
Generating code for CIRL

J.R.B. Cockett

Department of Computer Science, University of Calgary,

Calgary, T2N 1N4, Alberta, Canada

January 22, 2008

These notes follow Appel’s approach to the intermediate representation. It is an expression
(or tree) based approach which is well-suited to an implementation in the functional and object
oriented style of programming.

The objective of the first two assignments is to get together and develop a simplified back-end
for this intermediate representation language. This includes various phases:

A. A parser for CIRL expressions

B. A semantic checker (not required)

C. Code to remove embedded commands

D. An instruction selection phase

E. A register allocation phase for expressions

F. A general register allocation phase

G. Documentation.

The objective of the first assignment is to get the removal of embedded commands completed.
Here there is already considerable delicacy over the handling of scope in the language. The objec-
tive of the second assignment is to complete the register allocation phase. We shall develop the
documentation as we go.

1

1 CIRL basics

CIRL is a typed intermediate language which can also be used as a stand alone language. It has a
minimum of syntactic sugar as it is intended primarily as the target of the front-end of a compiler.

1.1 CIRL program syntax

A CIRL program is a sequence of data definitions, a sequence of function definitions and a CIRL
expression:

CIRL_prog -> data_defs fun_defs exp.

Each data definition starts with the key word var and can declare a sequence of arrays and
variables of the same type. Arrays declaration must be accompanied by a dimension specifier. The
name of a variable so declared is a CIRL location of the specified type. The name of an array,
however, is a location of a location of the specified type (thus the actual data of an array is stored
in a separate storage block).

data_defs -> data_def data_defs |.

data_def -> VAR id_specs : ctype .

id_specs -> ID bounds more_id_specs .

more_id_specs -> , ID bounds more_id_specs | .

bounds -> [NUM] | .

Next are the function definitions. Function definitions may be arbitrarily nested and can contain
local data. The body of a function looks exactly like a CIRL program and the argument list of a
function has the same syntax as a declaration list. If an array is passed it must be copied into the
local storage ... this is distinguished from passing a location or a pointer to the array.

fun_defs -> fun_def fun_defs | .

fun_def -> FUN ID (data_defs) : cirl_type [CIRL_prog] .

CIRL has expressions and commands. Expressions describe a particular calculation of a value
while commands determine the program flow and the loading and storing of values. Each commands
is ended with a semicolon. There are four commands in CIRL: an assignment, a store, a conditional,
and a while loop:

com -> ID ASSIGN exp ;

| loc BACKARROW exp ;

| IF exp THEN { coms } ELSE { coms } ;

| WHILE exp DO { coms } ;

coms -> com coms |.

CIRL expressions use the locations and the values to compute new locations and values. There
are a limited number of operations one can perform on CIRL locations. CIRL locations are either
addresses, that is data declared at the outermost level of the program, or local data, that is data
declared in a function and so taken as an offset from a frame pointer (the access details for this

2

will be calculated by the system). Given a location one may take an offset from it: if you take an
offset the location should be a declared as an array. In addition, a location can be a “dereferenced”
expression. This is a type conversion: an expression of type ptr T, when dereferenced in this
manner, becomes a location of type, T (here dereferencing refers only to removing the outer type
constructor not to retrieving or loading the actual value in memory).

loc -> ADDR (ID)

| loc OFFSET exp

| FP (ID)

| DEREF(exp)

| exp.

CIRL expressions allow the usual arithmetic and boolean operations. In addition, by “refer-
encing” one can turn a location of type, T, into an expression of type prt T. Thus, one can pass
backward and forward between locations and expressions.

exp -> exp OR exp1 | exp1

exp1 -> exp1 AND exp2 | exp2

exp2 -> NOT exp2

| exp3 compare_op exp3

| exp3

exp3 -> exp3 addop exp4 | exp4

exp4 -> exp4 mulop exp5 | exp5

exp5 -> SUB exp5

| { commands } exp

| MEM (location)

| REF (location)

| CONST (bval)

| TEMP (ID)

| (exp)

| ID (exp_list)

addop -> ADD | SUB .

mulop -> MUL | DIV

compare_op -> LEQ|LE|GEQ|GE|EQ|NEQ.

bval -> NUM|REAL|BOOL.

The arguments of a function are a comma separated list of expressions (possibly empty):

exp_list -> exp more_exp | .

more_exp -> , exp more_exp | .

CIRL types are either values of a basic type or locations of a type. In this syntax we omit the
“value” constructor:

ctype -> CIRLINT | CIRLREAL | CIRLBOOL | CIRLLOC (ctype).

3

1.2 Lexemes

The lexer for this parser has:

VAR = “var” ID = LETTER (ALPANUM)*
FUN = “fun” OR = “||”
AND = “&&” NOT = “not”
MEM = “mem” CONST = “const”

TEMP = “temp” ADD = “+”
REF = “ref” DEREF = “deref”
SUB = “−” MUL = “∗”
DIV = “/” LEQ = “<=”
LE = “<” GEQ = “>=”
GE = “>” EQ = “==”

NEQ = “= \ =” OFFSET = “\”
NUM = DIGIT (DIGIT)* REAL = (DIGIT)* “·” (DIGIT)*

ASSIGN = “:=” BACKARROW = “< −”
IF = “if” THEN = “then”

ELSE = “else” WHILE = “while”
DO = “do” ADDR = “addr”

CIRLINT = “int” CIRLREAL = “real”
CIRLBOOL = “bool” LOC = “ptr”

1.3 Examples of CIRL programs

Here are some simple example of CIRL programs. They illustrate how one can use CIRL as a basic
programming language:

1. Fibonacci numbers:

var N:int

function fib(var n:int):int

[{ if mem(fp(n)) < const(2)

then { t := mem(fp(n)); }

else { t := fib(mem(fp(n))-const(1))+fib(mem(fp(n))-const(2)); }; } t]

{ addr(N) <- const(100); } print(fib(mem(addr(N))))

2. The greatest common divisor:

function gcd(var x:int var y:int):int

[{ t1 := mem(fp(x)); t2 := mem(fp(y)) ;

while t1 =/= 0

{ t3:= t1; t1 := gcd(t2 mod t1,t1); t2:= t3; };

} t2]

gcd(const(24),const(92))

4

3. An insertion sort on an array. Note that there need not bean function definitions!

var a[100] : int

{ i := 99

; while i >= 0

{ j:= i

; while j < 100

{ if mem(mem(addr(a))\j) > mem(mem(addr(a))\j)

then { x := mem(mem(addr(a))\j)

; mem(addr(a))\j <- mem(mem(addr(a))\j+1)

; }

else {}

; j:= j+1

; }

; i := i-1

; }

; } i

4. A random program!

var a,b,c :real

var pb :ptr(real)

var arr [10], noarr :ptr(ptr(int))

function print(var t:real):int

[const(1)]

function get():real

[

{t1 := mem(addr(a)\2);

t2 := mem(addr(b));

tp := t1 + t2;

tmp := mem(addr(a)) * mem(addr(b)) + mem(mem(addr(pb)));

t2 := mem(addr(c));

t7 := mem(deref(mem(addr(arr)))\7);

t9 := ref(addr(b));

t3 := mem(addr(b));

t3 := { t4 := mem(addr(a));

addr(a) <- t4 + t2;

} t4;

t6 := t2 + t3;

} t6

]

{t := get();} print(t)

5

1.4 The abstract syntax tree

A CIRL program consists of data definitions, function definitions and a CIRL expression:

data Cirlprog = Cirlprog [DataDef] [FunctionDef] Expression

A data definition consists of

data DataDef = Var String CirlType

| Array String Int CirlType

A function specification contains a name, a list of parameters, a type specification and the function
body. The body minimally consists of an expression, but may contain multiple local data and
function declarations.

data FunctionDef = Function String [DataDef] CirlType Cirlprog

There are four types of command in CIRL.

data Command = Assign String Expression

| Store Location Expression

| Cond Expression [Command] [Command]

| While Expression [Command]

A location (or a pointer) in CIRL can be either a reference to a global declaration (an Address),
a reference to a local declaration (an address calculated from the frame pointer Fp), an expression,
or an explicit address. These can be combined with numerical offsets.

data Location = Address String

| Fp String

| Ref Expression

| Offset Location Expression

The expression datatypefor CIRL has memory references, function and operation applications,
constant values, embedded commands (which may have side effects), and temporaries:

data Expression = Emem Location

| Eref Location

| Eapply Op [Expression]

| Econst BaseValue

| Eseq [Command] Expression

| Etemp String

data BaseValue = BValint Int | BValreal Double | BValbool Bool

data Op = Add | Sub | Mul | Div | Mod | And | Or

| Not | Xor | Teq | Tneq | Tlt | Tgt | Tle

| Tge | Tls | Trs | Tcall String

Finally there are the CIRL types

data CirlType = CirlValue BCirlType

| CirlLoc CirlType

data BCirlType = CirlInt| CirlReal | CirlBool

6

2 CIRL’s type system

A CIRL program is strongly typed and its introduced variables (by assignment) have defined scopes.
The semantic checking determines whether the program is well-typed and whether each variable
which is used is in the scope of an appropriate binding (or declaration) of that variable. The
purpose of this section is to lay out the type system of CIRL.

