Foundations of Functional
Programming

Computer Science Tripos Part IB
Easter Term

Lawrence C Paulson
Computer Laboratory
University of Cambridge

Icp@cl.cam.ac.uk

Copyright@© 2000 by Lawrence C. Paulson

Contents

1 Introduction

2 Equality and Normalization

3 Encoding Data in theA-Calculus

4 Writing Recursive Functions in the A-calculus

5 The A-Calculus and Computation Theory

6 ISWIM: The A-calculus as a Programming Language
7 Lazy Evaluation via Combinators

8 Compiling Methods Using Combinators

11

16

23

29

40

45

1 Introduction

This course is concerned with thecalculus and its close relative, combinatory
logic. Thea-calculus is important to functional programming and to computer
science generally:

1. Variable bindingand scopingin block-structured languages can be mod-
elled.

2. Several function calling mechanisms eall-by-name call-by-value and
call-by-need— can be modelled. The latter two are also knowrstat
evaluationandlazy evaluation

3. Thea-calculus is Turing universal, and is probably the most natural model
of computationChurch’s Thesigsserts that the ‘computable’ functions are
precisely those that can be represented inttgalculus.

4. All the usualdata structuresf functional programming, including infinite
lists, can be represented. Computation on infinite objects can be defined
formally in theA-calculus.

5. Its notions ofconfluencgChurch-Rosser propertydermination andnor-
mal formapply generally in rewriting theory.

6. Lisp, one of the first major programming languages, was inspired by the
A-calculus. Many functional languages, such as ML, consist of little more
than thei-calculus with additional syntax.

7. The two main implementation methods, 8 CD machingfor strict eval-
uation) anccombinator reductiorffor lazy evaluation) exploit properties of
theA-calculus.

8. Theai-calculus and its extensions can be used to develop better type sys-
tems, such apolymorphismand to investigate theoretical issues such as
program synthesis

9. Denotational semanti¢gsvhich is an important method for formally speci-
fying programming languages, employs #healculus for its notation.

Hindley and Seldin [6] is a concise introduction to thealculus and com-
binators. Gordon [5] is oriented towards computer science, overlapping closely
with this course. Barendregt [1] is the last word on thealculus.

2 1 INTRODUCTION

Acknowledgements. Reuben Thomas pointed out numerous errors in a previ-
ous version of these notes.

1.1 TheA-Calculus

Around 1924, Schinfinkel developed a simple theory of functions. In 1934,
Church introduced the-calculus and used it to develop a formal set theory, which
turned out to be inconsistent. More successfully, he used it to formalize the syntax
of Whitehead and Russell's massRancipia Mathematicaln the 1940s, Haskell

B. Curry introduceccombinatory logica variable-free theory of functions.

More recently, Roger Hindley developed what is now knowtyps inference
Robin Milner extended this to develop the polymorphic type system of ML, and
published a proof that a well-typed program cannot suffer a run-time type error.
Dana Scott developed models of thealculus. With hisdomain theoryhe and
Christopher Strachey introduced denotational semantics.

Peter Landin used the-calculus to analyze Algol 60, and introduced ISWIM
as a framework for future languages. His SECD machine, with extensions,
was used to implement ML and other strict functional languages. Christopher
Wadsworth developedraph reductionas a method for performing lazy evalu-
ation of A-expressions. David Turner applied graph reductiomdmbinators
which led to efficient implementations of lazy evaluation.

Definition 1 Thetermsof the A-calculus, known a&-terms are constructed re-
cursively from a given set ofariablesx, y, z, They may take one of the
following forms:

X variable
(AX.M) abstraction, wher# is a term
(MN) application, whereM andN are terms

We use capital letters like, M, N, ... for terms. We writeM = N to state
thatM andN are identical-terms. The equality betweenterms,M = N, will
be discussed later.

1.2 Variable Binding and Substitution

In (Ax.M), we callx thebound variableand M the body. Every occurrence of
in M is boundby the abstraction. An occurrence of a variablé&e= if it is not
bound by some enclosing abstraction. For examplegcurs bound angl occurs
free iIn(AzZ.(AX.(YyX)).

1.2 \Variable Binding and Substitution 3

Notations involving free and bound variables exist throughout mathematics.
Consider the integra}F; f (x)dx, wherex is bound, and the produét,_, p(k),
wherek is bound. The quantifiers and3 also bind variables.

The abstractionAx.M) is intended to represent the functidn such that
f(x) = M for all x. Applying f to N yields the result of substitutingy for
all free occurrences of in M. Two examples are

(AX.X) Theidentityfunction, which returns its argument un-
changed. Itis usually callet!.

(Ay.x) A constanfunction, which returng when applied to
any argument.

Let us make these concepts precise.

Definition 2 BV (M), the set of albound variablesn M, is given by

BV(X) =
BVOX.M) = BV(M)[Jix)
BV(MN) = BV(M)| JBV(N)

Definition 3 FV(M), the set of alfree variablean M, is given by

FV() = {x}
FV(Ax.M) FV(M) — {x}
FV(MN) = FV(M)UFV(N)

Definition 4 M[L/y], the result of substitutind- for all free occurrences oy
in M, is given by

x[L/y]

L if X = Yy
X otherwise

(AxX.M)[L/y] =

(MN)[L/y]

(AX.M) fx=y
(AX.M[L/y]) otherwise

(M[L/y] N[L/yD

The notations defined above are not themselves part of-ttedculus. They
belong to the metalanguage: they are for talking abouktbalculus.

4 1 INTRODUCTION

1.3 Avoiding Variable Capture in Substitution

Substitution must not disturb variable binding. Consider the temn(iy.x)). It
should represent the function that, when applied to an arguidemnéturns the
constant functior(Ay.N). Unfortunately, this does not work N = y; we have
defined substitution such théty.x)[y/x] = (ry.y). Replacingx by y in the
constant function transforms it into the identity function. The free occurrence
of x turns into a bound occurrence pf— an example ofariable capture If this
were allowed to happen, thecalculus would be inconsistent. The substitution
M[N/x] is safe provided the bound variables &f are disjoint from the free
variables ofN:

BV(M) [FV(N) = 4.

We can always rename the bound variabled/gfif necessary, to make this
condition true. In the example above, we could chafigex) into (Az.x), then
obtain the correct substitutioi.z.x)[y/X] = (Az.y); the result is indeed a con-
stant function.

1.4 Conversions

The idea thati-abstractions represent functions is formally expressed through
conversion rules for manipulating them. There @reonversionsg-conversions
andn-conversions.

Thea-conversionAx.M) —, (Ly.M[y/X]) renames the abstraction’s bound
variable fromx to y. It is valid providedy does not occur (free or bound) M.

For example(Ax.(X2)) —, (Ay.(Y2). We shall usually ignore the distinction
between terms that could be made identical by perforrahtgnversions.

The g-conversion((AXx.M)N) —z M[N/x] substitutes the argumenl,
into the abstraction’s bodyM. It is valid provided BUM)(FV(N) =
P. For example,(AX.(XX))(Yy2) —p ((y2)(y2)). Here is another example:
(AZ.(ZP)(AX.X) =g (OXX)Y) =4 Y.

Then-conversion(Ax.(Mx)) —, M collapses the trivial functiom.x.(Mx))
down to M. It is valid providedx ¢ FV(M). Thus, M does not depend
on x; the abstraction does nothing but apdy to its argument. For example,
AX.((Zy)X)) =5 (2Y).

Observe that the functiongx.(Mx)) andM always return the same answer,
(MN), when applied to any argumeNt Then-conversion rule embodies a prin-
ciple of extensionalitytwo functions are equal if they always return equal results
given equal arguments. In some situations, this principle gaodnversions) are
dispensed with.

1.5 Reductions 5

1.5 Reductions

We say thaM — N, or M reduces toN, if M —4 N orM —, N. (Because:-
conversions are not directional, and are not interesting, we generally ignore them.)
The reductionM — N may consist of applying a conversion to some subterm of
M in order to creaté\N. More formally, we could introduce inference rules fer.

M—> M M—> M M—> M
(AX.M) = (AX.M’) (MN) — (M’N) (LM) — (LM

If a term admits no reductions then it ismormal form For examplejixy.y
andxyzare in normal form. Tmormalizea term means to apply reductions until
a normal form is reached. A terhas a normal fornif it can be reduced to a term
in normal form. For exampléAx.x)y is not in normal form, but it has the normal
formy.

Many A-terms cannot be reduced to normal form. For instance,
(AX.XX)(AX.XX) reduces to itself bys-conversion. Although it is unaffected by
the reduction, it is certainly not in normal form. This term is usually cafked

1.6 Curried Functions

The A-calculus has only functions of one argument. A function with multiple
arguments is expressed using a function whose result is another function.

For example, suppose thais a term containing only andy as free variables,
and we wish to formalize the functioh(x, y) = L. The abstractioriry.L) con-
tainsx free; for eaclx, it stands for a function over. The abstractio@.x.(1y.L))
contains no free variables; when applied to the argumghgd N, the result is
obtained by replacing by M andy by N in L. Symbolically, we perform two
B-reductions (any necessaryconversions are omitted):

((AX.(Ay.L)M)N) =g ((Ay.L[M/X)N) — g L[M/X][N/y]

This technique is known asurrying after Haskell B. Curry, and a function
expressed using nestedis known as aurried function In fact, it was introduced
by Sctonfinkel. Clearly, it works for any number of arguments.

Curried functions are popular in functional programming because they can be
applied to their first few arguments, returning functions that are useful in them-
selves.

