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CPSC510 – Implementing register allocation for trees (see Aho-Ullman chapter 9 especially section
9.10 and also Appel 11.5)

1 Ershov numbers

It is possible to work out very simply the minimal number of registers one requires to compute a
tree with operations of arbitrary arity. This is called the Ershov1 number of the tree. The basic
idea is that you have to compute the argument which needs the most registers first. Once you have
computed that argument you have to hold the result, as an intermediate value, in a register. Thus,
the overall register requirement is the maximum of the register requirement for the argument you
computed first and one more register than the remaining register requirement.

Thus, suppose you are computing

op5(x1,x2,x3,x4,x5)

and you discover recursively that

need(x1) = 3

need(x2) = 3

need(x3) = 5

need(x4) = 6

need(x5) = 3

then you should compute these in order of greatest register need

[x4,x3,x2,x5,x1].

When you have computed x4 you will need a register to hold its result, and when you have computed
x3 you will need a register to hold its result, and .... so on. By doing the computations in this
order, the high register need computations are done when the number of intermediate values which
need to be stored is lowest. This reduces the overall register requirement.

1Academician Andrey Petrovych Ershov (19 April 1931 - 8 December 1988) was a Soviet computer scientist,
notable as a pioneer in systems programming and programming language research. He was responsible for the
languages ALPHA and Rapira, AIST-0 the first Soviet time-sharing system, electronic publishing system RUBIN,
and MRAMOR, a multiprocessing workstation.
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To calculate the number of registers required one must add a register cost across this list to
indicate what one must store at that stage. This is given by the register “ramp”:

[0,1,2,3,4].

The register need of the whole computations is then the maximum

MAX [need(x4) + 0,need(x3) + 1,need(x2) + 2,need(x5) + 3,need(x1) + 4]

= MAX [6 + 0,5 + 1,3 + 2,3 + 3,3 + 4]

which is seven registers.
It is important to note that, when we come to consider spilling, essentially this same need

function can be used to calculate the stack space requirement by the expression. Indeed just
stare at this calculation and you will realize that for a stack machine we have just calculated the
(minimal) stack space required for calculating the expression.

Also note this technique can be simplified greatly in the case that you have only two arguments.
In this case you always do the most needy argument first and this is the need unless both require
the same number N of registers in which case the need is N + 1.

Here are some questions:

1. Find the smallest binary expression trees which have a register need 5, 6, 7, 8, 9, 10.

2. Is it true that the depth/hieght of the expression is always less than the register need? Or is
it always greater than the register need?

3. Which sorts of expression trees have the highest Eshov number?

1.1 Implementation

To implement this we need a datatype which allows operations of arbitrary arity (which means this
belongs to the “Rose tree” family of datatypes), a sorting routine (here we use a quick sort), the
ability to calculate the maximum of a list of integers, and the abilty to add a “ramp” [0,1,2,3,..]

of register needs as the arguments increase.
Here is the Haskell code with commentary – which you can run if you copy this into Haskell!!

First we have a number of standard utility programs (many of which are in the standard prelude):

concat::[[a]] -> [a]

concat [] = []

concat (x:xs) = x ++ (concat xs)

zipWith::(a -> b ->c) -> [a] -> [b] -> c

zipWith [] _ = []

zipWith _ [] = []

zipWith (x:xs) (y:ys) = (f x y):(zipWith f xs ys)

len [] = 0

len (_:xs) = 1+(len xs)
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max:: Integer -> Integer -> Integer

max x y |x >= y = x

|otherwise = y

maximum:: [Integer] -> Integer

maximum [] = 0

maximum (n::ns) = max n (maxs ns)

qsort:: Ord a => [a] -> [a]

qsort = sort (\x y -> x <= y)

sort:: (a -> a -> Bool) -> [a] -> [a]

sort _ [] = []

sort p (x:xs) = (sort p [y | y <- xs, not (p x y)])

++ [x] ++

(sort p [y | y <- xs, p x y])

monus:: Int -> Int -> Int

monus x y| x-y > 0 = x-y

| otherwise = 0

-- Various projections

pr13(x,_,_) = x

pr23(_,x,_) = x

pr33(_,_,x) = x

pr14(x,_,_,_) = x

pr24(_,x,_,_) = x

pr34(_,_,x,_) = x

pr34(_,_,_,x) = x

Then we have the code for calculating need. This has two components:

1. We must handle the calculation of the need at operations: this involves zipping a register
ramp to the sorted list of arguments and taking the maximum.

