
UNIVERSITY OF CALGARY

Classifying reversible logic gates with ancillary bits

by

Cole Robert Comfort

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

JULY, 2019

c© Cole Robert Comfort 2019

Abstract

In this thesis, two models of reversible computing are classified, and the relation of reversible

computing to quantum computing is explored.

First, a finite, complete set of identities is given for the symmetric monoidal category

generated by the computational ancillary bits along with the controlled-not gate. In doing so,

it is proven that this category is equivalent to the category of partial isomorphisms between

non-empty finitely-generated commutative torsors of characteristic 2.

Next, a finite, complete set of identities is given for the symmetric monoidal category

generated by the computational ancillary bits along with the Toffoli gate. In doing so, it

is proven that this category is equivalent to the category of partial isomorphisms between

finite powers of the two element set.

The relation between reversible and quantum computing is also explored. In particular,

the category with the controlled-not gate as a generator is extended to be complete for

the real stabilizer fragment of quantum mechanics. This is performed by translating the

identities to and from the angle-free fragment of the ZX-calculus, and showing that these

translations are inverse to each other.

ii

Preface

This thesis includes results which are proven in “The Category CNOT” [14] and “The Cat-

egory TOF”[13] which I presented, respectively, at the 14th and 15th International Con-

ferences on Quantum Physics and Logic. Parts of the ‘The Category CNOT” were in my

undergraduate thesis. This also contains material in the preprint, “Circuit Relations for Real

Stabilizers: Towards TOF+H” which I presented at the 4th Symposium on Compositional

Structures [20].

iii

Acknowledgements

First, I would like to thank my supervisor Dr. Robin Cockett for teaching me category

theory and inspiring me to do math!

I would also like to thank my fellow graduate students and postdocs (in alphabetical

order) Matthew Burke, Joseph Collins, Antonin Delpeuch, Richard East, Robert Furber,

Lukas Heidemann, Martti Karvonen, Prashant Kumar, Jean-Simon Lemay, Chad Nester,

Paolo Perrone, Priyaa Srinivasan, Daniel Satanove , Sander Uijlen and John van de Wetering

(and anyone else I have forgotten to mention) for their company, enlightening conversations,

passionate political debates and merriment. A particularly grateful thanks is extended to

Benjamin MacAdam and Jonathan Gallagher who provided me with whiteboard markers;

without which, this thesis wouldn’t be possible.

I would also like to thank the academic faculty at the University of Calgary for teaching

and encouragement, especially Dr. Peter Høyer for inspiring me to study quantum computing

and Dr. Kristine Bauer for giving me advice.

I am particularly grateful for the comments received by my examiners Dr. Bob Coecke,

Dr. Gilad Gour and Dr. Renate Scheidler.

I would also like to thank Dr. Bob Coecke and Dr. Chris Heunen for hosting me for a

semester at the University of Oxford and the University of Edinburgh (and an extra thanks

to Bob for the beer).

I would also like to thank Brett Giles, who whose PhD thesis is vital to this work.

I would also like to thank countless graduate students, postdocs and professors from

iv

FMCS and QPL for accepting me into their company.

Finally, I would like to thank my family for their emotional support.

v

To the homies...

vi

Table of Contents

Abstract ii

Preface iii

Acknowledgements iv

Dedication vi

Table of Contents vii

List of Figures and Illustrations ix

List of Symbols, Abbreviations and Nomenclature x

Epigraph xiv

1 Introduction 1
1.1 Reversible computing . 2
1.2 Quantum computing as reversible computing 4
1.3 Chapter outline . 5

2 Category Theory 6
2.1 Basic category theory . 6
2.2 Monoidal categories . 15

2.2.1 Strict monoidal categories and PROPs 17
2.2.2 Monoidal functors . 19

3 Quantum Computing 22
3.1 Categorical quantum computing . 22

3.1.1 †-categories and compact closed categories 22
3.1.2 Hilbert spaces . 25
3.1.3 Frobenius algebras and complementarity 29

3.2 Stabilizer quantum mechanics . 35

4 Restriction and Inverse Categories 39
4.1 Restriction and inverse categories . 39

4.1.1 Discrete restriction categories and inverse products 41

vii

4.2 Restriction and discrete inverse functors . 46
4.3 Barr’s `2 functor . 52

5 The Controlled-not Gate 54
5.1 The category CNOT . 55
5.2 Preliminary results for CNOT . 57
5.3 CNOT is a discrete inverse category . 58

5.3.1 Inverse products in CNOT . 58
5.3.2 CNOT is an inverse category . 63

5.4 Torsors . 68
5.5 The equivalence between CNOT and ParIso(CTor2)∗ 74

5.5.1 Defining the functor H̃0 : CNOT→ ParIso(CTor2)∗ 74
5.5.2 The points of CNOT . 76
5.5.3 Internal torsor structures in CNOT 78
5.5.4 Normal form for the idempotents of CNOT 82
5.5.5 H̃0 : CNOT→ ParIso(CTor2)∗ is a discrete inverse equivalence 87

6 CNOT and ZXπ 92
6.1 ZXπ . 92
6.2 Embedding CNOT into ZXπ . 95
6.3 Extending CNOT to ZXπ . 102

6.3.1 The completeness of CNOT +H . 105

7 The Toffoli Gate 117
7.1 The category TOF . 118
7.2 Controlled-not gates and the Iwama identities 124
7.3 TOF is a discrete inverse category . 133
7.4 The points of TOF . 136
7.5 Partial injective functions and TOF . 140
7.6 A normal form for the idempotents of TOF 140

7.6.1 H̃0 : TOF→ FPinj2 is a discrete inverse equivalence 146

8 Conclusions and future work 148
8.1 Conclusions . 148
8.2 Future work . 149

Bibliography 151

A Matrices and Constants 157

B Basic Calcululations for CNOT 161

viii

List of Figures and Illustrations

5.1 The identities of CNOT . 56

6.1 The identities of ZXπ (where α ∈ {0,π}) . 93
6.2 The identities of CNOT +H (in addition to the identities of CNOT) 103

7.1 The identities of TOF . 120

ix

List of Symbols, Abbreviations and
Nomenclature

Symbol or abbreviation Definition

g f : The composite fg.
x ∈ X: x is an element of the set X.
∀: For all.
∃: There exists.
≥: Greater than or equal to.
>: Greater than.
≤: Less than or equal to.
<: Less than.
∞: Infinity.
X,Y,Z, ...: Arbitrary categories.
A,B,C,X,Y ,Z...: Arbitrary objects.
lim
← F : The limit of a functor F .

>: Initial object.
X0: The objects of X.
X1: The maps of X.
∂0(f): Domain object of map f .
∂1(f): Codomain object of map f .

X
f−→ Y : A map f from object X to Y .

f : X → Y : A map f from object X to Y .
�: A monic map, or faithful functor.
�: An epic map, or full functor.
↪→: The inclusion functor.
X(,): The hom functor of X.
[X,Y]: Functor category from X to Y.
X (Y : The internal hom from X to Y .
1X : The identity map on X.
Xop: The opposite category of X.
α : F ⇒ G: A natural transformation α from functors F to G.
()†: A dagger functor.
()∗: The dualizing functor.

x

Z: The integers.
Zn: The integers modulo n.
CNOT: The symmetric monoidal category generated by

computational ancillary bits and the controlled-
not gate.