6 2 EQUALITY AND NORMALIZATION

1.7 Bracketing Conventions

Abbreviating nested abstractions and applications will make curried functions eas-
ier to write. We shall abbreviate

(AX1.(AX2. ... (AXn.M)...)) as (AX1X2...Xp.M)
(...(M1M2)...Mp) as (M1My... M)

Finally, we drop outermost parentheses and those enclosing the body of an ab-
straction. For example,

(AX.(X(LY.(yX)))) can be written agX.Xx(1y.yX).
It is vital understand how bracketing works. We have the reduction
AZ.(AX.M)N — g 1zZ.M[N/X]

but the similar term.z.z(Ax.M)N admits no reductions except those occurring
within M and N, because.x.M is not being applied to anything. Here is what
the application of a curried function (see above) looks like with most brackets
omitted:

(AXY.L)MN —g (Ay.L[M/X])N —g L[M/X][N/y]

Note thatAx.MN abbreviates\x.(MN) rather than(Ax.M)N. Also, xyz
abbreviategxy)z rather tharx(yz).

Exercise 1 What happens in the reduction @fxy.L)MN if y is free inM?

Exercise 2 Give two different reduction sequences that staxat(Ly.xy)z)y
and end with a normal form. (These normal forms must be identical: see below.)

2 Equality and Normalization

The A-calculus is an equational theory: it consists of rules for proving that two
A-terms are equal. A key property is that two terms are equal just if they both can
be reduced to the same term.

2.1 Multi-Step Reduction 7

2.1 Multi-Step Reduction

Strictly speakingM — N means thaiM reduces td\ by exactly one reduction
step, possibly applied to a subtermMf Frequently, we are interested in whether
M can be reduced th by any number of steps. Writd — N if

M—>M;{— My— ---—> Mc=N (k >0

For example((1z.(zy))(Ax.X)) — Y. Note that— is the relation—*, the reflex-
ive/transitive closure of>.

2.2 Equality Betweeni-Terms

Informally, M = M’ if M can be transformed intt’ by performing zero or
more reductions and expansions. (&xpansiornis the inverse of a reduction, for
instancey < (Ax.x)y.) A typical picture is the following:

M M1 Mo- - - My_1 M = M’
NN N
Ny No Ni

For examplea((ry.by)c) = (Ax.ax)(bc) because both sides reduceai@c).
Note that= is the relation(— U —~1)*, the least equivalence relation contain-
ing —.

Intuitively, M = M’ means thaM and M’ have the same value. Equality, as
defined here, satisfies all the standard properties. First of all, itéxjaivalence
relation — it satisfies the reflexive, symmetric and associative laws:

M=N L=M M=N

M=M

Furthermore, it satisfies congruence laws for each of the ways of constructing
A-terms:
M= M’ M= M’ M=M
(AX.M) = (AX.M’) (MN) = (M’N) (LM) = (LM/)

The six properties shown above are easily checked by constructing the appropri-
ate diagrams for each equality. They imply that two terms will be equal if we
construct them in the same way starting from equal terms. Put another way, if
M = M’ then replacingVl by M’ in a term yields an equal term.

Definition 5 Equality ofA-termsis the least relation satisfying the six rules given
above.

8 2 EQUALITY AND NORMALIZATION

2.3 The Church-Rosser Theorem

This fundamental theorem states that reduction imtealculus isconfluent no

two sequences of reductions, starting from arAerm, can reach distinct normal
forms. The normal form of a term is independent of the order in which reductions
are performed.

Theorem 6 (Church-Rosser)If M = N then there exists such thatM — L
andN — L.
Proof See Barendregt [1] or Hindley and Seldin [6].

For instance(Ax.ax)((1y.by)c) has two different reduction sequences, both
leading to the same normal form. The affected subterm is underlined at each step:

(Ax.ax)((ry.by)c) — a((ry.by)c) — a(bc)
(Ax.ax)((rAy.by)c) — (Ax.ax)(bc) — a(bc)

The theorem has several important consequences.

e If M = N andN is in normal form, therM — N; if a term can transform
into normal form using reductions and expansions, then the normal form
can be reached by reductions alone.

e If M = N where both terms are in normal form, théh = N (up to
renaming of bound variables). ConverselyMfandN are in normal form
and are distinct, theM # N; there is no way of transforminlyl into N.
For exampleAxy.x # AXY.y.

An equational theory isnconsistentif all equations are provable. Thanks to
the Church-Rosser Theorem, we know thatthealculus is consistent. There is
no way we could reach two different normal forms by following different reduc-
tion strategies. Without this property, thecalculus would be of little relevance
to computation.

2.4 The Diamond Property

The key step in proving the Church-Rosser Theorem is demonstrating the diamond
property — if M — M1 and M — My then there exists a terra such that
M1 — L andM» — L. Here is the diagram:

M
¥ N
1 M
N
L

M 2

2.5 Proving the Diamond Property 9

The diamond property is vital: it says that no matter how far we go reducing a
term by two different strategies it will always be possible to come together again
by further reductions. As for the Church-Rosser Theorem, look again at the dia-
gram forM = M’ and note that we can tile the region underneath with diamonds,
eventually reaching a common term:

M M1 Mo- - - Mk_1 M = M’
NN N
N1 N2 N
NN '
L1 Lo--- Lk-1
N
K1
.E .

2.5 Proving the Diamond Property

Note that— (one-step reduction) doest satisfy the diamond property

M
VAN
M1 Mo

N
L

Consider the terniaAx.xx)(l a), wherel = Ax.X. In one step, it reduces to
(ax.xx)aorto(la)(l a). These both reduce eventuallyaa, but there is no way
to complete the diamond with a single-step reduction:

(AX.xX)(1 a)
e N
(la)(la) (AX.Xx)a

v

aa

The problem, of course, is thétx.xx) replicates its argument, which must
then be reduced twice. Note also that the difficult cases involve one possible

10 2 EQUALITY AND NORMALIZATION

reduction contained inside another. Reductions that do not overlap, sith-as
M”andN — N’ in the termx M N, commute trivially to produce M’N’.

The diamond property for» can be proved with the help of a ‘strip lemma’,
which considers the case wheké — M (in one step) and alsdM — My
(possiblymanysteps):

The ‘strips’ can then be pasted together to complete a diamond. The details
involve an extremely tedious case analysis of the possible reductions from various
forms of terms.

2.6 Possibility of Nontermination

Although different reduction sequences cannot yield different normal forms, they
can yield completely different outcomes: one could terminate while the other
runs forever! Typically, ifM has a normal form and admits an infinite reduction
seqguence, it contains a subteknmaving no normal form, ant can be erased by
a reduction.

For example, recall tha® reduces to itself, wher = (AX.xX)(AX.xX). The
reduction

Ay.a)2 — a

reaches normal form, erasing tf2e This corresponds to@all-by-namdreatment
of functions: the argument is not reduced but substituted ‘as is’ into the body of
the abstraction.
Attempting to normalize the argument generates a nonterminating reduction
sequence:
Ay.a)2 - (Ay.a)2 — ---

Evaluating the argument before substituting it into the body corresponds to a
call-by-valuetreatment of function application. In this example, the call-by-value
strategy never reaches the normal form.

2.7 Normal Order Reduction

Thenormal orderreduction strategy is, at each step, to perform the leftmost out-
ermostB-reduction. (The;-reductions can be left until lastbeftmostmeans, for

2.8 Lazy Evaluation 11

instance, to reduck beforeN in L N. Outermosimeans, for instance, to reduce
(AX.M)N before reducingv or N.

Normal order reduction corresponds to call-by-name evaluation. By the Stan-
dardization Theorem, it always reaches a normal form if one exists. The proof
is omitted. However, note that reducimgfirst in LN may transformL into an
abstraction, sayx.M. Reducing(AXx.M)N may eraseN.

2.8 Lazy Evaluation

From a theoretical standpoint, normal order reduction is the optimal, since it al-
ways yields a normal form if one exists. For practical computation, it is hopelessly
inefficient. Assume that we have a coding of the natural numbers (for which see
the next section!) and define a squaring functsgm = An. mult nn. Then

sqgr (sqrN) — mult (sgr N)(sgr N) — mult (mult N N)(mult N N)

and we will have to evaluate four copies of the tehh Call-by-value would
have evaluatedN (only once) beforehand, but, as we have seen, it can result in
nontermination.

Note: multi-letter identifiers (likesgr) are set in bold type, or underlined, in
order to prevent confusion with a series of separate variabless(jRe

Lazy evaluationor call-by-neednever evaluates an argument more than once.
An argument is not evaluated unless the value is actually required to produce the
answer; even then, the argument is only evaluated to the extent needed (thereby
allowing infinite lists). Lazy evaluation can be implemented by representing the
term by a graph rather than a tree. Each shared graph node represents a subterm
whose value is needed more than once. Whenever that subterm is reduced, the
result overwrites the node, and the other references to it will immediately have
access to the replacement.

Graph reduction is inefficient for the-calculus because subterms typically
contain free variables. During eaghreduction, the abstraction’s body must be
copied. Graph reduction works much better for combinators, where there are no
variables. We shall return to this point later.

3 Encoding Data in thei-Calculus

The A-calculus is expressive enough to encode boolean values, ordered pairs, nat-
ural numbers and lists — all the data structures we may desire in a functional
program. These encodings allow us to model virtually the whole of functional
programming within the simple confines of thecalculus.

12 3 ENCODING DATA IN THEX-CALCULUS

The encodings may not seem to be at all natural, and they certainly are not
computationally efficient. In this, they resemble Turing machine encodings and
programs. Unlike Turing machine programs, the encodings are themselves of
mathematical interest, and return again and again in theoretical studies. Many of
them involve the idea that the data can carry its control structure with it.

3.1 The Booleans

An encoding of the booleans must define the tetrng , false and if , satisfying
(for all M andN)

if true MN = M
if false MN = N.

The following encoding is usually adopted:

true = AXy.X
false = Axy.y
if = ApXy.pxy

We havetrue # false by the Church-Rosser Theorem, sirtcee and false
are distinct normal forms. As it happeri,is not even necessary. The truth values
are their own conditional operators:

true MN = AXy.X)MN —» M
falseMN = (Axy.y)MN — N

These reductions hold for all termd and N, whether or not they possess
normal forms. Note thaif LM N — LMN; it is essentially an identity function
on L. The equations given above even hold as reductions:

if true MN — M
if false MN — N.

