
Foundations of Functional
Programming

Computer Science Tripos Part IB
Easter Term

Lawrence C Paulson
Computer Laboratory

University of Cambridge

lcp@cl.cam.ac.uk

Copyright c© 2000 by Lawrence C. Paulson

Contents

1 Introduction 1

2 Equality and Normalization 6

3 Encoding Data in theλ-Calculus 11

4 Writing Recursive Functions in theλ-calculus 16

5 Theλ-Calculus and Computation Theory 23

6 ISWIM: The λ-calculus as a Programming Language 29

7 Lazy Evaluation via Combinators 40

8 Compiling Methods Using Combinators 45

i

ii

1

1 Introduction

This course is concerned with theλ-calculus and its close relative, combinatory
logic. Theλ-calculus is important to functional programming and to computer
science generally:

1. Variable bindingand scopingin block-structured languages can be mod-
elled.

2. Several function calling mechanisms —call-by-name, call-by-value, and
call-by-need— can be modelled. The latter two are also known asstrict
evaluationandlazy evaluation.

3. Theλ-calculus is Turing universal, and is probably the most natural model
of computation.Church’s Thesisasserts that the ‘computable’ functions are
precisely those that can be represented in theλ-calculus.

4. All the usualdata structuresof functional programming, including infinite
lists, can be represented. Computation on infinite objects can be defined
formally in theλ-calculus.

5. Its notions ofconfluence(Church-Rosser property),termination, andnor-
mal formapply generally in rewriting theory.

6. Lisp, one of the first major programming languages, was inspired by the
λ-calculus. Many functional languages, such as ML, consist of little more
than theλ-calculus with additional syntax.

7. The two main implementation methods, theSECD machine(for strict eval-
uation) andcombinator reduction(for lazy evaluation) exploit properties of
theλ-calculus.

8. Theλ-calculus and its extensions can be used to develop better type sys-
tems, such aspolymorphism, and to investigate theoretical issues such as
program synthesis.

9. Denotational semantics, which is an important method for formally speci-
fying programming languages, employs theλ-calculus for its notation.

Hindley and Seldin [6] is a concise introduction to theλ-calculus and com-
binators. Gordon [5] is oriented towards computer science, overlapping closely
with this course. Barendregt [1] is the last word on theλ-calculus.

2 1 INTRODUCTION

Acknowledgements. Reuben Thomas pointed out numerous errors in a previ-
ous version of these notes.

1.1 Theλ-Calculus

Around 1924, Scḧonfinkel developed a simple theory of functions. In 1934,
Church introduced theλ-calculus and used it to develop a formal set theory, which
turned out to be inconsistent. More successfully, he used it to formalize the syntax
of Whitehead and Russell’s massivePrincipia Mathematica. In the 1940s, Haskell
B. Curry introducedcombinatory logic, a variable-free theory of functions.

More recently, Roger Hindley developed what is now known astype inference.
Robin Milner extended this to develop the polymorphic type system of ML, and
published a proof that a well-typed program cannot suffer a run-time type error.
Dana Scott developed models of theλ-calculus. With hisdomain theory, he and
Christopher Strachey introduced denotational semantics.

Peter Landin used theλ-calculus to analyze Algol 60, and introduced ISWIM
as a framework for future languages. His SECD machine, with extensions,
was used to implement ML and other strict functional languages. Christopher
Wadsworth developedgraph reductionas a method for performing lazy evalu-
ation of λ-expressions. David Turner applied graph reduction tocombinators,
which led to efficient implementations of lazy evaluation.

Definition 1 The termsof theλ-calculus, known asλ-terms, are constructed re-
cursively from a given set ofvariablesx, y, z, They may take one of the
following forms:

x variable
(λx.M) abstraction, whereM is a term
(M N) application, whereM andN are terms

We use capital letters likeL, M , N, . . . for terms. We writeM ≡ N to state
that M andN are identicalλ-terms. The equality betweenλ-terms,M = N, will
be discussed later.

1.2 Variable Binding and Substitution

In (λx.M), we callx thebound variableandM thebody. Every occurrence ofx
in M is boundby the abstraction. An occurrence of a variable isfree if it is not
bound by some enclosing abstraction. For example,x occurs bound andy occurs
free in(λz.(λx.(yx)).

1.2 Variable Binding and Substitution 3

Notations involving free and bound variables exist throughout mathematics.
Consider the integral

∫ b
a f (x)dx, wherex is bound, and the product5n

k=0 p(k),
wherek is bound. The quantifiers∀ and∃ also bind variables.

The abstraction(λx.M) is intended to represent the functionf such that
f (x) = M for all x. Applying f to N yields the result of substitutingN for
all free occurrences ofx in M . Two examples are

(λx.x) The identity function, which returns its argument un-
changed. It is usually calledI .

(λy.x) A constantfunction, which returnsx when applied to
any argument.

Let us make these concepts precise.

Definition 2 BV(M), the set of allbound variablesin M , is given by

BV(x) = ∅
BV(λx.M) = BV(M)

⋃
{x}

BV(M N) = BV(M)
⋃

BV(N)

Definition 3 FV(M), the set of allfree variablesin M , is given by

FV(x) = {x}
FV(λx.M) = FV(M)− {x}
FV(M N) = FV(M)

⋃
FV(N)

Definition 4 M [L/y], the result of substitutingL for all free occurrences ofy
in M , is given by

x[L/y] ≡
{

L if x ≡ y

x otherwise

(λx.M)[L/y] ≡
{
(λx.M) if x ≡ y

(λx.M [L/y]) otherwise

(M N)[L/y] ≡ (M [L/y] N[L/y])

The notations defined above are not themselves part of theλ-calculus. They
belong to the metalanguage: they are for talking about theλ-calculus.

4 1 INTRODUCTION

1.3 Avoiding Variable Capture in Substitution

Substitution must not disturb variable binding. Consider the term(λx.(λy.x)). It
should represent the function that, when applied to an argumentN, returns the
constant function(λy.N). Unfortunately, this does not work ifN ≡ y; we have
defined substitution such that(λy.x)[y/x] ≡ (λy.y). Replacingx by y in the
constant function transforms it into the identity function. The free occurrence
of x turns into a bound occurrence ofy — an example ofvariable capture. If this
were allowed to happen, theλ-calculus would be inconsistent. The substitution
M [N/x] is safe provided the bound variables ofM are disjoint from the free
variables ofN:

BV(M)
⋂

FV(N) = ∅.

We can always rename the bound variables ofM , if necessary, to make this
condition true. In the example above, we could change(λy.x) into (λz.x), then
obtain the correct substitution(λz.x)[y/x] ≡ (λz.y); the result is indeed a con-
stant function.

1.4 Conversions

The idea thatλ-abstractions represent functions is formally expressed through
conversion rules for manipulating them. There areα-conversions,β-conversions
andη-conversions.

Theα-conversion(λx.M)→α (λy.M [y/x]) renames the abstraction’s bound
variable fromx to y. It is valid providedy does not occur (free or bound) inM .
For example,(λx.(xz)) →α (λy.(yz)). We shall usually ignore the distinction
between terms that could be made identical by performingα-conversions.

The β-conversion((λx.M)N) →β M [N/x] substitutes the argument,N,
into the abstraction’s body,M . It is valid provided BV(M)

⋂
FV(N) =

∅. For example,(λx.(xx))(yz) →β ((yz)(yz)). Here is another example:
((λz.(zy))(λx.x))→β ((λx.x)y)→β y.

Theη-conversion(λx.(Mx))→η M collapses the trivial function(λx.(Mx))
down to M . It is valid providedx 6∈ FV(M). Thus, M does not depend
on x; the abstraction does nothing but applyM to its argument. For example,
(λx.((zy)x))→η (zy).

Observe that the functions(λx.(Mx)) andM always return the same answer,
(M N), when applied to any argumentN. Theη-conversion rule embodies a prin-
ciple ofextensionality: two functions are equal if they always return equal results
given equal arguments. In some situations, this principle (andη-conversions) are
dispensed with.

1.5 Reductions 5

1.5 Reductions

We say thatM → N, or M reduces toN, if M →β N or M →η N. (Becauseα-
conversions are not directional, and are not interesting, we generally ignore them.)
The reductionM → N may consist of applying a conversion to some subterm of
M in order to createN. More formally, we could introduce inference rules for→:

M → M ′

(λx.M)→ (λx.M ′)
M → M ′

(M N)→ (M ′N)
M → M ′

(L M)→ (L M ′)

If a term admits no reductions then it is innormal form. For example,λxy.y
andxyzare in normal form. Tonormalizea term means to apply reductions until
a normal form is reached. A termhas a normal formif it can be reduced to a term
in normal form. For example,(λx.x)y is not in normal form, but it has the normal
form y.

Many λ-terms cannot be reduced to normal form. For instance,
(λx.xx)(λx.xx) reduces to itself byβ-conversion. Although it is unaffected by
the reduction, it is certainly not in normal form. This term is usually calledÄ.

1.6 Curried Functions

The λ-calculus has only functions of one argument. A function with multiple
arguments is expressed using a function whose result is another function.

For example, suppose thatL is a term containing onlyx andy as free variables,
and we wish to formalize the functionf (x, y) = L. The abstraction(λy.L) con-
tainsx free; for eachx, it stands for a function overy. The abstraction(λx.(λy.L))
contains no free variables; when applied to the argumentsM andN, the result is
obtained by replacingx by M and y by N in L. Symbolically, we perform two
β-reductions (any necessaryα-conversions are omitted):

(((λx.(λy.L))M)N)→β ((λy.L[M/x])N)→β L[M/x][N/y]

This technique is known ascurrying after Haskell B. Curry, and a function
expressed using nestedλs is known as acurried function. In fact, it was introduced
by Scḧonfinkel. Clearly, it works for any number of arguments.

Curried functions are popular in functional programming because they can be
applied to their first few arguments, returning functions that are useful in them-
selves.

6 2 EQUALITY AND NORMALIZATION

1.7 Bracketing Conventions

Abbreviating nested abstractions and applications will make curried functions eas-
ier to write. We shall abbreviate

(λx1.(λx2. . . . (λxn.M) . . .)) as (λx1x2 . . . xn.M)

(. . . (M1M2) . . .Mn) as (M1M2 . . .Mn)

Finally, we drop outermost parentheses and those enclosing the body of an ab-
straction. For example,

(λx.(x(λy.(yx)))) can be written asλx.x(λy.yx).