ZXπ: The angle-free fragment of the ZX-calculus.
∆ZX: The angle-free fragment of the ZX-calculus with

the triangle generator.
ZHπ: The phase-free fragment of the ZH-calculus.
Matk: The category matrices over k.
Vectk: The category of vector spaces over k.
FdVectk: The category of finite dimensional vector spaces

over k.
J KCNOT: The canonical interpretation J KCNOT : CNOT →

MatC.
CNOT +H: The symmetric monoidal category generated by

computational ancillary bits, controlled-not gate,
the Hadamard gate and the scalar

√
2.

cnot: The controlled-not gate.
not: The not gate.
FHilb: The category of finite dimensional Hilbert spaces.
Hilb: The category of Hilbert spaces.
⊕: The operating bit of a controlled-not gate. Also

used for addition in Z2.

f : The restriction of a map f to its domain of defini-
tion.

domf : The domain of definition of a map f .
codf : The codomain of definition of a map f .
Span(X): The category of spans in X.
Total(X): The subcategory of total maps of a restriction cat-

egory X.
Par(X): The partial map category of a category X with all

monics.
ParIso(X): The partial isomorphim category of a category X

with all monics.
() : The partial inverse functor.
〈f , g〉: The pairing ∆(f ⊗ g) of maps f and g.
〈f |g〉: The inner product of f and g.
!: The unique map to the restriction final object.
∆A: The diagonal map on A.
∇A: The partial inverse of ∆A.
`2: Barr’s `2 : Pinj→ Hilb functor.
δx: The Kronecker delta function for x.
f ∩ g: The meet of f and g.

xi

a×b c: The torsor paramultiplication of a, b, c.
× : The product functor.
πi: The ith projection.∑

: The sum.∏
: The product.
⊗ : A tensor product.

()⊗n: The n-fold iterated tensor product.
uLX : The left unitor for X.
uRX : The right unitor for X.
aA,B,C : The associator for A,B,C
cA,B: The symmetry for A,B
mI : The coherence map for a monoidal functor preserv-

ing the tensor unit.
m⊗: The coherent natural transformation for a

monoidal functor preserving the tensor product.
I: The tensor unit.

Xf ×g Y : The pullback of X
f−→ Z

g←− Y .
y: Denotes that an object is a pullback.
CTor2: The category of finitely-generated commutative

torsors of characteristic 2.
X ∼= Y : X and Y are isomorphic.
ParIso(CTor2)∗: The category of partial isomorphisms of nonempty

finitely-generated commutative torsors of charac-
teristic 2.

∅: The zero map from 0 to 0.
∅n,m: The zero map from n to m.
swap(i,n): The gate swapping the 1st and ith wires in an n

wire array.
TOF: The symmetric monoidal category generated by

the computational ancillary bits and Toffoli not
gate.

J KTOF: The canonical intewrpretation J KTOF : TOF →
MatC.

Set: The category of sets and functions.
Rel: The category of sets and relations.
Pinj: The category of sets and partial isomorphisms.
FPinj: The category of finite sets and partial isomor-

phisms.
FPinj2: The category of finite powers of the two element

set as objects and partial isomorphisms as maps.
tof: The Toffoli gate.
cnotn: The generalized controlled-not gate with n control

bits.

xii

[x,X]: Generalized controlled-not gate operating on wires
indexed by X, targeting x /∈ X.

�n: An input 0 ancillary bit on wire n.
�n: An output 0 ancillary bit on wire n.
X ∪ Y : The union of sets X and Y .
X t Y : The disjoint union of sets X and Y .

xiii

Epigraph

Un symbole dépasse toujours celui qui en use et lui fait dire en réalité plus

qu’il n’a conscience d’exprimer.

- Albert Camus, Le Mythe de Sisyphe: essai sur L’absurde [12]

xiv

Chapter 1

Introduction

In this thesis, complete sets of identities are given for two fragments of reversible computing.

The first fragment, the category CNOT, is generated by the controlled-not gate and ancillary

bits. This is the affine fragment of reversible computing, and in particular, it is shown that

this is equivalent to the inverse category of partial isomorphisms between non-empty finitely-

generated commutative torsors of characteristic 2. The second fragment, the category TOF, is

generated by the Toffoli gate and ancillary bits. This is shown to be equivalent to the inverse

category of partial isomorphisms between finite powers of the two element set. Thus it is a full

fragment of reversible computing. In Section 1.1 of this chapter, we give an overview of the

field of reversible computing; and in particular, we motivate modeling reversible computing

with inverse categories.

We also explore the relation of reversible and quantum computing. In particular, we

extend CNOT to the angle-free fragment of the ZX-calculus, ZXπ, by adding the Hadamard

gate as a generator. In Section 1.2 of this chapter, an overview of the relation of quantum

and reversible computing is given. In particular, the relation between the doctrine of inverse

categories and that of categorical quantum mechanics is sketched.

Finally, at the end of this chapter, in Section 1.3, the general structure, and an overview

of the content of this thesis is given.

1

1.1 Reversible computing

Landauer’s principle, originally posed in [39], posits that the information lost about a state,

before and after a computation step corresponds to heat being produced. This connects the

Shannon entropy of the process to the thermodynamic entropy of physically computing a

process. In particular, the Shannon entropy of a system is a constant multiple of the ther-

modynamic entropy: 1 bit of information corresponds to kB ln 2 Joules per Kelvin, where

kB is Boltzmann’s constant. Landauer’s principle presents a problem for classical comput-

ing: because classical computers are built with irreversible logic gates, they are prone to

overheating.

The limits that Landauer’s principle imposes on irreversible computing has motivated

finding models of reversible computing. Category theory is a particularly useful framework

through which this objective can be explored, because it reveals the compositional structure

of computation. Category theory allows one to structurally examine how the constituent

components connect together to form coherent computations. Specifically, monoidal cate-

gories naturally model circuits using the tensor product [46]. Monoidal categories have been

applied in the field of quantum computing, and, in particular to quantum circuit optimization

[36], to which reversible computing is intimately connected.

Näıvely, one might hope to model reversible computation with groupoids, that is, cat-

egories where all maps are isomorphisms. However, this approach has its drawbacks. Re-

versible circuits, and in particular quantum circuits, often make use of auxiliary space. That

is, memory that is prepared in a certain configuration and post-selected to remain in the

same configuration. In quantum computing, this trick allows circuits to be implemented with

limited gate sets. For example, in Grover’s algorithm, auxiliary bits allow one to kickback

the output of the oracle into the phase [53].

However, if we are going to take this compositional approach to reversible computing

seriously, preparing and post-selecting the state must be regarded as maps in the category.

Preparing and post-selecting the state are not isomorphisms, rather, they are only one-sided

2

inverses to each other in Hilbert spaces. Therefore, state preparation and post-selection

cannot be regarded as generators of a groupoid.

A similar problem arises when one considers reversible computing in general, and not

just reversible circuits. A Turing machine with a reversible transition function (an opera-

tionally reversible Turing machine) can produce a program that never halts; thus having a

denotational interpretation which is not an isomorphism, but rather a partial isomorphism

[35, §1.1.1].

Since groupoids fail to capture many features of reversible computing, one could try to

model reversible computing in †-categories (pronounced dagger-categories): that is, cate-

gories X for which there is a contravariant, identity on objects involution ()† : Xop → X.

That is, for all maps f , (f †)† = f and all objects X, X† = X. This approach is used in

quantum computing, where the dagger is the Hermetian adjoint. In this setting, instead of

every map having a proper inverse, every map f would only have an adjoint f †. However

merely having a distinguished †-functor is not necessarily useful for modeling computation.

Many of these aforementioned problems, insofar as classical reversible computing is con-

cerned, can be resolved with inverse categories. Inverse categories generalize groupoids by

stipulating that every map need only have a partial inverse with respect to some chosen

restriction structure. The restriction structure should be chosen to distinguish when in-

formation is lost. Furthermore, this restriction structure determines a unique †-functor.

Therefore, if the input is known a priori to be in the domain of definition, then the input can

be computed from the output by composition with the adjoint: the partial inverse. When

a map is composed with its partial inverse, then a weaker form of identity called a restric-

tion idempotent is produced. Restriction idempotents commute with each other and are

closed under composition and taking partial inverses, therefore they generalize much of the

structure of identity maps. This solves the problem of modeling reversible circuits; namely,

preparing a state and post-selecting the same state are not inverse to each other, but only

partial inverses. In the case of reversible Turing machines, one can take the partial inverse

3

by inverting the transition function.

Inverse categories can support different structure than groupoids. For example, consider

a monoidal category with copying. Although copying is not an isomorphism, in many cases,

it has a partial inverse given by cocopying. Copying and cocopying structures that form a

(nonunital) special commutative †-Frobenius algebra are called inverse products. Further-

more, categories with inverse products compatible with the tensor product are called discrete

inverse categories. Discrete inverse categories, as we will see, are useful tools for modeling

reversible computing.