All the usual operations on truth values can be defined as conditional operator.
Here are negation, conjunction and disjunction:

and ApQ.if p gfalse
or ApQ.if ptrue q
not = Ap.if pfalse true

3.2 Ordered Pairs 13

3.2 Ordered Pairs

Assume thattrue and false are defined as above. The functigair , which
constructs pairs, and the projectiofst and snd, which select the components
of a pair, are encoded as follows:
pair = Aixyffxy
fst Ap.ptrue
snd = Aip.pfalse

Clearly, pair MN — Af.f MN, packagingM and N together. A pair may
be applied to any 2-place function of the fosmy.L, returningL[M /X][N/y];
thus, each pair is its own unpackaging operation. The projections work by this
unpackaging operation (which, perhaps, is more convenient in programming than
are the projections themselves!):

fst (pair MN) fst(Af.f MN)

— (Af.f MN)true
— true MN
—- M

Similarly, snd(pair MN) — N. Observe that the components jpdir M N
are completely independent; either may be extracted even if the other has no nor-
mal form.

Orderedn-tuples could be defined analogously, but nested pairs are a simpler
encoding.

3.3 The Natural Numbers

The following encoding of the natural numbers is the original one developed by
Church. Alternative encodings are sometimes preferred today, but Church’s nu-
merals continue our theme of putting the control structure in with the data struc-
ture. Such encodings are elegant; moreover, they work in the secondarder
calculus (presented in the Types course by Andrew Pitts).

Define
0 AfX.x
1 = ifx.fx
2 = MAMx.f(fx)
n = Afx. f¢--(fx)---)

——
n times

14 3 ENCODING DATA IN THEX-CALCULUS

Thus, for alln > 0, the Church numerat is the function that maps$ to f".
Each numeral is an iteration operator.

3.4 Arithmetic on Church Numerals

Using this encoding, addition, multiplication and exponentiation can be defined
immediately:

add = imnfxmf(nfx)
mult = imnfxm(nf)x
expt = imnfxnmfx

Addition is not hard to check:

addmn — Afx.mf(nfx)
— Afx M%)
Afx. fMHNx
m+n

Multiplication is slightly more difficult:

Afx.m(n f)x
Afx.(n f)Mx
Afx.(fMHMx
= Afx. f™"x
mx n

mult m n

Lo

These derivations hold for all Church numeratsand n, but not for all terms
M andN.

Exercise 3 Show thatexpt performs exponentiation on Church numerals.

3.5 The Basic Operations for Church Numerals

The operations defined so far are not sufficient to define all computable functions
on the natural numbers; what about subtraction? Let us begin with some simpler
definitions: the successor function and the zero test.

suc = Anfx.f(nfx)
iszero an.n(ax. false) true

3.6 Lists 15

The following reductions hold for every Church numeral

such — n+1
iszero0 — true
iszero(n+1) — false

For example,

iszero(n+1) — n+ 1(ix.false)true
— (Ax.false)"true
= (ax.false)((Ax.false)" true)

— false
The predecessor function and subtraction are encoded as follows:

prefn = Afp.pair (f(fstp)) (fstp)
pre = infx.snd(n(prefn f)(pair xx))
sub = Aimnnprem

Defining the predecessor function is difficult when each numeral is an iterator.
We must reduce an + 1 iterator to am iterator. Givenf andx, we must find
someg andy such thag"tly computesf "x. A suitableg is a function on pairs
that mapgx, z) to (f (x), X); then

9" (x, x) = (F"(x), £"(x)).

The pair behaves like a one-element delay line.
Above, prefn f constructs the functiog. Verifying the following reductions
should be routine:

pre(n+1) — n
pre(0) — O

For subtractionsub m n computes thath predecessor afn.

Exercise 4 Show thatmn.msucn performs addition on Church numerals.

3.6 Lists

Church numerals could be generalized to represent lists. Theqistd], . .. , Xn]
would essentially be represented by the function that takesnd y to

16 4 WRITING RECURSIVE FUNCTIONS IN THE.-CALCULUS

fx(fxa...(fXpy)...). Such lists would carry their own control structure with
them.

As an alternative, let us represent lists rather as Lisp and ML do — via pairing.
This encoding is easier to understand because it is closer to real implementations.
The list [X1, X2, ... , Xn] Will be represented by :: xo 2 ... 2 nil. To keep
the operations as simple as possible, we shall employ two levels of pairing. Each
‘cons cell’ x :: y will be represented byfalse, (x, y)), where thefalse is a
distinguishing tag field. By rightsnil should be represented by a pair whose
first component igrue , such agtrue, true), but a simpler definition happens
to work. In fact, we could dispense with the tag field altogether.

Here is our encoding of lists:

nil = Azz
cons = AXy.pair false(pair xy)
null = fst

hd = iz fst(sndz)

tt = Az snd(sndz)

The following properties are easy to verify; they hold for all tefsh@nd N :

null nil - — true

null (consMN) — false
hd (consMN) — M
tl (consMN) — N

Note thatnull nil — true happens really by chance, while the other laws
hold by our operations on pairs.

Recall that laws likehd (consMN) — M and snd(pair MN) — N hold
for all M and N, even for terms that have no normal forms! Thysir and
cons are ‘lazy’ constructors — they do not ‘evaluate their arguments’. Once we
introduction recursive definitions, we shall be able to compute with infinite lists.

Exercise 5 Modify the encoding of lists to obtain an encoding of the natural
numbers.

4 Writing Recursive Functions in the A-calculus

Recursion is obviously essential in functional programming. With Church nu-
merals, it is possible to define ‘nearly all' computable functions on the natural

17

numberst Church numerals have an inbuilt source of repetition. From this, we
can derive primitive recursion, which when applied using higher-order functions
defines a much larger class than the primitive recursive functions studied in Com-
putation Theory. Ackermann’s function is not primitive recursive in the usual
sense, but we can encode it using Church numerals. If we put

ack = amm(fn.nf(f 1))suc

then we can derive the recursion equations of Ackermann’s function, namely

ackOn = n+1
ack(m+1)0 = ackml
ack(m+1)(n+1) = ackm(ack(m+1)n)

Let us check the first equation:

ackOn —» O(fn.nf(fl))sucn
—» sucn

n+1
For the other two equations, note that

ack(m+1)n (m+ L)(Afn.nf(fl))sucn
Afnnf(f L))y(m@ fn.nf(fl))suc)n
= @fn.nf(fl))(ackm)n

— n(ackm)(ackm1)

—»
—»

We now check

ack(m+1)0 — O(ackm)(ackm1l)
—» ackml

and

ack(m+1)(n+1) — n+1(ackm)(ackm1l)
— ackm(n(ackm)(ackm 1))
= ackm(ack(m+1)n)

The key to this computation is the iteration of the functack m.

1The precise meaning of ‘nearly all’ involves heavy proof theory, but all ‘reasonable’ functions
are included.

18 4 WRITING RECURSIVE FUNCTIONS IN THE.-CALCULUS

4.1 Recursive Functions using Fixed Points

Our coding of Ackermann’s function works, but it hardly could be called per-
spicuous. Even worse would be the treatment of a function whose recursive calls
involved something other than subtracting one from an argument — performing
division by repeated subtraction, for example.

General recursion can be derived in thealculus. Thus, we can model all
recursive function definitions, even those that fail to terminate for some (or all) ar-
guments. Our encoding of recursion is completely uniform and is independent of
the details of the recursive definition and the representation of the data structures
(unlike the above version of Ackermann’s function, which depends upon Church
numerals).

The secret is to usefaed point combinato— a termY such thatY F =
F(Y F) for all termsF. Let us explain the terminology. #ixed pointof the
function F is any X such thatF X = X; here,X = Y F. A combinatoris any
A-term containing no free variables (also called a closed term). To code recursion,
F represents the body of the recursive definition; the¥alWw = F(Y F) permits
F to be unfolded as many times as necessatry.

4.2 Examples Using Y

We shall encode the factorial function, the append function on lists, and the infinite
list [0, 0,0, ...]inthe A-calculus, realising the recursion equations

factN = if (iszeroN)1(mult N(fact (pre N)))
appendZW = if (null Z)W(cons(hd Z)(append(tl Z)W))
zeroes = consO0 zeroes

To realize these, we simply put

fact = Y (Agn.if (iszeron) 1 (mult n(g(pren))))
append = Y (Agzw.if (null 2)w(cons(hd z)(g(tl Z2)w)))
zeroes = Y (Ag.cons0gQ)

In each definition, the recursive call is replaced by the variaplén
Y (AQ....). Let us verify the recursion equation faeroes the others are simi-
lar:

zeroes = Y (Ag.cons0Q)
= (Ag.cons0g)(Y (rg.cons0Q))
= (Ag.cons0g) zeroes
— consQ zeroes

4.3 Usage of Y 19

4.3 UsageofY

In general, the recursion equatidh = P M, whereP is anyi-term, is satisfied
by definingM = Y P. Let us consider the special case whéfeis to be an
n-argument function. The equatidix; ... x, = P M is satisfied by defining

M=Y QAgxy...Xn.PQ)

for then
MX1...Xn = Y (AQX1...%Xn.PQ)X1...%Xn
(AOX1...Xn.P@IMX1...Xn
- PM

Let us realize the mutual recursive definitionMfandN, with corresponding
bodiesP andQ:

M = PMN
N = QMN

The idea is to take the fixed point of a functiénon pairs, such that (X, Y) =
(P XY, QXY). Using our encoding of pairs, define

L = Y (\z pair (P(fstz)(sndz))
(Q(fstz)(sndz)))
M fstL

N = sndL

By the fixed point property,

L = pair (P(fstL)(sndL))
(Q(fstL)(sndL))

and by applying projections, we obtain the desired
M = P(fstL)(sndL) = PMN
N = Q(fstL)(sndL) = QMN.