It is vital understand how bracketing works. We have the reduction

λz.(λx.M)N →β λz.M [N/x]

but the similar termλz.z(λx.M)N admits no reductions except those occurring
within M and N, becauseλx.M is not being applied to anything. Here is what
the application of a curried function (see above) looks like with most brackets
omitted:

(λxy.L)M N →β (λy.L[M/x])N →β L[M/x][N/y]

Note thatλx.M N abbreviatesλx.(M N) rather than(λx.M)N. Also, xyz
abbreviates(xy)z rather thanx(yz).

Exercise 1 What happens in the reduction of(λxy.L)M N if y is free inM?

Exercise 2 Give two different reduction sequences that start at(λx.(λy.xy)z)y
and end with a normal form. (These normal forms must be identical: see below.)

2 Equality and Normalization

Theλ-calculus is an equational theory: it consists of rules for proving that two
λ-terms are equal. A key property is that two terms are equal just if they both can
be reduced to the same term.

2.1 Multi-Step Reduction 7

2.1 Multi-Step Reduction

Strictly speaking,M → N means thatM reduces toN by exactly one reduction
step, possibly applied to a subterm ofM . Frequently, we are interested in whether
M can be reduced toN by any number of steps. WriteM ³ N if

M → M1→ M2→ · · · → Mk ≡ N (k ≥ 0)

For example,((λz.(zy))(λx.x))³ y. Note that³ is the relation→∗, the reflex-
ive/transitive closure of→.

2.2 Equality Betweenλ-Terms

Informally, M = M ′ if M can be transformed intoM ′ by performing zero or
more reductions and expansions. (Anexpansionis the inverse of a reduction, for
instancey← (λx.x)y.) A typical picture is the following:

M M1 M2· · ·Mk−1 Mk = M ′
↘↘ ↙↙ ↘↘ ↙↙ ↘↘ ↙↙

N1 N2 · · · Nk

For example,a((λy.by)c) = (λx.ax)(bc) because both sides reduce toa(bc).
Note that= is the relation(→ ∪ →−1)∗, the least equivalence relation contain-
ing→.

Intuitively, M = M ′ means thatM andM ′ have the same value. Equality, as
defined here, satisfies all the standard properties. First of all, it is anequivalence
relation— it satisfies the reflexive, symmetric and associative laws:

M = M
M = N

N = M

L = M M = N

L = N

Furthermore, it satisfies congruence laws for each of the ways of constructing
λ-terms:

M = M ′

(λx.M) = (λx.M ′)
M = M ′

(M N) = (M ′N)
M = M ′

(L M) = (L M ′)

The six properties shown above are easily checked by constructing the appropri-
ate diagrams for each equality. They imply that two terms will be equal if we
construct them in the same way starting from equal terms. Put another way, if
M = M ′ then replacingM by M ′ in a term yields an equal term.

Definition 5 Equality ofλ-termsis the least relation satisfying the six rules given
above.

8 2 EQUALITY AND NORMALIZATION

2.3 The Church-Rosser Theorem

This fundamental theorem states that reduction in theλ-calculus isconfluent: no
two sequences of reductions, starting from oneλ-term, can reach distinct normal
forms. The normal form of a term is independent of the order in which reductions
are performed.

Theorem 6 (Church-Rosser) If M = N then there existsL such thatM ³ L
and N ³ L.
Proof See Barendregt [1] or Hindley and Seldin [6].

For instance,(λx.ax)((λy.by)c) has two different reduction sequences, both
leading to the same normal form. The affected subterm is underlined at each step:

(λx.ax)((λy.by)c)→ a((λy.by)c)→ a(bc)

(λx.ax)((λy.by)c)→ (λx.ax)(bc)→ a(bc)

The theorem has several important consequences.

• If M = N andN is in normal form, thenM ³ N; if a term can transform
into normal form using reductions and expansions, then the normal form
can be reached by reductions alone.

• If M = N where both terms are in normal form, thenM ≡ N (up to
renaming of bound variables). Conversely, ifM andN are in normal form
and are distinct, thenM 6= N; there is no way of transformingM into N.
For example,λxy.x 6= λxy.y.

An equational theory isinconsistentif all equations are provable. Thanks to
the Church-Rosser Theorem, we know that theλ-calculus is consistent. There is
no way we could reach two different normal forms by following different reduc-
tion strategies. Without this property, theλ-calculus would be of little relevance
to computation.

2.4 The Diamond Property

The key step in proving the Church-Rosser Theorem is demonstrating the diamond
property — if M ³ M1 and M ³ M2 then there exists a termL such that
M1³ L andM2³ L. Here is the diagram:

M
↙↙ ↘↘

M1 M2

↘↘ ↙↙
L

2.5 Proving the Diamond Property 9

The diamond property is vital: it says that no matter how far we go reducing a
term by two different strategies it will always be possible to come together again
by further reductions. As for the Church-Rosser Theorem, look again at the dia-
gram forM = M ′ and note that we can tile the region underneath with diamonds,
eventually reaching a common term:

M M1 M2· · ·Mk−1 Mk = M ′
↘↘ ↙↙ ↘↘ ↙↙ ↘↘ ↙↙

N1 N2 · · · Nk

↘↘ ↙↙ ↘↘ ↙↙
L1 L2 · · · Lk−1

↘↘ ↙↙ .. .

K1
.

E

2.5 Proving the Diamond Property

Note that→ (one-step reduction) doesnot satisfy the diamond property

M
↙ ↘

M1 M2

↘ ↙
L

Consider the term(λx.xx)(I a), where I ≡ λx.x. In one step, it reduces to
(λx.xx)a or to(I a)(I a). These both reduce eventually toaa, but there is no way
to complete the diamond with a single-step reduction:

(λx.xx)(I a)
↙ ↘

(I a)(I a) (λx.xx)a
. . . ↙

aa

The problem, of course, is that(λx.xx) replicates its argument, which must
then be reduced twice. Note also that the difficult cases involve one possible

10 2 EQUALITY AND NORMALIZATION

reduction contained inside another. Reductions that do not overlap, such asM →
M ′ andN → N ′ in the termx M N, commute trivially to producex M′N ′.

The diamond property for³ can be proved with the help of a ‘strip lemma’,
which considers the case whereM → M1 (in one step) and alsoM ³ M2

(possiblymanysteps):

M
↙ ↘↘

M1 M2

↘↘ ↙↙
L

The ‘strips’ can then be pasted together to complete a diamond. The details
involve an extremely tedious case analysis of the possible reductions from various
forms of terms.

2.6 Possibility of Nontermination

Although different reduction sequences cannot yield different normal forms, they
can yield completely different outcomes: one could terminate while the other
runs forever! Typically, ifM has a normal form and admits an infinite reduction
sequence, it contains a subtermL having no normal form, andL can be erased by
a reduction.

For example, recall thatÄ reduces to itself, whereÄ ≡ (λx.xx)(λx.xx). The
reduction

(λy.a)Ä→ a

reaches normal form, erasing theÄ. This corresponds to acall-by-nametreatment
of functions: the argument is not reduced but substituted ‘as is’ into the body of
the abstraction.

Attempting to normalize the argument generates a nonterminating reduction
sequence:

(λy.a)Ä→ (λy.a)Ä→ · · ·
Evaluating the argument before substituting it into the body corresponds to a

call-by-valuetreatment of function application. In this example, the call-by-value
strategy never reaches the normal form.

2.7 Normal Order Reduction

Thenormal orderreduction strategy is, at each step, to perform the leftmost out-
ermostβ-reduction. (Theη-reductions can be left until last.)Leftmostmeans, for

2.8 Lazy Evaluation 11

instance, to reduceL beforeN in L N. Outermostmeans, for instance, to reduce
(λx.M)N before reducingM or N.

Normal order reduction corresponds to call-by-name evaluation. By the Stan-
dardization Theorem, it always reaches a normal form if one exists. The proof
is omitted. However, note that reducingL first in L N may transformL into an
abstraction, sayλx.M . Reducing(λx.M)N may eraseN.

2.8 Lazy Evaluation

From a theoretical standpoint, normal order reduction is the optimal, since it al-
ways yields a normal form if one exists. For practical computation, it is hopelessly
inefficient. Assume that we have a coding of the natural numbers (for which see
the next section!) and define a squaring functionsqr ≡ λn.mult nn. Then

sqr (sqr N)→ mult (sqr N)(sqr N)→ mult (mult N N)(mult N N)

and we will have to evaluate four copies of the termN! Call-by-value would
have evaluatedN (only once) beforehand, but, as we have seen, it can result in
nontermination.

Note: multi-letter identifiers (likesqr) are set in bold type, or underlined, in
order to prevent confusion with a series of separate variables (likesqr).

Lazy evaluation, orcall-by-need, never evaluates an argument more than once.
An argument is not evaluated unless the value is actually required to produce the
answer; even then, the argument is only evaluated to the extent needed (thereby
allowing infinite lists). Lazy evaluation can be implemented by representing the
term by a graph rather than a tree. Each shared graph node represents a subterm
whose value is needed more than once. Whenever that subterm is reduced, the
result overwrites the node, and the other references to it will immediately have
access to the replacement.

Graph reduction is inefficient for theλ-calculus because subterms typically
contain free variables. During eachβ-reduction, the abstraction’s body must be
copied. Graph reduction works much better for combinators, where there are no
variables. We shall return to this point later.

3 Encoding Data in theλ-Calculus

Theλ-calculus is expressive enough to encode boolean values, ordered pairs, nat-
ural numbers and lists — all the data structures we may desire in a functional
program. These encodings allow us to model virtually the whole of functional
programming within the simple confines of theλ-calculus.

12 3 ENCODING DATA IN THEλ-CALCULUS

The encodings may not seem to be at all natural, and they certainly are not
computationally efficient. In this, they resemble Turing machine encodings and
programs. Unlike Turing machine programs, the encodings are themselves of
mathematical interest, and return again and again in theoretical studies. Many of
them involve the idea that the data can carry its control structure with it.

3.1 The Booleans

An encoding of the booleans must define the termstrue , false and if , satisfying
(for all M andN)

if true M N = M

if false M N = N.

The following encoding is usually adopted:

true ≡ λxy.x

false ≡ λxy.y

if ≡ λpxy.pxy

We havetrue 6= false by the Church-Rosser Theorem, sincetrue and false
are distinct normal forms. As it happens,if is not even necessary. The truth values
are their own conditional operators:

true M N ≡ (λxy.x)M N ³ M

falseM N ≡ (λxy.y)M N ³ N

These reductions hold for all termsM and N, whether or not they possess
normal forms. Note thatif L M N ³ L M N; it is essentially an identity function
on L. The equations given above even hold as reductions:

if true M N ³ M

if false M N ³ N.