2. We must then do this recursively across the expression tree (a fold!).

To calculate the register need at an operation we assume we have a list of register needs for each
argument we then zip these needs with the register ramp and take their maximum. You always
need one register for the output. This gives the following:

reg_width:: String -> [integer] -> Integer

reg_width _ ts = maximum (1::(zipWith (+) (qsort ts) [0..])))

Next we define the datatype of expressions and develop its show function and the fold function

data Exp = OPN String [Exp]

| VAR String
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instance Show Exp where

show (VAR str) = str

show (OPN name args) = name++"("++(display args)++")" where

display [] = ""

display [t] = show t

display (t:ts) = (show t)++","++(display ts)

-- fold over expressions

fold_exp:: (String -> [b] -> b) -> (String -> b) -> Exp -> b

fold_exp g v (OPN s ts) = g s (map (fold_exp g v) ts)

fold_exp g v (VAR s) = v s

This leaves the calculation of the register need itself which is done by folding over the tree:

register_need:: Exp -> Integer

register_need = fold_exp reg_width (\_ -> 1)

1.2 Generating machine code

Now this is a little unconvincing as we have not generated any code: so let us add this aspect to
the program above so that we actually generate some simple instructions.

The first problem is to have a simple notation for the instructions into which we will translate
the expressions. For this we require a bank of registers. We shall have three sorts:

General registers: These are numbered variables staring with r:

r0, r1, r2, r3, r4, ...

Frame pointer: The frame pointer holds the satrt address of the current activation record. to
access things in the record one uses an offset which is denoted by the backslash operator:
thus fp\3 means take offset 3 from the frame pointer. In general the offset can be given by
a register. One can store things at and load things from such locations.

General storage locations: A general storage location is a pointer to location in memory from
which an offset can be taken. As for the frame pointer the offset is indicated by the backslash
x\3.

The registers are implemented by the following datatype:

data Register = REG Int | LOC String | FP

instance Show Register where

show (REG n) = "r"++(show n)

show FP = "fp"

show (LOC str) = str

Next we have to describe some basic operations. We shall use three basic “three address” style
instructions:
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ASSIGN: An assigmment of an operation on registers to a register:

r1 = ADD(r2,r1)

We shall allow n-ary operations (for function calls). Usually machine codes will allow only
binary operations as the instructions are of fixed width.

LOAD: This instruction loads a value from a main memory location, specified by a location and
an offset, and puts it into a register:

r1 <- x\r2

STORE: This instruction stores a value in a register at a location in main memory location:

r1 -> x\r2

These instructions with their show functions are implemented by:

data Instr = APP String Register [Register]

| STORE Register Int Register

| LOAD Register Register Int

instance Show Instr where

show (APP str r rs) = "\t"++(show r)++" = "++str++(args rs)++"\n" where

args rs = "("++(display rs)++")" where

display [] = ""

display [r] = show r

display (r:rs) = (show r)++","++(args’ rs)

show (STORE r n r’) = "\t"++(show r’)++" -> "++(show r)++"\\"++(show n)++"\n"

show (LOAD r str) = "\t"++(show r)++" <- "++(show r’)++"\\"++(show n)++"\n"

THe code we shall produce depends on the starting register number, which depends on the
number of intermediate values we need to remember – as these must be held in registers with
indices lower than that starting register number. We shall use an implementation trick when we
generate the code: we shall leave it dependent on the starting register number. This means that
when we reorder arguments to obtain the best computational arrangement we can obtain the actual
register allocation for the computation at an argument by just applying its dependent code to the
correct starting register number. Hurrah for λ-abstraction and functional programming!! Of course,
this could also be achieved by generating code starting at register zero and traversing the code and
adjusting all the register numbers to allow for the actual starting point of the allocation.