2.1 Basic type checking

CIRL comes with some basic types which are ultimately determined by the machine architecture
which is being targeted. Here very loosely we are aiming at the Motorola chips architecture which
we shall abstract using the Jouette machine described further below.

We shall start by assuming the following basic types:

Bool, Int,Real.

From these basic types we built a larger set of CIRL types. These are the the value type
Value(T), where t is a basic type, and the location type Loc(S), where S is an arbitray CIRL
type: a location type holds an address to a location in “main memory” which can be used to
retrieve a value. The location type can be iterated so one is allowed to have locations of locations
etc. The datatype of CIRL types is thus:

data CirlType t = CirlValue t

| CirlLoc (TCIRL t)

In addition CIRL has commands with which, in our first description of the language we shall
associate the “imaginary” command type Com. To start the ball rolling we provide ourself with
sets of temporaries, Temp(S) and locations Loc(S) for each CIRL type S. We shall assume that
there are, declared at the outset of a CIRL program (or indeed in a function), certain root locations
of variables and arrays and some function symbols (with their definitions).

The basic typing of CIRL expressions and commands is displayed in Table 1; one should view
this as being performed on the syntax tree of a CIRL program. CIRL has four basic commands:
assignments (to a temporary), stores (to a location), conditionals, and while loops. CIRL expres-
sions include basic binary operations (such as addition, multiplication,etc.), function calls, and the
ability to load values from locations (in main storage or on the stack). One can take offsets on
locations so that for example one can do an array access (bounds checking should be made implicit
in this). Finally, expressions can have embedded commands which is a convenient feature for
translating language features. As we shall see will see shortly, these cause us some trouble as our
very first step is to remove them from the code..

Here are some examples of a CIRL expressions:

1. The following CIRL expression

{t0 := mem(fp(addr(i))); fp(addr(i))← temp(t0) + const(1)}addr(a)\temp(t0)← mem(fp(c))

is intended to be the translation of the C assignment a[i++]=c.

2. One may translate the C conditional expression x= p?e1:e2 as

fp(x)← {ifJpKthen{t := Je1K}else{t := Je2K}}temp(t)

7

a ∈ Address(S)

addr(a) : Loc(S)

n ∈ Const(T)

const(n) : Value(T)

t ∈ Temp(S)

temp(t) : S

l : Loc(S)

fp(l) : Loc(S)

l : Loc(S) x : Value(Int)

l\x : Loc(S)
offset

l : Loc(S)

mem(l) : S
load

op : T1,T2 −→ T x : Value(T1) y : Value(T2)

op(x, y) : Value(T)

f ∈ Functions(S1, .., Sn;S) ei : Si

f(e1, ..., en) : S
call

l : Loc(S) v : S

l← v : Com
store

t ∈ Temp(S) v : S

t := v : Com
assign

Null : [Com]

C : Com Cs : [Com]

C;Cs : [Com]

C : [Com] e : S

{C}e : S
eseq

C1, C2 : [Com] e : Value(Bool)

if e then {C1} else {C2} conditional

C : [Com] e : Value(Bool)

while e do {C} while

Table 1: CIRL Types

8

We shall usually write just t instead of temp(t), n instead of const(n), a instead of addr(a) when
the fact that t is a temporary, that n is a constant, or a is an address is clear.

2.2 Temporary binding and scope in CIRL

The other main task of the semantic checking is to check that whenever a variable is used that it
has been correctly introduced. This means that we must understand how variables are bound and
what the scope of that binding is. In CIRL there are two mechanisms present for binding names
which are independent:

(a) The explicit declaration of names for data locations and functions at the beginning of the main
program or a function body;

(b) The introduction of temporary names through an assignment.

The use of declarations to introduce location names is largely standard. CIRL regards all the
declarations which are made in the main or a function body to have been made simultaneously .
Thus, one is not allowed to declare items which have the same name in such a declaration sequence.
Simultaneous declarations make it easy to declare recursive and mutually recursive functions.

A commands in CIRL can have the effect of changing the variables which are available to be
used in expressions. This set of variables with associated types is called a binding context or
simply a context and is written as

Γ = x : int, y : real, p : ptr(prt(real)), ...

where each variable in the list has an associated type. Expressions are constructed in a particular
binding context. Thus,

Γ ` e

means that the construction of e can only use, as free variables, those present in the context Γ.
Commands, by contrast, both use the context and can alter the context. This we shall denote

by
Γ‖C Γ′

which means that in the context Γ the sequence of commands C is valid and, after they are executed
they modify the context to Γ′. This allows us now to write down, see table 2, a more sophistiacted
version of the type system of CIRL which, in particular, takes into account the dynamics of the
introduction of temporaries through assignments.

2.3 Free variables and bindings in CIRL

It is useful to turn the above specification of binding and scope on its head and to ask, for an
expression, what variables are needed in the context. There may be variables in the actual context
which are not needed to build the expression. The needed variable are called the free variables of
the expression and determine the minimal binding context required to build the expression.

The calculation for free variable, see 3 is not complete by itself: it turns out one also needs to
know the bindings introduced by commands. This latter computation is displayed in table 4. An
expression never introduces a binding. Conditionals and while loops introduce bindings although
in a manner which requires a moments thought.

9

a ∈ Address(S)

Γ ` addr(a) : Loc(S)

n ∈ Const(T)

Γ ` const(n) : Value(T)

Γ, x : S,Γ′ ` temp(x) : S

Γ ` e : Loc(S)

Γ ` fp(e) : Loc(S)

Γ ` l : Loc(S) Γ ` e : Value(Int)

Γ ` l\e : Loc(S)
offset

Γ ` l : Loc(S)

Γ ` mem(l) : S
load

op : T1,T2 −→ T Γ ` e1 : Value(T1) Γ ` e2 : Value(T2)

Γ ` op(e1, e2) : Value(T)

f ∈ Functions(S1, .., Sn;S) Γ ` ei : Si

Γ ` f(e1, ..., en) : S
call

Γ‖C Γ′ Γ′ ` e : S

Γ ` {C}e : S
eseq

Γ ` l : Loc(S) Γ ` v : S Γ‖C Γ′

Γ‖l← v;C Γ′
store

Γ ` e : S Γ\{x}, x : S‖C Γ′

Γ‖x := e;C Γ′
assign

Γ‖ Γ

Γ ` e : Value(Bool) Γ‖C1 Γ′

1
Γ‖C2 Γ′

2
;C Γ′

1
∩ Γ′

2
‖C Γ′

Γ‖if e then {C1} else {C2};C Γ′
conditional

Γ ` e : Value(Bool) Γ‖C0 Γ′′ Γ‖C Γ′

Γ‖while e do {C0};C Γ′
while

Table 2: Type rules for temporaries

10

Fv(addr(a)) = {} Fv(const(k)) = {}

Fv(fp(a)) = {} Fv(temp(t)) = {t}

Fv(l) = V1 Fv(e) = V2

Fv(l\e) = V1 ∪ V2

Fv(l) = V

Fv(mem(l)) = V

(Fv(ei) = Vi)i=1...n

Fv(f(e1, ..., en)) =
⋃

i=1...n Vi

Fv(C) = V Fv(e) = V0 Bnd(C) = U

Fv({C}e) = V ∪ (V0\U)

Fv(l) = V1 Fv(e) = V2 Fv(C) = V3

Fv(l← e;C) = V1 ∪ V2 ∪ V3

Fv(e) = V1 Fv(e) = V2

Fv(t := e;C) = V1 ∪ (V2\{t})