All the usual operations on truth values can be defined as conditional operator.
Here are negation, conjunction and disjunction:

and ≡ λpq. if p q false

or ≡ λpq. if p true q

not ≡ λp. if p false true

3.2 Ordered Pairs 13

3.2 Ordered Pairs

Assume thattrue and false are defined as above. The functionpair , which
constructs pairs, and the projectionsfst and snd, which select the components
of a pair, are encoded as follows:

pair ≡ λxy f. f xy

fst ≡ λp.p true

snd ≡ λp.p false

Clearly, pair M N ³ λ f. f M N, packagingM and N together. A pair may
be applied to any 2-place function of the formλxy.L, returningL[M/x][N/y];
thus, each pair is its own unpackaging operation. The projections work by this
unpackaging operation (which, perhaps, is more convenient in programming than
are the projections themselves!):

fst (pair M N) ³ fst (λ f. f M N)

→ (λ f. f M N) true

→ true M N

³ M

Similarly, snd(pair M N) ³ N. Observe that the components ofpair M N
are completely independent; either may be extracted even if the other has no nor-
mal form.

Orderedn-tuples could be defined analogously, but nested pairs are a simpler
encoding.

3.3 The Natural Numbers

The following encoding of the natural numbers is the original one developed by
Church. Alternative encodings are sometimes preferred today, but Church’s nu-
merals continue our theme of putting the control structure in with the data struc-
ture. Such encodings are elegant; moreover, they work in the second-orderλ-
calculus (presented in the Types course by Andrew Pitts).

Define

0 ≡ λ f x.x

1 ≡ λ f x. f x

2 ≡ λ f x. f (f x)
...
...
...

n ≡ λ f x. f (· · · (f︸ ︷︷ ︸
n times

x) · · ·)

14 3 ENCODING DATA IN THEλ-CALCULUS

Thus, for alln ≥ 0, the Church numeraln is the function that mapsf to f n.
Each numeral is an iteration operator.

3.4 Arithmetic on Church Numerals

Using this encoding, addition, multiplication and exponentiation can be defined
immediately:

add ≡ λmn f x.m f(n f x)

mult ≡ λmn f x.m(n f)x

expt ≡ λmn f x.nm f x

Addition is not hard to check:

add m n ³ λ f x.m f (n f x)

³ λ f x. f m(f nx)

≡ λ f x. f m+nx

≡ m+ n

Multiplication is slightly more difficult:

mult m n ³ λ f x.m (n f)x

³ λ f x.(n f)mx

³ λ f x.(f n)mx

≡ λ f x. f m×nx

≡ m× n

These derivations hold for all Church numeralsm and n , but not for all terms
M andN.

Exercise 3 Show thatexpt performs exponentiation on Church numerals.

3.5 The Basic Operations for Church Numerals

The operations defined so far are not sufficient to define all computable functions
on the natural numbers; what about subtraction? Let us begin with some simpler
definitions: the successor function and the zero test.

suc ≡ λn f x. f (n f x)

iszero ≡ λn.n(λx. false) true

3.6 Lists 15

The following reductions hold for every Church numeraln :

suc n ³ n+ 1

iszero 0 ³ true

iszero(n+ 1) ³ false

For example,

iszero(n+ 1) ³ n+ 1(λx. false) true

³ (λx. false)n+1 true

≡ (λx. false)((λx. false)n true)

→ false

The predecessor function and subtraction are encoded as follows:

prefn ≡ λ f p.pair (f (fst p)) (fst p)

pre ≡ λn f x. snd(n(prefn f)(pair xx))

sub ≡ λmn.npre m

Defining the predecessor function is difficult when each numeral is an iterator.
We must reduce ann + 1 iterator to ann iterator. Given f andx, we must find
someg andy such thatgn+1y computesf nx. A suitableg is a function on pairs
that maps(x, z) to (f (x), x); then

gn+1(x, x) = (f n+1(x), f n(x)).

The pair behaves like a one-element delay line.
Above, prefn f constructs the functiong. Verifying the following reductions

should be routine:

pre (n+ 1) ³ n

pre (0) ³ 0

For subtraction,sub m n computes thenth predecessor ofm .

Exercise 4 Show thatλmn.msucn performs addition on Church numerals.

3.6 Lists

Church numerals could be generalized to represent lists. The list [x1, x2, . . . , xn]
would essentially be represented by the function that takesf and y to

16 4 WRITING RECURSIVE FUNCTIONS IN THEλ-CALCULUS

f x1(f x2 . . . (f xny) . . .). Such lists would carry their own control structure with
them.

As an alternative, let us represent lists rather as Lisp and ML do — via pairing.
This encoding is easier to understand because it is closer to real implementations.
The list [x1, x2, . . . , xn] will be represented byx1 :: x2 :: . . . :: nil . To keep
the operations as simple as possible, we shall employ two levels of pairing. Each
‘cons cell’ x :: y will be represented by(false, (x, y)), where thefalse is a
distinguishing tag field. By rights,nil should be represented by a pair whose
first component istrue , such as(true , true), but a simpler definition happens
to work. In fact, we could dispense with the tag field altogether.

Here is our encoding of lists:

nil ≡ λz.z

cons ≡ λxy.pair false(pair xy)

null ≡ fst

hd ≡ λz. fst (sndz)

tl ≡ λz. snd(sndz)

The following properties are easy to verify; they hold for all termsM andN:

null nil ³ true

null (consM N) ³ false

hd (consM N) ³ M

tl (consM N) ³ N

Note that null nil ³ true happens really by chance, while the other laws
hold by our operations on pairs.

Recall that laws likehd (consM N) ³ M and snd(pair M N) ³ N hold
for all M and N, even for terms that have no normal forms! Thus,pair and
cons are ‘lazy’ constructors — they do not ‘evaluate their arguments’. Once we
introduction recursive definitions, we shall be able to compute with infinite lists.

Exercise 5 Modify the encoding of lists to obtain an encoding of the natural
numbers.

4 Writing Recursive Functions in theλ-calculus

Recursion is obviously essential in functional programming. With Church nu-
merals, it is possible to define ‘nearly all’ computable functions on the natural

17

numbers.1 Church numerals have an inbuilt source of repetition. From this, we
can derive primitive recursion, which when applied using higher-order functions
defines a much larger class than the primitive recursive functions studied in Com-
putation Theory. Ackermann’s function is not primitive recursive in the usual
sense, but we can encode it using Church numerals. If we put

ack ≡ λm.m(λ f n.n f (f 1)) suc

then we can derive the recursion equations of Ackermann’s function, namely

ack 0 n = n+ 1

ack(m+ 1)0 = ack m 1

ack(m+ 1)(n+ 1) = ack m (ack(m+ 1)n)

Let us check the first equation:

ack 0 n ³ 0(λ f n.n f (f 1)) suc n

³ suc n

³ n+ 1

For the other two equations, note that

ack(m+ 1)n ³ (m+ 1)(λ f n.n f (f 1)) suc n

³ (λ f n.n f (f 1))(m (λ f n.n f (f 1)) suc)n

= (λ f n.n f (f 1))(ack m)n

³ n (ack m)(ack m 1)

We now check

ack(m+ 1)0 ³ 0(ack m)(ack m 1)

³ ack m 1

and

ack(m+ 1)(n+ 1) ³ n+ 1(ack m)(ack m 1)

³ ack m (n (ack m)(ack m 1))

= ack m (ack(m+ 1)n)

The key to this computation is the iteration of the functionack m .

1The precise meaning of ‘nearly all’ involves heavy proof theory, but all ‘reasonable’ functions
are included.

18 4 WRITING RECURSIVE FUNCTIONS IN THEλ-CALCULUS

4.1 Recursive Functions using Fixed Points

Our coding of Ackermann’s function works, but it hardly could be called per-
spicuous. Even worse would be the treatment of a function whose recursive calls
involved something other than subtracting one from an argument — performing
division by repeated subtraction, for example.

General recursion can be derived in theλ-calculus. Thus, we can model all
recursive function definitions, even those that fail to terminate for some (or all) ar-
guments. Our encoding of recursion is completely uniform and is independent of
the details of the recursive definition and the representation of the data structures
(unlike the above version of Ackermann’s function, which depends upon Church
numerals).

The secret is to use afixed point combinator— a term Y such thatY F =
F(Y F) for all terms F . Let us explain the terminology. Afixed pointof the
function F is any X such thatF X = X; here,X ≡ Y F . A combinatoris any
λ-term containing no free variables (also called a closed term). To code recursion,
F represents the body of the recursive definition; the lawY F = F(Y F) permits
F to be unfolded as many times as necessary.

4.2 Examples Using Y

We shall encode the factorial function, the append function on lists, and the infinite
list [0,0,0, . . .] in theλ-calculus, realising the recursion equations

fact N = if (iszeroN)1(mult N(fact (pre N)))

appendZW = if (null Z)W(cons(hd Z)(append(tl Z)W))

zeroes = cons0 zeroes

To realize these, we simply put

fact ≡ Y (λgn. if (iszeron)1(mult n(g(pre n))))

append ≡ Y (λgzw. if (null z)w(cons(hd z)(g(tl z)w)))

zeroes ≡ Y (λg. cons0g)

In each definition, the recursive call is replaced by the variableg in
Y (λg. . . .). Let us verify the recursion equation forzeroes; the others are simi-
lar:

zeroes ≡ Y (λg. cons0g)

= (λg. cons0g)(Y (λg. cons0g))

= (λg. cons0g) zeroes

→ cons0 zeroes

4.3 Usage of Y 19

4.3 Usage of Y

In general, the recursion equationM = P M, whereP is anyλ-term, is satisfied
by defining M ≡ Y P. Let us consider the special case whereM is to be an
n-argument function. The equationMx1 . . . xn = P M is satisfied by defining

M ≡ Y (λgx1 . . . xn.Pg)

for then

Mx1 . . . xn ≡ Y (λgx1 . . . xn.Pg)x1 . . . xn

= (λgx1 . . . xn.Pg)Mx1 . . . xn

³ P M

Let us realize the mutual recursive definition ofM andN, with corresponding
bodiesP andQ:

M = P M N

N = QM N

The idea is to take the fixed point of a functionF on pairs, such thatF(X,Y) =
(P XY, QXY). Using our encoding of pairs, define

L ≡ Y (λz.pair (P(fst z)(sndz))
(Q(fst z)(sndz)))

M ≡ fst L

N ≡ sndL

By the fixed point property,

L = pair (P(fst L)(sndL))
(Q(fst L)(sndL))

and by applying projections, we obtain the desired

M = P(fst L)(sndL) = P M N

N = Q(fst L)(sndL) = QM N.

