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1 Introduction

Almost all programming languages have a technique of allowing “local definitions” : in Haskell this
is provided by the “where” clause which attaches local definitions to a definition of larger scope.
Here we use the “let” construct rather than the “where” construct – all this does is to change the
order of where the declarations are made. An advantage of local definitions for the programmer is
that he can use variables and names from an outer scopes while writing a local program and this
provides for him an economy.

Unfortunately, the compiler for a functional language often has to unravel this economy so as
to make all the local functions have global scope. This makes the program much easier to compile
and obviates the necessity of having “activation records” on the stack. This makes calling functions
– which in a functional language happen frequently – much more efficient. The process of moving
all functions into global scope is called λ-lifting.

Here is an example of a program with local definitions using “let”:

fun main x y = let

fun add p = add_to_x p

fun add_to_x q = (add_to_y q) + x

fun add_to_y q = q + y

in add y + x end

The same function using “where” clauses is as follows:

fun main x y = add y + x where

fun add p = add_to_x p

fun add_to_x q = (add_to_y q) + x

fun add_to_y q = q + y

After one has performed λ-lifting the program should look like:

fun main x y = add (x+y) x y

fun add p x y = add_to_x p x y

fun add_to_x q x y = (add_to_y q x y) +x

fun add_to_y q y = q+y

so that all functions are defined at the top-level. Notice how one has to add arguments to the
functions in order that the “local” variable are still understood by the program. In this simple
example it was quite straight forward to determine which arguments had to be added ... but it
quickly becomes more complicated as one has recursive functions and nested “let” clauses.
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2 α-renaming

The first problem to be surmounted in the process of λ-lifting is that there may be name clashes
which will cause considerable problems as one moves functions into global scope. These name
clashes can arise both from local variables and local function name clashes. Your very first task
is therefore to ensure that all variable and function names are unique in the program: this is an
α-conversion process.

Here is an example program in which there are multiple name clashes:

fun main x y z= let

fun f y = x + g y ;

fun g z = let

fun f x = x * z

in f x end

in g z + f x end

When one removes the name clashes one gets:

fun main x1 x2 x3 = let

fun f1 x4 = x1 + f2 x4 ;

fun f2 x5 = let

fun f3 x6 = x6 * x5

in f3 x1 end

in f2 x3 + f1 x1 end

At this stage it is possible that a variable is free in the whole program (which should generate an
error) or a function has the wrong number of arguments (which also should generate an error).

3 The call graph

Given a program an important structure is the “call graph”: this tells you which functions call
which other functions. Our first program above has a very simple call graph:

main // add // add to x // add to y

and it is because the call graph is simple that the λ-lifting problem is simple. Clearly if main

calls add then main must have as argument all the variable which are used by add. This simple
observation is the basis of how one works out how many variables it is necessary to add in order to
have the function make sense at the top-level.

Here is a more complicated program (with no variable clashes):

fun main x y z n =

let

fun f1 v = x + f2 v

fun f2 j = let

fun g2 b = b + f3 j

in g2 y + f3 x end
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fun f3 k = let

fun g3 c = c * f1 k

in g3 z end

in f1 n end

and here is its call graph:
main

��
f1

��
f2

�� ""E
EE

EE
EE

EE

g2 // f3

��
g3

mm

The basic idea of λ-lifting is that a function should have all the arguments of any function which
it calls so that it can be moved into the top scope. In particular, one should make any variable
that a function itself uses from an outer scope into one of its arguments. Thus, f1 should have x

as an argument as it uses x, but also, less obviously, f1 also uses z ...

4 Performing λ lifting

After having removed all the variable clashes, by performing an α-conversion, one calculates the
call graph. To each function in the call graph one associates two sets:

Vargs the arguments of the function

Vfree the free variable in the function body

Thus in this last example one has:

function : (Vargs, Vfree)

main : ({x, y, z, n}, {n})
f1 : ({v}, {x, v})
f2 : ({j}, {y, x})
g2 : ({b}, {b, j})
f3 : ({k}, {z})
g3 : ({c}, {c, k})

The next step is to, for each link in the call graph, f −→ g (i.e. whenever f calls g to ensure
that the free variable of f include the variable which g uses but are not arguments. This can be
expressed as an equation in which one is updating the free variables of f :

V ′
free(f) = Vfree(f) ∪ (Vfree(g)\Vargs(g))
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One repeatedly updates the free variable sets associated to the links until no more variables are
being added to the sets: this is called the fixed point. Here it is advantageous to start with the
functions which are at the “bottom” of the call graph (in so far as cycles make this possible) so
that their variable needs are passed up in one sweep.