1.2 Quantum computing as reversible computing

The study of discrete inverse categories, and thus (partial) reversible computing, is closely

connected to categorical quantum computing. Both reversible computing in this sense and

categorical quantum mechanics model computation in categories which have structure gen-

eralizing the linear nature of Hilbert spaces. First, †-functors generalize the structure of

the Hermitian adjoint in Hilbert spaces (Hilb). Moreover, unital special commutative †-

Frobenius algebras correspond to bases in finite dimensional Hilbert spaces (FHilb) [19]. It is

not unsurprising that these structures are central in both theories. Bases, and thus Frobenius

algebras, allow one to define a diagonal map; that is, a map which copies the basis elements.

Miraculously, this map is a partial isomorphism, and thus, can be seen as a reversible gate.

However, the unit of the Frobenius algebra cannot be copied. This is because composing

the unit with the comultiplication corresponds to a maximally mixed state in FHilb, which

cannot be copied because of the no-cloning theorem.

This draws a close connection between these two models of computing, and reveals the

mid-point between classical computing and quantum (reversible) computing: namely, the

unitality of the chosen Frobenius algebra.

4

1.3 Chapter outline

In Chapter 2, some aspects of category theory are summarized. In Chapter 3, some aspects

of quantum computing and categorical quantum mechanics are reviewed. In Chapter 4,

restriction and inverse categories are reviewed and some new lemmas are proved, which

are crucial to Chapters 5 and 7. The remainder of the thesis is original work, excluding

Section 6.1 on the ZX-calculus. In Chapter 5, a complete set of identities is given for the

symmetric monoidal category, CNOT, generated by the state preparation and post-selected

measurement in the computational basis and the controlled-not gate. This shows that CNOT

is equivalent to the category of affine partial isomorphisms between finite dimensional Z2

vector spaces. In Chapter 6, this category is completed to the angle-free fragment of the

ZX-calculus, ZXπ, by adding the Hadamard gate as a generator. In particular, this completes

the inverse products of CNOT to a unital Frobenius algebra structure. In Chapter 7, the

identities of Chapter 5 are extended to give a complete set of identities for the symmetric

monoidal category, TOF, generated by state preparation and post-selected measurement

in the computational basis and the Toffoli gate. It is shown that TOF is equivalent to

the category of partial isomorphisms between sets with cardinalities of powers of 2; a full

subcategory of sets and partial injections. Finally, in Chapter 8, we discuss the ramifications

of this research, and potential future work.

5

Chapter 2

Category Theory

In this chapter, we review some aspects of category theory and, in particular, the basic

theory of monoidal categories. All definitions and results in this chapter are well-known; I

refer the reader to [40] for further reading.

2.1 Basic category theory

Definition 2.1.1. A category X consists of a class X0 of objects and a classX1 of maps

such that each map f ∈ X1 has an associated domain ∂0(f) ∈ X0 and codomain ∂1(f) ∈ X0.

A map f with domain X and codomain Y , is denoted by X
f−→ Y . The class of maps from

an object X to Y is denoted by X(X,Y).

Given maps X
f−→ Y and Y

g−→ Z, we can form the composite X
fg−→ Z. Every object

X has a canonical, associated map X
1X−→ X called the identity on X. The maps of X are

subject to the following two axioms:

Identity law: For all maps X
f−→ Y , 1Xf = f = f1Y .

Associative law: For all maps X
f−→ Y , Y

g−→ Z, W
h−→ V ; (fg)h = f(gh).

A locally small category is a category, where for all objects X and Y , X(X,Y) is a

set—and not for example a proper class.

6

Maps X
f−→ Y are sometimes denoted by f : X → Y . The identity map on X is often

denoted by X === X. The composite of maps X
f−→ Y

g−→ Z is sometimes denoted by

g f , instead of fg. This order of composition using is called the applicative order of

composition, as opposed to the default order of composition in this document which is

called diagrammatic order of compostion. The applicative order of composition is used

in the bra-ket notation in quantum computing, as discussed in Chapter 3.

Example 2.1.2. The category of sets, Set, is a category where the objects are sets, maps

are functions and composition is function composition.

Two different categories can have the same class of objects:

Example 2.1.3. The category of relations, Rel, is a category with:

Objects: Sets.

Maps: Maps R : X → Y are subsets of X × Y .

Composition: The composite of maps R : X → Y and S : Y → Z is given by:

RS := {(x, z) ∈ X × Z|∃y ∈ Y : (x, y) ∈ R, (y, z) ∈ S}

Identity: 1X : X → X is given by the map {(x,x)|∀x ∈ X}.

A relation R : X → X is reflexive if for all x inX, (x,x) ∈ R. A relation is symmetric if

(x, y) ∈ R implies (y,x) ∈ R. A relation is transitive if (x, y), (y, z) ∈ R implies (x, z) ∈ R.

A relation is an equivalence relation in case it is reflexive, symmetric and transitive. If X

is endowed with extra structure (for example, being a group), then an equivalence relation

on X preserving this structure is called a congruence.

Definition 2.1.4. A category X is a subcategory of another category Y, when X can be

obtained by forgetting some of the objects and maps of Y.

7

A category X is a full subcategory of another category Y, when X can be obtained by

forgetting some of the objects of Y.

Example 2.1.5. The category of vector spaces over a field k, Vectk, is a category where

the objects are k-vector spaces and the maps are linear transformations between k-vector

spaces. The composition and identities are given by the underlying composition and identities

in Set. Denote the full subcategory of Vectk, where the objects are finite dimensional k-vector

spaces, by FdVectk.

The following category is much like FdVectk, except it doesn’t have all of the objects:

Example 2.1.6. The category of matrices over a field k, Matk, is a category where

the objects are natural numbers and the maps from n to m are k-valued n × m matrices.

Composition is given by matrix multiplication and the identity is the identity matrix.

A new category can be obtained by reversing the order of composition:

Definition 2.1.7. Given a category X, the opposite category of X, Xop is defined with

the same objects as X and maps given by:

X
f−→ Y in X

Y
fop−→ X in Xop

The composite of maps and identities are defined in the obvious way. Every true proposition

about a category X entails a dual proposition which holds in Xop. The prefix co is used to

describe dual properties.

Many familiar algebraic structures are categories. Recall that an isomorphism is a map

f with an inverse f−1 so that ff−1 = f−1f = 1. A monoid is a one object category. A

groupoid is a category in which every map is an isomorphism. A group is a category which

is simultaneously a monoid and a groupoid: that is, a one object groupoid.

A commutative diagram in a category X is a directed graph with a start point and

end point where the nodes are objects, and arrows are maps of X. Moreover, the composites

8

of all paths from the start point to the end point are required to be equal; where all maps

must be covered by such a path. For example to say that the following is a commutative

diagram in Z,

X

f
��

h // Y

k
��

W g
// Z

is to say that fg = hk. In order to assert that a diagram is commutative, one often says

that the diagram commutes.

Definition 2.1.8. A map X
f−→ Y in a category X is epic (an epimorphism) in case for

all objects Z and parallel arrows g,h : Y → Z: whenever fg = fh, then g = h. The dual

notion of an epic map is a monic map (a monomorphism).

Epic maps are drawn as � and monics as �.

Just as categories are composed of objects with maps between them, one can consider

categories as objects themselves with maps between them:

Definition 2.1.9. Given categories X and Y, a functor F : X → Y associates to each

object X in X, an object F (X) in Y and to each map X
f−→ Y in X, a map F (X)

F (f)−−→ F (Y)

in Y. A functor must satisfy the following two axioms:

Preservation of Identity: For all objects X of X, F (1X) = 1F (X).

Preservation of Composition: For all maps X
f−→ Y , Y

g−→ Z, F (fg) = F (f)F (g).

For example, given a k-vector space V , taking the the dual of V , V ∗ is a functor from

Vectopk → Vectk. Similarly, taking the matrix transpose is a functor from Matopk → Matk.

Every category X is endowed with an identity functor denoted by X acting as the iden-

tity on maps, moreover, functors compose. Therefore, locally small categories and functors

themselves form a category, Cat, with locally small categories as objects and functors as

maps. One must be careful of size issues: Cat is not itself a locally small category, although

its objects are.