Fv(e) = V Fv(C1) = V1 Fv(C2) = V2 Fv(C) = V3 Bnd(C1) = U1 Bnd(C2) = U2

Fv(if e then C1 else C2;C) = V ∪ V1 ∪ V2 ∪ (V3\(U1 ∩ U2)

Fv(e) = V Fv(C0) = V0 Fv(C) = V1

Fv(while e {C0};C) = V ∪ V0 ∪ V1 Fv(NULL) = {}

Table 3: Calculation for free variables

Bnd(C) = V

Bnd(t := e;C) = {t} ∪ U

Bnd(C) = V

Bnd(l← e;C) = U

Bnd(C1) = U1 Bnd(C2) = U2 Bnd(C) = U

Bnd(if e then C1 else C2;C) = (U1 ∩ U2) ∪ U

Bnd(C) = U

Bnd(while e {C0};C) = U Bnd(NULL) = {}

Table 4: Calculation of bindings

11

Some comments are worth making: after a conditional, strictly speaking, only the variables
which are bound in both branches branch (or before) are bound. Thus, strictly speaking, the
variables which are not common down both branches are local. In practise, especially if one has
not semantically checked this condition, this will make it seem that some variables which should
be bound are not. Also, in practise, one does not want these local bindings to be captured when
code is moved so one should rename them. A “while” loop binds does not bind any new variable!
This is because it may be skipped altogether! However, the body of a while loop may use some
new variables which must be treated, therefore, as local.

2.4 Typed internal representation for CIRL programs

The type information obtained from the semantic checking described above is crucial information
for the compilation process. For example the type of a temporary determines to which register can
be used to hold it. It is therefore important not to loose this information. Thus, after semantic
checking it is useful to change the datatype so that the type information is explicit.

Below is a suggestion for a datatype which serves this purpose. Note that two things have
happened: type information occurs everywhere but also the distinction between expressions and
locations has been removed (although it is still present in the type information) and this allows
operations such as the “offset” to be handled more uniformly.

data ICirlprog a = ICirlprog [DataDef] [IFunctionDef a] (IExpression a)

data IFunctionDef a = IFunction String [DataDef] CirlType (ICirlprog a)

data ICommand a

= IAssign CirlType a (IExpression a)

| IStore CirlType (IExpression a) (IExpression a)

| ICond (IExpression a) [ICommand a] [ICommand a]

| IWhile (IExpression a) [ICommand a]

data IExpression a

= Imem CirlType (IExpression a)

| Iapply CirlType Ip [IExpression a]

| Iseq CirlType [ICommand a] (IExpression a)

| Itemp CirlType a

| Iconst CirlType BaseValue

| IFp CirlType Int String

| IAddr CirlType String

data Ip = IBinop CirlType Binop

| IUniop CirlType Uniop

| ICall Int String

| IOffset CirlType

12

3 Removing Embedded Commands

The embedded commands have a vital role in the translation from program code. They appear in
the intermediate representations of programs for various reasons:

(a) Some special language features require them (as in the examples above).

(b) To translate function calls it is usually necessary to fill certain specific registers (say s0, .., sn)
with arguments. Thus, a function call f(e1, ..., en) must be translated to

{s0 := f({s1 := e1}s1, ..., ({sn := en}sn)}s0

which introduces embedded commands.

(c) It is convenient to translate function bodies as embedded commands acting on the returned
expression.

(d) When one does a register allocation for expressions the assignments (and spilling code) can be
viewed as introducing embedded commands.

Before one can do register allocation on expressions one must remove all the embedded com-
mands and perform instruction selection (so the commands are appropriate for the chosen hard-
ware). The commands of an embedded command, {C}e, introduces bindings for temporary vari-
ables by assigning values to them. The assignment, thus, doubles as the declaration of that variable.
The scope of these bindings is limited to the expression e. This means that when one moves the
embedded command sequence C one must ensure that the bindings it introduces are not cap-
tured accidentally by any command one interposes between C and e. This necessitates renaming
the bound variables away from variables which could be used by other terms (this is called “α-
renaming”).

3.1 Rules for removing embedded commands

The embedded command may be removed using the following rules which depend on non-interference
which is discussed further below:

[Rule.1] When C does not interfere with e1, .., er−1 and the bindings of C are disjoint from the
free variables of each ej with j 6= r:

f(e1, ..., {C}er , ..., en)⇒ {C}f(e1, ..., er , ..., en)

[Rule.2] When x is not in the bindings of C and the variables bound in C are disjoint from the
current binding context:

x := {C}e⇒ C; t := e

[Rule.3] When the free variables of e are disjoint from the bindings of C and the variables bound
in C are disjoint from the current binding context:

{C}p← e⇒ C; p← e

13

[Rule.4] When C does not interfere with p, the free variables of p are disjoint from the bindings
of C,and the variables bound in C are disjoint from the current binding context:

p← {C}e⇒ C; p← e

[Rule.5] We can always amalgamate sequential embedded commands:

{C1}{C2}e⇒ {C1;C2}e

[Rule.6] When the bindings of C are disjoint from the variables free in C1 and C2 and the current
binding context:

if {C}e then C1 else C2 ⇒ C; if e then C1 else C2

[Rule.7] When the bound variable of C are disjoint from the free variable in C ′ and the current
binding context:

while {C}e do C ′ ⇒ C;while e do (C ′;C).

Almost all of these calculations depend on knowing the current binding context. This may be
calculated either as the binding context (all variables which are bound prior to that point) or, more
ecomonically, as the free variables required subsequent to that point. The advantage potential
advantage of using the larger of these two context is that one can avoid repeated renamings as the
commands sequences move forward over expressions in which new variables are free.

A further important aspect of this process arises when the order of commands and expressions
changes during the removal of embedded commands. If this happens they will be evaluated in a
different order and a different behavior may result unless they can be guaranteed not to “interfere”.
This notion of interfering is decribed next.

3.2 Interference

Interference arises in two ways:

(a) The embedded command assigns values to temporaries which are used in an expression in front
of which it is being moved. The remedy in this case is to rename (a process called α-renaming)
the temporaries involved.

(b) The embedded command and the expression past which it is being moved access memory with
one or both writing to memory. The remedy here is to make the expression safe by creating
an embedded command which assigns the expression to a new temporary so that the order of
evaluation is not changed.

In the former case we may rename the temporary variable in the embedded command to remove
the source of the problem (temporary capture). When there is the possibility of interference, as
expressions possibly access memory and store value in memory in the second manner it is necessary
to keep the computations in the same order: to achieve this it is necessary to introduce new
intermediate temporaries to hold the results of these computations. Thus, removing embedded
commands generally create new temporaries, especially when one is forced to avoid interference of

14

the latter kind. Recall that the more temporaries we create the more likely we may have to spill.
Thus, one reason why we may want to be quite discerning about what interferes and what does
not is to relieve this source of register pressure.

We may organize the calculation for non-interference as follows a CIRL expression or command
either is:

CLEAN: That is has no loads, store or any access to memory.

LDING: That is does (possibly) load something from memory, that is (possibly) has a mem(e)
subexpression somewhere, but definitely has no store instructions.

STING: That is (possibly) stores stuff to memory that is it contains a function call (we assume
these are bad news) or a store instruction e1 ← e2.

We now have an “interference table”:

CLEAN LDING STING

CLEAN
√ √ √

LDING
√ √ ×

STING
√ × ×

where there is guaranteed no interference when there is a
√

and the two CIRL expressions have
no temporaries in common. There still actually may be no interference when there is a × but our
objective is to be conservative (one can be less conservative by tracking what location ranges can
be accessed).

3.3 Organizing the computation

A convenient way to organize the embedded command removal (but certainly not the only way) is
to remove commands in a “by-value” manner (functionally this is a fold over the datatype – with a
state) by first removing the embedded command from subexpressions and working the expression
from the leaves toward its root. Each expression is replaced by a command sequence and a new
expression e′ 7→ (C, e). The interference calculation will sometimes force the current expression
to be assigned in the command sequence and to be replaced by a temporary. By arranging that
any embedded command which is introduced in this process never interferes one can simply collect
commands from the leaves toward the root. The only really tricky aspect is that an already existing
embedded command may introduce a source of temporary capture! This has to be accommodated
by special code to make the predefined embedded command “safe”.