4.4 Defining Fixed Point Combinators

The combinatorY was discovered by Haskell B. Curry. It is defined by

Y ≡ λ f.(λx. f (xx))(λx. f (xx))

20 4 WRITING RECURSIVE FUNCTIONS IN THEλ-CALCULUS

Let us calculate to show the fixed point property:

Y F → (λx.F(xx))(λx.F(xx))

→ F((λx.F(xx))(λx.F(xx)))

= F(Y F)

This consists of twoβ-reductions followed by aβ-expansion. No reduction
Y F ³ F(Y F) is possible! There are other fixed point combinators, such as
Alan Turing’s2:

A ≡ λxy.y(xxy)

2 ≡ AA

We indeed have the reduction2F ³ F(2F):

2F ≡ AAF³ F(AAF) ≡ F(2F)

Here is a fixed point combinator discovered by Klop:

£ ≡ λabcdef ghi jklmnopqstuvwxyzr.r (thisisa f i xedpointcombinator)

$ ≡ ££££££££££££££££££££££££££

The proof of $F ³ F($F) is left as an exercise. Hint: look at the occurrences
of r !

Any fixed point combinator can be used to make recursive definitions under
call-by-name reduction. Later, we shall modifyY to get a fixed point combinator
that works with a call-by-value interpreter for theλ-calculus. In practical com-
pilers, recursion should be implemented directly because fixed point combinators
are inefficient.

4.5 Head Normal Form

If M = x M then M has no normal form. For ifM ³ N whereN is in nor-
mal form, thenN = x N. Sincex N is also in normal form, the Church-Rosser
Theorem gives usN ≡ x N. But clearlyN cannot contain itself as a subterm!

By similar reasoning, ifM = P M thenM usually has no normal form, unless
P is something like a constant function or identity function. So anything defined
with the help of a fixed point combinator, such asfact , is unlikely to have a
normal form.

Although fact has no normal form, we can still compute with it;fact 5 does
have a normal form, namely 120. We can use infinite objects (including func-
tions as above, and also lazy lists) by computing with them for a finite time and
requesting a finite part of the result. To formalize this practice, let us define the
notion ofhead normal form(hnf).

4.5 Head Normal Form 21

Definition 7 A term is inhead normal form(hnf) if and only if it looks like this:

λx1 . . . xm.yM1 . . .Mk (m, k ≥ 0)

Examples of terms in hnf include

x λx.yÄ λx y.x λz.z((λx.a)c)

But λy.(λx.a)y is not in hnf because it admits the so-calledhead reduction

λy.(λx.a)y→ λy.a.

Let us note some obvious facts. A term in normal form is also in head normal
form. Furthermore, if

λx1 . . . xm.yM1 . . .Mk ³ N

thenN musthave the form

λx1 . . . xm.yN1 . . . Nk

whereM1³ N1, . . . , Mk ³ Nk. Thus, a head normal form fixes the outer struc-
ture of any further reductions and the final normal form (if any!). And since the
argumentsM1, . . . , Mk cannot interfere with one another, they can be evaluated
independently.

By reducing a termM to hnf we obtain a finite amount of information about
the value ofM . By further computing the hnfs ofM1, . . . , Mk we obtain the next
layer of this value. We can continue evaluating to any depth and can stop at any
time.

For example, defineze≡ 2(pair 0). This is analogous tozeroes, but uses
pairs:ze= (0, (0, (0, . . .))). We have

ze ³ pair 0ze

≡ (λxy f. f xy)0ze

³ λ f. f 0ze

³ λ f. f 0(λ f. f 0ze)

³ · · ·

With λ f. f 0ze we reached a head normal form, which we continued to reduce.
We havefst (ze) ³ 0 and fst (snd(ze)) ³ 0, since the same reductions work
if ze is a function’s argument. These are examples of useful finite computations
involving an infinite value.

22 4 WRITING RECURSIVE FUNCTIONS IN THEλ-CALCULUS

Some terms do not even have a head normal form. RecallÄ, defined byÄ =
(λx.xx)(λx.xx). A term is reduced to hnf by repeatedly performing leftmost
reductions. WithÄ we can only doÄ→ Ä, which makes no progress towards an
hnf. Another term that lacks an hnf isλy.Ä; we can only reduceλy.Ä→ λy.Ä.

It can be shown that ifM N has an hnf then so doesM . Therefore, ifM has
no hnf then neither does any term of the formM N1N2 . . . Nk. A term with no hnf
behaves like atotally undefined function: no matter what you supply as arguments,
evaluation never returns any information. It is not hard to see that ifM has no hnf
then neither doesλx.M or M [N/x], so M really behaves like a black hole. The
only way to get rid ofM is by a reduction such as(λx.a)M → a. This motivates
the following definition.

Definition 8 A term is definedif and only if it can be reduced to head normal
form; otherwise it isundefined.

The exercises below, some of which are difficult, explore this concept more
deeply.

Exercise 6 Are the following terms defined? (HereK ≡ λxy.x.)

Y Y not K Y I xÄ Y K Y (K x) n

Exercise 7 A term M is calledsolvableif and only if there exist variablesx1,
. . . , xm and termsN1, . . . , Nn such that

(λx1 . . . xm.M)N1 . . . Nn = I .

Investigate whether the terms given in the previous exercise are solvable.

Exercise 8 Show that ifM has an hnf thenM is solvable. Wadsworth proved
that M is solvable if and only ifM has an hnf, but the other direction of the
equivalence is much harder.

4.6 Aside: An Explanation of Y

For the purpose of expressing recursion, we may simply exploitY F = F(Y F)
without asking why it holds. However, the origins ofY have interesting connec-
tions with the development of mathematical logic.

Alonzo Church invented theλ-calculus to formalize a new set theory. Bertrand
Russell had (much earlier) demonstrated the inconsistency of naive set theory. If

4.7 Summary: theλ-Calculus Versus Turing Machines 23

we are allowed to construct the setR ≡ {x | x 6∈ x}, thenR ∈ R if and only if
R 6∈ R. This became known as Russell’s Paradox.

In his theory, Church encoded sets by their characteristic functions (equiva-
lently, as predicates). The membership testM ∈ N was coded by the application
N(M), which might be true or false. The set abstraction{x | P} was coded by
λx.P, whereP was someλ-term expressing a property ofx.

Unfortunately for Church, Russell’s Paradox was derivable in his system! The
Russell set is encoded byR ≡ λx.not (xx). This implied RR = not (RR),
which was a contradiction if viewed as a logical formula. In fact,RRhas no head
normal form: it is an undefined term likeÄ.

Curry discovered this contradiction. The fixed point equation forY follows
from RR= not (RR) if we replacenot by an arbitrary termF . Therefore,Y is
often called the Paradoxical Combinator.

Because of the paradox, theλ-calculus survives only as an equational theory.
Thetypedλ-calculus does not admit any known paradoxes and is used to formalize
the syntax of higher-order logic.

4.7 Summary: theλ-Calculus Versus Turing Machines

The λ-calculus can encode the common data structures, such as booleans and
lists, such that they satisfy natural laws. Theλ-calculus can also express recursive
definitions. Because the encodings are technical, they may appear to be unworthy
of study, but this is not so.

• The encoding of the natural numbers via Church numerals is valuable in
more advanced calculi, such as the second-orderλ-calculus.

• The encoding of lists via ordered pairs models their usual implementation
on the computer.

• As just discussed, the definition ofY formalizes Russell’s Paradox.

• Understanding recursive definitions as fixed points is the usual treatment in
semantic theory.

These constructions and concepts are encountered throughout theoretical com-
puter science. That cannot be said of any Turing machine program!

5 Theλ-Calculus and Computation Theory

Theλ-calculus is one of the classical models of computation, along with Turing
machines and general recursive functions.Church’s Thesisstates that the com-
putable functions are precisely those that areλ-definable. Below, we shall see that

24 5 THEλ-CALCULUS AND COMPUTATION THEORY

theλ-calculus has the same power as the (total) recursive functions. We shall also
see some strong undecidability results forλ-terms. The following definition is
fundamental.

Definition 9 If f is ann-place function over the natural numbers, thenf is λ-
definableif there exists someλ-term F such that, for allk1, . . . , kn ∈ N,

F k1 . . . kn = f (k1, . . . , kn) .

In other words,F maps numerals for arguments to numerals forf ’s results.
By the Church-Rosser Theorem, since numerals are in normal form, we have the
reduction

F k1 . . . kn ³ f (k1, . . . , kn) .

Thus, we can compute the value off (k1, . . . , kn) by normalizing the term
F k1 . . . kn .

5.1 The Primitive Recursive Functions

In computation theory, the primitive recursive functions are built up from the fol-
lowing basic functions:

0 the constant zero
suc the successor function
Ui

n the projection functions,Ui
n(x1, . . . , xn) = xi

New functions are constructed bysubstitutionandprimitive recursion. Sub-
stitution, or generalized composition, takes anm-place functiong and then-place
functionsh1, . . . , hm; it yields then-place functionf such that

f (x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)).

Primitive recursion takes ann-place functiong and an(n + 2)-place functionh;
it yields the(n+ 1)-place functionf such that

f (0, x1, . . . , xn) = g(x1, . . . , xn)

f (suc(y), x1, . . . , xn) = h(f (y, x1, . . . , xn), y, x1, . . . , xn)

5.2 Representing the Primitive Recursive Functions

The functions are defined in theλ-calculus in the obvious way. The proof that they
are correct (with respect to our definition ofλ-definability) is left as an exercise.

Here are the basic functions:

5.3 The General Recursive Functions 25

• For 0 use 0, namelyλ f x.x.

• For suc usesuc, namelyλn f x.n f (f x).

• ForUi
n useλx1 . . . xn.xi .

To handle substitution, suppose that them-place functiong andn-place func-
tionsh1, . . . , hm areλ-defined byG, H1, . . . , Hm, respectively. Then, their com-
position f is λ-defined by

F ≡ λx1 . . . xn.G(H1x1 . . . xn) . . . (Hmx1 . . . xn).

To handle primitive recursion, suppose that then-place functiong and(n+2)-
place functionh areλ-defined byG andH , respectively. The primitive recursive
function f is λ-defined by

F ≡ Y
(
λ f yx1 . . . xn. if (iszeroy)

(Gx1 . . . xn)

(H(f (pre y)x1 . . . xn)(pre y)x1 . . . xn))
)
.