In this example the first few updates are as follows:

function initial f3 −→ g3 g2 −→ f3 f2 −→ g2 f1 −→ f2

main {x,y,z,n},{n}
f1 {v},{x,v}) {v},{x,v,y,z}
f2 {j},{y,x} {j},{y,x,j,z}
g2 {b},{b,j} {b},{b,j,z}
f3 {k },{ z } {k },{z,k}
g3 {c},{c,k})

Clearly the recursive call g3 −→ f1 will have the effect of causing the eventual fixed point to be:

function : (Vargs, Vfree)

main : ({x, y, z, n}, {n, x, y, z})
f1 : ({v}, {v, x, y, z})
f2 : ({j}, {j, x, y, z})
g2 : ({b}, {b, j, x, y, z})
f3 : ({k}, {k, x, y, z})
g3 : ({c}, {c, k, x, y, z})

The final step is to move all the functions to the top level and to call each function with all the
variables in Vfree. Thus, here is the result:

fun main x y z n = f1 n x y z

fun f1 v x y z = x + (f2 v x y z)

fun f2 j x y z = (g2 y j x y z) + (f3 x x y z)

fun g2 b j x y z = b + (f3 j x y z)

fun f3 k x y z = g3 z k x y z

fun g3 c k x y z = c * (f1 k x y z)

5 Data types for lifting

Your second assignment is to write a λ-lifting program for a programming language with arithmetic
expressions, conditionals. function calls, and let expressions. You should work on the abstract
syntax tree of the language to produce a modified abstract syntax tree with all the embedded
functions lifted to the top-level. Here is the abstract syntax tree (you should use this!):

module AST where

-----------------------------------------------------------------------------
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-----------------------------------------------------------------------------

-- The data type for programs to lambda lift:

-----------------------------------------------------------------------------

-- Programs are lists of function declarations (the first in the list is

-- the main program.

-----------------------------------------------------------------------------

data Prog a b = Prog [Fun a b]

-----------------------------------------------------------------------------

-- Function declarations: first argument is function name (usually a string),

-- next is the arguments of the function (usually a list of strings)

-- finally there is the body of the function.

-----------------------------------------------------------------------------

data Fun a b = Fun (a,[b],Exp a b)

-----------------------------------------------------------------------------

-- There are two types of expressions: Boolean expressions and

-- arithmetic expressions.

-----------------------------------------------------------------------------

-- Boolean expressions allow <,>,== comparisons of arithmetic expressions

-- and logical operations &&,||,not.

-----------------------------------------------------------------------------

data BExp a b = Lt (Exp a b) (Exp a b)

| Gt (Exp a b) (Exp a b)

| Eq (Exp a b) (Exp a b)

| AND (BExp a b) (BExp a b)

| OR (BExp a b) (BExp a b)

| NOT (BExp a b)

-----------------------------------------------------------------------------

-- Arithmetic expressions allow +,*,/,- (binary and unary), constants,

-- variables, conditionals, function applications and let expressions.

-----------------------------------------------------------------------------

data Exp a b = ADD (Exp a b) (Exp a b)

| SUB (Exp a b) (Exp a b)

| MUL (Exp a b) (Exp a b)

| DIV (Exp a b) (Exp a b)

| NEG (Exp a b)

| CONST Int

| VAR b

| COND (BExp a b) (Exp a b)(Exp a b)
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| APP a [(Exp a b)]

| LET [Fun a b] (Exp a b)

In the labs you will be provided with a parser (or indeed you can write your own) for these
programs so that you can test your code easily.

