out
sequences of Gofer definitions is not mandatory. As shown in our initial example, one
also has the option to include explicit layout information in the form of parentheses
“{” and “}” around the sequence, with definitions separated by semi-colons “;”.
We leave it as an exercise to the reader to use many offside to define a combinator
that implements this convention.

In summary then, to permit combinator parsers to handle the Gofer offside rule,
we changed the type of parsers to include some positional information, modified
the item and junk combinators accordingly, and defined two new combinators:
many1 offside and many offside. All other necessary redefining of combinators
is done automatically by the Gofer type system.
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10 Appendix: a parser for data definitions

To illustrate the monadic parser combinators developed in this article in a real-life
setting, we consider the problem of parsing a sequence of Gofer datatype definitions.
An example of such a sequence is as follows:

data List a = Nil | Cons a (List a)

data Tree a b = Leaf a

| Node (Tree a b, b, Tree a b)

Within the parser, datatypes will be represented as follows:

type Data = (String, -- type name

[String], -- parameters

[(String,[Type])]) -- constructors and arguments

The representation Type for types will be treated shortly. A parser datadecls ::

Parser [Data] for a sequence of datatypes can now be defined by

datadecls = many_offside datadecl

datadecl = [(x,xs,b) | _ <- symbol "data"

, x <- constructor

, xs <- many variable

, _ <- symbol "="

, b <- condecl ‘sepby1‘ symbol "|"]

constructor = token [(x:xs) | x <- upper

, xs <- many alphanum]

variable = identifier ["data"]

condecl = [(x,ts) | x <- constructor

, ts <- many type2]

There are a couple of points worth noting about this parser. Firstly, all lexical
issues (white-space and comments, the offside rule, and keywords) are handled by
combinators. And secondly, since constructor is a parser for a complete token, the
token combinator is applied within its definition.
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Within the parser, types will be represented as follows:

data Type = Arrow Type Type -- function

| Apply Type Type -- application

| Var String -- variable

| Con String -- constructor

| Tuple [Type] -- tuple

| List Type -- list

A parser type0 :: Parser Type for types can now be defined by

type0 = type1 ‘chainr1‘ [Arrow | _ <- symbol "->"]

type1 = type2 ‘chainl1‘ [Apply]

type2 = var +++ con +++ list +++ tuple

var = [Var x | x <- variable]

con = [Con x | x <- constructor]

list = [List x | x <- bracket

(symbol "[")

type0

(symbol "]")]

tuple = [f ts | ts <- bracket

(symbol "(")

(type0 ‘sepby‘ symbol ",")

(symbol ")")]

where f [t] = t

f ts = Tuple ts

Note how chainr1 and chainl1 are used to handle parsing of function-types and
application. Note also that (as in Gofer) building a singleton tuple (t) of a type t

is not possible, since (t) is treated as a parenthesised expression.

References

Aho, A., Sethi, R., & Ullman, J. (1986). Compilers — principles, techniques and tools.
Addison-Wesley.

Burge, W.H. (1975). Recursive programming techniques. Addison-Wesley.

Fokker, Jeroen. 1995 (May). Functional parsers. Lecture notes of the Baastad Spring
school on functional programming.

Gill, Andy, & Marlow, Simon. 1995 (Jan.). Happy: the parser generator for Haskell.
University of Glasgow.

Hughes, John. (1989). Why functional programming matters. The computer journal,
32(2), 98–107.

Hutton, Graham. (1992). Higher-order functions for parsing. Journal of functional pro-
gramming, 2(3), 323–343.



38 Graham Hutton and Erik Meijer

Jones, Mark P. (1994). Gofer 2.30a release notes. Unpublished manuscript.

Jones, Mark P. (1995a). Functional programming beyond the Hindley/Milner type system.
Proc. lecture notes of the Baastad spring school on functional programming.

Jones, Mark P. (1995b). The Gofer distribution. Available from the University of Not-
tingham: http://www.cs.nott.ac.uk/Department/Staff/mpj/.

Jones, Mark P. (1995c). A system of constructor classes: overloading and implicit higher-
order polymorphism. Journal of functional programming, 5(1), 1–35.

Jones, Simon Peyton, & Launchbury, John. (1994). State in Haskell. University of Glasgow.

Landin, Peter. (1966). The next 700 programming languages. Communications of the
ACM, 9(3).

Mogensen, Torben. (1993). Ratatosk: a parser generator and scanner generator for Gofer.
University of Copenhagen (DIKU).

Moggi, Eugenio. (1989). Computation lambda-calculus and monads. Proc. IEEE sympo-
sium on logic in computer science. A extended version of the paper is available as a
technical report from the University of Edinburgh.
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Abstract

As software becomes more and more complex, it is more and more
important to structure it well. Well-structured software is easy to write,
easy to debug, and provides a collection of modules that can be re-used
to reduce future programming costs. Conventional languages place con-
ceptual limits on the way problems can be modularised. Functional lan-
guages push those limits back. In this paper we show that two features of
functional languages in particular, higher-order functions and lazy eval-
uation, can contribute greatly to modularity. As examples, we manipu-
late lists and trees, program several numerical algorithms, and implement
the alpha-beta heuristic (an algorithm from Artificial Intelligence used in
game-playing programs). Since modularity is the key to successful pro-
gramming, functional languages are vitally important to the real world.

1 Introduction

This paper is an attempt to demonstrate to the “real world” that functional
programming is vitally important, and also to help functional programmers
exploit its advantages to the full by making it clear what those advantages are.

Functional programming is so called because a program consists entirely of
functions. The main program itself is written as a function which receives the
program’s input as its argument and delivers the program’s output as its result.
Typically the main function is defined in terms of other functions, which in
turn are defined in terms of still more functions, until at the bottom level the
functions are language primitives. These functions are much like ordinary math-
ematical functions, and in this paper will be defined by ordinary equations. Our

1