3.4 Making embedded commands safe

As one is processing an expression one must build up a list of bound variables, the context, which
arise from the bindings of embedded commands. If one is to move a command sequence the variables
it binds must not conflict with the variables in this context. Thus, given a context Γ of variables
and an embedded command {C}e one must go through the variables that the command list C binds
and, when they clash with the variables in the context Γ, change their names, by substitution, from
where they are assigned. This then produces a substitution list which must then be applied to the
term e. There are some important variations on this general pattern to accommodate “while” loops
and the conditionals which we discuss further below.

15

The process for making an embedded command safe given a set V of variables to avoid (this
will include the binding context) is, more precisely, as follows:

• To make {x := e;C}e′ safe given the variables in V to avoid there are two cases:

(a) x ∈ V then choose a fresh variable y, substitute y for x everywhere in C and e ′ and
continue to make {C}e′ safe adding y to the variables V to be avoided.

(b) x 6∈ V then one makes no change to the assignment but continue to make {C}e′ safe
avoiding V .

• A store does not bind any variables so one can pass over these commands making the remain-
der of the commands safe.

• When the conditional is the first command one must make both its command lists safe.
However, one must be careful to keep its joint bindings the same! To do this one alters the
bindings of the one condition while collecting substitutions. Then one modifies the second list
using the the substitutions already established from the first condition to rename the bindings
which are in common. Note this is very different from a blanket substitution because one must
only use the already established substitutions subsequent to an assignment on the variable.

• When a “while” loop is the first command one must first rewrite its body to ensure its bindings
avoid the variables. This gives a list of substitutions. One must now use this list to substitute
the body (as the code will cycle through the body) noting which substitutions are used. The
substitutions which are used must be collected into a list of assignments which become a
preamble to (i.e. are placed immediately in front of) the while loop.

3.5 Examples

1. Here is an example which illustrates how the embedded commands on arguments of a function
can be removed. It is, as has been mentioned, possibly a little artificial as often one simply
wishes to always call functions on a fixed (precolored) sequence of registers. However, it does
illustrate the general manner in which arguments must be treated.

var a,b,c: bool

fun f(var x,y,z:bool):int

[....]

fun g(var x,y,z:bool):bool

[....]

{ a := mem(addr(a));

b := mem(addr(b));

c := mem(addr(c));

t := f({t := g(a,b,c);}t&&a

, {a := g(b,c,a);} a||g(c,b,a)

, {t := c&&mem(addr(b));} not t

);

} t+t

16

Note that the middle argument of the call to f has a function call (which is assumed to be
storing. The last argument has a memory reference and this means that the middle argument
must be replaced by a variable. The body then gets translated as:

{ t0:bool := mem(addr(a))

; t1:bool := mem(addr(b))

; t2:bool := mem(addr(c))

; t4:bool := g(t0, t1, t2)

; t5:bool := g(t1, t2, t0)

; t7:bool := (t5||g(t2, t1, t5))

; t6:bool := (t2&&mem(addr(b)))

; t3:int := f((t4&&t0), t7, not t6)

; } (t3+t3)

2. To illustrate the removal of embedded commands from a store command consider:

var b[40],c,d :int

{ { x:= mem(addr(c))+3

; x:= x*x

; } mem(addr(b)\x)

<- { y:= mem(mem(addr(b))\2)+mem(addr(d))

; x:= 2* y

; mem(addr(b))\2 <- x

; } x

; x := 9

; } x

Here the embedded command for the expression x contains a store command necessitating
the assigning of the location calculation to a temporary. If this store is removed from the
embedded command this transfer should not happen.

{ t0:int := (mem(addr(c))+3)

; t0:int := (t0*t0)

; t3:int := mem((addr(b)\t0))

; t1:int := (mem((mem(addr(b))\2))+mem(addr(d)))

; t2:int := (2*t1)

; (mem(addr(b))\2):int <- t2

; t3:int <- t2

; t0:int := 9

; } t0

3. Here is and example which removes embedded commands from stores and offsets:

17

var p[12] :int

fun f(var a, b:int):int [...]

{ mem(addr(p))\7 <-

{x:= f(mem(mem(addr(p))\1)

, mem(mem(addr(p))\ ({x := f(1,1)

; }x))

)

; } mem(mem(addr(p))\3)*7

; y := 1

; }y

Note the function call in the embedded command for the second argument of the offset. This
causes all the arguments at both levels to have to be assigned to temporaries. Note that
the variable numbering gives away the order in which my algorithm discovers the arguments
which have to be displaced!

{ t4:int := (mem(addr(p))\7)

; t3:int := mem((mem(addr(p))\1))

; t2:ref(int) := mem(addr(p))

; t1:int := f(1,1)

; t0:int := f(t3, mem((t2\t1)))

; t4:int <- (mem((mem(addr(p))\3))*7)

; t1:int := 1

; } t1

4. Here is an example of a conditional in an embedded command:

var a,b[20] :int

{ z := mem(mem(addr(b))\10)

; mem(addr(b))\0 <- { if {z := ref(mem(addr(b))\z)

; } mem(z) <12

then {z := { x := mem(addr(a))

; x := x*x

; } x

; }

else {z := { addr(a) <- mem(addr(a))+1

; } 10

; }

; } z

; z := mem(addr(a))

; } z

Notice that t3, originally z is renamed the same way down each branch:

18

{ t0:int := mem((mem(addr(b))\10))

; t4:int := (mem(addr(b))\0)

; t1:ref(int) := (mem(addr(b))\2)

; if (mem(t1)<12)

then { t2:int := mem(addr(a))

; t2:int := (t2*t2)

; t3:int := t2

; }

else { addr(a):int <- (mem(addr(a))+1)

; t3:int := 10

; }

; t4:int <- t3

; t0:int := mem(addr(a))

; } t0

5. This example illustrates the removing embedded commands from the test of a while loop.
Here we repeat the code in the loop. There are two ways of avoiding this (a) by not removing
the embedded command from the condition of the “while” loop and translating this form (b)
by changing the looping construct to a more fundamental one (which we shall do shortly).

var a[2]: int

{ x := mem(mem(addr(a))\0)

; y := mem(mem(addr(a))\1)

; while { b:= x < y; } b

{ x := x +1

; y := y-1

; }

; x := x+y

; } x

Here is the result:

{ t0:int := mem((mem(addr(a))\0))

; t1:int := mem((mem(addr(a))\1))

; t2:bool := (t0<t1)

; while t2

{ t0:int := (t0+1)

; t1:int := (t1-1)

; t2:bool := (t0<t1)

; }

; t0:int := (t0+t1)

; } t0

6. To illustrate the problems with making while loop code in an embedded command safe con-
sider the following example:

19

var a[3] : int

function g(var z:int):int

[mem(fp(z))]

{ t:= mem(mem(addr(a))\0)

; x:= mem(mem(addr(a))\1)

; y:= mem(mem(addr(a))\2)

; t := { while x=<y { t := t+1

; x:= x+1

; y:= y-1

; }

; } g(t)

; } t

Here we must introduce a preamble which renames the variables to the intended output:

{ t0:int := mem((mem(addr(a))\0))

; t1:int := mem((mem(addr(a))\1))

; t2:int := mem((mem(addr(a))\2))

; t3:int := t0

; t4:int := t1

; t5:int := t2

; while (t4=<t5)

{ t3:int := (t3+1)

; t4:int := (t4+1)

; t5:int := (t5-1)

; }

; t0:int := g(t3)

; } t0

3.6 Function calls and more on interference

In the above we have left the function calls in the expressions. Function calls, however, in the
compiling process have a special status. Not only do we always assume the worst in regards
interference but they play no role in the next step of the compiling process which is the instruction
selection. It is therefore sensible to break down the function calls in the code at the outset and this
has a further important benefit. When embbed commands have been removed from expressions the
only source of a storage is from a function call. If we remove function calls as well expressions can no
longer contain storage commands at all! This means that expressions can no longer interfere. This
is important as we are then free to apply the Sethi-Ullman algorithm to break down expressions
into a series of assignments in which we can freely swap the order of evaluation.

This then raises the issue of how to break up the function calls. The trick is to encapsulate
them in an embedded command in a preprocesing step before applying the general algorithm for
removing the embedded commands. Thus an expression f(exp1,...,expn) can be rewritten as:

20

{ s1 := exp1;...;sn := expn;s_0=f(s1,...,sn) } s0

Note this form is equivalent to that described earlier, athough we have to assume that si is not
free in any expj with tti < j. This means that when the embedded commands are removed the
function calls will all be at the top level. This is desirable as function calls will have some special
translation requirements specific to the architecture.