5.3 The General Recursive Functions

Starting with the primitive recursive functions, the so-calledgeneral recursive
functionsare obtained by adding theminimisation operator, or function inversion.
Given ann-place functiong it yields then-place functionf such that

f (x1, . . . , xn) = the leasty such that [g(y, x2, . . . , xn) = x1]

and is undefined if no suchy exists.
Thus, minimisation may yield a partial function. This leads to certain difficul-

ties.

• The notion ofundefinedis complicated in theλ-calculus. It is tedious to
show that theλ-encoding of minimisation yields an undefined term if and
only if the corresponding function fails to terminate.

• Composition in theλ-calculus is non-strict. For example, consider the par-
tial functionsr ands such thatr (x) = 0 ands(x) is undefined for allx. We
mayλ-definer ands by R≡ λx.0 andS≡ λx.Ä. Now, r (s(0)) should be
undefined, butR(S0)→ 0. Defining the strict composition ofR andS is
tricky.

26 5 THEλ-CALCULUS AND COMPUTATION THEORY

Let us restrict attention to thetotal recursive functions. If for allx1, . . . , xn

there is somey such thatg(y, x2, . . . , xn) = x1, then the inverse ofg is total.
Suppose thatG is a term thatλ-definesg. Then the inverse isλ-defined by

F ≡ λx1 . . . xn.Y
(
λhy. if (equalsx1(Gyx2 . . . xn)

y

(h(sucy))
)

0

This sets up a recursive function that tests whether(Gyx2 . . . xn) equalsx1

for increasing values ofy. To start the search, this function is applied to 0. The
equality test for natural numbers can be defined in many ways, such as

equals≡ λm n. iszero(add(subm n)(subn m))

This works becausesubmn = 0 if m ≤ n. The equality relation between
arbitraryλ-terms (not just for Church numerals) is undecidable and cannot be
expressed in theλ-calculus.

Exercise 9 Find another definition of the equality test on the natural numbers.

5.4 Theλ-Definable Functions are Recursive

We have just shown that all total recursive functions areλ-definable. The converse
is not particularly difficult and we only sketch it. The key is to assign a unique (and
recursively computable!) G̈odel number #M to eachλ-termM . First, assume that
the set of variables has the formx1, x2, x3, . . . , so that each variable is numbered.
The definition of #M is quite arbitrary; for example, we could put

#xi = 2i

#(λxi .M) = 3i 5#M

#(M N) = 7#M11#N

To show that allλ-definable functions are recursive, suppose that we are given
a λ-term F ; we must find a recursive functionf such thatf (k1, . . . , kn) = k if
and only if F k1 . . . kn = k . We can do this in a uniform fashion by writing
an interpreter for theλ-calculus using the language of total recursive functions,
operating upon the G̈odel numbers ofλ-terms. This is simply a matter of pro-
gramming. The resulting program is fairly long but much easier to understand
than its Turing machine counterpart, namely the Universal Turing Machine.

5.5 The Second Fixed Point Theorem 27

Exercise 10 (Composition of partial functions.) Show thatn I = I for every
Church numeraln . Use this fact to show that the termH defined by

H ≡ λx.G x I (F(G x))

λ-defines the compositionf ◦ g of the functionsf andg, providedF λ-definesf
andG λ-definesg. What can be said aboutH M if G M is undefined? Hint: recall
the definition ofsolvablefrom Exercise 7.

5.5 The Second Fixed Point Theorem

We shall formalize theλ-calculus in itself in order to prove some undecidability
results. The G̈odel numbering is easily coded and decoded by arithmetic opera-
tions. In particular, there exist computable functions Ap and Num, operating on
natural numbers, such that

Ap(#M,#N) = #(M N)

= 7#M11#N

Num(n) = #(n)

= #λx2 x1. x2(· · · (x2︸ ︷︷ ︸
n

x1) · · ·)

These can beλ-defined by termsAP and NUM , operating on Church nu-
merals. Let us writepMq for (#M) , which is the Church numeral for the Gödel
number ofM . This itself is aλ-term. Using this notation,AP and NUM satisfy

AP pMqpNq = pM Nq
NUM n = pn q (wheren is any Church numeral)

PuttingpMq for n in the latter equation yields a crucial property:

NUM pMq = ppMqq.

Theorem 10 (Second Fixed Point)If F is anyλ-term then there exists a termX
such that

FpXq = X.

Proof Make the following definitions:

W ≡ λx.F(AP x(NUM x))

X ≡ WpWq

28 5 THEλ-CALCULUS AND COMPUTATION THEORY

Then, by aβ-reduction and by the laws forAP and NUM , we get

X → F(AP pWq(NUM pWq))
³ F(AP pWqppWqq)
³ F(pWpWqq)
≡ F(pXq)

ThereforeX = F(pXq). ut

Exercise 11 How do we know that the steps in the proof are actually reductions,
rather than mere equalities?

What was the First Fixed Point Theorem? IfF is anyλ-term then there ex-
ists a termX such thatF X = X. Proof: putX ≡ Y F . Note the similarity
betweenY F and theX constructed above. We use fixed point combinators toλ-
define recursive functions; we shall use the Second Fixed Point Theorem to prove
undecidability of the halting problem.

5.6 Undecidability Results for theλ-Calculus

We can show that the halting problem, as expressed in theλ-calculus, is undecid-
able.

Theorem 11 There is noλ-term halts such that

haltspMq =
{

true if M has a normal form
false if M has no normal form

Proof Assume the contrary, namely thathalts exists. Put

D ≡ λx. if (haltsx)Ä0 ;
by the Second Fixed Point Theorem, there existsX such that

X = DpXq = if (haltspXq)Ä0 .

There are two possible cases; both lead to a contradiction:

• If X has a normal form thenX = if true Ä0 = Ä, which has no normal
form!

• If X has no normal form thenX = if falseÄ0 = 0, which does have a
normal form!

ut

29

The proof is a typical diagonalisation argument. The theorem is strong: al-
though haltspMq can do anything it likes with the code ofM , analysing the
term’s structure, it cannot determine whetherM has a normal form. Assuming
Church’s Thesis — the computable functions are precisely theλ-definable ones
— the theorem states that the halting problem for the normalization ofλ-terms is
computationally undecidable.

Much stronger results are provable. Dana Scott has shown that

• if A is anynon-trivial set ofλ-terms (which means thatA is neither empty
nor the set of allλ-terms), and

• if A is closed under equality (which means thatM ∈ A andM = N imply
N ∈ A)

then the test for membership inA is undecidable. The halting problem follows as
a special case, taking

A = {M | M = N andN is in normal form}

See Barendregt [1, page 143], for more information.

6 ISWIM: The λ-calculus as a Programming Lan-
guage

Peter Landin was one of the first computer scientists to take notice of theλ-
calculus and relate it to programming languages. He observed that Algol 60’s
scope rules and call-by-name rule had counterparts in theλ-calculus. In his pa-
per [8], he outlined a skeletal programming languages based on theλ-calculus.
The title referred to the 700 languages said to be already in existence; in principle,
they could all share the sameλ-calculus skeleton, differing only in their data types
and operations. Landin’s language, ISWIM (If you See What I Mean), dominated
the early literature on functional programming, and was the model for ML.

Lisp also takes inspiration from theλ-calculus, and appeared many years be-
fore ISWIM. But Lisp made several fatal mistakes: dynamic variable scoping,
an imperative orientation, and no higher-order functions. Although ISWIM al-
lows imperative features, Lisp is essentially an imperative language, because all
variables may be updated.

ISWIM was designed to be extended with application-specific data and oper-
ations. It consisted of theλ-calculus plus a few additional constructs, and could
be translated back into the pureλ-calculus. Landin called the extra constructs
syntactic sugarbecause they made theλ-calculus more palatable.

30 6 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

6.1 Overview of ISWIM

ISWIM started with theλ-calculus:

x variable
(λx.M) abstraction
(M N) application

It also allowed local declarations:

let x = M in N simple declaration
let f x1 · · · xk = M in N function declaration
letrec f x1 · · · xk = M in N recursive declaration

Local declarations could be post-hoc:

N where x = M
N where f x1 · · · xk = M
N whererec f x1 · · · xk = M

The meanings of local declarations should be obvious. They can be translated into
the pureλ-calculus:

let x = M in N ≡ (λx.N)M
let f x1 · · · xk = M in N ≡ (λ f.N)(λx1 · · · xk.M)
letrec f x1 · · · xk = M in N≡ (λ f.N)(Y (λ f x1 · · · xk.M))

Programmers were not expected to encode data using Church numerals and the
like. ISWIM provided primitive data structures: integers, booleans and ordered
pairs. There being no type system, lists could be constructed by repeated pairing,
as in Lisp. The constants included

0 1−1 2−2 . . . integers
+ − × / arithmetic operators
= 6= < > ≤ ≥ relational operators
true false booleans
and or not boolean connectives
if E then M elseN conditional

6.2 Call-by-value in ISWIM

Thecall-by-valuerule, rather thancall-by-name, was usually adopted. This was
(and still is) easier to implement; we shall shortly see how this was done, using
the SECD machine. Call-by-value is indispensable in the presence of imperative
operations.

6.3 Pairs, Pattern-Matching and Mutual Recursion 31

Call-by-value gives more intuitive and predictable behaviour generally. Clas-
sical mathematics is based on strict functions; an expression is undefined unless
all its parts are defined. Under call-by-name we can define a functionf such that
if f (x) = 0 for all x, with even f (1/0) = 0. Ordinary mathematics cannot cope
with such functions; putting them on a rigorous basis requires complex theories.

Under call-by-value,if -then-elsemust be taken as a special form of expres-
sion. Treatingif as a function makesfact run forever:

letrec fact(n) = if (n= 0) 1 (n× fact(n− 1))

The arguments toif are always evaluated, including the recursive call; whenn =
0 it tries to computefact(−1). Therefore, we take conditional expressions as
primitive, with evaluation rules that returnM or N unevaluated:

if E then M elseN → M

if E then M elseN → N

Our call-by-value rule never reduces anything enclosed by aλ. So we can
translate the conditional expression to the application of anif -function:

if E then M elseN ≡ if E (λu.M) (λu.N) 0

Choosing some variableu not free inM or N, enclosing those expressions inλ
delays their evaluation; finally, the selected one is applied to 0.

6.3 Pairs, Pattern-Matching and Mutual Recursion

ISWIM includes ordered pairs:

(M, N) pair constructor
fst snd projection functions

For pattern-matching, letλ(p1, p2).E abbreviate

λz.(λp1 p2.E)(fst z)(sndz)

wherep1 and p2 may themselves be patterns. Thus, we may write

let (x, y) = M in E taking apartM ’s value
let f (x, y) = E in N defining f on pairs

The translation iterates to handle things like

let (w, (x, (y, z))) = M in E.

