
CPSC 449: Exercise 1

Fall 2022 (Revised July 22nd, 2022)

Due: Friday, September 23th (2022) at 11:59 PM midnight

For this exercise you are expected to develop the programs below. The tutorials will go over
the starred questions to help get you going. You are expected to submit your programs – including
the starred (∗) questions – to gradescope using the template which is provided. You can submit as
often as you like to gradescope before the deadline: the system will test and grade the programs
you have completed.

I encourage you to discuss these programs with your classmates and in the tutorials: the aim is
to complete as many of these exercises as you can so that you get used to thinking in Haskell.

Warning: the problems become progressively harder! You should comment your code indicating,
in particular, how you arrived at a solution especially if it is not your own.

It is important that you understand the solutions and how to develop programs in Haskell as
this comprehension will be tested in the laboratory written test and your ability to program will be
further tested by the assignment.

Please name your functions according to what is prescribed below. Please, for this exercise,
avoid using Prelude functions. If there are name conflicts with names defined in Prelude,
then (a) explicitly import Prelude, and (b) use the hiding clause to hide the conflicting names
when importing (see the grey box on page 53 of [Thompson]).

1. Write a function

avgThree:: Int -> Int -> Int -> Float

to take the average of three integers which returns a float.

2.∗ Write a function

maxThree:: Int -> Int -> Int -> (Int,Int)

which works out the maximum of three integers and returns also how many times that max-
imum occurs.

3. Write a function

data SF a = SS a | FF

invExp:: Integer -> SF Integer

1



which returns the largest number n such that 2n is no greater than the given number (what
happens if the given number is negative?).

4. Implement a function myLcm that takes two integers as arguments, and returns the least
common multiple. One way to do this is to multiply the two numbers together and divide by
the greatest common divisor (using the Euclid’s Algorithm).

myLcm :: Int -> Int -> Int

You may not assume that the arguments are both positive: the least common multiple is
always taken to be a positive number!

5.∗ The binomial coefficient
(
n
k

)
is defined as follows for integers n ≥ 1 and 0 ≤ k ≤ n:

binom k n =

(
n

k

)
=

n× (n− 1)× . . .× (n− k + 1)

(1× 2× . . .× k)

Write a function:

binom:: Integer -> Integer -> Integer

to calculate the binomial coefficients.

6. Write a function

grow :: String -> String

which changes a string a1a2a3... to a1a2a2a3a3a3... so grow "now!" == "noowww!!!!".

7.∗ Write a function

instrictorder:: [Int]-> Bool

which tests whether the list of integers is strictly decreasing.

8. Write a function

expensive:: [(String,Int)] -> Int -> [String]

which given a list of items and their cost (here just an integer) returns a list of items whose
cost is (strictly) above a given threshold cost.

9.∗ Write a function

sortCheapest :: [(String,Int)] -> [(String,Int)]

which, given a list of items with a cost, returns a list in cheapest first order.

2



10. Write a function

divisors:: Integer -> [Integer]

which calculates the list (in ascending order) of all prime divisors of an integer which are no
bigger than the number. (Hint: What are the prime divisors of 0 which are no bigger than
zero?)

11.∗ Write a function

substring :: String -> String -> Bool

which determines whether a given first string is a substring (or “infix”) of a second string.

12. Write a function

sublists:: [a] -> [[a]]

which given a list of any type returns the list of all sublists of that list.

3