The fact that we are no longer computing the arguments of an operation in order does creates a
little problem as which register holds which argument has to be tracked. To do this we tuple each
argument not only with its need and dependent code but also with its argument number:

(NEED,dependent_code,ARGUMENT_NUMBER)
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The inverse of the permutation which is produced on the arguments, by computing them in greatest
need order, must be performed to determine which register holds the value of each argument. This
is the purpose of the inv function. The most important function in the code is dep code gen this
produces both the register need and the code dependent on a register starting address.

gencode:: Exp -> [Instr]

gencode t = snd (dep_code_gen t) 1 where

dep_code_gen:: Exp -> (Int,Int -> [Instr])

dep_code_gen (VAR str) = (1,(\n -> [LOAD (REG n) (LOC str) 0]))

dep_code_gen (OPN str rL) = (new_register_need,new_dcode) where

sub_dcodes = sort (\(n,_,_) (m,_,_) -> n >= m)

(zipWith (\ (x,y) n -> (x,y,n)) (map dep_code_gen rL) [0..])

inv xs = map fst (sort (\(_,n) (_,m) -> m >= n) (zip [0..] xs))

new_dcode m = (concat ( zipWith (\(n,c) -> c (n+m))

[0..]

(map pr23 sub_dcodes))

++ [APP str (REG m)

(map (\n -> REG(n+m))

(inv (map pr33 sub_dcodes)))] )

new_register_need =

maximum (1:(zipWith (+) [0..] (map pr13 sub_dcodes)))

1.3 Examples without spilling

1. When we generate code on:

OPN "ADD" [OPN "ADD" [VAR "x1",VAR "x2"]

,VAR "x1"]

which we may write as
(x1 + x2) + x1

we generate the code:

r1 <- x1\0

r2 <- x2\0

r1 = r1 + r2

r2 <- x1\0

r1 = r1 + r2

2. When we generate code on:

OPN "ADD" [VAR "x1"

,OPN "ADD" [VAR "x2",VAR "x3"]]

which we may be written more understandably as:

x1 + (x2 + x3)

we no longer do a left to right evaluation instead we have:
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r1 <- x2\0

r2 <- x3\0

r1 = r1 +r2

r2 <- x1\0

r1 = r2+r1

3. When we generate code on:

fun3(x1, (x1 + x2) ∗ (x3 + x4), (x5/x6) + (x7/x8))

we get:

r1 <- x1\0

r2 <- x2\0

r1 = r1+r2

r2 <- x3\0

r3 <- x4\0

r2 = r2+r3

r1 = r1*r2

r2 <- x5\0

r3 <- x6\0

r2 = r2/r3

r3 <- x7\0

r4 <- x8\0

r3 = r3/r4

r2 = r2+r3

r3 <- x1\0

r1 = fun3(r3,r1,r2)

where we note that the order in which the arguments are evaluated has been altered so that
the more expensive arguments are evaluated first. (The complete reversal is a consequence of
our – ok MY – sorting algorithm! It swaps “equal need” computations on even boundaries
being a merge sort which splits lists into even and odd elements ..)

It is worth noting that this code is not optimal as we are reloading variables which are repeated
at the leaves of the tree. If these variables all separate things are good! However, if not it would
clearly be better to put these repeated variable values in registers so that they are to be used again
without accessing main memory. However, adding such a possibility to the problem makes the
register allocation problem much more complex – in fact intractable. So it is important to accept
this limitation (at the moment)!

Here are some questions:

1. Develop your own code and test it on the above examples and invent some of your own
examples!

2. Try to do an optimal register allocation in which you avoid reloading variables. Develop some
examples and illustrate the difficulty.
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1.4 The Sethi-Ullman algorithm with spilling

The last added sophistication to this suite of algorithms is to add spilling into the picture. This
is the Sethi-Ullman algorithm. The idea is that we run into trouble in the above algorithm when
more than one subtree requires the full K registers because then we no longer have the required
registers to store the intermediate result. So we have to decide what to do in that case!