32 6 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

We may introducen-tuples, writing(x1, . . . , xn−1, xn) for the nested pairs

(x1, . . . , (xn−1, xn) . . .).

The mutually recursive function declaration

letrec f1 Ex1 = M1

and f2 Ex2 = M2
...

and fk Exk = Mk

in N

can be translated to an expression involving pattern-matching:

(λ(f1, . . . , fk).N)(Y (λ(f1, . . . , fk).(λEx1.M1, λEx2.M2, . . . , λExk.Mk)))

We can easily handle the general case ofk mutually recursive functions, each with
any number of arguments. Observe the power of syntactic sugar!

6.4 From ISWIM to ML

Practically all programming language features, including go to statements and
pointer variables, can be formally specified in theλ-calculus, using the techniques
of denotational semantics. ISWIM is much simpler than that; it is programming
directly in theλ-calculus. To allow imperative programming, we can even define
sequential execution, lettingM; N abbreviate(λx.N)M ; the call-by-value rule
will evaluateM beforeN. However, imperative operations must be adopted as
primitive; they cannot be defined by simple translation into theλ-calculus.

ISWIM gives us all the basic features of a programming language — variable
scope rules, function declarations, and local declarations. (Thelet declaration is
particularly convenient; many languages still make us write assignments for this
purpose!) To get a real programming language, much more needs to be added, but
the languages so obtained will have a common structure.

ISWIM was far ahead of its time and never found mainstream acceptance. Its
influence on ML is obvious. Standard ML has changed the syntax of declarations,
added polymorphic types, exceptions, fancier pattern-matching and modules —
but much of the syntax is still defined by translation. A French dialect of ML,
called CAML, retains much of the traditional ISWIM syntax [3].

6.5 The SECD Machine

Landin invented the SECD machine, an interpreter for theλ-calculus, in order to
execute ISWIM programs [2, 4, 7]. A variant of the machine executes instructions

6.6 Environments and Closures 33

compiled fromλ-terms. With a few optimisations, it can be used to implement
real functional languages, such as ML. SECD machines can be realized as byte-
code interpreters, their instructions can be translated to native code, and they can
be implemented directly on silicon. The SECD machine yields strict evaluation,
call-by-value. A lazy version is much slower than graph reduction of combinators,
which we shall consider later.

It is tempting to say that avalueis any fully evaluatedλ-term, namely a term
in normal form. This is a poor notion of value in functional programming, for two
reasons:

1. Functions themselves should be values, but many functions have no nor-
mal form. Recursive functions, coded asY F , satisfy Y F = F(Y F) =
F(F(Y F)) = · · · . Although they have no normal form, they may well
yield normal forms as results when they are applied to arguments.

2. Evaluating the body of aλ-abstraction, namely theM in λx.M , serve little
purpose; we are seldom interested in the internal structure of a function.
Only when it is applied to some argumentN do we demand the result and
evaluateM [N/x].

Re (2), we clearly cannot use encodings likeλx y.x for true andλ f x.x for
0, since our evaluation rule will not reduce function bodies. We must take the
integers, booleans, pairs, etc., as primitive constants. Their usual functions (+,−,
×, . . .) must also be primitive constants.

6.6 Environments and Closures

Consider the reduction sequence

(λxy.x + y)3 5→ (λy.3+ y)5→ 3+ 5→ 8.

Theβ-reduction eliminates the free occurrence ofx in λy.x + y by substitution
for x. Substitution is too slow to be effective for parameter passing; instead, the
SECD machine recordsx = 3 in anenvironment.

With curried functions,(λxy.x + y)3 is a legitimate value. The SECD ma-
chine represents it by aclosure, packaging theλ-abstraction with its current envi-
ronment:

Clo(y
↑

bound variable

, x + y
↑

function body

, x = 3
↑

environment

)

When the SECD machine applies this function value to the argument 5, it restores
the environment tox = 3, adds the bindingy = 5, and evaluatesx + y in this
augmented environment.

34 6 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

A closure is so-called because it “closes up” the function body over its free
variables. This operation is costly; most programming languages forbid using
functions as values. Until recently, most versions of Lisp let a function’s free
variables pick up any values they happened to have in the environment of the call
(not that of the function’s definition!); with this approach, evaluating

let g(y) = x + y in
let f (x) = g(1) in
f (17)

would return 18, using 17 as the value ofx in g! This is dynamic binding, as
opposed to the usualstatic binding. Dynamic binding is confusing because the
scope ofx in f (x) can extend far beyond the body off — it includes all code
reachable fromf (includingg in this case).

Common Lisp, now the dominant version, corrects this long-standing Lisp
deficiency by adopting static binding as standard. It also allows dynamic binding,
though.

6.7 The SECD State

The SECD machine has a state consisting of four componentsS, E, C, D:

1. TheStackis a list of values, typically operands or function arguments; it
also returns the result of a function call.

2. TheEnvironmenthas the formx1 = a1; · · · ; xn = an, expressing that the
variablesx1, . . . , xn have the valuesa1, . . . ,an, respectively.

3. TheControl is a list of commands. For the interpretive SECD machine, a
command is aλ-term or the wordapp; the compiled SECD machine has
many commands.

4. The Dump is empty (−) or is another machine state of the form
(S, E,C, D). A typical state looks like

(S1, E1,C1, (S2, E2,C2, . . . (Sn, En,Cn,−) . . .))

It is essentially a list of triples(S1, E1,C1), (S2, E2,C2), . . . , (Sn, En,Cn)

and serves as the function call stack.

6.8 State Transitions 35

6.8 State Transitions

Let us write SECD machine states as boxes:

Stack
Environment

Control
Dump

To evaluate theλ-term M , the machine begins execution an theinitial state
whereM is the Control:

S −
E −
C M
D −

If the Control is non-empty, then its first command triggers a state transition.
There are cases for constants, variables, abstractions, applications, and theapp
command.

A constant is pushed on to the Stack:

S
E

k;C
D

7−→
k; S
E
C
D

The value of a variable is taken from the Environment and pushed on to the
Stack. If the variable isx andE containsx = a thena is pushed:

S
E

x;C
D

7−→
a; S
E
C
D

A λ-abstraction is converted to a closure, then pushed on to the Stack. The
closure contains the current Environment:

S
E

λx.M;C
D

7−→
Clo(x,M, E); S

E
C
D

36 6 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

A function application is replaced by code to evaluate the argument and the
function, with an explicitapp instruction:

S
E

M N;C
D

7−→
S
E

N;M;app;C
D

Theapp command calls the function on top of the Stack, with the next Stack
element as its argument. A primitive function, like+ or ×, delivers its result
immediately:

f ;a; S
E

app;C
D

7−→
f (a); S

E
C
D

The closureClo(x,M, E′) is called by creating a new state to evaluateM in
the EnvironmentE′, extended with a binding for the argument. The old state is
saved in the Dump:

Clo(x,M, E′);a; S
E

app;C
D

7−→
−

x = a; E′
M

(S, E,C, D)

The function call terminates in a state where the Control is empty but the
Dump is not. To return from the function, the machine restores the state
(S, E,C, D) from the Dump, then pushesa on to the Stack. This is the following
state transition:

a
E′
−

(S, E,C, D)

7−→
a; S
E
C
D

The result of the evaluation, saya, is obtained from afinal statewhere the
Control and Dump are empty, anda is the sole value on the Stack:

S a
E −
C −
D −

6.9 A Sample Evaluation 37

6.9 A Sample Evaluation

To demonstrate how the SECD machine works, let us evaluate the expres-
sion twice sqr 3, where twice is λ f x. f (f x) and sqr is a built-in squaring
function. (Note thattwice is just the Church numeral 2). We start from the
initial state:

−
−

twice sqr 3
−

applic7−→
−
−

3; twice sqr ;app
−

const7−→
3
−

twice sqr ;app
−

applic7−→

3
−

sqr ; twice;app;app
−

const7−→
sqr ;3
−

twice;app;app
−

abstr7−→

Clo(f, λx. f (f x),−); sqr ;3
−

app;app
−

app7−→
−

f = sqr
λx. f (f x)

(3,−,app,−)

abstr7−→

Clo(x, f (f x), f = sqr)
f = sqr
−

(3,−,app,−)

return7−→
Clo(x, f (f x), f = sqr);3

−
app
−

app7−→

−
x = 3; f = sqr

f (f x)
(−,−,−,−)

applic7−→
−

x = 3; f = sqr
f x; f ;app
(−,−,−,−)

applic7−→

−
x = 3; f = sqr

x; f ;app; f ;app
(−,−,−,−)

var7−→
3

x = 3; f = sqr
f ;app; f ;app
(−,−,−,−)

var7−→
sqr ;3

x = 3; f = sqr
app; f ;app
(−,−,−,−)

apply7−→

9
x = 3; f = sqr

f ;app
(−,−,−,−)

var7−→
sqr ;9

x = 3; f = sqr
app

(−,−,−,−)

app7−→
81

x = 3; f = sqr
−

(−,−,−,−)

return7−→
81
−
−
−

38 6 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

The machine terminates in a final state, giving a value of 81.

6.10 The Compiled SECD Machine

It takes 17 steps to evaluate((λx y.x+ y)3)5! Much faster execution is obtained
by first compiling theλ-term. Write [[M]] for the list of commands produced by
compiling M ; there are cases for each of the four kinds ofλ-term.

Constants are compiled to theconstcommand, which will (during later exe-
cution of the code) push a constant onto the Stack:

[[k]] = const(k)

Variables are compiled to thevar command, which will push the variable’s
value, from the Environment, onto the Stack:

[[x]] = var(x)

Abstractions are compiled to theclosurecommand, which will push a closure
onto the Stack. The closure will include the current Environment and will holdM
as a list of commands, from compilation:

[[λx.M]] = closure(x, [[M]])

Applications are compiled to theapp command at compile time. Under the
interpreted SECD machine, this work occurred at run time:

[[M N]] = [[N]] ; [[M]] ;app

We could add further instructions, say forconditionals. Let test(C1,C2) be
replaced byC1 or C2, depending upon whether the value on top of the Stack is
true or false:

[[if E then M elseN]] = [[E]] ; test([[M]] , [[N]])

To allow built-in 2-place functions such as+ and× could be done in several
ways. Those functions could be made to operate upon ordered pairs, constructed
using apair instruction. More efficient is to introduce arithmetic instructions
such asadd and mult , which pop both their operands from the Stack. Now
((λx y.x + y)3)5 compiles to

const(5); const(3); closure(x,C0);app;app

and generates two further lists of commands:

C0 = closure(y,C1)

C1 = var(y); var(x); add

6.11 Recursive Functions 39

Many further optimisations can be made, leading to an execution model quite
close to conventional hardware. Variable names could be removed from the Envi-
ronment, and bound variables referred to by depth rather than by name. Special
instructionsenter andexit could efficiently handle functions that are called imme-
diately (say, those created by the declarationletx = NinM), creating no closure:

[[(λx.M)N]] = [[N]] ;enter; [[M]] ;exit

Tail recursive (sometimes callediterative) function calls could be compiled to
thetailapp command, which would cause the following state transition:

Clo(x,C, E′);a
E

tailapp
D

7−→
−

x = a; E′
C
D

The useless state(−, E,−, D) is never stored on the dump, and the function
return aftertailapp is never executed — the machine jumps directly toC!