Here is the first example above with the function calls broken up in this manner:

{ t0:bool := mem(addr(a))

; t1:bool := mem(addr(b))

; t2:bool := mem(addr(c))

; t3:bool := g(t0, t1, t2)

; t3:bool := (t3&&t0)

; t5:bool := g(t1, t2, t0)

; t4:bool := g(t2, t1, t5)

; t4:bool := (t5||t4)

; t6:bool := (t2&&mem(addr(b)))

; t5:bool := not t6

; t3:int := f(t3, t4, t5)

; } (t3+t3)

21

4 Instruction Selection

When all embedded commands have been removed from a command sequence the code becomes a
series of assignments, stores, conditionals, and while loops. Using instruction selection techniques
the aim is then to translate this into the operations provided by the actual machine. We shall do
this using a dynamic algorithm which (for expression trees) provides an optimal solution. This
is why, in the process of removing embedded commands, we wished to keep the tree structure as
intact as possible.

We shall start by describing an instruction set, the Jouette instructions1, which are loosely
based on Motorola instruction sets.

4.1 Jouette instructions

A general jouette instruction consists of an operation code followed by one or more operands. They
can be broken in to two categories, expression instructions and command instructions. Expression
instructions produce a value and place it into either a data or address register.

A typical expression instruction is written as:

opn [i0], i1, . . . , in

where the register in square parentheses, [i0], indicate the output and the list i1 . . . , in, the inputs.
This is important information to the instruction selection stage as such an instruction will be
viewed as an operation on its inputs combinaed with an assignment. An instruction which has no
output arguments is a command and is a side-effecting operation, either changing main memory or
program flow. It is typically written as:

opn L, i1, . . . , in

or
opn i1, . . . , in

where L is a label and the i1, . . . , in are input to the command.
Registers in the Jouette machine are grouped into data registers and address registers.

Data registers d0, d1, ..., dM

Address registers a0, a1, ..., aN

One can only access main memory using an address register. The instructions are displayed in
table 5.

Table 5: Jouette Instruction list

Instruction Cst Effect/CIRL Description

add [di], dj , dk 2 di := dj + dk Expression: Adds the contents of two data
registers and places it in a third.

mul [di], dj , dk 5 di := dj ∗ dk Expression: Multiplies the contents of two
data registers and places it in a third.

Continued on next page

1These instructions were collected by Brett Giles

22

Instruction Cst Effect/CIRL Description

sub [di], dj , dk 2 di := dj − dk Expression: Subtracts the contents of two
data registers and places it in a third.

div [di], dj , dk 10 di := dj/dk Expression: Divides the contents of two
data registers and places it in a third.

addi [di], dj , c 1 di := dj + c Expression: Adds a constant to a data
register and places it in another.

subi [di], dj , c 1 di := dj − c Expression: Subtracts a constant from a
data register and places it in another.

movea [di], aj 2 di := ref(aj) Expression: Moves contents of an address
register to a data register.

moved [ai], dj 2 ai := deref(dj) Expression: Moves contents of a data reg-
ister to an address register.

load [di], aj , c 10 di := mem[aj\c] Expression: Moves memory pointed to by
an address register + constant to a data
register.

store ai, c, dj 10 ai\c← dj Command: Store data register to memory
pointed to by an address register + con-
stant.

movem ai, aj 20 ai ← mem[aj] Command: Moves memory pointed to by
one address register to memory pointed to
by another address register.

bge L, dj 3 JUMP to L if dj ≥
0

Command: Jump to label (change pro-
gram counter) if data register greater than
or equal to 0.

blt L, dj 3 JUMP to L if dj <
0

Command:

bz L, dj 3 JUMP to L if dj =
0

Command:

Continued on next page

23

Instruction Cst Effect/CIRL Description

bnz L, dj 3 JUMP to L if dj 6=
0

Command:

br L 2 JUMP to L Command: Jump to label.

call

[d0], L, d1, . . . , dn

5 JUMP to L, re-
member return lo-
cation

Expression: Jump to label and remember
address of next instruction. d0 is the out-
put register and d1, . . . , dn are the input
arguments.

return d 3 Return from last
call

Return to instruction just after last call.

L: 0 Label next instruc-
tion

Provide destination for jump, branch and
call.

4.2 Translation

A translation system for terms consists of

• Two sets of types the source types, S, and the target types, T , together with a map t : S
−→ T which turns source types into target types;

• Three algebraic signatures:

type : Target −→ list(T)× T

type : Internal −→ list(T)× T

type : Source −→ list(S)× S

respectively the target, internal, and source signatures.

• A set of translation rules either of the form:

– A translation to an internal pattern:

c(x1, .., xn)⇐ t1 | ...|tn
where c is a function in the internal signature signature and c(x1, ..., xn) and t1, ..., tn
are well-type terms in the signature Internal + Source using all the the variables {x1 :
X1, ..., xn : Xn}. The typing is with respect to the target types with source types being
coerced by t into target types.

– A translation to a target term:
t0 ⇐ t1 | ...|tn

where t0 is a well typed term in the target signature, t1, .., tn are well-typed terms in the
signature Internal + Source, as above, such that each ti uses all the variables used in t0.

24

Example 4.1 For two type systems, S = T = {E, Z} where Z is the integers, let the target
signature be ADDI : E, Z −→ E and 0 :−→ E, the internal signature be empty, and the source
signature be add : E,E −→ E and const : Z −→ E.

ADDI(x, n) ⇐ add(x, const(n)) | add(const(n)), x)

x ⇐ add(x, const(0)) | add(const(0), x)

A first question to ask is whether every source tree can be translated into a target tree. In the
above example it is clear that we cannot translate arbitrary source trees into target expressions (e.g
try translating add(x, y)). If a tree can be translated, the next problem is whether one translation
is better than another. Indeed, more importantly, is there an optimal, translation into a target
tree.

The form of the rules guarantees it is decidable whether a translation of a source term is possible:
each rule cannot increase the size of the non-target portion of the tree. It may be possible to enter
a finite cycle, but one can easily detect this. A simple approach to determining whether a tree is
translatable is to “munch it” non-deterministically from the root (watching for repetition). This
means eating a right hand side of a rule and, when a terminal constructor appears at the root,
working recursively on its arguments.

It is quite possible that every source tree is a translation of a starting tree. In particular, this
means that the function symbols of the source signature must be the translation of something in
the start signature. This is necessary and also sufficient; once one can translate the basic functions
one can translate all the terms. In instruction selection problems it is usual that the intermediate
language can always be translated! In this case the issue is to find the best translation.

A bad translation of add(const(m), const(n)) in the above example is as

ADDI(ADDI(ADDI(0,m), 0), n)

a better translation would be ADDI(ADDI(0,m), n). Here we have not defined what we mean by
“better”: it may be given by the size, the register requirement, or, indeed, some other (possibly
rather complex) requirement.

We shall focus on monotone cost criteria which satisfy if size(si) ≤ size(s′i) then we shall
require that size(c(s1, ..., sn)) ≤ size(c(s′

1
, ..., s′n)). Usually such a cost criteria is given by associating

costs with the operations (but register need for example is such a criterion). This allows us to
optimize the representation of the subtrees before determining the representation of the root and
this allows a dynamic algorithm to solve the problem as we can “remember” the best solution for
all subtrees.

4.3 Types for instruction selection

Our aim is now to develop here a general instruction selection “module” which allows translation
from CIRL into various instruction sets – including, in particular, the Jouette machine outlined
above. The instruction selection phase will use a “rules” file which specifies the translation from
CIRL instructions into real code. Each translation rule will have an associated cost which will then
be used in the dynamic algorithm.

25

However, before we can fully understand the rules file (see table 8) it is necessary to understand
the general form of the instructions we wish to produce and the various datatypes associated with
the matching process.