Again the situation is that we have a number of subtrees whose register requirements we know.
So suppose we are computing (as above)

op5(x1,x2,x3,x4,x5)

and K = 5. Suppose also that we have discovered recursively that

need(x1) = 4

need(x2) = 2

need(x3) = 5

need(x4) = 5

need(x5) = 4

Notice that no subtree requires more than five registers as this would have already precipitated
spilling. As before we will compute the arguments in greatest register need order:

[x4,x3,x1,x5,x2]

where the needs are:

[ 5, 5, 4, 4, 2]

Unfortunately when you have computed x4 you will need a register to hold its result in, but
then the computation of x3 requires all the registers. This means you have to spill the result of x4.
But when you have computed x3 you will need a register to hold its result, which appears to be
OK as x1 only requires four registers ... but now you run into trouble again as you need to store
two values but x5 requires four registers!!!

So the situation is not so simple apparently! What is, of course, happening is that when you
spill you do not need any registers to hold the intermediate result ... thus if did not spill the first
argument you would need:

MAX [ 5+0, 5+1, 4+2, 4+3, 2+4] = 7

registers. When you spill the first argument (but none of the others) you need:

MAX [ 5+0, 5+0, 4+1, 4+2, 2+3] = 6

registers. Where notice that the maximum occurs later in the list at the fourth position ... So to
determine how many arguments you have to spill you just keep shifting the point where the register
”ramp” starts,

MAX [ 5+0, 5+0, 4+0, 4+1, 2+2] = 5
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registers, until you get under the register width. Now you simply spill the early computations
eventually reloading them into the registers which are free before performing the operation. (Clearly
you MUST have the register width of the operation itself!)

Well of course another way to look at things is to realize that, if you NEED two more registers
than you have, you must spill two arguments. So the calculation of the number of spills necessary
can be obtained directly from the need.

Now there is another worthwhile thing to do when you do this allocation and that is to calculate
the stack requirement. This is conceptually VERY simple as the number you want is simply
need(t) − k! However, you should really combine the calculation of the stack space required with
the calculation that generates the code this is what done below....

1.5 An implementation of the Sethi-Ullman algorithm

Below is an implementation of the Sethi-Ullman algorithm for register allocation and spilling for a
tree of operations of arbitrary arity.

We first need to be able to calculate the register width given spilling. Basically if we spill we
know it must be K and if we do not spill then it is the usual calculation. However, in spilled width

we give the calculation from first principles.
Next we have the tricky problem of sorting out how the argument order is permutated by the

calculation. This is especially tricky as spilled arguments do not fill registers until the end of the
calculation. This means they are picked up in reverse after the non-spilled calculations are done.
The spill inv function calculates the inverse permutation given the number of spilled arguments
and the order in which the arguments are calculated.

First we calculate, given the register width available and the needs, the number of spills required:

spilled_width:: Int -> [Int] -> int

spilled_width k ks = monus (reg_width "" ks) k

spill_inv::Int -> Int -> [Int] -> [Int]

spill_inv base spills ps = map snd

(sort (\(n,_) (m,_) -> m >= n) (zip ps rns)) where

nps = length ps

f n | n > spills = n-spills+base-1

| otherwise = nps-n+base

rns = map f [1..nps]

Note we cannot implement a function with more arguments than the register width: this we
test as first we enter genscode.

Once again we calculate the code for each term dependent on an initial register index. The
dependent code is sorted by need, as before sub dcodes produces a list of (dependent code) in need
order as a list of tuples:

(REGISTER_NEED,STACK_NEED, dependent_code,ARGUMENT_NUMBER)

Where STACK NEED is the number of slots needed on the stack to manage spilling.
This time things are more complex as we have to be able to either generate spilled code

(spill code) with the spilling instructions correctly instered or ordinary code: this accounts for
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the complexity of the the new dependent code, the new dcode function. Here for completeness sake
is the code. You should look at the examples it generates ... the code itself, I am sure, could do
with more cleaning ...

genscode (VAR str) k nStack | k > 1

= (1,nStack,(\n -> [LOAD (REG n) (LOC str) 0]))

genscode (OPN f0 rL) k nStack

= (new_reg_need,new_stack_need,snd (new_dcode sub_dcodes nStack)) where

nrL = length rL

nargs | nrL > k = error "WIDTH IMPOSSIBLE"

| otherwise = nrL

sub_dcodes = sort (\(n,_,_,_) (m,_,_,_) -> (n >= m))

(zipWith (\(x,y,z) n -> (x,y,z,n))

(map ( \x -> genscode x k nStack) rL)