4.4 Defining Fixed Point Combinators

The combinatorY was discovered by Haskell B. Curry. It is defined by

Y = Af.(Ax. F(XX))(AX. f (XX))

20 4 WRITING RECURSIVE FUNCTIONS IN THE.-CALCULUS

Let us calculate to show the fixed point property:

YF — AX.FXX)(AX.F(XX))
— F((OX.F(XX))(AX.F(xX)))
= F(YF)

This consists of twg-reductions followed by #-expansion. No reduction
Y F — F(Y F) is possible! There are other fixed point combinators, such as
Alan Turing’s ®:

A = AXY.Y(XXY)
® = AA

We indeed have the reductiedF — F(OF):
OF = AAF -» F(AAF) = F(OF)
Here is a fixed point combinator discovered by Klop:

£ = Jlabcdefghijklmnopgstuwxyzrr (thisisafixedpointcombinator
$ = EELEEEEEEEELLLLLELLLLLLEELE

The proof of & — F($F) is left as an exercise. Hint: look at the occurrences
ofr!

Any fixed point combinator can be used to make recursive definitions under
call-by-name reduction. Later, we shall modi¥y to get a fixed point combinator
that works with a call-by-value interpreter for thecalculus. In practical com-
pilers, recursion should be implemented directly because fixed point combinators
are inefficient.

4.5 Head Normal Form

If M = xM thenM has no normal form. For iM — N whereN is in nor-
mal form, thenN = xN. SincexN is also in normal form, the Church-Rosser
Theorem gives udl = x N. But clearlyN cannot contain itself as a subterm!

By similar reasoning, iM = P M thenM usually has no normal form, unless
P is something like a constant function or identity function. So anything defined
with the help of a fixed point combinator, such &ct, is unlikely to have a
normal form.

Although fact has no normal form, we can still compute withigct 5 does
have a normal form, namely 120We can use infinite objects (including func-
tions as above, and also lazy lists) by computing with them for a finite time and
requesting a finite part of the result. To formalize this practice, let us define the
notion ofhead normal forn{hnf).

4.5 Head Normal Form 21

Definition 7 A term is inhead normal fornthnf) if and only if it looks like this:
AX1 ... Xm-YM1... Mg (m, k > 0)
Examples of terms in hnf include
X AX. Y2 AX Y.X 1z2.Z((AX.a)C)
But Ay.(AX.@)y is not in hnf because it admits the so-callezhd reduction
AY.(AX.Q)Yy — Ay.a.

Let us note some obvious facts. A term in normal form is also in head normal
form. Furthermore, if

AX1... Xm.YM1... Mg - N
thenN musthave the form
AX1 ... Xm. YNz ... Nk

whereM1 — Nz, ..., Mk — Nk. Thus, a head normal form fixes the outer struc-
ture of any further reductions and the final normal form (if any!). And since the
argumentdMy, ... , Mg cannot interfere with one another, they can be evaluated
independently.

By reducing a ternM to hnf we obtain a finite amount of information about
the value ofM. By further computing the hnfs dfl4, ... , Mk we obtain the next
layer of this value. We can continue evaluating to any depth and can stop at any
time.

For example, definee = ®(pair 0). This is analogous t@eroes but uses
pairs:ze= (0, (0, (0, ...))). We have

ze — pair Oze
(Axyf.fxy)0ze
Af.f0ze
Af.fO(Af.T Oze)

A

With Af.f 0zewe reached a head normal form, which we continued to reduce.
We havefst (ze) —» 0 and fst(snd(ze)) — 0, since the same reductions work

if zeis a function’s argument. These are examples of useful finite computations
involving an infinite value.

22 4 WRITING RECURSIVE FUNCTIONS IN THE.-CALCULUS

Some terms do not even have a head normal form. Rcalkefined by =
(AX.XX)(AX.XX). A term is reduced to hnf by repeatedly performing leftmost
reductions. Withe2 we can only da2 — 2, which makes no progress towards an
hnf. Another term that lacks an hnfiy.Q2; we can only reducgy.Q — Ay.Q.

It can be shown that iIMN has an hnf then so do@8. Therefore, ifM has
no hnf then neither does any term of the fokiiN1 N> . .. Nx. A term with no hnf
behaves like #otally undefined functiamo matter what you supply as arguments,
evaluation never returns any information. It is not hard to see ti\thfas no hnf
then neither doesx.M or M[N/x], so M really behaves like a black hole. The
only way to get rid ofM is by a reduction such aax.a)M — a. This motivates
the following definition.

Definition 8 A term is definedif and only if it can be reduced to head normal
form; otherwise it isundefined

The exercises below, some of which are difficult, explore this concept more
deeply.

Exercise 6 Are the following terms defined? (Hetle¢ = Axy.X.)

Y Ynot K YI xQ2 YK Y (KX) n

Exercise 7 A term M is calledsolvableif and only if there exist variables;,
..., Xmand termaNq, ..., N, such that

Investigate whether the terms given in the previous exercise are solvable.

Exercise 8 Show that ifM has an hnf theM is solvable. Wadsworth proved
that M is solvable if and only ifM has an hnf, but the other direction of the
equivalence is much harder.

4.6 Aside: An Explanation of Y

For the purpose of expressing recursion, we may simply expdit= F(Y F)
without asking why it holds. However, the origins ¥f have interesting connec-
tions with the development of mathematical logic.

Alonzo Church invented thie-calculus to formalize a new set theory. Bertrand
Russell had (much earlier) demonstrated the inconsistency of naive set theory. If

4.7 Summary: thé-Calculus Versus Turing Machines 23

we are allowed to construct the fet= {x | x ¢ x}, thenR € R if and only if
R ¢ R. This became known as Russell’'s Paradox.

In his theory, Church encoded sets by their characteristic functions (equiva-
lently, as predicates). The membership fdse N was coded by the application
N (M), which might be true or false. The set abstractign P} was coded by
AX.P, whereP was someé.-term expressing a property gf

Unfortunately for Church, Russell's Paradox was derivable in his system! The
Russell set is encoded By = Ax.not(xx). This implied RR = not(RR),
which was a contradiction if viewed as a logical formula. In f&&Rhas no head
normal form: it is an undefined term like.

Curry discovered this contradiction. The fixed point equationYofollows
from RR= not (RR) if we replacenot by an arbitrary ternt-. Therefore,Y is
often called the Paradoxical Combinator.

Because of the paradox, thecalculus survives only as an equational theory.
Thetypedai-calculus does not admit any known paradoxes and is used to formalize
the syntax of higher-order logic.

4.7 Summary: thei-Calculus Versus Turing Machines

The A-calculus can encode the common data structures, such as booleans and
lists, such that they satisfy natural laws. Dhealculus can also express recursive
definitions. Because the encodings are technical, they may appear to be unworthy
of study, but this is not so.

e The encoding of the natural numbers via Church numerals is valuable in
more advanced calculi, such as the second-oremiculus.

e The encoding of lists via ordered pairs models their usual implementation
on the computer.

e As just discussed, the definition &f formalizes Russell's Paradox.

e Understanding recursive definitions as fixed points is the usual treatment in
semantic theory.

These constructions and concepts are encountered throughout theoretical com-
puter science. That cannot be said of any Turing machine program!

5 The A-Calculus and Computation Theory

The A-calculus is one of the classical models of computation, along with Turing
machines and general recursive functio@hurch’s Thesistates that the com-
putable functions are precisely those that/adefinable. Below, we shall see that

24 5 THEX-CALCULUS AND COMPUTATION THEORY

theA-calculus has the same power as the (total) recursive functions. We shall also
see some strong undecidability results feterms. The following definition is
fundamental.

Definition 9 If f is ann-place function over the natural numbers, thiets A-
definabldf there exists somg-term F such that, for alky, ... , ks € N,

Fki.. ko = fki,... Kn).

In other words,F maps numerals for arguments to numerals fiar results.
By the Church-Rosser Theorem, since numerals are in normal form, we have the
reduction
Fki...kn = f(ki,... . Kn).

Thus, we can compute the value &fky, ..., ky) by normalizing the term
Fki...kn.

5.1 The Primitive Recursive Functions

In computation theory, the primitive recursive functions are built up from the fol-
lowing basic functions:

0 the constant zero
suc the successor function _
U. the projection functiond)} (X1, ... , Xn) = Xi

New functions are constructed ybstitutionand primitive recursion Sub-
stitution, or generalized composition, takesnaplace functiorg and then-place
functionshy, ... , hy; it yields then-place functionf such that

f(X]_, cee Xn) = g(h_’]_(Xl, L) Xn)7 L} hm(xla cee Xn))

Primitive recursion takes am-place functiong and an(n + 2)-place functiorh;
it yields the(n + 1)-place functionf such that

f(oa X1’~~~ 9Xn) == g(X19'~~ 5Xn)
f(suc(y)’xl’ ,Xn) == h(f(y’ Xl9 7Xn)’ y’ Xl’ ,Xn)

5.2 Representing the Primitive Recursive Functions

The functions are defined in thecalculus in the obvious way. The proof that they
are correct (with respect to our definitionofdefinability) is left as an exercise.
Here are the basic functions:

5.3 The General Recursive Functions 25

e For 0 use_Q namelyxf x.x.
e For suc usesuc, namelyanfx.nf(fx).
e ForU/! useaxs...xn.x.

To handle substitution, suppose that thelace functiong andn-place func-
tionshs, ..., hy, arex-defined byG, Hy, ... , Hm, respectively. Then, their com-
position f is A-defined by

F=Ax1...X%0.G(H1X1...Xn) ... (HmX1 ... Xn).

To handle primitive recursion, suppose thattiglace functiorg and(n+ 2)-
place functiorh arei-defined byG andH, respectively. The primitive recursive
function f is A-defined by

F=Y <Afyx1. .. Xn. if (iszeroy)
(GX1...Xn)

(H(f(prey)xa... X (Prey)xa. .. xn)).