9

The canonical inclusion functor induced by a full subcategory is drawn as ↪→.

Every functor F : X→ Y between locally small categories induces a function:

FX,Y : X(X,Y)→ Y(F (X),F (Y))

Taking maps X
f−→ Y to the map F (X)

F (f)−−→ F (Y) for all objects X and Y in X. This leads

to three important notions:

Definition 2.1.10. A functor F : X→ Y is full if for all objects X and Y in X, the induced

map FX,Y : X(X,Y) → Y(F (X),F (Y)) is surjective, and the functor is faithful if this

induced map is injective.

A functor F : X → Y is essentially surjective if, for every object Y of Y, there is an

isomorphism f : Y → F (X) in Y for some object X in X.

Full functors are drawn as � and faithful functors as �. This notation is in reference

to the induced map FX,Y being epic or monic.

The functor Vectk → Set, forgetting the linear structure is faithful. Given a full subcat-

egory X of Y, the inclusion functor X ↪→ Y is also faithful. Since monoids are one object

categories, a surjective monoid homomorphism is an example of a full functor. Similarily,

an injective monoid homomorphism is faithful.

Just as functors are maps between categories, there is also a notion of a map between

functors.

Definition 2.1.11. Given parallel functors F ,G : X → Y, a natural transformation

α : F ⇒ G is an indexed family of maps {αX : F (X) → G(X)}X∈X0 such that for all maps

X
f−→ Y in X, the following diagram commutes:

F (X)

αX

��

F (f) // F (Y)

αY

��
G(X)

G(f)
// G(Y)

10

The map αX : F (X)→ G(X) is called the component of α at X. The subscripts of the

components are often suppressed for ease of notation, as they can be inferred by context.

Categories X and Y induce a category [X,Y], the functor category from X to Y, with

functors from X → Y as objects and natural transformations as maps. An isomorphism

α : F ⇒ G in this category is called a natural isomorphism. This is made explicit by the

notation F ∼= G.

For example, in Vectk, there is a natural injection ι : () ⇒ ()∗∗ with components

(ιV (v))(f) := f(v). The injection of a vector space into a double dual is an isomorphism if

and only if the vector space is finite dimensional. The map from V to V ∗ is basis dependent,

and therefore fails to be natural. For every choice of basis, there is a different isomorphism.

Definition 2.1.12. Let F : D→ X be a functor. A cone to F is a pair (X,ψ) where X is

an object of X, and ψD : X → F (D) is a family of maps indexed by the objects D of D, so

that for all maps f in D(C,D), ψCF (f) = ψD.

The limit of F : D→ X, if it exists, is a cone (lim← F ,ϕ), so that for any cone (X,ψ) and

any map f in D(C,D), the following diagram commutes:

X

ψC

��

ψD

��

��
lim
← F

ϕC
{{

ϕD
##

F (C)
F (f)

// F (D)

The dotted line is notation asking for the unique existence of a map X → lim
← F making the

diagram commute.

The dual notion of a limit is a colimit. A category with all (finite) limits is called

(finitely) complete.

Definition 2.1.13. An object > in X is initial when for every object X of X, there is a

11

unique map > → X. The dual notion of an initial object is a final object.

Definition 2.1.14. The equalizer of two parallel arrows f , g : X → Y in a category X

(if it exists) is the pair (E, e : E → X) such that given any pair (Z,h : Z → X) so that

hg = hf , the following diagram commutes:

E
e // X

f
//

g // Y

Z

m

OO

h

>>

Lemma 2.1.15. The equalizer map e : E → X is monic.

Proof. Suppose that e : E → X is the equalizer of X
f ,g−→ Y . Consider parallel Z

h,k−→ E,

so that he = ke. Then hef = heg, so that, because e is an equalizer, there exists a unique

map m : Z → E so that me = he. Therefore, by the uniqueness of m, m = k; so that, by

symmetry, h = m = k.

Monics that arise as equalizers are called regular monics. The dual notion to the

equalizer is the coequalizer. Moreover, a regular epic is an epic that is a coequalizer. All

monics and epics in Set are regular.

Definition 2.1.16. The product of objects X and Y , if it exists, is an object X × Y and

maps X
π1←− X × Y π2−→ Y , such that for any object Z and maps X ← Z → Y , the following

diagram commutes:

Z

{{ �� ##
X X × Yπ1
oo

π2
// Y

The dual notion to the product is called the coproduct.

For example, the product in Set is the Cartesian product. Cat has products: explicitly,

the product X×Y just has objects X0×Y0 and maps X1×Y1. A bifunctor F : X×Y→ Z

is a functor from the product category of X and Y to Z.

12

Definition 2.1.17. Similarly, the pullback of a pair of maps X
f−→ Z

g←− Y , if it exists,

is the limit of the span diagram X
f−→ Z

g←− Y . The pullback object of such a diagram is

denoted by Xf ×g Y . To make it clear that a diagram is a pullback, a corner is drawn in

the diagram beside the pullback object:

Xf ×g Y
π1 //

π0
��

y
Y

g

��
X

f
// Z

The dual notion to the pullback is called the pushout.

For example, given two maps X
f−→ Z

g←− Y in Set, The pullback object Xf ×g Y is

{(x, y) ∈ X × Y |f(x) = g(y)}

Definition 2.1.18. Given a category with pullbacks X, define the span category, Span(X):

Objects: Objects in X.

Maps: A map from A to B is a span A
f←− A′

g−→ B, for arbitrary A′, which we denote as

(f , g) modulo an equivalence relation ∼; (f , g) ∼ (f ′, g′) if and only if there exists an

isomorphism α such that αf ′ = f and αg′ = g.

Identities: The identity on A is the pair (1A, 1A).

Composition: For maps (f , g) : A → B and (f ′, g′) : B → C, (f , g)(f ′, g′) := (f ′′f , g′′g′)

where f ′′ and g′′ are determined by the following pullback:

A′′p
f ′′

~~

g′′

!!
A′

f

~~

g

!!

B′

f ′

}}

g′

A B C

13

Composition is well-defined even though pullbacks are determined only up to isomor-

phism as the maps are taken modulo the equivalence relation.

An isomorphism of categories is a very restrictive notion. In general, one usually only

asks for their identity functors to be naturally isomorphic:

Definition 2.1.19. An equivalence of categories between X and Y is a pair of functors

F : X→ Y and G : Y→ X such that there are natural isomorphisms FG ∼= X and GF ∼= Y.

Two categories are equivalent in case there exists an equivalence of categories between them.

For example, the categories FdVectk and Matk are equivalent, although they are not

isomorphic. This is because the objects are different: in Matk there is one object for each

vector space of dimension n; whereas, in Vectk there are many isomorphic copies.

There is an alternate characterization of an equivalence of categories:

Theorem 2.1.20. Categories X and Y are equivalent if and only if there exists a full, faithful

and essentially surjective functor F : X→ Y.

The proof invokes the axiom of choice, as one must chose the isomorphisms X → G(Y),

for every X ∈ X, for some G : Y→ X.

Recall that the set of maps from object X to object Y in a category X is denoted by

X(X,Y). X(,) is also a functor:

Definition 2.1.21. Given a category X, the hom-functor X(,) : Xop × X→ Set takes:

Objects: (X,Y) 7→ X(X,Y)

Maps: (X
fop−→ Y ,Z

g−→ W) to the function X(X,Y)→ X(Z,W) taking:

(h : Y → Z) 7→ fhg

A functor F : X → Set is representable when there exists an object X of X such that

there is a natural isomorphism F ∼= X(X,).

14

Definition 2.1.22. Two functors L : X→ Y and R : Y→ X form an adjoint pair, L a R,

when there is a bijection between Y(L(X),Y) and X(X,R(Y)) natural in X and Y . L is

the left adjoint of the adjunction and R is the right adjoint of the adjunction.