[0..nargs])

reg_wid = reg_width "" (map pr14 sub_dcodes)

new_reg_need | reg_wid > k = k

| otherwise = max 1 reg_wid

nspill | reg_wid > k = reg_wid - k

| otherwise = 0

new_stack_need = spilled_width nspill (map pr24 sub_dcodes)

new_dcode aRGS nstack = (nsp,(\n -> (fc n) ++

[APP f0 (REG n)

(map (\x -> REG x)

(spill_inv n nsp

(map pr44 aRGS)))])) where

(nsp,fc) = begin_dcode aRGS nstack

begin_dcode aRGS nstack | regwid <= k

= (0, (\nN -> concat (zipWith (\c n -> c (n+nN))

(map pr34 aRGS) [0..nargs])))

| otherwise = (nsp, (\ _ -> code)) where

(nsp,code) = spill_code aRGS nstack

regwid = reg_width "" (map pr14 aRGS)

spill_code (a:as) nstack = (spills+1,code_B) where

code_A = (pr34 a 1)++[STORE FP nstack (REG 1)]

decode = begin_dcode as (nstack+1)

code_args = (snd decode) 1

spills = fst decode

ret_reg = (length as)+1

code_B = code_A ++ code_args ++ [LOAD (REG ret_reg) FP nstack]

1.6 Examples with spilling

Here is a commentary on the example:

OPN("F3", [OPN("F3",[OPN("x1",[])
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,OPN("x2",[])

,OPN("x3",[])])

,OPN("ADD",[OPN("ADD",[OPN("y1",[]),OPN("y2",[])])

,OPN("ADD",[OPN("y3",[]),OPN("y4",[])])

])

,OPN("MUL",[OPN("F3",[OPN("z1",[])

,OPN("z2",[])

,OPN("z3",[])])

,OPN("z5",[])])

])

which may be written more simply as

F3(F3(x1, x2, x3), (y1 + y2) + (y3 + y4), F3(z1, z2, z3) ∗ z5)

The register need for this term is 5. We shall look at the effect of having various numbers of
registers, K, available:

(1) K = 5 produces the following code with no spills:

r1 <- x1\0

r2 <- x3\0

r3 <- x2\0

r1 = F3(r1,r3,r2)

r2 <- z1\0

r3 <- z3\0

r4 <- z2\0

r2 = F3(r2,r4,r3)

r3 <- z5\0

r2 = r2*r3

r3 <- y1\0

r4 <- y2\0

r3 = r3+r4

r4 <- y3\0

r5 <- y4\0

r4 = r4+r5

r3 = r3+r4

r1 = F3(r1,r3,r2)

(2) K = 4 produces the following code:

r1 <- x1\0

r2 <- x3\0

r3 <- x2\0

r1 = F3(r1,r3,r2)

r1 -> fp\0

r1 <- z1\0
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r2 <- z3\0

r3 <- z2\0

r1 = F3(r1,r3,r2)

r2 <- z5\0

r1 = r1*r2

r2 <- y1\0

r3 <- y2\0

r2 = r2+r3

r3 <- y3\0

r4 <- y4\0

r3 = r3+r4

r2 = r2+r3

r3 <- fp\0

r1 = F3(r3,r2,r1)

(3) K = 3 produces the following code:

r1 <- x1\0

r2 <- x3\0

r3 <- x2\0

r1 = F3(r1,r3,r2)

r1 -> fp\0

r1 <- z1\0

r2 <- z3\0

r3 <- z2\0

r1 = F3(r1,r3,r2)

r2 <- z5\0

r1 = r1*r2

r1 -> fp\1

r1 <- y1\0

r2 <- y2\0

r1 = r1+r2

r2 <- y3\0

r3 <- y4\0

r2 = r2+r3

r1 = r1+r2

r2 <- fp\1

r3 <- fp\0

r1 = F3(r3,r1,r2)

here, notice, there are two spills.

2 Register allocation for trees using attribute grammars

Another way of looking at the programming problem underlying register allocation for trees (or ex-
pressions) is to use an attributed grammar. The aim of this section is to show how these algorithms
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become very simple to implement once one provides a description of the basic register allocation
program as an attribute system (provided one knows how to implement attribute systems!).