5.3 The General Recursive Functions

Starting with the primitive recursive functions, the so-caltgheral recursive
functionsare obtained by adding tmeinimisation operatqgror function inversion.
Given ann-place functiorg it yields then-place functionf such that

f (X1, ..., Xn) = the leasty such that§(y, xo, ... , Xn) = Xq]

and is undefined if no suchexists.
Thus, minimisation may yield a partial function. This leads to certain difficul-
ties.

e The notion ofundefineds complicated in the.-calculus. It is tedious to
show that the.-encoding of minimisation yields an undefined term if and
only if the corresponding function fails to terminate.

e Composition in the.-calculus is non-strict. For example, consider the par-
tial functionsr ands such that (x) = 0 ands(x) is undefined for alk. We
may A-definer ands by R = Ax.0 andS = Ax.Q. Now,r (s(0)) should be
undefined, buR(S0) — 0. Defining the strict composition dk andSis

tricky.

26 5 THEX-CALCULUS AND COMPUTATION THEORY

Let us restrict attention to thetal recursive functions. If for alky, ... , Xn
there is somey such thatg(y, X2, ... , Xn) = X1, then the inverse of is total.
Suppose thab is a term thai-definesg. Then the inverse is-defined by

F=AX1...%.Y (Ahy. if (equalsx1(Gyx...Xn)
y
(h(sucy)) 0

This sets up a recursive function that tests whetli&yx . .. x,) equalsx;
for increasing values of. To start the search, this function is applied to The
equality test for natural numbers can be defined in many ways, such as

equals = Am n.iszero(add (subm n)(subn m))

This works becausesubmn = 0 if m < n. The equality relation between
arbitrary A-terms (not just for Church numerals) is undecidable and cannot be
expressed in thg-calculus.

Exercise 9 Find another definition of the equality test on the natural numbers.

5.4 TheA-Definable Functions are Recursive

We have just shown that all total recursive functionsiackefinable. The converse

is not particularly difficult and we only sketch it. The key is to assign a unique (and
recursively computable!) @lel number # to eachi-term M. First, assume that
the set of variables has the foom, Xo, X3, . . ., S0 that each variable is numbered.
The definition of #M is quite arbitrary; for example, we could put

= 2
#(Oxi.M) = 35
#HMN) = 7M17"N

To show that all-definable functions are recursive, suppose that we are given
a A-term F; we must find a recursive functiof such thatf (kq, ... , ky) = kiif
and only if Fky ... kn = k. We can do this in a uniform fashion by writing
an interpreter for thé.-calculus using the language of total recursive functions,
operating upon the @lel numbers ok-terms. This is simply a matter of pro-
gramming. The resulting program is fairly long but much easier to understand
than its Turing machine counterpart, namely the Universal Turing Machine.

5.5 The Second Fixed Point Theorem 27

Exercise 10 (Composition of partial functions.) Show thatl = | for every
Church numerah . Use this fact to show that the terkh defined by

H = Ax.G xI (F(G X))

A-defines the compositioh o g of the functionsf andg, providedF A-definesf
andG)\-definesy. What can be said abott M if G M is undefined? Hint: recall
the definition ofsolvablefrom Exercise 7.

5.5 The Second Fixed Point Theorem

We shall formalize the.-calculus in itself in order to prove some undecidability
results. The @del numbering is easily coded and decoded by arithmetic opera-
tions. In particular, there exist computable functions Ap and Num, operating on
natural numbers, such that

Ap#M, #N) = #(MN)
= 7M1
Num(n) = #(n)
= #AX2X1. X2(- - (X2 X1) -+)
———
n
These can be-defined by termsAP and NUM , operating on Church nu-

merals. Let us writé M for (#M), which is the Church numeral for thed@el
number ofM. This itself is ar-term. Using this notationAP and NUM satisfy

AP"MT N7 = TMN~
NUMn = "n™ (wheren is any Church numeral)

Putting” M for n in the latter equation yields a crucial property:
NUM I_M—l — I—I_M—I“I.

Theorem 10 (Second Fixed Point)lif F is anyi-term then there exists a teri
such that
FrX7=X.

Proof Make the following definitions:

W = ix.F(APx(NUM x))
X = Wrw™

28 5 THEX-CALCULUS AND COMPUTATION THEORY

Then, by aB-reduction and by the laws fohP and NUM , we get

X — F(APTWT(NUM™WM))
s F(AP I—W_H—I—W—I—I)
— F(FWFW‘I‘I)
= F(X7)
ThereforeX = F(" X™). O

Exercise 11 How do we know that the steps in the proof are actually reductions,
rather than mere equalities?

What was the First Fixed Point Theorem?Hfis any A-term then there ex-
ists a termX such thatF X = X. Proof: putX = Y F. Note the similarity
betweenY F and theX constructed above. We use fixed point combinators to
define recursive functions; we shall use the Second Fixed Point Theorem to prove
undecidability of the halting problem.

5.6 Undecidability Results for ther-Calculus

We can show that the halting problem, as expressed in-taculus, is undecid-
able.

Theorem 11 There is noi-term halts such that

true if M has a normal form
false if M has no normal form

halts™"M ™ = {
Proof Assume the contrary, namely thaalts exists. Put
D = Ax.if (haltsx)Q2 0;
by the Second Fixed Point Theorem, there exis®uch that
X=D"X"=if (halts" X ")Q0.
There are two possible cases; both lead to a contradiction:

e If X has a normal form theX = if true Q0 = , which has no normal
form!

e If X has no normal form theiX = if false20 = 0, which does have a
normal form!
O

29

The proof is a typical diagonalisation argument. The theorem is strong: al-
though halts"M ™ can do anything it likes with the code ®fl, analysing the
term’s structure, it cannot determine whetidrhas a normal form. Assuming
Church’s Thesis — the computable functions are precisely.tdefinable ones
— the theorem states that the halting problem for the normalizationtefms is
computationally undecidable.

Much stronger results are provable. Dana Scott has shown that

e if A isanynon-trivial set ofa-terms (which means that is neither empty
nor the set of alk-terms), and

e if Ais closed under equality (which means tivite 4 andM = N imply
N e A)

then the test for membership fAis undecidable. The halting problem follows as
a special case, taking

A={M | M = N andN is in normal form

See Barendregt [1, page 143], for more information.

6 ISWIM: The A-calculus as a Programming Lan-
guage

Peter Landin was one of the first computer scientists to take notice of-the
calculus and relate it to programming languages. He observed that Algol 60’s
scope rules and call-by-name rule had counterparts intt@lculus. In his pa-

per [8], he outlined a skeletal programming languages based ok-¢haéulus.

The title referred to the 700 languages said to be already in existence; in principle,
they could all share the samecalculus skeleton, differing only in their data types
and operations. Landin’s language, ISWIM (If you See What | Mean), dominated
the early literature on functional programming, and was the model for ML.

Lisp also takes inspiration from thecalculus, and appeared many years be-
fore ISWIM. But Lisp made several fatal mistakes: dynamic variable scoping,
an imperative orientation, and no higher-order functions. Although ISWIM al-
lows imperative features, Lisp is essentially an imperative language, because all
variables may be updated.

ISWIM was designed to be extended with application-specific data and oper-
ations. It consisted of the-calculus plus a few additional constructs, and could
be translated back into the pukecalculus. Landin called the extra constructs
syntactic sugabecause they made thecalculus more palatable.

30 6 ISWIM: THE L-CALCULUS AS A PROGRAMMING LANGUAGE

6.1 Overview of ISWIM
ISWIM started with ther-calculus:

X variable
(Ax.M) abstraction
(MN) application

It also allowed local declarations:

letx = M in N simple declaration
let f X1---Xk=Min N function declaration
letrec f X1---xxk = M in N recursive declaration

Local declarations could be post-hoc:

N wherex = M
N where f X1--- Xk = M
N whererec f X1-- - Xk = M

The meanings of local declarations should be obvious. They can be translated into
the purei-calculus:

letx = Min N =(AX.N)M
let f x1---xk=MinN =Qf.N)AX1- - X.M)
letrecf X1 Xk =M in N=QAf.N)(Y (AfXy---X.M))

Programmers were not expected to encode data using Church numerals and the
like. ISWIM provided primitive data structures: integers, booleans and ordered
pairs. There being no type system, lists could be constructed by repeated pairing,
as in Lisp. The constants included

01-12-2... integers

+—-x/ arithmetic operators
=4<><> relational operators

true false booleans

and or not boolean connectives

if Ethen M elseN conditional

6.2 Call-by-value in ISWIM

The call-by-valuerule, rather tharcall-by-name was usually adopted. This was
(and still is) easier to implement; we shall shortly see how this was done, using
the SECD machine. Call-by-value is indispensable in the presence of imperative
operations.

6.3 Pairs, Pattern-Matching and Mutual Recursion 31

Call-by-value gives more intuitive and predictable behaviour generally. Clas-
sical mathematics is based on strict functions; an expression is undefined unless
all its parts are defined. Under call-by-name we can define a fun€tgurch that
if f(x) = 0 for all x, with evenf (1/0) = 0. Ordinary mathematics cannot cope
with such functions; putting them on a rigorous basis requires complex theories.

Under call-by-valueif -thenelsemust be taken as a special form of expres-
sion. Treatingif as a function makefact run forever:

letrec factn) = if (n=0) 1 (n x fact(n — 1))

The arguments taf are always evaluated, including the recursive call; wihen
0 it tries to computdact(—1). Therefore, we take conditional expressions as
primitive, with evaluation rules that retutd or N unevaluated

if EthenMelseN — M
if EthenMelseN — N

Our call-by-value rule never reduces anything enclosed hy &o we can
translate the conditional expression to the application of afunction:

if EthenM elseN = if E (Au.M) (Au.N) O
Choosing some variablke not free inM or N, enclosing those expressionsin

delays their evaluation; finally, the selected one is applied to O.

6.3 Pairs, Pattern-Matching and Mutual Recursion
ISWIM includes ordered pairs:

(M, N) pair constructor
fst snd projection functions

For pattern-matching, let(p1, p2).E abbreviate
AZ.(Ap1 p2.E)(fstz)(sndz)
wherep; and p2 may themselves be patterns. Thus, we may write

let(x,y) = Min E taking apartM’s value
let f(x,y) = Ein N defining f on pairs

The translation iterates to handle things like

let (w, (X, (Y,2)) =Min E.