Equivalently, the functor L : X → Y is left adjoint to R : Y → X when there are two

natural transformations η : X→ LR and ε : RL→ Y so that the triangle identities hold:

L

Lη
��

LRL ε
// L

R
η // RLR

Rε
��
R

2.2 Monoidal categories

There is an important class of categories in which circuits can be expressed naturally:

Definition 2.2.1. A monoidal category X is a category equipped with:

• A bifunctor ⊗ : X× X→ X called the tensor product.

• A distinguished object I of X called the tensor unit.

• A natural isomophism a with components aX,Y ,Z : (X ⊗Y)⊗Z → X ⊗ (Y ⊗Z) called

the associator.

• A natural isomorphism uL with components uLX : I ⊗X → X called the left unitor.

• A natural isomorphism uR with components uRX : X⊗ I → X called the right unitor.

Such that the following diagrams commute:

The Mac Lane pentagon diagram:

((A⊗B)⊗ C)⊗D
aA,B,C⊗1D//

aA⊗B,C,D

��

(A⊗ (B ⊗ C))⊗D
aA,B⊗C,D// A⊗ ((B ⊗ C)⊗D)

a1⊗aB,C,D

��
(A⊗B)⊗ (C ⊗D) aA,B,C⊗D

// A⊗ (B ⊗ (C ⊗D))

15

Interaction of unitors and associator:

(A⊗ I)⊗B
aA,I,B //

uRA⊗1B ''

A⊗ (I ⊗B)

1A⊗uLBww
A⊗B

A monoidal category is said to be symmetric if additionally, it is equipped a natural

isomorphism c with components cX,Y : X ⊗ Y → Y ⊗ X called the symmetry such that

the following diagrams commute:

Inverse law:

A⊗B
cA,B

��
B ⊗ A cB,A

// A⊗B

Interaction of symmetry with unitors:

A⊗ I
cA,I //

uRA ""

I ⊗ A

uLA||
A

Interaction of symmetry with associator:

(A⊗B)⊗ C
cA,B⊗1C //

aA,B,C

��

(B ⊗ A)⊗ C
aB,A,C

��
A⊗ (B ⊗ C)

cA,B⊗C

��

B ⊗ (A⊗ C)

1B⊗cA,C

��
(C ⊗B)⊗ A aA,B,C

// B ⊗ (C ⊗ A)

Maps from the tensor unit are called points.

Definition 2.2.2. A symmetric monoidal X category is symmetric monoidal closed

when there is a functor (: Xop ×X→ X, such that for every object X of X, there is an

16

adjunction ⊗X a X (. The functor (: Xop × X→ X is called the internal hom,

because it generalizes the hom functor X(,) : X× X→ Set.

For example, Vectk is closed. Therefore, taking the dual vector space is a functor from

Vectopk to Vectk.

2.2.1 Strict monoidal categories and PROPs

Definition 2.2.3. A strict monoidal category is a monoidal category in which all of the

coherent natural isomorphisms are identity maps. Moreover, a strict symmetric monoidal

category is a strict monoidal category with a symmetry. The symmetry is not required to

be the identity, because this would force the category to be a monoid.

There is a succinct graphical representation of maps in strict (symmetric) monoidal cat-

egories. A map X
f−→ Y is graphically depicted as the following circuit:

fX Y

The identity arrow on X is graphically depicted as a straight line:

X X

The identity arrow on I is depicted as a blank space:

The composite X
f−→ Y

g−→ Z is graphically depicted by horizontal pasting:

fX g Y

17

The tensor X ⊗W f⊗g−−→ Y ⊗ Z is graphically depicted by vertical pasting:

fX Y

gW Z

The object labels on the wires are often omitted. Notice how the grey background

distinguishes tensored maps with maps merely pasted vertically on the same page:

f

g

f

g

The symmetry cX,Y is graphically depicted as the following circuit:

X

Y

Y

X

The coherences of a strict monoidal category are simple to draw. Because unitors and

associators are identities, we only have to draw a few diagrams. First, the interaction of the

symmetry with the associator:

X

Y

Z

Y

Z

X

=
X

Y

Z

Y

Z

X

As well as the inverse law:

X

Y

X

Y
=

X

Y

X

Y

The naturality of c can also be graphically depicted as follows:

f

g
=

f

g

Strict monoidal categories are called graphical calculi when the maps are semantically in-

terpreted as computations. The ZX-calculus [17], the ZH-calculus [8], the ZW-calculus [29],

18

as well as CNOT (Chapter 5), CNOT +H (Chapter 6), TOF (Chapter 7) are all strict sym-

metric monoidal categories which are used to model computation in terms of generators and

relations. There are also many variations of the ZX/W/H-calculi, [9, 51, 34, 22, 43, 6, 52, 50].

Lafont also gave complete sets of circuit identities for various fragments of classical comput-

ing; notably, he gave a complete set of identities for circuits generated by the controlled-not

gate without ancillary bits [38, §3.1].

Definition 2.2.4. A PROP (short for product and permutation category) is a strict sym-

metric monoidal category where there is a fixed object X such that all the objects are of the

form X⊗n (where X⊗n is the n-fold tensor product of X). CNOT, CNOT+H, TOF and the

ZX/W/H-calculi are all PROPs.

2.2.2 Monoidal functors

This aforementioned assignment of a matrix to a circuit motivates the discussion of monoidal

functors; translations between monoidal categories:

Definition 2.2.5. Given two monoidal categories X and Y, a monoidal functor from X

to Y consists of functor F : X → Y, a map mI : I → F (I), and a natural transformation

m⊗ : F (X)⊗ F (Y)→ F (X ⊗ Y) satisfying the following conditions:

Associativity:

(F (X)⊗ F (Y))⊗ F (Z) a //

m⊗⊗1

��

F (X)⊗ (F (Y)⊗ F (Z))

1⊗m⊗
��

F (X ⊗ Y)⊗ F (Z)

m⊗
��

F (X)⊗ F (Y ⊗ Z)

m⊗
��

F ((X ⊗ Y)⊗ Z)
F (a)

// F (X ⊗ (Y ⊗ Z))

19

Unitality:

I ⊗ F (X)
mI⊗1//

uL

��

F (I)⊗ F (X)

m⊗
��

F (X) F (I ⊗X)
F (uL)

oo

F (X)⊗ I 1⊗mI//

uR

��

F (X)⊗ F (I)

m⊗
��

F (X) F (X ⊗ I)
F (uR)

oo

A symmetric monoidal functor is a monoidal functor, so that the following diagram

commutes:

F (X)⊗ F (Y) c //

m⊗
��

F (X)⊗ F (Y)

m⊗
��

F (X ⊗ Y)
F (c)

// F (Y ⊗X)

A strong monoidal functor is a monoidal functor where mI is an isomorphism and m⊗

is a natural isomorphsim. A strict monoidal functor is a monoidal functor where mI

and m⊗ are identities. Strong symmetric monoidal functors and strict symmetric monoidal

functors are defined in the obvious way.

We can view completeness, soundness and universality of a graphical calculus with re-

spect to different properties of a map J K : X → Y interpreting X in Y. This observation

was previously made for the strict symmetric monoidal case X → MatC [7, §2.4]. An inter-

pretation is sound if it preserves structure and, and thus, is a strong or strict symmetric

monoidal functor. An interpretation is complete if it is faithful and surjective on objects.

An interpretation is universal if it is full.

When X is presented in terms of generators and relations, as in the ZX/W/H-calculus,

CNOT or TOF etc., the soundness and fullness are mechanical to verify. Proving the com-

pleteness, on the other hand, is almost always nontrivial; for CNOT and TOF, this involves

constructing normal forms. A normal form for circuits presented by generators and rela-

tions is a form from which the equality of any two circuits can be easily determined; along

with an algorithm applying the equational identities to transform arbitrary circuits into the

normal form. In CNOT, the normal form is constructed by performing Gaussian elimina-

tion. In TOF, the normal form is constructed by computing the expansions of multivariate

20

polynomials.

21

Chapter 3

Quantum Computing

The analysis of finite-dimensional quantum physics with category theory is known as cat-

egorical quantum mechanics. We will first discuss quantum computing abstractly in these

terms and then restrict our attention to the stabilizer fragment of quantum mechanics which

is needed for Chapter 6.

