CPSC 417: exercises for the midterm

Robin Cockett
October 29, 2007

The exam will use questions from this sheet. If a question is labeled hard or very hard it will
not be on the exam. BUT a question labeled harder might be!

Haskell questions:

1. Describe the translation from list comprehension syntax to core Haskell code. Translate the
following function:

pairs:: [a]l -> [b] -> [(a,b)]
pairs xs ys = [(x,y)| x <- xs, y <- ys, not x==y]

Rewrite this function using the “do” syntax.

2. Describe the translation from the “do” syntax to core Haskell code. Translate the function
mapSM below and explain its purpose:

module StateMonad where
data SM s a = SM (s -> (a,s))

instance Monad (SM s) where
return k = SM (\s -> (k,s))
(8M £f) >>=g =3SM (\s -> (\(a ,s’) -> runSM (g a) s’)(f s))

runSM::(SM s a) > s —> (a,s)
runSM (SM f) = f

mapSM:: (a -> (SM s b)) -> [a]l -> (SM s [b])
mapSM f [] = return []
mapSM f (t:ts) = do t’ <- f t
ts’ <- mapSM f ts
return (t’:ts’)

3. Given the following representation of A-terms:



= Var Int
| Abs Int LTree
| App LTree LTree

data LTree

(a) Write the Haskell code to determine the list of free variables of a A-term so represented.
freeVars:: LTree -> [Int]

(b) Write the Haskell code to perform a substitution of a (free) variable in a A-term.
subst:: LTree -> (Int,LTree) -> LTree

(c) Write the Haskell code to determine whether two terms are a-equivalent.

alphaEquiv:: LTree -> LTree -> Bool

4. What is the fold function for the following datatype:

data Rose a b = Rose [(a,Rose a b)]
| RVar b

Use this fold function to define:

(a) A function which collects the variables of such a rose tree into a list (which is a left to
right traversal of the variables).

varleaves :: Rose a b —> [b]

(b) Supposing that the nodes are numbered by intergers, which finds the least integer in the
tree:

leastnode :: Rose Int b -> Int

5. What is the map function for Rose a b?

The computational interpretation of the \-calculus

1. Explain how one can represent pairs in the A-calculus. What are the fst and snd functions
demonstrate that they do work to produce the required components from a pair.

2. The Boolean values True and False are usually represented as True = Azy.z and False = Axy.y.
How do you program an if ... then ... else statement in the A-calculus?

Usually Booleans are introduced as a datatype
data Bool = True | False

is the representation of this datatype different?
3. Explain how to represent the natural numbers in the A-calculus.

4. Explain how the predeccessor function is defined on these numbers not using fixed points.



10.

11.

12.
13.
14.

15.
16.

. Explain what the primitive recursive functions on the natural numbers are and show how,

without using fixed points, one can represent all the primitive recursive functions in the
A-calculus.

(Hard) Explain the significance of the Ackermann function and show how it can be represented
without using fixed points. Conclude that even without fixed points one can represent more
than just primitive recursive functions.

Explain what a fixed point combinator is. Give three examples. Prove that each is a fixed
point combinator.

Explain how to program the monus function using fixed points.

. Explain how to program the factorial function using fixed points.

(Harder) Show how one can program the following using a fixed point combinator (mutual
recursion!):

FIO-=0
F(n:ns) = n+ G ns
G[O-=0

G(n:ns) = n - F ns

You may assume you have the addition and subtraction, and a function to determine whether
a list is empty.

In the A-calculus how do you represent the following binary trees:

data Tree a b = Leaf a | Node (Tree a b) b (Tree a b).

Write the associated map and fold function for the above datatype.
(Harder) Write the case function for the above datatype.

In the A-calculus how do you represent the following binary trees:
data Rose a b = RVar a | Rose [(a,Rose a b)].

Write the associated map and fold function for the above datatype.

(Harder) Write the case function for the above datatype.

A-Calculus theory

1.

2.