4.3.1 Instruction datatype

The datatype for instructions is supposed to embody a rather general form of machine instruction
which may be applicable to various architectures. Ignoring, for the moment, the structure of
programs and function definitions it should be clear that expressions (outside the adressing modes)
are as expected (an operation applied to arguments). Embedded commands are still present and so
may have to be removed (again) after translation. The command structure deserves for comment:

data InstrProg = InstrProg [DataDef] [InstrFDef] InstrExp

data InstrFDef = InstrFDef String [DataDef] CirlType InstrProg

data InstrExp = InstrOp Instrop [InstrExp]

| InstrK BaseValue

| InstrAd String

| InstrFp Int String

| InstrReg MachineType InstrR

| InstrSeq [InstrCom] InstrExp

data InstrCom = InstrCom String [InstrExp]

| InstrLabel Int

| InstrJump String [InstrExp] Int

| InstrAssign MachineType InstrR InstrExp

data InstrR = InstrRTemp Int

| InstrRFix String

data Instrop = InstrCall Int String

| Instrop String

type MachineType = String

The translation of the Jouette command ADDI [d3] e1 k into this structure, becomes the
combination of an assignment and an expression:

InstrAssign Data 3 (ADDI [e1, InstrKk]).

An architecture may support various jump instructions: for example the Jouette bge L, dj is
translated as:

InstrJump BGE [dj] L

where a new instruction which consists of a label is introduced:

InstrLabel L.

26

The store command, e1 ←− e2 gets translated as an “ordinary” command:

InstrCom STORE [e1, e2]

4.3.2 Datatypes for matching

In a rules file the right hand side of a rule, also called the pattern, is matched against a (typed)
CIRL expression or command sequence. These right hand sides are stored into a special datatype
which facilitates matching and parallels the structure of CIRL expressions and commands. The
matching structure for CIRL expressions is:

data MExpression

= MMem MExpression

| MApply Mop [MExpression]

| MConst MBaseValue

| MEVar MachineType Int

data MBaseValue

= MVal BaseValue

| MBVar MachineType Int

data Mop = MBinop Binop

| MUniop Uniop

| MCall Int String

| MOffset

Note that one cannot match against an embedded command. Also note that it is always possible
to have a variable (represented by the last constructor in the datatype here) in a match expression.
Constants must be matched (and can be variables. Note also that there is type information carried
by these patterns but it is the machine type. As one matches one must make sure the CIRL type
translates to the specified machine type.

The matching structure for command sequences is mostly carried by the matching structure for
sequences (lists) which allow for prefix matching (the second constructor is always substituted by
the rest of the list):

data MList a = MCons a (MList a)

| MLVar Int

data MCommand

= MAssign MachineType Int MExpression

| MStore MExpression MExpression

| MCond (MExpression) (MList MCommand) (MList MCommand)

| MWhile MExpression (MList MCommand)

4.4 The datatype for translations

The lefthand sides of rules are translated into slightly different datatypes which match closely the
the structure of instructions. These are the target instruction expressions:

27

data MInstrExp = MInstrOp MachineType String [MInstrExp]

| MInstrK MachineType BaseValue

| MInstrKV MachineType Int

| MInstrReg MachineType MReg

| MInstrExpVar MachineType Int

| MInstrSeq (MIList MInstrCom) MInstrExp

data MReg = MRegVar Int -- register variable

| MRegTemp Int -- temporary

| MRegFix String -- fixed/precolored

Note that registers have no less than three forms: variable being matched and transfered from the
right hand side, temporaries special to the target code, and precolored registers. These rules are
typed although only to indicate the sort of register required in the machine.

Target commands again rely heavily on the structure of the list translations:

data MIList a = MICons a (MIList a)

| MIAppend Int (MIList a)

| MILVar Int

| MINil

data MInstrCom = MInstrCom String [MInstrExp]

| MInstrLabel Int

| MInstrJump String [MInstrExp] Int

| MInstrAssign MReg MInstrExp

Note that the translation of a list has two extra possibilities: MIAppend c rest in which the
command sequences substituting c is appended to the front of the command seqence rest, and
MILVar c in which the command sequence c is appended at the end. When translating the command
rules the outermost target sequence is regarded as a prefix (so uses this constructor). On the
otherhand embedded commands in target expressions (which are only allowed in the expression
rules) are alway terminated by MINil.

4.5 Datatypes for rules

Each rule is held together with its cost:

type ISExpRule = (MExpression,Int,MInstrExp)

type ISComRule = (MList MCommand,Int,MIList MInstrCom)

type ISRules = ([ISExpRule],[ISComRule])

Note that each rule contains five(!) different types of variable: for expressions, for command
sequences, for temporaries, for constants, and for labels. On matching the first four are instantiated
by substitution with the matched components. The labels names, by contrast are generated in the
translation process.

28

4.6 Dynamic types

The last data types used in the instruction selection phase are the so called “dynamic types”. They
basically mimic the CIRL datatypes but also at each stage also hold the best translation so far.
Notice for commands that, rather than holding the best translation of a single command, the best
translation of a sequence of commands is held.

The dynamic structure for expressions is:

data DExpression dexp dcoms

= DMem dexp CirlType (DExpression dexp dcoms)

| DApply dexp CirlType Ip [DExpression dexp dcoms]

| DConst dexp CirlType BaseValue

| DSeq dexp CirlType (DList dcoms (DCommand dexp dcoms))

(DExpression dexp dcoms)

| DTemp dexp CirlType Int

| DFp dexp CirlType Int String

| DAddr dexp CirlType String

and the dynamic structure for commands is:

data DList d a = DNil d

| DCons d a (DList d a)

data DCommand dexp dcoms

= DAssign CirlType Int (DExpression dexp dcoms)

| DStore CirlType (DExpression dexp dcoms) (DExpression dexp dcoms)

| DCond (DExpression dexp dcoms)

(DList dcoms (DCommand dexp dcoms))

(DList dcoms (DCommand dexp dcoms))

| DWhile (DExpression dexp dcoms)

(DList dcoms (DCommand dexp dcoms))

The dynamic strucure for programs and functions has the optimal code translation selected for
the functions and the program:

data DProg

= Dprog [DataDef] [DFunt] (SF(Int,[InstrCom]))

data DFunt

= DFunt String [DataDef] CirlType DProg

These are used with the following instantiation of types in which the generated code is wrapped
in the state monad which is dependent on the label number:

type DExp = DExpression (SF(Int,SM Int InstrExp)) (SF(Int,SM Int [InstrCom]))

type DCom = DCommand (SF(Int,SM Int InstrExp)) (SF(Int,SM Int [InstrCom]))

type DComs = DList (SF(Int,SM Int [InstrCom])) DCom

Where SF is the “success or fail” datatype (exception monad):

29

data SF a = SS a | FF

Note that it is quite possible to fail to find a translation! SM is the state monad. Command
and expression code depends on the label numbers chosen, thus, these must be threaded round the
code when it is generated.

4.7 The syntax of the rules file

An example of a rules file is in table 8. The grammar for the rules is in table 6 and the lexemes for
this grammar are in table 7. There follows a brief description of the grammar of a rules file.

A rules file is split into two parts: the expression rules and the command rules

rules -> "Expressions" exp_rules "Commands" com_rules .

Each rules is preceded by a cost (a natural number). An expression rule has a single lefthand side
target machine instruction expression (which can have an embedded command – which is viewed
as a terminated list pattern (rather than a prefix) – and possibly multiple right hand side pattern
expressions which translate into the given left hand side.

exp_rules -> exp_rule exp_rules | .

exp_rule -> NUM ":" minstr_exp "<==" pattern_exps .

minstr_exp -> "{" instr_coms "}" pure_instr_exp | pure_instr_exp .

pattern_exps -> pattern_exp more_pattern_exp .

A pattern expression is a CIRL operation applied to arguments, and expression variable, a constant
variable, or a constant.

pattern_exp ->

ADD pattern_exp_args | SUB pattern_exp_args | DIV pattern_exp_args

| MOD pattern_exp_args | EQUAL pattern_exp_args | GT pattern_exp_args

| AND pattern_exp_args | OR pattern_exp_args | XOR pattern_exp_args

| NEQ pattern_exp_args | GE pattern_exp_args | LE pattern_exp_args

| LT pattern_exp_args | NOT "(" pattern_exp ")" | NEG "(" pattern_exp ")"

| MEM "(" pattern_exp ")" | EXPV ":" machine_type

| CONSTV ":" machine_type | NUM | REAL | BOOL

pattern_exp_args -> "(" pattern_exp "," pattern_exp ")".