3.1 Categorical quantum computing

I refer the reader to [18] for a survey of categorical quantum mechanics, in which the defini-

tions and results in this section are discussed in greater depth.

3.1.1 †-categories and compact closed categories

Quantum circuits can naturally be expressed in terms of monoidal categories. However, the

broad structure of monoidal categories must be further refined to model interesting quantum

phenomena:

Definition 3.1.1. A †-category (dagger-category) X is a category equipped with a functor

()† : Xop → X that is an identity on objects involution. That is, for all objects X and maps

f , X† = X and ((f)†)† = f .

22

A map f in a dagger category is an isometry if ff † = 1 and unitary if f † = f−1. On

the other hand, f is Hermetian when f † = f .

Example 3.1.2. The category MatC of matrices over C from Example 2.1.6 is a †-category,

where the dagger is given by the complex conjugate transpose.

A †-monoidal category X is simultaneously a †-category and a monoidal category where

the dagger distributes over the tensor (ie. (X ⊗ Y)† = X† ⊗ Y †) and all of the components

of the given natural isomorphisms are unitary, i.e. a†A,B,C = a−1
A,B,C , (uRA)† = (uRA)−1, (uLA)† =

(uLA)−1 and c†A,B = c−1
A,B.

A †-symmetric monoidal category X is simultaneously a †-monoidal category and a

symmetric monoidal category where the symmetry is also unitary.

A †-monoidal functor between †-monoidal categories is a monoidal functor that also

preserves the †-functor.

Example 3.1.3. MatC is not only a †-category, it is a strict †-symmetric monoidal category.

The tensor product is given by the Kronecker product, and the tensor unit is the identity

matrix on 1. Recall that the Kronecker product is defined as follows:

X ⊗ Y =


x1,1Y · · · x1,nY

...
. . .

...

xm,1Y · · · xm,nY


Monoidal categories can be refined so that wires can, not only cross over each other, but

also be bent into cups and caps:

Definition 3.1.4. A symmetric monoidal closed category X is compact closed when the

the canonical map B ⊗ A∗ → A(B obtained by currying:

23

B = B

A(I = A(I
⊗A a A(

(A(I)⊗ A→ I

A∗ ⊗ A −→ I ⊗
B ⊗ (A∗ ⊗ A) −→ B ⊗ I

uRB
B ⊗ (A∗ ⊗ A) −→ B

a−1
B,A∗,A

(B ⊗ A∗)⊗ A −→ B
⊗A a A(

B ⊗ A∗ −→ A(B

is an isomorphism.

In the strict case, the evaluation and coevalutation maps for the components of the

adjunction η : I → A⊗ A∗ and ε : A∗ ⊗ A→ I are graphically depicted by:

A

A∗
and

A

A∗

The triangle identities are thus graphically depicted as follows:

A

A

= A A

A∗

A∗

= A∗ A∗

This means that processes f : A→ B can be curried into states I → B ⊗ A∗:

fA B
f

A∗

B

Where states can be composed as follows:

f

g

= fg

In a compact closed category, the component at A of the natural isomorphism ιA : A→

A∗∗ is given by uncurrying 1A∗ ; graphically:

A A∗∗

24

A †-compact closed category is a compact closed, †-symmetric-monoidal category for

which η†AcA,A∗ = εA for all objects A that is:

†
= so that, as a consequence

†
=

3.1.2 Hilbert spaces

Definition 3.1.5. A Hilbert space H is a vector space over C equipped with an inner

product 〈 | 〉 : H ×H → C such that H is also a complete metric space with respect to the

distance induced by the inner product.

The category of Hilbert spaces Hilb has:

Objects: Hilbert spaces.

Maps: Bounded linear maps.

Tensor: The tensor of products Hilbert spaces is metric space completion of the usual

bilinear tensor product of vector spaces. The tensor unit is C.

Dagger: The dagger ()† : Hilbop → Hilb is the Hermitian adjoint; that is for all maps

H1
f−→ H2, and all vectors h1 in H1 and h2 in H2:

〈f h1|h2〉 = 〈h1|f † h2〉

Let FHilb denote the full subcategory of Hilb where the objects are finite dimensional

Hilbert spaces.

The vectors (points) of a Hilbert space are denoted by |ϕ〉, and the linear functionals are

denoted by 〈ψ|. This allows the inner product to be split into two parts, bras and kets, so

that 〈ϕ|ψ〉 = 〈ϕ| |ψ〉. Likewise the outer product is thus written as |ϕ〉 〈ψ|. We must use the

application order of composition when working in Hilb, so that the inner product and outer

product are not confused.

25

The vectors of 2n-dimensional Hilbert spaces are called qubits.

Given a Hilbert space H1 with basis {bi}i∈I and another Hilbert space H2 with basis

{ej}j∈J , any linear map from H1 to H2 can be expressed as the following sum, for some

ai,j ∈ C:

∑
i∈I,j∈J

ai,j|ej〉 〈bi|

This notation for matrices often makes calculations much easier. As a matter of con-

vention, the computational basis (standard basis) of dimension n is denoted by the set

{|i〉}i∈[0,n−1].

In general, when one speaks of a graphical calculus that is sound for a fragment of

quantum computing, this posits the existence of a strict symmetric monoidal functor X →

MatC. This is because MatC is equivalent to FHilb via the functor MatC → FHilb which

chooses a basis [5, Example 2.3.13].

FHilb is a †-compact closed category. For every finite dimensional Hilbert space H and

basis {|bi〉}i∈I , the coevaluation is given by:

εH :=
∑
i∈I

|bi〉 ⊗ |bi〉

It is important to note that the evaluation and coevaluation maps for the †-compact

closed structure of FHilb are basis independent.

Lemma 3.1.6. The dimension of a Hilbert space is given by the circuit:

Proof. Given some (finite) N -dimensional Hilbert space H:

26

η†H ηH =

(
N−1∑
i=0

〈i|〈i|

) (
N−1∑
i=0

|i〉|i〉

)

=
N−1∑
i=0

i∑
j=0

(〈j|〈j|) (|i− j〉|i− j〉)

=
N−1∑
i=0

i∑
j=0

〈j|i− j〉〈j|i− j〉

=
N−1∑
i=0

i∑
j=0

δi,i−j

=
N−1∑
i=0

1

= N

Definition 3.1.7. A quantum observable is a Hermetian operator. Given an eigenvector

h |v〉 = λ|v〉 of a Hermetian h, measuring a state 〈w| in the normalized eigenbasis of h

produces |v〉 with probability |〈w|v〉|2.

A vector |ϕ〉 in a Hilbert space is a quantum state if it has unit norm, that is, |〈ϕ|ϕ〉|2 =

1. The coevaluation is not a quantum state as it is unnormalized. However, the normalized

state is the maximally mixed state.

Definition 3.1.8. Two observables on the same space with respective eigenbases |ai〉 and

|bi〉 are said to be mutually unbiased if for all indices i, j and k:

|〈ai|bk〉|2 = |〈aj|bk〉|2

and

|〈bi|ak〉|2 = |〈bj|ak〉|2

27

That is to say, that the measurement of one observable reveals no information about what

would have happened if the other observable were measured, and vice versa. In a Hilbert

space with finite dimension N , because the probability is uniformly random, we have:

|〈ai|bk〉|2 = |〈bi|ak〉|2 = 1/N

Example 3.1.9. Consider the Pauli X and Z matrices:

X :=

0 1

1 0

 Z :=

1 0

0 −1


These matrices are Hermetian, where the X observable has normalized eigenbasis:

|x+〉 :=
1√
2

1

1

 |x−〉 :=
1√
2

 1

−1


and the Z eigenbasis is the computational basis:

|z+〉 :=

1

0

 |z−〉 :=

0

1


It is mechanical to check that the Pauli X and Z bases are mutually unbiased. It is also

worth noting that the Z and X observables are related via the change of basis matrix called

the Hadamard gate:

H |x±〉 = |z±〉 H |z±〉 = |x±〉

where:

H :=
1√
2

1 1

1 −1


The Hadamard gate is the 1-qubit quantum Fourier transform:

28

Definition 3.1.10. The n-qubit Fourier transform is given by the matrix:

F2n :=
2n−1∑
j,k=0

ωjk|j〉 〈k|

Where ωk is the 2nth root of unity e−2πik/2n .