6.11 Recursive Functions

The usual fixed point combinator,Y , fails under the SECD machine; it always
loops. A modified fixed point combinator, including extraλ’s to delay evaluation,
does work:

λ f.(λx. f (λy.x x y)(λy.x x y))

But it is hopelessly slow! Recursive functions are best implemented by creating a
closure with a pointer back to itself.

Suppose thatf (x) = M is a recursive function definition. The value off is
represented byY (λ f x.M). The SECD machine should interpretY (λ f x.M) in
a special manner, applying the closure forλ f x.M to a dummy value,⊥. If the
current Environment isE then this yields the closure

Clo(x, M, f = ⊥; E)
Then the machine modifies the closure, replacing the⊥ by a pointer looping back
to the closure itself:

Clo(x, M, f = ·; E)
When the closure is applied, recursive calls tof in M will re-apply the same
closure. The cyclic environment supports recursion efficiently.

40 7 LAZY EVALUATION VIA COMBINATORS

The technique is called “tying the knot” and works only for function defini-
tions. It does not work for recursive definitions of data structures, such as the
infinite list [0,0,0, . . .], defined asY (λl . cons0 l). Therefore strict languages
like ML allow only functions to be recursive.

7 Lazy Evaluation via Combinators

The SECD machine employs call-by-value. It can be modified for call-by-need
(lazy evaluation), as follows. When a function is called, its argument is stored
unevaluatedin a closure containing the current environment. Thus, the callM N
is treated something likeM(λu.N), whereu does not appear inN. This closure
is called asuspension. When a strict, built-in function is called, such as+, its
argument is evaluated in the usual way.

It is essential that no argument be evaluated more than once, no matter how
many times it appears in the function’s body:

let sqr n= n× n in N
sqr(sqr(sqr 2))

If this expression were evaluated by repeatedly duplicating the argument ofsqr,
the waste would be intolerable. Therefore, the lazy SECD machine updates the
environment with the value of the argument, after it is evaluated for the first time.
But the cost of creating suspensions makes this machine ten times slower than the
strict SECD machine, according to David Turner, and compilation can give little
improvement.

7.1 Graph Reduction in theλ-Calculus

Another idea is to work directly withλ-terms, using sharing and updating to en-
sure that no argument is evaluated more than once. For instance, the evaluation of
(λn.n× n)M might be represented by thegraph reduction

mult n

n

M

mult M
nλ

7.2 Introduction to Combinators 41

The difficulty here is thatλ-abstractions may themselves be shared. We may
not modify the body of the abstraction, replacing the bound variable by the ac-
tual argument. Instead, we must copy the body — including parts containing no
occurrence of the bound variable — when performing the substitution.

Both the lazy SECD machine and graph reduction ofλ-terms suffer because of
the treatment of bound variables. Combinators have the same expressive power as
theλ-calculus, but no bound variables. Graph reduction in combinators does not
require copying. David Turner found an efficient method of translatingλ-terms
into combinators, for evaluation by graph reduction [9]. Offshoots of his methods
have been widely adopted for implementing lazy functional languages.

7.2 Introduction to Combinators

In the simplest version, there are only two combinators,K and S. Combinators
are essentially constants. It is possible to defineK and S in theλ-calculus, but
combinatory logic (CL) exists as a theory in its own right.2

The terms of combinatory logic, writtenP, Q, R, . . . , are built from K
and S using application. They may contain free variables, but no bound variables.
A typical CL term is K x(S K x)(K S K y)S. Although CL is not particularly
readable, it is powerful enough to code all the computable functions!

The combinators obey the following reductions:

K P Q →w P
S P Q R →w P R(Q R)

Thus, the combinators could have been defined in theλ-calculus by

K ≡ λx y.x

S ≡ λx y z.x z(y z)

But note thatS K does not reduce — becauseS requires three arguments —
while the correspondingλ-term does. For this reason, combinator reduction is
known asweak reduction(hence the “w” in→w).

Here is an example of weak reduction:

S K K P→w K P(K P)→w P

Thus S K K P ³w P for all combinator termsP; let us define the identity com-
binator by I ≡ S K K .

Many of the concepts of theλ-calculus carry over to combinators. A com-
binator termP is in normal formif it admits no weak reductions. Combinators

2It is called combinatory logic for historical reasons; we shall not treat it as a logic.

42 7 LAZY EVALUATION VIA COMBINATORS

satisfy a version of the Church-Rosser Theorem: ifP = Q (by any number of
reductions, forwards or backwards) then there exists a termZ such thatP ³w Z
andQ³w Z.

7.3 Abstraction on Combinators

Any λ-term may be transformed into a roughly equivalent combinatory term. (The
meaning of “roughly” is examined below.) The key is the transformation of a com-
binatory termP into another combinator term, written asλ∗x.P since it behaves
like aλ-abstraction.3

Definition 12 The operationλ∗x, wherex is a variable, is defined recursively as
follows:

λ∗x.x ≡ I
λ∗x.P ≡ K P (x not free inP)
λ∗x.P Q ≡ S(λ∗x.P)(λ∗x.Q)

Finally, λ∗x1 . . . xn.P abbreviatesλ∗x1.(. . . λ
∗xn.P . . .).

Note thatλ∗x is not part of the syntax of combinatory logic, but stands for
the term constructed as according to the definition above. Here is an example of
combinatory abstraction:

λ∗x y.y x ≡ λ∗x.(λ∗y.y x)

≡ λ∗x.S(λ∗y.y)(λ∗y.x)
≡ λ∗x.(S I)(K x)

≡ S(λ∗x.S I)(λ∗x.K x)

≡ S(K (S I))(S(λ∗x.K)(λ∗x.x))
≡ S(K (S I))(S(K K) I)

Eachλ∗ candoublethe number of applications in a term; in general, growth is
exponential. Turner discovered a better abstraction method, discussed in the next
section. First, let us show that combinatory abstraction behaves like itsλ-calculus
cousin. Let FV be defined for combinatory terms in an analogous manner to
Definition 3.

Theorem 13 For every combinatory termP we have

FV(λ∗x.P) = FV(P)− {x}
(λ∗x.P)x ³w P

3Some authors write [x] P for λ∗x.P.

7.3 Abstraction on Combinators 43

Proof We prove both properties independently, by structural induction onP.
There are three cases.

If P is the variablex, thenλ∗x.x ≡ I . Clearly

FV(λ∗x.x) = FV(I) = ∅ = FV(x)− {x}
(λ∗x.x)x ≡ I x ³w x

If P is any term not containingx, thenλ∗x.P ≡ K P and

FV(λ∗x.P) = FV(K P) = FV(P)

(λ∗x.P)x ≡ K Px→w P

If P ≡ Q R, andx is free inQ or R, thenλ∗x.P ≡ S(λ∗x.Q)(λ∗x.R). This
case is the inductive step and we may assume, as induction hypotheses, that the
theorem holds forQ andR:

FV(λ∗x.Q) = FV(Q)− {x}
FV(λ∗x.R) = FV(R)− {x}
(λ∗x.Q)x ³w Q

(λ∗x.R)x ³w R

We now consider the set of free variables:

FV(λ∗x.Q R) = FV(S(λ∗x.Q)(λ∗x.R))
= (FV(Q)− {x})

⋃
(FV(R)− {x})

= FV(Q R)− {x}
Finally, we consider application:

(λ∗x.P)x ≡ S(λ∗x.Q)(λ∗x.R)x
→w (λ∗x.Q)x((λ∗x.R)x)
³w Q((λ∗x.R)x)
³w Q R

ut
Using(λ∗x.P)x ³w P, we may derive an analogue ofβ-reduction for com-

binatory logic. We also get a strong analogue ofα-conversion — changes in the
abstraction variable are absolutely insignificant, yielding identical terms.

Theorem 14 For all combinatory termsP and Q,

(λ∗x.P)Q ³w P[Q/x]

λ∗x.P ≡ λ∗y.P[y/x] if y 6∈ FV(P)

Proof Both statements are routine structural inductions; the first can also be de-
rived from the previous theorem by a general substitution theorem [1]. ut

44 7 LAZY EVALUATION VIA COMBINATORS

7.4 The Relation Betweenλ-Terms and Combinators

The mapping()C L converts aλ-term into a combinator term. It simply appliesλ∗
recursively to all the abstractions in theλ-term; note that the innermost abstrac-
tions are performed first! The inverse mapping,()λ, converts a combinator term
into aλ-term.

Definition 15 The mappings()C L and()λ are defined recursively as follows:

(x)C L ≡ x

(M N)C L ≡ (M)C L(N)C L

(λx.M)C L ≡ λ∗x.(M)C L

(x)λ ≡ x

(K)λ ≡ λx y.x

(S)λ ≡ λx y z.x z(y z)

(P Q)λ ≡ (P)λ(Q)λ

Different versions of combinatory abstraction yield different versions of()C L;
the present one causes exponential blow-up in term size, but it is easy to reason
about. Let us abbreviate(M)C L asMC L and(P)λ as Pλ. It is easy to check that
()C L and()λ do not add or delete free variables:

FV(M) = FV(MC L) FV(P) = FV(Pλ)

Equality is far more problematical. The mappings do give a tidy correspon-
dence between theλ-calculus and combinatory logic, provided we assume the
principle ofextensionality. This asserts that two functions are equal if they return
equal results for every argument value. In combinatory logic, extensionality takes
the form of a new rule for proving equality:

Px = Qx

P = Q
(x not free inP or Q)

In theλ-calculus, extensionality can be expressed by a similar rule or by introduc-
ing η-reduction:

λx.Mx→η M (x not free inM)

Assuming extensionality, the mappings preserve equality [1]:

(MC L)λ = M in theλ-calculus

(Pλ)C L = P in combinatory logic

M = N ⇐⇒ MC L = NC L

P = Q ⇐⇒ Pλ = Qλ

45

Normal forms and reductions are not preserved. For instance,S K is a normal
form of combinatory logic; no weak reductions apply to it. But the corresponding
λ-term is not in normal form:

(S K)λ ≡ (λx y z.x z(y z))(λx y.x)³ λy z.z

There are even combinatory terms in normal form whose correspondingλ-term
has no normal form! Even where both terms follow similar reduction sequences,
reductions in combinatory logic have much finer granularity than those in the
λ-calculus; consider how many steps are required to simulate aβ-reduction in
combinatory logic.