32 6 ISWIM: THE L-CALCULUS AS A PROGRAMMING LANGUAGE

We may introducen-tuples, writing(Xs, . .. , Xn—1, Xn) for the nested pairs

(X1, -+, Xn=1, Xn) - . .).
The mutually recursive function declaration

letrec f1 X1 = M1
and f2)?2 = M>

and fx Xk = M
in N

can be translated to an expression involving pattern-matching:
(1, .o, FONYCY (A (fa, ..., fl).OWR1. M1, AX2. Mo, ..., ARk MK)))

We can easily handle the general cask oifutually recursive functions, each with
any number of arguments. Observe the power of syntactic sugar!

6.4 From ISWIM to ML

Practically all programming language features, including go to statements and
pointer variables, can be formally specified in thealculus, using the techniques

of denotational semanticdSWIM is much simpler than that; it is programming
directly in thei-calculus. To allow imperative programming, we can even define
sequential execution, lettinyl; N abbreviate(Ax.N)M; the call-by-value rule

will evaluate M beforeN. However, imperative operations must be adopted as
primitive; they cannot be defined by simple translation intoittealculus.

ISWIM gives us all the basic features of a programming language — variable
scope rules, function declarations, and local declarations. Igtlteclaration is
particularly convenient; many languages still make us write assignments for this
purpose!) To get a real programming language, much more needs to be added, but
the languages so obtained will have a common structure.

ISWIM was far ahead of its time and never found mainstream acceptance. Its
influence on ML is obvious. Standard ML has changed the syntax of declarations,
added polymorphic types, exceptions, fancier pattern-matching and modules —
but much of the syntax is still defined by translation. A French dialect of ML,
called CAML, retains much of the traditional ISWIM syntax [3].

6.5 The SECD Machine

Landin invented the SECD machine, an interpreter forxttoalculus, in order to
execute ISWIM programs [2, 4, 7]. A variant of the machine executes instructions

6.6 Environments and Closures 33

compiled froma-terms. With a few optimisations, it can be used to implement
real functional languages, such as ML. SECD machines can be realized as byte-
code interpreters, their instructions can be translated to native code, and they can
be implemented directly on silicon. The SECD machine yields strict evaluation,
call-by-value. A lazy version is much slower than graph reduction of combinators,
which we shall consider later.

It is tempting to say that @alueis any fully evaluated.-term, namely a term
in normal form. This is a poor notion of value in functional programming, for two
reasons:

1. Functions themselves should be values, but many functions have no nor-
mal form. Recursive functions, coded &sF, satisfy Y F = F(Y F) =
F(F(Y F)) = -.-. Although they have no normal form, they may well
yield normal forms as results when they are applied to arguments.

2. Evaluating the body of a-abstraction, namely thi! in Ax.M, serve little
purpose; we are seldom interested in the internal structure of a function.
Only when it is applied to some argumedtdo we demand the result and
evaluateM[N/x].

Re (2), we clearly cannot use encodings likey.x for true andif x.x for
0, since our evaluation rule will not reduce function bodies. We must take the
integers, booleans, pairs, etc., as primitive constants. Their usual functipas (
X, ...) must also be primitive constants.

6.6 Environments and Closures
Consider the reduction sequence
(AXy.X+Yy)35— (Ay.3+Yy)5— 3+5— 8.

The g-reduction eliminates the free occurrencexah Ay.x + y by substitution
for x. Substitution is too slow to be effective for parameter passing; instead, the
SECD machine records= 3 in anenvironment

With curried functions(Axy.x + y) 3 is a legitimate value. The SECD ma-
chine represents it by@osure packaging the.-abstraction with its current envi-
ronment:

Clo(y , X+Yy , XxX=3)
1 t 1

bound variable function body environment

When the SECD machine applies this function value to the argument 5, it restores
the environment tx = 3, adds the bindiny = 5, and evaluateg + vy in this
augmented environment.

34 6 ISWIM: THE L-CALCULUS AS A PROGRAMMING LANGUAGE

A closure is so-called because it “closes up” the function body over its free
variables. This operation is costly; most programming languages forbid using
functions as values. Until recently, most versions of Lisp let a function’s free
variables pick up any values they happened to have in the environment of the call
(not that of the function’s definition!); with this approach, evaluating

letg(y) = x+yin
let f(x) =g(1) in
f(17)

would return 18, using 17 as the valueyoin g! This is dynamic binding as
opposed to the usualatic binding Dynamic binding is confusing because the
scope ofx in f(x) can extend far beyond the body 6f— it includes all code
reachable fromf (includingg in this case).

Common Lisp, now the dominant version, corrects this long-standing Lisp
deficiency by adopting static binding as standard. It also allows dynamic binding,
though.

6.7 The SECD State

The SECD machine has a state consisting of four comporgisC, D:

1. TheStackis a list of values, typically operands or function arguments; it
also returns the result of a function call.

2. TheEnvironmenthas the fornx; = az; - -+ ; Xn = an, expressing that the
variablesxs, ... , X, have the valueay, . .. , a,, respectively.

3. TheControlis a list of commands. For the interpretive SECD machine, a
command is a-term or the wordapp; the compiled SECD machine has
many commands.

4. The Dump is empty (—) or is another machine state of the form
(S, E, C, D). Atypical state looks like

(S1, E1, C1, (S, E2,Ca, ... (&, En, Ciy —) -.0))

Itis essentially a list of triple$S;, E1, C1), (S, E2, C2), ..., (S, En, Cn)
and serves as the function call stack.

6.8 State Transitions 35

6.8 State Transitions

Let us write SECD machine states as boxes:

Stack
Environment]
Control
Dump

To evaluate the.-term M, the machine begins execution an théial state
whereM is the Control:

M

ooOomwm

If the Control is non-empty, then its first command triggers a state transition.
There are cases for constants, variables, abstractions, applications, agthe
command.

A constant is pushed on to the Stack:

S k: S
E E
kc|— | C
D D

The value of a variable is taken from the Environment and pushed on to the
Stack. If the variable i andE containsx = a thena is pushed:

S a; S
E E
x;:C |~ C
D D

A XL-abstraction is converted to a closure, then pushed on to the Stack. The
closure contains the current Environment:

S Clo(x, M, E); S

E E
M. C| C

D D

36 6 ISWIM: THE L-CALCULUS AS A PROGRAMMING LANGUAGE

A function application is replaced by code to evaluate the argument and the
function, with an expliciapp instruction:

S S
E E

MN;C| "~ [N; M;app; C
D D

Theapp command calls the function on top of the Stack, with the next Stack
element as its argument. A primitive function, like or x, delivers its result
immediately:

f:a; S f(a); S
E | E
app; C | C
D D

The closureClo(x, M, E’) is called by creating a new state to evalulktan
the EnvironmenE’, extended with a binding for the argument. The old state is
saved in the Dump:

Clo(x, M, E";a; S —
E . Xx=a; E
app; C ' M
D (S, E,C, D)

The function call terminates in a state where the Control is empty but the
Dump is not. To return from the function, the machine restores the state
(S, E, C, D) from the Dump, then push@son to the Stack. This is the following
state transition:

a a; S

E’ . E

— ' C
(S, E,C,D) D

The result of the evaluation, say is obtained from dinal statewhere the
Control and Dump are empty, aads the sole value on the Stack:

a

ooOomw

6.9 A Sample Evaluation 37

6.9 A Sample Evaluation

To demonstrate how the SECD machine works, let us evaluate the expres-
sion twice sqr 3, where twice is Af x. f(f x) and sqr is a built-in squaring
function. (Note thattwice is just the Church numeral)2 We start from the
initial state:

— — 3
— gpplic — .Cor'St — gpplic
twicesqr 3| 3; twicesqr; app | twicesqr; app |
3 sqr; 3
— const — Iabstr
sqr; twice; app; app | - twice; app; app | -
Clo(f, Ax.f(f x), —); sqgr; 3 —
— app f = sqr abstr
app; app ' ax f(fx) |
- (3, —, app, -)
Clo(x, f(fx), f = sqr) Clo(x, f(fx), f =sqgr);3
f = sqr return - app
— ' app |
(3’) app’ _) -
x=3; f = sqr | applic | x = 3; f = sqr | applic
f(fx) ' fx; f;app '
(_’_5_3_) (_’_’ _3_)
— 3 sqr; 3
X=3; f=sqr | var [x=3f=sqr| var | x=3; f = sqr | apply
x; f;app; f;app | f; app; f;app | app; f;app |
(_’_’ _a_) (_’_7_7_) (_’_a_’_)
9 sqgr; 9 81 81
X=3; f=sqr| var [X=3;f=sqr| app |x=3;f=sqr | reun| —
f; app | app | — | —
(_’_5_3_) (_’_’ _3_) (_’_9_5_) -

38 6 ISWIM: THE L-CALCULUS AS A PROGRAMMING LANGUAGE

The machine terminates in a final state, giving a value of 81.

6.10 The Compiled SECD Machine

It takes 17 steps to evaluaté.x y.x 4+ y) 3) 5! Much faster execution is obtained
by first compiling thex-term. Write [M] for the list of commands produced by
compiling M; there are cases for each of the four kinds.4érm.