The Hadamard gate is the 1-qubit quantum Fourier transform.

3.1.3 Frobenius algebras and complementarity

Structures such as Frobenius algebras, bialgebras and Hopf algebras generalize much of the

structure of FHilb to arbitrary †-compact closed categories. We draw the components of

Frobenius algebras by shaded circles:

Definition 3.1.11. A Frobenius algebra in a monoidal category is a 5-tuple:

(A, , , ,)

such that (A, ,) is a monoid and (A, ,) is a comonoid:

= = = =

= =

And the Frobenius law holds:

[F] = =

The middle term in the equality is redundant, although we consider non-unital Frobenius

algebras in Chapter 4 as it follows from the unitality/counitality of the monoid and comonoid

29

and the equality of the first and second terms:

= = = = =

A Frobenius algebra is special if

=

extra if

=

and commutative if the underlying monoid and comonoids are commutative and cocom-

mutative:

= =

A †-Frobenius algebra (A, ,) is a Frobenius algebra of the form

(A, , ,
†
,

†
)

That is to say, the monoid and comonoid are daggers of each other.

A non-(co)unital special commutative †-Frobenius algebra is called a semi-Frobenius

algebra. Semi-Frobenius algebras are used to construct a weak product structure for inverse

categories which we will explore in Chapter 4. Special, commutative, †-Frobenius algebras

are called classical structures.

The following theorem is useful for manipulation of Frobenius algebras:

Theorem 3.1.12. [2] [Commutative spider Theorem] All connected sub-graphs con-

sisting of the components of a classical structure with the same type (same domain and

30

codomain) have a unique normal form.

In graphical notation, that means that we can represent the connected components of a

Frobenius algebra by a spider. The multiplication is the spider of type X ×X ⊗X, the unit

is the spider of type I → X and so on. When any two spiders are connected, they merge

into a larger spider. Graphically:

...
... =

...
...

· · · =
...

...

If there is a Frobenius algebra on an object X, an isomorphism X → Y induces a

Frobenius algebra on Y :

Lemma 3.1.13. If h : X :→ Y is an isomorphism and

(X, , , ,)

is a Frobenius algebra, then so is

(
Y ,

h−1

h−1

h , h ,
h

h
h−1 , h−1

)

And in particular, if h is unitary and the Frobenius algebra is a †-Frobenius algebra, the

induced Frobenius algebra is a †-Frobenius algebra.

Proof. Observe that h−1h and h−1h cancel; where the identities of a Frobenius algebra can

be applied.

Moreover,

Lemma 3.1.14. [31, Theorem 5.15] If there is a Frobenius algebra on X, then X is self

dual.

Proof. Consider a Frobenius algebra (X,∇, e, ∆,m)

31

The evaluation map is given by X ⊗X ∇−→ X
m−→ I and the coevaluaion map is given by

I
e−→ X

∆−→ X ⊗X.

We can say more about Frobenius algebras in FHilb:

Theorem 3.1.15. [19, Theorem 5.1] Orthogonal bases {|bi〉}i∈I in FHilb are in bijective

correspondence with commutative †-Frobenius algebras:

(
∆ :=

∑
i∈I

|bi〉 〈bibi|, e :=
∑
i∈I

|bi〉

)

Moreover, this correspondence can be refined to that of special commutative †-Frobenius

algebras (classical structures) and orthonormal bases.

The elements of a basis are copied by the induced special commutative †-Frobenius al-

gebra. However, not all points are copied in any category with a chosen classical structure,

the coevalutation cannot be copied. A graphical proof of the this well known result is given

in [18], which we give here:

Theorem 3.1.16. [No cloning] Quantum channels cannot be copied.

Proof. Suppose for sake of contradiction that quantum channels can be copied. Then there

is a commutative natural transformation ∆ so that:

= =
∆X∗

∆X

=
∆X

∆X∗

=
∆X∗

∆X

=

This implies that

= = =

Since every orthonormal basis in FHilb induces a classical structure and every vector

space has a basis, FHilb is †-compact closed.

32

Mutually unbiased bases can also be generalized beyond FHilb. We use different colours

for the monoid and comonoid to indicate that they do not necessarily form a Frobenius

algebra.

Definition 3.1.17. A bialgebra is a monoid, comonoid pair

(X, , , ,)

so that:

[B.U] = =

[B.M] =

A bialgebra is a Hopf-algebra when there is a map X
s−→ X called the antipode, such

that:

[B.H]
s

= =
s

Definition 3.1.18. Two classical structures on the same object

(X, , , ,) and (X, , , ,)

are complementary, when they interact satisfying the Hopf law up to an invertible scalar.

Complementary Frobenius algebras are strongly complementary when they also satisfy

the biaglebra laws up to an invertible scalar, so that they from a Hopf algebra up to an

invertible scalar with the following antipode [17]:

Theorem 3.1.19. [31, Proposition 5.12] In FHilb mutually unbiased bases are complemen-

tary classical structures.

33

The Pauli Z and X observables are strongly complementary. It was this observeration

that led to the development of the ZX-calculus [17], which we discuss in Chapter 6.

The Hopf law should be interperted as the result of preparing a state in the white basis

and then measuring in the black basis; where the distribution of measurement outcomes is

uniform. The reason that the bialgebra/Hopf rule only holds up to a scalar, is because in

FHilb, mutually unbiased bases correspond to Frobenius algebras interacting to satisfy the

Hopf law up to a nonzero scalar. In particular, they are scaled with respect to the dimension

of the underlying vector space.

Even more of the structure of finite-dimensional quantum mechanics can be abstractly

characterized:

Definition 3.1.20. [21, Definition 4.3] A prephase-shift for a †-Frobenius algebra:

(X, , , ,)

is an endomorphism α : X → X so that:

α
=

α
= α

Unitary prephase-shifts are called phase-shifts

A (pre)phase-shift α : X → X induces a (pre)phase:

α

The phase-shifts of a †-Frobenius algebra form a group called the phase group with group

multiplication given by the Frobenius multiplication, the unit given by the identity and the

inverse given taking the dagger (as phases are unitary).

The commutative spider theorem can be further refined to account for phases:

34

Theorem 3.1.21. [18, Theorem 9.15] [Phased commutative spider Theorem] All con-

nected sub-graphs consisting of the components of a classical structure with the same type

(same domain and codomain) have a unique normal form.

That is to say, we can can augment spiders to be labeled by phases so that the following

spider fusion law holds:

...
...

α

β

· · · =
...

...α + β

The label α+β denotes the phase group product of phases α and β. Note that the original

spider fusion rule is just the case when α and β are the identity for the phase group1.

3.2 Stabilizer quantum mechanics

In this section, I refer the reader to [7, §3.3] or [44, §10.5] for further details.

The following sets of gates are known to be relatively inexpensive to implement and are

of particular interest in quantum error correction [25, 44]:

Definition 3.2.1. The Pauli matrices are the complex matrices:

X :=

0 1

1 0

 Y :=

0 −i

i 0

 Z :=

1 0

0 −1


The Pauli group on n is the closure of the set:

Pn := {λa1 ⊗ · · · ⊗ an|λ ∈ {±1,±i}, ai ∈ {I2,X,Y ,Z}}

under matrix multiplication.

1This can cause confusion: in FHilb, the identity for the phase group is denoted by 0, corresponding to
the phase ei0 = 1, which is the identity for composition, hence additive notation is used.

35

Definition 3.2.2. A unitary U stabilizes a quantum state |ϕ〉 when |ϕ〉 is a +1 eigenvector

of U . That is to say U |ϕ〉 = |ϕ〉. The unitaries stabilizing a quantum state |ϕ〉 form a group

called the stabilizer group of |ϕ〉 denoted by S|ϕ〉.

Because of the importance of Pauli products in quantum error correction, it is important

to identify what states are stabilized by them:

Definition 3.2.3. An n qubit quantum state |ϕ〉 is called a stabilizer state in case S|ϕ〉 is

a subgroup of Pn.

