CPSC 510 (Fall 2007, Winter 2008)
Compiler Construction |l

Robin Cockett

Department of Computer Science
University of Calgary
Alberta, Canada

robin@cpsc.ucalgary.ca

Sept. 2007

Introduction to the course

The course

A first look at general optimization ..

Architecture dependent optimizations

Bibliography

What is a compiler?

>

>

A compiler translates source programs into target programs
Usually source programs are a high-level human-readable form
while target programs are usually machine executable.
Programs specify a dynamic (run-time) behaviour and are
subject to certain static (compile-time) requirements.

Compilers must correctly implement the behaviour specified
by programs and must do so in a reasonable amount of
time producing reasonable efficient target code .

Structure of a compiler

sc— P ~asT—2 g g “®
SC = Source code
AST = Abstract syntax tree
IR = Intermediate representation
TC = Target Code
p = lexing and parsing
sa = semantic analysis
opt = optimization
cg = code generation

This course: the last two steps!

TC

Compilers are fundamental

v

Compiler technology has a long history.

v

Theoretical ideas are heavily used.

Modern machine architectures are unusable without an
(optimizing) compiler.
Architecture and compiler technology interacts

» RISC/CISC micro-processor architecture
> Pipeline architectures ...
» Multi-core processors ...

v

v

v

Ideas from compilers are used everywhere ...

Organizing compiler development

SML x86
Java Sparc
M
OCaml PPC

Haskell ARM

. n times m compilers.

Organizing compiler development

SML x86

Java Sparc

C# IR MIPS

\/
N\

V

OCaml PPC

Haskell ARM

. n plus m compilers.

Organizing compiler development

The strategy:
» Have good intermediate representations!

» Do generally applicable optimizations at the level of the
intermediate representation.

» Do architecture specific optimizations when generating code ...

Focus of the course ...

This course is about optimizing compilers (parsing, lexing, and
type checking is assumed ...)
» Main emphasis on general optimization techniques:

Control flow analysis

Code transformations

Instruction selection and scheduling.
Register allocation

v

v vy

» Secondary concerns:
» Compiling should not take forever
» The code footprint should be reasonable ...
» Architectural features pipelining, parallelism.

Focus of the course ...

Compilers directly use theoretical ideas ...
» Algorithms are everywhere ...
» Data structures are everywhere ...
» Data-flow analysis uses graph theory

» Transformations are based on the semantics of the
computation.

The course

I. First semester: the theory and practise of optimization

>
>

Basic register allocation and instruction selection
Control flow graphs (CFG), dominators, loop structure, and
reducibility

» Data-flow analysis, solving fixed point equations on CFGs
» Static single assignment form (1-functions), translation into a

control flow language, program reduction.

» Arrays, garbage, functions, ...
» Code generation issues: instruction scheduling ...

The course

Il. Second semester: implementing a substantial component
of a compiler
» Project initiation: project description and website (25
» Four project milestones (25
» Final presentation and project submission (50

Evaluation of the course

First semester:
» Midterm exam (25%)
» Final exam: take-home exam (35%)
Assignments:
> Register allocation and instruction selection (10%)
» Data-flow analysis (10%)

» Code reducing in a control flow language (10%)

What is better?

Focus on execution speed ...

v

Reduce number of instructions

Decrease memory usage

Increase locality

Replace expensive instructions with cheap ones

Increase pipelining and parallelism

v

Use special architectural features

WANT: optimized program performs no worse!

Architecture independent optimizations ...

The above optimizations, except the first, depend on the machine
architecture. BUT there are many general optimizations steps
which reduce the number of instructions ...

1.

I

7.

Constant propagation, constant folding

Dead-code elimination, common subexpression elimination
Store/load elimination

Strength reduction and algebraic simplification

Loop invariant code motion, loop unrolling

Loop fusion loop, and loop splitting

Induction variable elimination

These types of optimization are the main focus of the course ...

Constant propagation ...

Replace variables by constants if they are known ...

a = 5; b= 27; a = b5; b= 27;

= ..

n=a-+b; n=>5+4 27,

for (i=0; i<n; +-+i) for (i=0; i<n; ++i)

Constant folding ...

Evaluate expressions involving constants ...

a=>5; b= 27; a=>5; b=27,;
n=a -+ b; n = 32;
for (i=0; i,n; ++i) for (i=0; i<n; ++i)

Common subexpression elimination ..