Constants are compiled to tlkenstcommand, which will (during later exe-
cution of the code) push a constant onto the Stack:

[k] = const(k)

Variables are compiled to thear command, which will push the variable’s
value, from the Environment, onto the Stack:

[x] = var(x)

Abstractions are compiled to tledbosurecommand, which will push a closure
onto the Stack. The closure will include the current Environment and will Kbld
as a list of commands, from compilation:

[Ax.M] = closure(x, [M])

Applications are compiled to thepp command at compile time. Under the
interpreted SECD machine, this work occurred at run time:
[MN] = [N]; [M]; app

We could add further instructions, say foonditionals Let test(Cq, C,) be
replaced byC; or C,, depending upon whether the value on top of the Stack is
true or false:

[if Ethen M elseN] =[E]; test[M], [N

To allow built-in 2-place functions such asand x could be done in several
ways. Those functions could be made to operate upon ordered pairs, constructed
using apair instruction. More efficient is to introduce arithmetic instructions
such asadd and mult, which pop both their operands from the Stack. Now
((AX y.X 4+ y) 3) 5 compiles to

const(5); const(3); closure(x, Co); app; app
and generates two further lists of commands:

Co = closurgy, Cq)
C1 = var(y);var(x); add

6.11 Recursive Functions 39

Many further optimisations can be made, leading to an execution model quite
close to conventional hardware. Variable names could be removed from the Envi-
ronment, and bound variables referred to by depth rather than by name. Special
instructionsenter andexit could efficiently handle functions that are called imme-
diately (say, those created by the declaratesr = NinM), creating no closure:

[(Ax.M)N] = [N]; enter; [M]; exit

Tail recursive (sometimes callégrative) function calls could be compiled to
thetailapp command, which would cause the following state transition:

Clo(x,C, E); a —
E Xx=a; E

tailapp — C

D D

The useless state-, E, —, D) is never stored on the dump, and the function
return aftertailapp is never executed — the machine jumps directlZto

6.11 Recursive Functions

The usual fixed point combinatol , fails under the SECD machine; it always
loops. A modified fixed point combinator, including exira to delay evaluation,
does work:

AR OX. T (AY.X X Y)(AY.X X Y))

But it is hopelessly slow! Recursive functions are best implemented by creating a
closure with a pointer back to itself.

Suppose thaf (x) = M is a recursive function definition. The value bfis
represented by (Af x.M). The SECD machine should interprét(Af x.M) in
a special manner, applying the closure fdrx.M to a dummy value,L. If the
current Environment i€ then this yields the closure

Clo(x, M, f=_1;E)

Then the machine modifies the closure, replacinglth®y a pointer looping back
to the closure itself:

Clox, M, f =+ E)

When the closure is applied, recursive callsftan M will re-apply the same
closure. The cyclic environment supports recursion efficiently.

40 7 LAZY EVALUATION VIA COMBINATORS

The technique is called “tying the knot” and works only for function defini-
tions. It does not work for recursive definitions of data structures, such as the
infinite list [0, 0, 0, ...], defined asY (Al.consO0l). Therefore strict languages
like ML allow only functions to be recursive.

7 Lazy Evaluation via Combinators

The SECD machine employs call-by-value. It can be modified for call-by-need
(lazy evaluation), as follows. When a function is called, its argument is stored
unevaluatedn a closure containing the current environment. Thus, theNaI
is treated something lik&1 (Au.N), whereu does not appear iN. This closure
is called asuspension When a strict, built-in function is called, such &s its
argument is evaluated in the usual way.

It is essential that no argument be evaluated more than once, no matter how
many times it appears in the function’s body:

letsgrn=nxnin N
sqr(sqr(sqr2))

If this expression were evaluated by repeatedly duplicating the argumenqt of

the waste would be intolerable. Therefore, the lazy SECD machine updates the
environment with the value of the argument, after it is evaluated for the first time.
But the cost of creating suspensions makes this machine ten times slower than the
strict SECD machine, according to David Turner, and compilation can give little
improvement.

7.1 Graph Reduction in the A-Calculus

Another idea is to work directly with-terms, using sharing and updating to en-
sure that no argument is evaluated more than once. For instance, the evaluation of
(An.n x N)M might be represented by tlgeaph reduction

—

mult M

7.2 Introduction to Combinators 41

The difficulty here is thatk-abstractions may themselves be shared. We may
not modify the body of the abstraction, replacing the bound variable by the ac-
tual argument. Instead, we must copy the body — including parts containing no
occurrence of the bound variable — when performing the substitution.

Both the lazy SECD machine and graph reductioh-térms suffer because of
the treatment of bound variables. Combinators have the same expressive power as
the A-calculus, but no bound variables. Graph reduction in combinators does not
require copying. David Turner found an efficient method of translatitgrms
into combinators, for evaluation by graph reduction [9]. Offshoots of his methods
have been widely adopted for implementing lazy functional languages.

7.2 Introduction to Combinators

In the simplest version, there are only two combinatétsand S. Combinators
are essentially constants. It is possible to defheand S in the A-calculus, but
combinatory logic (CL) exists as a theory in its own right.

The terms of combinatory logic, writteR, Q, R, ..., are built from K
and S using application. They may contain free variables, but no bound variables.
A typical CL term isK x(S Kx)(K S K y) S. Although CL is not particularly
readable, it is powerful enough to code all the computable functions!

The combinators obey the following reductions:

KPQ —, P
SPQR -, PRQR

Thus, the combinators could have been defined intbalculus by

K = AXyxX
S = AXyzxzy2

But note thatS K does not reduce — becau&e requires three arguments —
while the corresponding-term does. For this reason, combinator reduction is
known asweak reductiorfhence the “w” in—).

Here is an example of weak reduction:

SKKP =, KP(KP)—, P

Thus S K K P —,, P for all combinator term&; let us define the identity com-
binator byl = SKK..

Many of the concepts of the-calculus carry over to combinators. A com-
binator termP is in normal formif it admits no weak reductions. Combinators

2Itis called combinatory logic for historical reasons; we shall not treat it as a logic.

42 7 LAZY EVALUATION VIA COMBINATORS

satisfy a version of the Church-Rosser TheoremP i= Q (by any number of
reductions, forwards or backwards) then there exists a ®such thatP —,, Z
andQ —»,, Z.

7.3 Abstraction on Combinators

Any A-term may be transformed into a roughly equivalent combinatory term. (The
meaning of “roughly” is examined below.) The key is the transformation of a com-
binatory termP into another combinator term, written a%x.P since it behaves
like a A-abstractior?

Definition 12 The operatiori.*Xx, wherex is a variable, is defined recursively as
follows:

AFX.X = |
A*X.P = KP (x not free inP)
AX.PQ = SA'X.P)(A*X.Q)

Finally, A*X; . .. X,.P abbreviateg.*x1.(... A*Xn.P .. .).

Note thatiA*x is not part of the syntax of combinatory logic, but stands for
the term constructed as according to the definition above. Here is an example of
combinatory abstraction:

AXYYyX = A'X.(A*y.yx)
= A"™X.SA*y.y)(A"y.X)
A*X.(S 1) (K x)
S(A*X.S I (A*X. K x)
= S(K(S1)(SOW**x.K)(A*X.X))
= S(K(SI)(S(KK)I)

EachA* candoublethe number of applications in a term; in general, growth is
exponential. Turner discovered a better abstraction method, discussed in the next
section. First, let us show that combinatory abstraction behaves likecakulus
cousin. Let FV be defined for combinatory terms in an analogous manner to
Definition 3.

Theorem 13 For every combinatory terr® we have

FV(A*x.P) = FV(P)—{x}
(A*X.P)X —, P

3Some authors writex] P for 1*x.P.

7.3 Abstraction on Combinators 43

Proof We prove both properties independently, by structural inductiorPon
There are three cases.
If P isthe variablex, theni*x.x = |. Clearly

FVOW*x.X) = FV(l) =0 = FV(x) — {x}
(A" X.X)X = | X =, X
If P is any term not containing, theni*x.P = K P and
FV(W*X.P) = FV(K P) = FV(P)
(A*X.P)x= KPx—, P

If P= QR andxisfreeinQ or R, thenA*x.P = S(A*X.Q)(A*X.R). This
case is the inductive step and we may assume, as induction hypotheses, that the
theorem holds fo andR:

FV(A*x.Q) = FV(Q) — {x}
FV(A*x.R) = FV(R) —{x}
(A*X.Q)x —, Q
A*X.Rx —, R
We now consider the set of free variables:
FVO*X.QR = FV(S(*x.Q)(A*Xx.R))
= (FV(Q) — X)) [JFV(R) — {x})
= FV(QR) —{x}
Finally, we consider application:
A'x.P)x = SOXxX.QW*x.R)x
—» AX.Q)X((A*X.R)X)
w QUAA™X.R)X)
—» QR

—»

O

Using (A*X.P)x —,, P, we may derive an analogue gfreduction for com-
binatory logic. We also get a strong analoguerefonversion — changes in the
abstraction variable are absolutely insignificant, yielding identical terms.

Theorem 14 For all combinatory termd? and Q,
A*x.P)Q — P[Q/X]
VX.P = A'y.Ply/X] if y ¢ FV(P)

Proof Both statements are routine structural inductions; the first can also be de-
rived from the previous theorem by a general substitution theorem [1]. O

44 7 LAZY EVALUATION VIA COMBINATORS

7.4 The Relation Between.-Terms and Combinators

The mapping)¢ converts a-term into a combinator term. It simply applig$
recursively to all the abstractions in theterm; note that the innermost abstrac-
tions are performed first! The inverse mappifg;, converts a combinator term
into aA-term.

Definition 15 The mappings)c. and(), are defined recursively as follows:

X)cL = X
(MN)cL = (M)c(N)cL
AX.M)cL = A"™xX.(M)cL

X = X
(K, AX Y.X
(S),, = Mxyzxzy2
(PQyx = (P)(Q)

Different versions of combinatory abstraction yield different versions)etf_;
the present one causes exponential blow-up in term size, but it is easy to reason
about. Let us abbreviateM)c|. asMc and(P); asP,. It is easy to check that
()cL and(), do not add or delete free variables:

FV(M) =FV(McL) FV(P) =FV(Py)

Equality is far more problematical. The mappings do give a tidy correspon-
dence between the-calculus and combinatory logic, provided we assume the
principle ofextensionality This asserts that two functions are equal if they return
equal results for every argument value. In combinatory logic, extensionality takes
the form of a new rule for proving equality:

Px = QX
P-Q

In the A-calculus, extensionality can be expressed by a similar rule or by introduc-
ing n-reduction:

(x not free inP or Q)

AX.MX =, M (x not free inM)
Assuming extensionality, the mappings preserve equality [1]:

(Mcp)r, = M in the A-calculus
(P)c. = P incombinatory logic
M=N <= McL=NcL

P=Q — P=Q

45

Normal forms and reductions are not preserved. For instéd€,is a normal
form of combinatory logic; no weak reductions apply to it. But the corresponding
A-term is not in normal form:

(S Ky =AXyzxz(y 2)(AX Y.X) - Ay Z22Z

There are even combinatory terms in normal form whose corresponeliegn

has no normal form! Even where both terms follow similar reduction sequences,
reductions in combinatory logic have much finer granularity than those in the
A-calculus; consider how many steps are required to simulgteeduction in
combinatory logic.