We shall consider the simplest translation scheme for trees which involves doing a left-to-right
traversal of the tree creating new registers as required. This can then be modified into an optimal
register allocation and whence into one which can have the possibility of spilling.

2.1 An attribute system for creating instructions for expressions

If we have a tree or an expression it has a single value which is output: this needs to be put into a
register. Furthermore, during the evaluation of the expression we may need to use some registers.
However we may have already had to store certain values for later use so that it is necessary to
reserve some specified registers to hold these values. Thus, in calculating the register allocation for
an expression we may wish to put the answer in a certain register A reg and avoid certain reserved
registers Rs Regs..

We may think of this as an attribute system as follows:

A. Expressions, EXP, have the following inherited attributes:

EXP.Rs_Reg, EXP.A_Reg

and the following synthesized attributes:

EXP.code, EXP.width

where the first of these is the code which is generated and the second is the register width
required.

An operator, OPN, which is assumed to be a machine operation of some sort, has the synthesized
attribute OP.name.

B. The code output depends on the reserved registers and the chosen output register.

C. The attribute system equations for the development of the basic code for an expression is as
follows (where we use a meta-notation for the list of arguments to show how these are handled).

EXP = APP OP [EXP_1,...,EXP_n]

{ EXP_1.RsReg = EXP.RsReg

EXP_1.AReg = next_free(EXP.RsReg)

width_1 = EXP_1.width + 0

EXP_2.RsReg = add(EXP_1.AReg,EXP_1.RsReg)

EXP_2.AReg = next_free(EXP_1.RsReg)

width_2 = EXP_2.width + 1

.....

EXP_n.RsReg = add(EXP_{n-1}.AReg,EXP_{n-1}.RsReg)

EXP_n.AReg = next_free(EXP_{n-1}.RsReg)

width_n = EXP_n.width + n-1

EXP.width = max{width_1,...,width_n}
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EXP.code =

"EXP_1.code ;

....

EXP_n.code ;

OP.name EXP.AReg

= OP.name(EXP_1.AReg, ... ,EXP_n.AReg)"

}

D. This is easily seen to be strongly non-circular!

2.2 Implementing the attribute system:

The standard way to implement this is using mutually recursive code: by now with a little bit of
work you should be able to produce this code more or less automatically.

Rather than taking this approach here I shall illustrate an alternative “higher-order” approach
which can be used to implement the function. This is much more closely related to the intent of
the attribute system ... however, be warned, it uses the higher-order aspects of the functional style
of programming and might be regarded a “tour de force” rather that something which is easily
transferred into other paradigms. Despite this the ideas provide a good guide for what must be
done in other languages.

(a) Requesting registers:

The first function we need is one for determining the next free register. We shall hold the
“reserved” registers in an ordered list (of integers); when we ask for the next free register, we
shall return not only the register number but also a revised reserved register list which includes
the register just requested. The register number we return is the smallest number not on the
reserve list.

next_free::[Int] -> (Int,[Int])

next_free res = next 1 res where

next::Int -> [Int] -> (Int,[Int])

next m (n:ns)| m < n = (m,m:n:ns)

| otherwise = (\(x,xs) -> (x,n:xs))

(next (m+1) ns)

next m [] = (m,[m])

(b) The fold combinator for expressions:

The next function we shall program is the one which allows us to do a direct translation from
the attribute grammar into the actual program. It reduces the overall computation to what
must be done locally. This is a standard ”combinator” which may be associated with any
inductive datatype: it is called a fold (or sometimes a catamorphism) and is also used above:

data Exp = OPN String [Exp]

| VAR String
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fold_exp:: (String -> [b] -> b) -> (String -> b) -> Exp -> b

fold_exp g v (OPN s ts) = g s (map (fold_exp g v) ts)

fold_exp g v (VAR s) = v s

This looks like a simple function but it is more complicated than it seems because of the use
of the map combinator on lists which, recall, has the following effect:

map f [a1,a2,...,an] = [f(a1),f(a2),...,f(an)].

The fold exp combinator allows us to write a function from our type for expressions to any
type a in terms of two functions

g: string -> [a] -> a

v: String -> a

In this particular application we shall the type a is “code which is dependent on the output
and reserved registers”: thus, a is the higher-order (or function) type:

a = (Int,[Int])) -> code.