The target instruction expression can have embedded commands: a pure target instuction expres-
sion could be a (typed) expression variable, a register (variable, fixed/precolored, or temporary) a
constant variable, a constant, or a general instruction expression.

pure_instr_exp -> EXPV ":" machine_type | register_instr

| CONSTV ":" machine_type

| NUM | BOOL | REAL

| ID "(" pure_instr_exps ")" ":" machine_type

register_instr -> REGV | REGT | REGF

pure_instr_exps -> pure_intr_exp more_pure_instr_exp | .

more_pure_instr_exp -> "," pure_instr_exp more_pure_instr_exp | .

30

The command rules each have an associated cost and consist of a left hand side, the target command
sequence, and a right hand side which could be multiple command sequence patterns.

com_rules -> com_rule com_rules | .

com_rule -> NUM ":" instr_coms "<==" instr_patterns .

instr_patterns -> coms_pattern more_instr_patterns

more_instr_patterns -> "|" coms_pattern more_instr_patterns | .

A command sequence pattern consists a series of command patterns. A command pattern can be
an assignment, a store instruction, a conditional or a while command.

coms_pattern -> com_pattern more_com_pattern

more_com_pattern -> ";" com_pattern more_com_pattern | .

com_pattern -> REGV ":" cirl_type ":=" pattern_exp

| pattern_exp "<-" pattern_exp

| "if" pattern_exp "then" COMSV "else" COMSV

| "while" pattern_exp "do" COMSV

The target instruction command sequence are a sequence of target instruction commands. These
are either jumps, labels, assignmments, or general commands (which will cover various storing
modes for example).

instr_coms -> COMSV more_instr_coms | instr_com more_instr_coms |.

more_instr_coms -> ";" instr_coms | .

instr_com -> JUMP ID "(" pure_instr_exps ")" LABV

| ASSIGN register_instr ASS pure_instr_exp

| LABEL LABV

| ID "(" pure_instr_exps ")" .

machine_type -> ID

There are no less than five different sorts of variable: expression variable $n, command sequence
variables !n, temporary variables #n, constant variables ^ n, and lastly label variables n. These
variables are matched into the CIRL expression and so must be instantiated in the pattern matching
stage. One can also use “precolored” temporaries, such as <d0> and in the embedded commands
associated with expressions general temporaries Tn. Note in all the above n stands for a positive
number. When a match is found for a right hand side all the variables, except for the label variables,
must be instantiated: thus, every such variable on the left must already occur on the right (and in
fact linearly – that is at most once).

4.8 Examples of instruction selection

What has happened to the original code?

(a) The CIRL program has been type checked.

(b) The function calls have been broken up.

(c) Instruction selection has been undertaken using the rules file below (a pseudo-Jouette).

31

rules -> "Expressions" exp_rules "Commands" com_rules .

exp_rules -> exp_rule exp_rules | .

exp_rule -> NUM ":" minstr_exp "<==" pattern_exps .

minstr_exp -> "{" instr_coms0 "}" pure_instr_exp | pure_instr_exp .

instr_coms0 -> COMSV more_instr_coms0 | instr_com more_instr_coms0 |.

more_instr_coms0 -> ";" instr_coms0 | .

pattern_exps -> pattern_exp more_pattern_exp .

more_pattern_exp -> "|" pattern_exp more_pattern_exp | .

pattern_exp ->

ADD pattern_exp_args | SUB pattern_exp_args | DIV pattern_exp_args

| MOD pattern_exp_args | EQUAL pattern_exp_args | GT pattern_exp_args

| AND pattern_exp_args | OR pattern_exp_args | XOR pattern_exp_args

| NEQ pattern_exp_args | GE pattern_exp_args | LE pattern_exp_args

| LT pattern_exp_args | NOT "(" pattern_exp ")"

| NEG "(" pattern_exp ")" | MEM "(" pattern_exp ")"

| EXPV ":" machine_type | CONSTV ":" machine_type

| NUM | REAL | BOOL

pattern_exp_args -> "(" pattern_exp "," pattern_exp ")".

pure_instr_exp -> EXPV ":" machine_type | register_instr

| CONSTV ":" machine_type

| NUM | BOOL | REAL

| ID "(" pure_instr_exps ")" ":" machine_type

register_instr -> REGV | REGT | REGF

pure_instr_exps -> pure_intr_exp more_pure_instr_exp | .

more_pure_instr_exp -> "," pure_instr_exp more_pure_instr_exp | .

com_rules -> com_rule com_rules | .

com_rule -> NUM ":" instr_coms "<==" instr_patterns .

instr_patterns -> instr_pattern more_instr_patterns

more_instr_patterns -> "|" instr_pattern more_instr_patterns | .

coms_pattern -> com_pattern more_com_pattern

more_com_pattern -> ";" com_pattern more_com_pattern | .

com_pattern -> REGV ":" cirl_type ":=" pattern_exp

| pattern_exp "<-" pattern_exp

| "if" pattern_exp "then" COMSV "else" COMSV

| "while" pattern_exp "do" COMSV

instr_coms -> COMSV more_instr_coms | instr_com more_instr_coms |.

more_instr_coms -> ";" instr_coms | .

instr_com -> JUMP ID "(" pure_instr_exps ")" LABV

| ASSIGN register_intr ASS pure_instr_exp

| LABEL LABV

| ID "(" pure_instr_exps ")" .

machine_type -> ID

Table 6: Grammar for the rules file

32

IF <== "if" THEN <== "then" ELSE <== "else"

WHILE <== "while" COMMA <== "," COLON <== ":"

SEMICOLON <== ";" ASS <== ":=" ASSIGN <== "ASSIGN"

BARROW <== "<==" ADD <== "add" SUB <== "sub"

NEG <== "~" MUL <== "mul" DIV <== "div"

AND <== "and" OR <== "or" XOR <== "xor"

MOD <== "mod" NOT <== "not" EQUAL <= "eq"

GTQ <= "gt" GEQ <= "ge" LTQ <== "lt"

LEQ <== "le" NEQ <== "neq" LARR <== "<-"

OFFSET <== "offset" MEM <== "mem" LPAR <== "("

RPAR <== ")" LCPAR <== "{" RCPAR <== "}"

SLASH <== "|" LABEL <== "LABEL" JUMP <== "JUMP"

EXPRESSIONS <== "Expressions" COMMANDS <== "Commands"

NUM Int <== <natural number> EXPV Int <== "$"<natural number>

COMSV Int <== "!"<natural number> LABV Int <== "@"<natural number>

CONSTV Int <== "^"<natural number> REGV Int <== "#"<natural number>

ID String <== <Identifier> REGF String <== "<"<identifier>">"

REGT Int <== "T"<natural number>

Table 7: Lexemes for rules grammar

(d) The embedded commands on the instructions have been removed.

(e) The result has been “pretty printed” to make it look like Jouette code!

What remains is to:

A. Put the code in static single assignment form – so no registers which do not have to be colored
the same are actually colored the same. This allow the register allocation more freedom to
find an acceptable colouring. This step is “optional” as register allocation can be performed
on the code as is. This should be performed after (or at the same time as removing embedded
commands from CIRL.

B. The expressions have yet to be proken up: here the the Sethi-Ullman algorithm should be used
to ensure that a minimal number of registers is used to achieve this. This should be performed
before removing embeedded commands from the instructions as it is most effecient to use the
algorithm to produce embedded commands.

C. A general register allocation phase has yet to be done. Note that this phase may get rid of some
of the numerous MOVE instructions which get introduced by these transformations. This should
be performed after the all the steps above.