Normal forms are the outputs of functional programs; surely, they ought to
be preserved. Reduction is the process of generating the outputs. Normally we
should not worry about this, but lazy evaluation has to deal with infinite outputs
that cannot be fully evaluated. Thus, the rate and granularity of reduction is im-
portant. Despite the imperfect correspondence betweenλ-terms and combinators,
compilers based upon combinatory logic appear to work. Perhaps the things not
preserved are insignificant for computational purposes. More research needs to be
done in the operational behaviour of functional programs.

8 Compiling Methods Using Combinators

Combinator abstraction gives us a theoretical basis for removing variables from
λ-terms, and will allow efficient graph reduction. But first, we require a mapping
from λ-terms to combinators that generates more compact results. Recall thatλ∗
causes exponential blowup:

λ∗x y.y x ≡ S(K (S I))(S(K K) I)

The improved version of combinatory abstraction relies on two new combina-
tors, B and C , to handle special cases ofS:

B P Q R →w P(Q R)
C P Q R →w P R Q

Note thatB P Q Ryields the function composition ofP and Q. Let us call the
new abstraction mappingλT , after David Turner, its inventor:

λT x.x ≡ I
λT x.P ≡ K P (x not free inP)
λT x.P x ≡ P (x not free inP)
λT x.P Q ≡ B P(λT x.Q) (x not free inP)
λT x.P Q ≡ C (λT x.P)Q (x not free inQ)
λT x.P Q ≡ S(λT x.P)(λT x.Q) (x free in P andQ)

46 8 COMPILING METHODS USING COMBINATORS

AlthoughλT is a bit more complicated thanλ∗, it generates much better code
(i.e. combinators). The third case, forP x, takes advantage of extensionality; note
its similarity toη-reduction. The next two cases abstract overP Q according to
whether or not the abstraction variable is actually free inP or Q. Let us do our
example again:

λT x y.y x ≡ λT x.(λT y.y x)

≡ λT x.C (λT y.y)x

≡ λT x.C I x

≡ C I

The size of the generated code has decreased by a factor of four! Here is another
example, from Paper 6 of the 1993 Examination. Let us translate theλ-encoding
of the ordered pair operator:

λT x.λT y.λT f. f x y ≡ λT x.λT y.C (λT f. f x) y

≡ λT x.λT y.C (C (λT f. f) x) y

≡ λT x.λT y.C (C I x) y

≡ λT x.C (C I x)

≡ B C (λT x.C I x)

≡ B C (C I).

Unfortunately,λT can still cause a quadratic blowup in code size; additional
primitive combinators should be introduced (See Field and Harrison [4, page 286].
Furthermore, all the constants of the functional language — numbers, arithmetic
operators,. . . — must be taken as primitive combinators.

Introducing more and more primitive combinators makes the code smaller and
faster. This leads to the method ofsuper combinators, where the set of primitive
combinators is extracted from the program itself.

Exercise 12 Show B P I = P using extensionality.

Exercise 13 Verify that C I behaves like theλ-termλx y.y x when applied to
two arguments.

Exercise 14 What wouldλT x y.y x yield if we did not apply the third case in
the definition ofλT?

8.1 Combinator Terms as Graphs 47

8.1 Combinator Terms as Graphs

Consider the ISWIM program

let sqr(n) = n× n in sqr(5)

Let us translate it to combinators:

(λT f. f 5)(λTn.mult n n) ≡ C I 5(S(λTn.mult n)(λTn.n))

≡ C I 5(S mult I)

This is aclosedterm — it contains no free variables (and no bound variables, of
course). Therefore it can be evaluated by reducing it to normal form.

Graph reduction works on the combinator term’s graph structure. This resem-
bles a binary tree with branching at each application. The graph structure for
C I 5(S mult I) is as follows:

C I

5

S mult

I

Repeated arguments cause sharing in the graph, ensuring that they are never
evaluated more than once.

8.2 The Primitive Graph Transformations

Graph reduction deals with terms that contain no variables. Each term, and its
subterms, denote constant values. Therefore we may transform the graphs de-
structively — operands are never copied. The graph isreplacedby its normal
form!

The primitive combinators reduce as shown in Figure 1. The sharing in the
reduction forS is crucial, for it avoids copyingR.

We also require graph reduction rules for the built-in functions, such asmult .
Becausemult is a strict function, the graph formult P Q can only be reduced
after P andQ have been reduced to numeric constantsm andn. Then mult m n
is replaced by the constant whose value ism× n. Graph reduction proceeds by
walking down the graph’s leftmost branch, seeking something to reduce. If the
leftmost symbol is a combinator likeI , K , S, B , or C , with the requisite num-
ber of operands, then it applies the corresponding transformation. If the leftmost

48 8 COMPILING METHODS USING COMBINATORS

I P
P

K P

Q
P

S P

Q

R

P Q

R

B P

Q

R

RQ

P

C P

Q

R

P

Q

R

Figure 1: Graph reduction for combinators

8.2 The Primitive Graph Transformations 49

C I

5

S mult

I
I

5

S mult

I

5

S mult

I

5

mult I

5
mult

25

Figure 2: A graph reduction sequence

symbol is a strict combinator likemult , then it recursively traverses the operands,
attempting to reduce them to numbers.

Figure 2 presents the graph reduction sequence for the ISWIM program

let sqr(n) = n× n in sqr(5).

50 8 COMPILING METHODS USING COMBINATORS

The corresponding term reductions are as follows:

C I 5(S mult I) → I (S mult I)5

→ S mult I 5

→ mult 5(I 5)

→ mult 5 5

→ 25

Clearly visible in the graphs, but not in the terms, is that the two copies of 5 are
shared. If, instead of 5, the argument ofsqr had been a large combinatory termP
compiled from the program, thenP would have been evaluated only once. Graph
reduction can also discard terms by the ruleK P Q →w P; here Q is never
evaluated.

8.3 Booleans and Pairing

The λ-calculus encodings of ordered pairs, Church numerals and so forth work
with combinators, but are impractical to use for compiling a functional language.
New combinators and new reductions are introduced instead.

With lazy evaluation, if-then-else can be treated like a function, with the two
reductions

if true P Q →w P

if false P Q →w Q.

These reductions discardP or Q if it is not required; there is no need for tricks to
delay their evaluation. The first reduction operates on graphs as shown.

Q

if true

P

P

Pairing is also lazy, as it is in theλ-calculus; we introduce the reductions

fst (pair P Q) →w P

snd(pair P Q) →w Q.

The corresponding graph reductions should be obvious:

8.4 Recursion: Cyclic Graphs 51

fst

pair

Q

P

P

8.4 Recursion: Cyclic Graphs

Translating Y into combinator form will work, yielding a mult-step reduction
resembling4

Y P

Y
P

This is grossly inefficient;Y must repeat its work at every recursive invoca-
tion! Instead, takeY as a primitive combinator satisfyingY P→w P(Y P) and
adopt a graph reduction rule that replaces theY by acycle:

Y P P

SinceP is never copied, reductions that occur in it yield permanent simplifi-
cations — they are not repeated when the function is entered recursively.

To illustrate this, consider the ISWIM program

letrec from(n) = pair n(from(1+ n)) in from(1).

The result should be the infinite list(1, (2, (3, . . .))). We translatefrom into com-
binators, starting with

Y (λT f n.pair n(f (add1n))

and obtain (verify this)

Y (B (S pair)(C B (add1)))

Figures 3 and 4 give the graph reductions. A cyclic node, labelledθ , quickly
appears. Its rather tortuous transformations generate a recursive occurrence of

4The picture is an over-simplification; recall that we do not haveY P ³ P(Y P)!

52 8 COMPILING METHODS USING COMBINATORS

from deeper in the graph. The series of reductions presumes that the environment
is demanding evaluation of the result; in lazy evaluation, nothing happens until it
is forced to happen.

Graph reduction will leave the termadd1 1 unevaluated until something de-
mands its value; the result offrom(1) is really(1, (1+1, (1+1+1, . . .))). Graph
reduction works a bit like macro expansion. Non-recursive function calls get ex-
panded once and for all the first time they are encountered; thus, programmers are
free to define lots of simple functions in order to aid readability. Similarly, con-
stant expressions are evaluated once and for all when they are first encountered.
Although this behaviour avoids wasteful recomputation, it can cause the graph to
grow and grow, consuming all the store — aspace leak. The displayed graph
reduction illustrates how this could happen.

Exercise 15 TranslateY to combinators and do some steps of the reduction of
Y P.

8.4 Recursion: Cyclic Graphs 53

B

B

Y

1

S pair C B add 1

1

S pair C B add 1

from

1

S pair

C B add 1

from

Figure 3: Reductions involving recursion

54 8 COMPILING METHODS USING COMBINATORS

pair 1

S pair

from

B add 1

1

fromB

C

pair

add 1

from

add 1

1
pair

Figure 4: Reductions involving recursion (continued)

REFERENCES 55

References

[1] H. P. Barendregt.The Lambda Calculus: Its Syntax and Semantics. North-Holland,
1984.

[2] W. H. Burge.Recursive Programming Techniques. Addison-Wesley, 1975.

[3] G. Cousineau and G. Huet. The CAML primer. Technical report, INRIA,
Rocquencourt, France, 1990.

[4] Anthony J. Field and Peter G. Harrison.Functional Programming. Addison-Wesley,
1988.

[5] Michael J. C. Gordon.Programming Language Theory and its Implementation.
Prentice-Hall, 1988.

[6] J. Roger Hindley and Jonathon P. Seldin.Introduction to Combinators and
λ-Calculus. Cambridge University Press, 1986.

[7] P. J. Landin. The mechanical evaluation of expressions.Computer Journal,
6:308–320, January 1964.

[8] P. J. Landin. The next 700 programming languages.Communications of the ACM,
9(3):157–166, March 1966.

[9] David A. Turner. A new implementation technique for applicative languages.
Software—Practice and Experience, 9:31–49, 1979.