(c) Datatype for the instructions;

We shall need a datatype for the instructions. We shall us the same as above:

data Register = REG Int | LOC String | FP

data Instr = APP String Register [Register]

| STORE Register Int Register

| LOAD Register Register Int

(d) Implementing the equations:

We need to implement functions

f::String -> [(Int,[Int]) -> code] -> (Int,[Int]) -> code

v::String -> (Int,[Int]) -> code

It is useful to think of this code backwards. We must produce a function which takes in a
register number and some reserved registers and produces code. To achieve this we may use
the functions already developed for the arguments. We do this in two steps the first creates
the code for the arguments and is a recursion over the list of functions requiring the reserved
registers:

create_code_seq _ [] = ([],[])

create_code_seq rsRegs (f::fs) = (aReg::args’,(f(aReg,rsRegs)) ++ code’) where

(aReg,rsRegs’) = next_free rsRegs;
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(args’,code’) = create_code_seq rsRegs’ fs

f_create_code str lf (aReg,rsRegs) = code ++ [APP str (REG aReg) (map (\n -> REG n) args)] where

(args,code) = create_code_seq rsRegs lf

v_create_code str (aReg,rsRegs) = [LOAD (REG aReg) (LOC str) 0]

(e) Fitting it all together:

Finally we use the fold exp and the above create code functions to complete the translation
to a function which we apply to (0,[]) which means we want the final answer in register 0
and there are no reserved registers.

basic_reg_alloc t = fold_exp f_create_code v_create_code t (0,[]);

2.3 Optimal Register allocation

To do an optimal register allocation for an expression we will have to allow for the necessity of
sometimes computing arguments out of order. Again we can view this as an attribute system;
however, this time the evaluation at the nodes is sometimes out of order to allow those with
greatest need to be evaluated earlier. In particular this means that we must pass as a synthesized
attribute the need of the subexpressions as well as the function which generates the code.

As we are going to change the order of evaluation we must keep careful track of which register
holds which value. One way to do this is to make an initial assignment of registers to arguments and
then to reorder the arguments for evaluation (according to greatest need). This means, when the
original function is evaluated, the registers are called in the ”right order” (important for translating
function calls).

If we write the algorithm, as before, as a fold over the rosetree we have to write two functions.
This time type A is to be ”code which is dependent on the output and reserved registers” together
with the ”register need”: more formally, thus, A is the type:

A = ((Int,[Int]) -> Code),Int).

Our strategy will be to assign registers to hold each argument by running across the list of
arguments left to right and assigning unused registers. We then reorder this list by need and
generate code for each argument.

The code looks like:

create_argument_seq _ [] = []

create_argument_seq rsRegs ((n,f):fs)

= (n,(aReg,f)):(create_argument_seq rsRegs’ fs) where

(aReg,rsRegs’) = next_free rsRegs

create_code_args _ [] = []

create_code_args rsRegs ((_,(aReg,f)):fs) =

(f(aReg,rsRegs)) ++ (create_code_args (aReg:rsRegs) fs)

f_create_code_opt s nLF = (rw,f) where
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rw = reg_width "" (map fst nLF)

f (aReg,rsRegs) = code ++ [APP s (REG aReg) (map REG args)] where

arg_seq = create_argument_seq rsRegs nLF

args = map (\(_,(x,_)) -> x) arg_seq

arg_ord_seq = sort (\ (n,_) (m,_) -> m <= n) arg_seq

code = create_code_args rsRegs arg_ord_seq

v_create_code_opt::String -> (Int,(Int,[Int]) -> [Instr])

v_create_code_opt str = (1,(\(aReg,rsReg) -> [LOAD (REG aReg) (LOC str) 0]))

Finally we use the fold exp and the above create code opt functions to complete the trans-
lation to a function which we apply to (0,[]) which means we want the final answer in register 0
and there are no reserved registers.

opt_reg_alloc t = f (0,[]) where

(_,f) = fold_exp f_create_code_opt v_create_code_opt t

Here are some questions:

1. How does what this code does compare to our previus code?

2. Can you extend this code to account for spilling?
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