Replace expressions which have already been evaluated by a
variable which holds the value of the computation ...

a=c*d; a = c+d;
= ..
d = (c*d +t); d = a+t;

Eliminating dead code is less easy: how do we know that some
code will never be used — a global analysis is needed.

Algebraic simplification ...

Replace and expression with a simpler expressions which known to
be equal using algebraic identities:

a=c*0 a=0;
b = c+0; b =c;
c=d*1 c=d;
m = 2*n m = shift(n 1);

The last is a strength reduction as shifting is cheaper than
multiplying ...

Code motion ..

Move expressions which are invariant in loops out of loops:

for (i=0; i<100; ++i) for (i=0; i<100; ++i)
for (j=0; j<100; ++j) for (j=0; j<100; ++j)
for (k=0; k<100; ++k) = t1= a[i][j];
ali[il[k] = i*j*k; 2= i%j;
for (k=0; k<100; ++j)
tl[k] = t2 * k;

This is a very important optimization but it is tricky!!

So what is the difficulty?

These optimizations may look easy ...

.. but they are not. The big question is how to do them
automatically! They also interact: optimizing in one area can make
available an optimization in another etc.

ORGANIZING them so that one optimization does not get in the
way of another is crucial! ... and so, in the end, everything has
been done which is (reasonably) possible.

REMEMBER: a small optimization in a loop can save hours of
CPU time!

Using the machine architecture to advantage is important too ...

Locality ...

Why is memory usage important?

Location Type of memory Quantity Access time

CPU Registers 32B 3ns
CPU Cache 2KB 6ns
CPU Main memory 2MB 60ns
Hard drive Disk 2GB 8ms

Memory hierarchy — the importance of locality

Register allocation

x = (x+y)*z rl = M[x];
r2 = M[y];
= rl =rl+r2;

r2 = M[z];

X «— r1%r2:

Register allocation, in general, is an NP-complete problem.
However, many of the register allocation problems particular to
compilers can be solved in near linear time.

Poor register allocation leads to spilling and loss of locality a
big hit!

Instruction selection

Most architectures provide a variety of instructions which cam be
used in different ways to perform a given computation.

There are dynamic algorithms for instruction selection techniques
which minimize the number/cost of the instructions.

Pipelining..

Consider the loop

Pipelined execution for m =4 and n = 3:

for (1=1; i < m; i++)

for (1=1;j < n; j++)

x[i] = x[i] + y[i.j];

Time

Processor 1

Processor 2

Processor 3

1

SOl WN

x[1] += y[1,1]
x[2] += y[2,1]
x[3] += y[3.1]
x[4] += y[4,1]

x[1] += y[2,1]
x[2] += y[2,2]
x[3] += y[3.2]
x[4] += y[4,2]

x[1] += y[1,3]
x[2] += y[2,3]
x[3] += y[3,3]
x[4] += y[4,3]

Instruction scheduling

Instruction should be scheduled to make use of pipelining and
parallelism.

Texts ...

Modern Compiler Implementation Appel

Building Optimizing Compilers Morgan

Compiler Design and Optimization Muchnik
Aho

Comepilers: Principals, Techniques, and Tools Sethi
Ullman

Journals ...

IEEE

ACM

JPDS
JSC
JPP
PC
JPL

Computer

Transactions on Computers

Concurrency

Transactions on Parallel and Distributed Systems

TOPLAS - Transactions on Programming Languages
and Systems

Transactions on Computer Systems

Journal of Parallel and Distributed Computing

Journal of Supercomputing

International Journal of Parallel Programming

Parallel Computing

Journal of Programming Languages

Conferences ...

PLDI

POPL
ASPLOS

PPOPP
ICPP

ICS
PACT

ACM Symposium on Programming Language

Design and Implementation
ACM Symposium on Principles of Programming Languages
ACM Symposium on Arcitecture Support for

Programming Languages and Operating Systems
ACM Symposium on Principles and Practise of

Parallel Programming
International Conference on Parallel Processing
International Conference on Super Computing
Parallel Architectures an Compilation Techniques

	Introduction to the course
	The course
	A first look at general optimization ..
	Architecture dependent optimizations
	Bibliography