What does a-equivalence mean? Which of the following terms are a-equivalent

Ay y(Az.xz) Ayzy(Az.xz) Azzx(Ay.zy)  Aab.b(Aa.ab)

What is a rewrite rule? Give some examples.



3. What is a redex? What is a contractum?

4. When is a Ad-term in S-normal form?

5. What does confluence mean?

6. What does local confluence mean?

7. (Harder) what is a critical pair?

8. Does local confluence imply (global) conflence? Give counter-examples.

9. When is a rewrite system terminating? Prove Newman’s lemma: that a terminating rewrite
system is confluent.

10. (Harder) Prove in detail that the rewiting system with the rules
(@-y)-z — x-(y-2)
r-e —
e-x —
is terminating and confluent.

11. (Harder) Prove that there is always a reduction strategy which completely rewrites all colored
redex in a term.

12. Given that the A-calculus is confluent with respect to S-reduction (under a-equivalence):

Prove that a A-term has at most one S-normal form
b

(c
(d

(a
(b) Prove that if two terms are -equal then they can be S-reduced to the same term.

Give an example of a term which has no S-mormal form.

~—_— — ~—

(Harder) Give an example of a term which has no #-normal form whose reduction graph,
furthermore, is infinite.

13. Are the following two A-terms equal?
(Ary.x(zy))(Avyz.y(zyz))(Azy.x(ry))  Avy.o((Avy.zy)(Avyz.y(zyz))(Azy.z(ry))

14. (a) Explain the by-value reduction strategy: what are its shortcomings?

(b) What is the difference between leftmost outermost (normal order reducion) and outer-
most reduction (by-name).

(c) What is head reduction? When is a term in head normal form?
(d) Demonstrate the different reduction strategies on the following A-terms:

i. (A\z.z(Ansz.s(nsz))z)(Asz.s(sz))
iil. (Azy.x)(Az.2)(Az.zx)(Ax.zz))
iii. (A\zy.yx)(Azy.y)( Ae.zz)(Az.xx)



15. Show that if a term N has a normal form then it has a head normal form: show that the
converse is false.

16. Which of the following are true? Justify your answer.

17.

18.

19.

Every A-term is «, B-equivalent to a term in normal form.
There is only one fixed point combinator upto «, S-equivalence.

When reducing a A-term to normal form using (-reduction one must be careful (normal
order reduction) so that one never reaches a term from which infinitely many S-reduction
are possible.

If a term has a normal form then, because the A-calculus is confluent no matter what
order you apply (G-reductions you will reach the normal form.

If a A-calculus term has a normal form there is a fixed equation in the size of the term
which bounds the number of G-reductions necessary to reduce it to that normal form.

Two A-terms are «, §-equivalent if and only if they both have G-normal forms which are
a-equivalent.

There are some functions which can be computed by the A-calculus which cannot be
computed by a Turing Machine.

(Hard) Show that if H is in head normal form and H 2, H' then H' is in head normal form.

(Hard) Show that it is undecidable whether a term has a head normal form.

(Very Hard) A A-term N is solvable if, once one closes the term by abstracting all its free
variables (i.e. form \zj..x,.N where FV(N) = {z1, ..,z }) then there are A-terms My, ...., M},
such that (Azy..x,.N)Mj.. My =1 = dx.a:

(a)
(b)
()

(d)

(e)

Show that Y = Af.(Az.f(xx))(Ax.f(zx)) is solvable;

Give an example of a term which is not solvable;

Show that a A-term, NN, is solvable if and only if for any A-term P, there are My, ..., M}
such that (\zy...x,.N)M;...M}, = P;

Prove that if N has a head normal form then N is solvable (hint: assume N is in head
normal form so is of the form Axy...x,.z; M;...M, how would K, = A\y1...yr¥kr1.-Ypr1 be
useful?)

Prove this N is solvable then N has a head normal form (hint: you know (Az ...z, .IN)Mj..
has a head normal form ... but now assume that (Az...x,.N) has no head normal form
— that is the head reduction process does not terminate).

M,