Here is a basic pretty printer for the programs which attempts to lay out the program in a
reasonable fashion. It will work for either integer or string variable and function names:

-----------------------------------------------------------------------------

-- For pretty printing programs

-----------------------------------------------------------------------------

-- Avoiding the behaviour of show on strings

-- (idea from stack overflow!) add instances as needed. Can pretty print programs

-- with Stings and Int

-----------------------------------------------------------------------------

class Printer a where

printer:: a -> String

instance Printer a => Printer [a] where

printer [] = []

printer (a:as) = (printer a)++(printer as)

instance Printer Int where

printer n = "v"++show (n::Int)

instance Printer Char where

printer c = [c]

-- to print n spaces

spaces 0 = ""

spaces n = " "++(spaces (n-1))

-- pretty printing a program with basic indentation

show_prog:: (Printer a, Printer b) => (Prog a b) -> String

show_prog (Prog funs) = (concat (map (\f -> (show_fun 0 f)++"\n") funs))

show_fun:: (Printer a, Printer b) => Int -> (Fun a b) -> String

show_fun n (Fun (fname,a1:args,body)) = (spaces n) ++ "fun "++(printer fname)
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++ "("++(printer a1)++(concat(map (\a ->","++(printer a)) args))

++") = "++ (show_exp’ n body)

show_fun n (Fun (fname,[],body)) = (spaces n) ++ (printer fname) ++ "() = "

++ (show_exp’ n body)

show_exp:: (Printer a, Printer b) => Int -> (Exp a b) -> String

show_exp n exp = (spaces n)++(show_exp’ n exp)

show_exp’:: (Printer a, Printer b) => Int -> (Exp a b) -> String

show_exp’ n (ADD e1 e2) = (show_exp’ n e1)++"+"++(show_exp’ n e2)

show_exp’ n (MUL e1 e2) = (show_exp’ n e1)++"*"++(show_exp’ n e2)

show_exp’ n (DIV e1 e2) = (show_exp’ n e1)++"/"++(show_exp’ n e2)

show_exp’ n (SUB e1 e2) = (show_exp’ n e1)++"-"++(show_exp’ n e2)

show_exp’ n (NEG e) = "-"++(show_exp’ n e)

show_exp’ n (CONST m) = show m

show_exp’ n (VAR b) = printer b

show_exp’ n (COND b e1 e2) = "(if "++(show_bexp n b)++"\\n"

++(spaces (n+3))++"then "++(show_exp’ (n+3) e1)++"\n"

++(spaces (n+3))++"else "++(show_exp’ (n+3) e1)++")"

show_exp’ n (APP f (e:es)) = (printer f)++"("++(show_exp’ n e)

++(concat(map (\x-> ","++(show_exp’ n x)) es))++")"

show_exp’ n (LET [] e) = (show_exp’ n e)

show_exp’ n (LET (f:fs) e) = "let\n"++(show_fun (n+3) f)

++(concat (map (\f -> "\n"++(show_fun (n+3) f)) fs))

++"\n"++(spaces n)++"in "++(show_exp’ n e)

show_bexp:: (Printer a, Printer b) => Int -> (BExp a b) -> String

show_bexp n (Lt e1 e2) = (show_exp’ n e1)++"<"++(show_exp’ n e2)

show_bexp n (Gt e1 e2) = (show_exp’ n e1)++">"++(show_exp’ n e2)

show_bexp n (Eq e1 e2) = (show_exp’ n e1)++"=="++(show_exp’ n e2)

show_bexp n (AND e1 e2) = (show_bexp n e1)++"&&"++(show_bexp n e2)

show_bexp n (OR e1 e2) = (show_bexp n e1)++"||"++(show_bexp n e2)

show_bexp n (NOT e) = "not("++(show_bexp n e)++")"

---------------------------------------------------------------------------

-- Tests

---------------------------------------------------------------------------

test1 = putStr (show_prog ((Prog

[Fun ("main",[],(ADD (VAR "x") (VAR "y")))

,Fun ("f",["x"], (LET

[Fun ("g",["y"],MUL (VAR "y") (VAR "x"))

,Fun ("h",["x","y"], DIV (VAR "x") (VAR "y"))]

(ADD (APP "g" [VAR "x"])

(APP "h" [VAR "x",CONST 7])) ))]) ::(Prog String String)))
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test2 = putStr (show_prog ((Prog

[Fun ("main",[],(ADD (VAR 1) (VAR 2)))

,Fun ("f",[1], (LET

[Fun ("g",[2],MUL (VAR 2) (VAR 1))

,Fun ("h",[1,2], DIV (VAR 1) (VAR 2))]

(ADD (APP "g" [VAR 1])

(APP "h" [VAR 1,CONST 7])) ))]) ::(Prog String Int)))
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