Here are the translations of (the first three) programs from the last section:

1. Here is the form with the functions removed:

33

Expressions

2: ADDI(<d0>:Data,^1:Data):Data <== ^1:Data

2: ADDI($2:Data,^1:Data):Data <== add ($2:Data,^1:Data)

| add(^1:Data,$2:Data)

2: ADD($1:Data,$2:Data) <== add ($1:Data,$2:Data)

2: OFFSET ($1:Addr,$2:Data):Addr <== offset ($1:Addr,$2:Data)

2: {ASSIGN T1:Data := $1:Data ;

JUMP BNZ (T1:Data) @1;

ASSIGN T1:Data := $2:Data;

LABEL @1} T1:Data <== or ($1:Data, $2:Data)

2: {ASSIGN T1:Data := $1:Data ;

JUMP BZ (T1:Data) @1 ;

ASSIGN T1:Data := $2:Data ;

LABEL @1} T1:Data <== and ($1:Data, $2:Data)

3: LOADI($1:Addr,^2:Data):Data <== mem(offset($1:Addr,^2:Data))

Commands

2: JUMP BZ ($1:Data) @1;

!1;

JUMP BR () @2;

LABEL @1;

!2;

LABEL @2

<== if $1:Data then {!1} else {!2}

2: LABEL @1; JUMP BZ ($1:Data) @2; !1 ;JUMP BR () @1; LABEL @2

<== while $1 {!1}

1: ASSIGN #1:Data := $2:Data <== #1:Data := $2:Data

3: STORE ($1:Addr,$2:Data) <== $1:Addr <- $2:Data

Table 8: An example instruction selection rules file

34

var a:bool

var b:bool

var c:bool

fun f(var x:bool var y:bool var z:bool):int

[{ } 1]

fun g(var x:bool var y:bool var z:bool):bool

[{ } false]

{ t0:bool := mem(addr(a))

; t1:bool := mem(addr(b))

; t2:bool := mem(addr(c))

; t3:bool := g(t0, t1, t2)

; t3:bool := (t3&&t0)

; t5:bool := g(t1, t2, t0)

; t4:bool := g(t2, t1, t5)

; t4:bool := (t5||t4)

; t6:bool := (t2&&mem(addr(b)))

; t5:bool := not t6

; t3:int := f(t3, t4, t5)

; } (t3+t3)

Here is the function translated into pseudo-Jouette code:

[cost=465]

LOADI [d1] addr(a) 0

; LOADI [d2] addr(b) 0

; LOADI [d3] addr(c) 0

; CALL [d4] g (d1,d2,d3)

; MOVE [d5] d4

; BZ @1 (d5)

; MOVE [d5] d1

; LABEL @1

; MOVE [d4] d5

; CALL [d6] g (d2,d3,d1)

; CALL [d5] g (d3,d2,d6)

; MOVE [d7] d6

; BNZ @2 (d7)

; MOVE [d7] d5

; LABEL @2

; MOVE [d5] d7

; MOVE [d8] d3

; BZ @3 (d8)

; LOADI [d8] addr(b) 0

; LABEL @3

35

; MOVE [d7] d8

; NOT [d6] d7

; CALL [d4] f (d4,d5,d6)

; ADD [d1] d4 d4

2. Here is the second program with embedded commands removed and functions broken up
(there are none!):

var b[40]:int

var c:int

var d:int

{ t0:int := (mem(addr(c))+3)

; t0:int := (t0*t0)

; t3:ref(int) := mem((addr(b)\t0))

; t1:int := (mem((mem(addr(b))\2))+mem(addr(d)))

; t2:int := (2*t1)

; (mem(addr(b))\2):int <- t2

; t3:int <- t2

; t0:int := 9

; } t0

Here is the translation into pseudo-Jouette code:

var b[40]:int

var c:int

var d:int

[cost=111]

ADDI [d1] LOADI(addr(c),0) 3

; MUL [d1] d1 d1

; LOADAI [a4] OFFSET(addr(b),d1) 0

; ADD [d2] LOADI(LOADAI(addr(b),0),2) LOADI(addr(d),0)

; MUL [d3] ADDI(<d0>:Data,2) d2

; STORE LOADAI(addr(b),0) 2 d3

; STORE a4 0 d3

; ADDI [d1] <d0>:Data 9

; MOVE [d1] d1

Note here we still need to break up the instruction expressions.

3. Here is the third program with embedded commands removed and functions broken up:

var p[12]:int

fun f(var a:int var b:int):int

[{ } mem(fp(0,a))]

36

{ t5:ref(int) := (mem(addr(p))\7)

; t0:int := mem((mem(addr(p))\1))

; t4:ref(int) := mem(addr(p))

; t2:int := 1

; t1:int := 1

; t3:int := f(t2, t1)

; t1:int := mem((t4\t3))

; t0:int := f(t0, t1)

; t5:int <- (mem((mem(addr(p))\3))*7)

; t1:int := 1

; } t1

Here is the pseudo-Jouette code:

var p[12]:int

function f(var a:int var b:int):int

[

[cost=11]

LOADI [d1] fp(0,a) 0

]

[cost=310]

OFFSETI [a6] LOADAI(addr(p),0) 7

; LOADI [d1] LOADAI(addr(p),0) 1

; LOADAI [a5] addr(p) 0

; ADDI [d3] <d0>:Data 1

; ADDI [d2] <d0>:Data 1

; CALL [d4] f (d3,d2)

; LOADI [d2] OFFSET(a5,d4) 0

; CALL [d1] f (d1,d2)

; STORE a6 0 MUL(LOADI(LOADAI(addr(p),0),3),ADDI(<d0>:Data,7))

; ADDI [d2] <d0>:Data 1

; MOVE [d1] d2

Note that the expressions have cleraly yet to be broken up!

4.9 An example of a Jouette rules file

Expressions

3: ADD($1,$2):Data <== add ($1:Data,$2:Data)

6: MUL($1,$2):Data <== mul($1:Data,$2:Data)

3: SUB($1,$2):Data <== sub($1:Data,$2:Data)

10: DIV($1,$2):Data <== div($1:Data,$2:Data)

37

2: ADDI(<d0>:Data,^1):Data <== ^1:Data

2: ADDI($2,^1):Data <== add ($2:Data,^1:Data) | add(^1:Data,$2:Data)

2: SUBI($1,^2):Data <== sub ($1:Data,^2:Data)

3: OFFSET ($1,$2):Addr <== offset ($1:Addr,$2:Data)

3: OFFSETI ($1,^2):Addr <== offset ($1:Addr,^2:Data)

2: {ASSIGN T1:Data := $1;

JUMP BNZ (T1:Data) @1;

ASSIGN T1:Data := $2;

LABEL @1} T1:Data <== or ($1:Data, $2:Data)

2: {ASSIGN T1:Data := $1 ;

JUMP BZ (T1:Data) @1 ;

ASSIGN T1:Data := $2 ;

LABEL @1} T1:Data <== and ($1:Data, $2:Data)

3: {JUMP BLT (SUB($1,$2):Data) @1 ;

ASSIGN T1:Data := ADDI(<d0>:Data,1):Data;

JUMP BR () @2;

LABEL @1 ;

ASSIGN T1:Data := <d0>:Data ;

LABEL @2 } T1: Data

<== lt ($1:Data,$2:Data) | gt ($2:Data,$1:Data)

3: {JUMP BGE (SUB($1,$2):Data) @1 ;

ASSIGN T1:Data := ADDI(<d0>:Data,1):Data;

JUMP BR () @2;

LABEL @1 ;

ASSIGN T1:Data := <d0>:Data ;

LABEL @2 } T1: Data

<== ge ($1:Data,$2:Data) | le ($2:Data,$1:Data)

10: LOADI($1,^2):Data <== mem(offset($1:Addr,^2:Data))

10: LOADAI($1,^2):Addr <== mem(offset($1:Addr,^2:Data))

10: LOADI($1,0):Data <== mem($1:Addr)

10: LOADAI($1,0):Addr <== mem($1:Addr)

4: NOT($1):Data <== not($1:Data)

Commands

2: JUMP BRZ ($1) @1;

!1;

JUMP BR () @2;

LABEL @1;

!2;

LABEL @2

<== if $1:Data then {!1} else {!2}

4: JUMP BLT (SUB($2,$1):Data) @1;

!1;

38

JUMP BR () @2;

LABEL @1;

!2;

LABEL @2

<== if lt($1:Data,$2:Data) then {!1} else {!2}

2: LABEL @1; JUMP BRZ ($1) @2; !1 ;JUMP BR () @1; LABEL @2

<== while $1:Data {!1}

2: LABEL @1; JUMP BLT (SUB($2,$1):Data) @2; !1 ;JUMP BR () @1; LABEL @2

<== while lt($1:Data,$2:Data) {!1}

| while gt($2:Data,$1:Data) {!1}

1: ASSIGN #1:Data := $2 <== #1:Data := $2:Data

1: ASSIGN #1:Addr := $2 <== #1:Addr := $2:Addr

15: MOVEM ($1,$2) <== $1:Addr <- mem($2:Addr)

10: STORE ($1,0,$2) <== $1:Addr <- $2:Data

10: STOREA ($1,0,$2) <== $1:Addr <- $2:Addr

10: STORE ($1,^3,$2) <== offset($1:Addr,^3:Data) <- $2:Data

10: STOREA ($1,^3,$2) <== offset($1:Addr,^3:Data) <- $2:Addr

39