Normal forms are the outputs of functional programs; surely, they ought to
be preserved. Reduction is the process of generating the outputs. Normally we
should not worry about this, but lazy evaluation has to deal with infinite outputs
that cannot be fully evaluated. Thus, the rate and granularity of reduction is im-
portant. Despite the imperfect correspondence betweenms and combinators,
compilers based upon combinatory logic appear to work. Perhaps the things not
preserved are insignificant for computational purposes. More research needs to be
done in the operational behaviour of functional programs.

8 Compiling Methods Using Combinators

Combinator abstraction gives us a theoretical basis for removing variables from
A-terms, and will allow efficient graph reduction. But first, we require a mapping
from A-terms to combinators that generates more compact results. Recalt that
causes exponential blowup:

XYY X= S(K(ST)(S(KK)I)

The improved version of combinatory abstraction relies on two new combina-
tors, B and C, to handle special cases 8f.
BPQR —, P(QR)
CPQR -, PRQ

Note thatB P Q Ryields the function composition d and Q. Let us call the
new abstraction mapping', after David Turner, its inventor:

ATX.x = |

ATXP = KP (x not free inP)
ATXPx = P (x not free inP)
ATXPQ = BPOLx.Q) (x not free inP)
ATXPQ = COx.P)Q (x not free inQ)
ATXPQ = SA™x.P)(ATx.Q) (xfreeinP andQ)

46 8 COMPILING METHODS USING COMBINATORS

Although T is a bit more complicated thaxt, it generates much better code
(i.e. combinators). The third case, fBrx, takes advantage of extensionality; note
its similarity to n-reduction. The next two cases abstract oRe@ according to
whether or not the abstraction variable is actually fre®ior Q. Let us do our
example again:

ATx.(ATy.y x)
ATx.C(ATy.y)x
ATx.C1x

Cl

ATX Y.y X

The size of the generated code has decreased by a factor of four! Here is another
example, from Paper 6 of the 1993 Examination. Let us translate-#meoding
of the ordered pair operator:

ATxATYyATRfxy = ATxaTy.CcTf.fx)y
ATxATy.C(CAT.f)x)y
ATxATy.C(Cl x)y

= A™x.C(CI x)
BC(™x.C1 x)
BC(CI).

Unfortunately,.T can still cause a quadratic blowup in code size; additional
primitive combinators should be introduced (See Field and Harrison [4, page 286].
Furthermore, all the constants of the functional language — numbers, arithmetic
operators,.. — must be taken as primitive combinators.

Introducing more and more primitive combinators makes the code smaller and
faster. This leads to the methodsafper combinatorsvhere the set of primitive
combinators is extracted from the program itself.

Exercise 12 ShowB P | = P using extensionality.

Exercise 13 Verify that C | behaves like tha-termAx y.y x when applied to
two arguments.

Exercise 14 What wouldATx y.y x yield if we did not apply the third case in
the definition ofnT?

8.1 Combinator Terms as Graphs 47

8.1 Combinator Terms as Graphs
Consider the ISWIM program

letsqr(n) = n x nin sqr(5)
Let us translate it to combinators:

ATf.f5OTn.multnn) = CI15(SA"n.multn)(ATn.n))
CI5(Smultl)

This is aclosedterm — it contains no free variables (and no bound variables, of
course). Therefore it can be evaluated by reducing it to normal form.

Graph reduction works on the combinator term’s graph structure. This resem-
bles a binary tree with branching at each application. The graph structure for
C15(S multl)is as follows:

C I I
S mult

Repeated arguments cause sharing in the graph, ensuring that they are never
evaluated more than once.

8.2 The Primitive Graph Transformations

Graph reduction deals with terms that contain no variables. Each term, and its
subterms, denote constant values. Therefore we may transform the graphs de-
structively — operands are never copied. The graptepsacedby its normal

form!

The primitive combinators reduce as shown in Figure 1. The sharing in the
reduction forS is crucial, for it avoids copyindr.

We also require graph reduction rules for the built-in functions, suahals .
Becausemult is a strict function, the graph fomult P Q can only be reduced
after P and Q have been reduced to numeric constantsndn. Then mult mn
is replaced by the constant whose valuenisc n. Graph reduction proceeds by
walking down the graph’s leftmost branch, seeking something to reduce. If the
leftmost symbol is a combinator like, K, S, B, or C, with the requisite num-
ber of operands, then it applies the corresponding transformation. If the leftmost

48 8 COMPILING METHODS USING COMBINATORS

A —

I P

. Y
P
/<KQ
K P
—-
R
Q P
s P
R
—-
R P
Q Q R
B P
—-
R Q
Q P R
c P

Figure 1: Graph reduction for combinators

8.2 The Primitive Graph Transformations 49

—_— —
5
5 I
C I I |
S mult S mult
—_— —
5
I mult
S mult
5
25
5
mult

Figure 2: A graph reduction sequence

symbol is a strict combinator likenult , then it recursively traverses the operands,
attempting to reduce them to numbers.

Figure 2 presents the graph reduction sequence for the ISWIM program

letsqr(n) = n x nin sqr(5).

50 8 COMPILING METHODS USING COMBINATORS

The corresponding term reductions are as follows:

CI5(Smultl) I (Smultl)5
Smultl5
mult 5(15)
mult 55

25

VIR R SR

Clearly visible in the graphs, but not in the terms, is that the two copies of 5 are
shared. If, instead of 5, the argumensagfr had been a large combinatory tefn
compiled from the program, thdd would have been evaluated only once. Graph
reduction can also discard terms by the ridleP Q —,, P; hereQ is never
evaluated.

8.3 Booleans and Pairing

The A-calculus encodings of ordered pairs, Church numerals and so forth work
with combinators, but are impractical to use for compiling a functional language.
New combinators and new reductions are introduced instead.

With lazy evaluation, if-then-else can be treated like a function, with the two
reductions

iftuePQ —, P
if falseP Q —, Q.

These reductions discaRlor Q if it is not required; there is no need for tricks to
delay their evaluation. The first reduction operates on graphs as shown.

. '

Q
P

if true
Pairing is also lazy, as it is in thecalculus; we introduce the reductions

fst(parPQ) —, P
snd(pairPQ —, Q.

The corresponding graph reductions should be obvious:

8.4 Recursion: Cyclic Graphs 51

fst
pair P

8.4 Recursion: Cyclic Graphs

TranslatingY into combinator form will work, yielding a mult-step reduction
resembling

-

Y P

Y
P

This is grossly inefficient}Y must repeat its work at every recursive invoca-
tion! Instead, takeY as a primitive combinator satisfying P —,, P(Y P) and
adopt a graph reduction rule that replaces Yhéy acycle

— -

Y P P

SinceP is never copied, reductions that occur in it yield permanent simplifi-
cations — they are not repeated when the function is entered recursively.
To illustrate this, consider the ISWIM program

letrec from(n) = pair n(from(1 + n)) in from(1).

The result should be the infinite ligt, (2, (3, ...))). We translatdrominto com-
binators, starting with

Y (AT f n.pair n(f (add1n))
and obtain (verify this)
Y (B (S pair)(C B (addl)))

Figures 3 and 4 give the graph reductions. A cyclic node, labéllepliickly
appears. lIts rather tortuous transformations generate a recursive occurrence of

4The picture is an over-simplification; recall that we do not hav® — P(Y P)!

52 8 COMPILING METHODS USING COMBINATORS

from deeper in the graph. The series of reductions presumes that the environment
is demanding evaluation of the result; in lazy evaluation, nothing happens until it
is forced to happen.

Graph reduction will leave the terradd 1 1 unevaluated until something de-
mands its value; the result bdm(1) is really (1, (1+1, (14+1+1,...))). Graph
reduction works a bit like macro expansion. Non-recursive function calls get ex-
panded once and for all the first time they are encountered; thus, programmers are
free to define lots of simple functions in order to aid readability. Similarly, con-
stant expressions are evaluated once and for all when they are first encountered.
Although this behaviour avoids wasteful recomputation, it can cause the graph to
grow and grow, consuming all the store —space leak The displayed graph
reduction illustrates how this could happen.

Exercise 15 TranslateY to combinators and do some steps of the reduction of
Y P.

8.4 Recursion: Cyclic Graphs 53
—_—
1
Y
B
S pair C B add

S par C B add 1

—_—
from A 1

S/@\
B

C add 1

Figure 3: Reductions involving recursion

54 8 COMPILING METHODS USING COMBINATORS

—_—

pair 1

from

S pair
C B add 1
—
pair 1 pair
from 1
B from add 1 add 1

Figure 4: Reductions involving recursion (continued)

REFERENCES 95

References

[1]

H. P. BarendregtThe Lambda Calculus: Its Syntax and Semantisrth-Holland,
1984.

[2] W. H. Burge.Recursive Programming Techniqueésddison-Wesley, 1975.

[3]

G. Cousineau and G. Huet. The CAML primer. Technical report, INRIA,
Rocquencourt, France, 1990.

[4] Anthony J. Field and Peter G. HarrisoRunctional ProgrammingAddison-Wesley,

[5]

1988.

Michael J. C. GordonProgramming Language Theory and its Implementation
Prentice-Hall, 1988.

[6] J. Roger Hindley and Jonathon P. Seldimtroduction to Combinators and

[7]

[8]

[9]

A-Calculus Cambridge University Press, 1986.

P. J. Landin. The mechanical evaluation of expressi@mnputer Journal
6:308-320, January 1964.

P. J. Landin. The next 700 programming languaggsmmunications of the ACM
9(3):157-166, March 1966.

David A. Turner. A new implementation technique for applicative languages.
Software—Practice and Experien®31-49, 1979.