This gives an alternative way to think about stabilizer states:

Lemma 3.2.4. [44, §10.5.1] Stabilizer states are uniquely determined by their stabilizer

subgroups (up to an invertible scalar).

The following class of maps preserve the property of being a stabilizer state:

Definition 3.2.5. The Clifford group on n is the group of operators which acts on the

Pauli group on n by conjugation (where U(2n) is the group of 2n dimensional unitaries in

MatC):

Cn := {U ∈ U(2n)|∀p ∈ Pn,UpU−1 ∈ Pn}

There is an algebraic description of stabilizer states:

Lemma 3.2.6. [7, Theorem 3.3.6] All n qubit stabilizer states have the form C |0〉⊗n, for

some member C of the Clifford group on n qubits.

This characterization of stabilizer states in terms of Clifford operators leads to the fol-

lowing notion:

Definition 3.2.7. A stabilizer circuit is a circuit composed of Clifford operators, state

preparation and postselected measurement in the computational basis.

We also consider a subgroup of Cn:

36

Definition 3.2.8. [22] The real Clifford group on n qubits, is the subgroup of the Clifford

group with real elements, ie:

Cre
n := {U ∈ Cn|U = U}

An n-qubit real stabilizer state is a state of the form C |0〉⊗n for some C ∈ Cre
n .

Similarly, a real stabilizer circuit is a circuit composed of real Clifford operators, state

preparation and postselected measurement in the computational basis.

There is a generating set for the Clifford group on n qubits.

Theorem 3.2.9. [25] For n > 1, the Clifford group on n is generated by ω (global π/4 phase),

S (π/2 phase-shift gate), H (Hadamard gate) and cnot (controlled-not gate). Explicitly, these

matrices are:

ω := eiπ/4 S :=

1 0

0 eiπ/2

 =

1 0

0 i

 H :=
1√
2

1 1

1 −1

 cnot :=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


It is worth mentioning that Selinger gave a complete set of circuit relations for Cliffords

[47].

Corollary 3.2.10. [22] For n > 1 the real Clifford group is generated by the Hadamard

gate, the controlled-not gate and the not gate.

In [22], this group is presented in terms of the Hadamard gate, the controlled-Z gate and

the Z gate, but these two presentations are equivalent.

Although these circuits exhibit quantum entanglement; they are not computationally

powerful:

37

Theorem 3.2.11. [26] [Gottesmann-Knill] Stabilizer circuits can be simulated on prob-

abilistic a classical computer in polynomial time.

Of course, quantum circuits cannot, in general, be simulated on classical computers in

polynomial time. This means that stabilizer circuits are a very restrictive class of quantum

circuits.

38

Chapter 4

Restriction and Inverse Categories

In this chapter, we shall turn our attention from quantum computing to partial, and reversible

computing.

4.1 Restriction and inverse categories

In this section, we recall the basic theory and terminology of restriction and inverse cate-

gories.

Definition 4.1.1. [16, Definition 2.1.1] A restriction structure on a category X is an

assignment f : A→ A for each map f : A→ B in X satisfying the following four axioms:

[R.1] f f = f [R.2] f g = gf [R.3] gf = f g [R.4] fg = fgf

A restriction category is a category equipped with a restriction structure. An endo-

morphism e : A → A is called a restriction idempotent if e = e. In particular, for any

map f , f f = f f = f , so that f is idempotent. Restriction categories have a partial order

on homsets with f ≤ g if and only if f g = f . This partial order is called the restriction

order.

In a restriction category, a total map is a map f such that f = 1. The total maps of a

restriction category X form a subcategory Total(X) of X.

39

Example 4.1.2. The canonical example of a restriction category is the category of sets and

partial functions, Par. The restriction of a partial function f : A→ B is given by:

f (x) :=


x If f(x) ↓

↑ Otherwise

The notation f(x) =↑ means that f is undefined at x; similarly, f(x) ↓ means that f is

undefined at x.

Since the assignment of restriction is structure, one needs a notion of a functor between

restriction categories that preserves this structure:

Definition 4.1.3. A restriction functor F : X → Y between restriction categories is a

functor so that for any map f ∈ X, F (f) = F (f).

Definition 4.1.4. [16, Sec. 3] A stable system of monics M for a category X is a class

of monics of X closed to composition, containing all isomorphisms, so that given any cospan

X
f−→ Z �

m

Y, where m is in M, the following pullback exists:

Xf ×m Y
π1 //

��
π0
��

y
Y
��
m

��
X

f
// Z

and π0 is in M.

Definition 4.1.5. [16, Sec. 3] Given a stable system of monics M of a category X, the

category of partial maps, Par(X,M) is the subcategory of Span(X) where the left leg is

in M. Par(X,M) is endowed with a restriction structure given by (m, f) := (m,m).

When all of the monics of X form a stable system of monics, denote the category of

partial maps with all monics by Par(X).

For example, Par(Set) is equivalent to Par.

40

Definition 4.1.6. [16, Sec. 2.3]. A map f in a restriction category is a partial isomor-

phism when there exists another map g, called the partial inverse of f , such that f = fg

and g = gf . A restriction category X is an inverse category when all its maps are partial

isomorphisms.

In an inverse category, every idempotent is a restriction idempotent. Partial isomorphisms

generalize the notion of isomorphisms to restriction categories; thus, the composition of

partial isomorphisms is a partial isomorphism and partial inverses are unique. Furthermore,

every restriction category X has a subcategory of partial isomorphisms ParIso(X) which is

an inverse category. The category ParIso(Set) is denoted by Pinj. The full subcategory of

Pinj with objects given by finite sets is denoted by FPinj.

Inverse categories can be equivalently characterized by having a special type of dagger

structure:

Theorem 4.1.7. [16, Theorem 2.20] A category X is an inverse category if and only if there

exists an functor () : Xop → X which is the identity on objects, satisfying the following three

axioms:

[INV.1] (f) = f [INV.2] ff f = f [INV.3] ff gg = gg ff

The restriction structure is given by c := cc .

4.1.1 Discrete restriction categories and inverse products

If a category X has products then Par(X) has restriction products: these are “lax” products

for which the pairing operation satisfies 〈f , g〉π0 = gf (and 〈f , g〉π1 = f g). If the category

X has a final object then Par(X) has a restriction final object. That is an object 1 for which,

for each object A, there is a unique total map ! : A → 1 so that for any map k : A → B,

k!B = k!A. A restriction category with restriction products and a restriction terminal object

is called a Cartesian restriction category.

41

A Cartesian restriction category in which the diagonal map ∆A : A→ A×A is a partial

isomorphism is called a discrete Cartesian restriction category. Given a category

with products and pullbacks, the category of partial maps, Par(X), is always a discrete

Cartesian restriction category. This is because the diagonal map is monic, and thus a partial

isomorphism. Discrete Cartesian restriction categories can be equivalently characterized as

Cartesian restriction categories which have meets with respect to the restriction ordering:

Definition 4.1.8. [15, Definition 2.9] A restriction category X has restriction meets when

it has a combinator ∩ : X(A,B)× X(A,B)→ X(A,B) for all objects A and B in X such

that for all f , g : A→ B and h : B → C in X the following axioms hold:

[M.1] f ∩ f = f

[M.2] f ∩ g ≤ f and f ∩ g ≤ g (with respect to the restriction ordering)

[M.3] (f ∩ g)h = (fh) ∩ (gh)

In a discrete Cartesian restriction category the meet is f ∩ g := ∆(f × g)∆ . Conversely

if one has meets in a Cartesian restriction category, one can define the partial inverse of the

diagonal map as ∆ := π0∩π1. The subcategory of partial isomorphism of a discrete Cartesian

category is an inverse category which has a residual product structure [24, Proposition 4.3.7].

As the projections are not partial isomorphisms this structure hinges on the behaviour of ∆

and ∆ :

Definition 4.1.9. [24, Definition 4.3.1] Consider a symmetric monoidal inverse category X

where the tensor preserves restriction in both components. Such a category X has inverse

products if there exists a natural diagonal transformation ∆ whose components induce

semi-Frobenius algebras with respect to the dagger functor () : Xop → X, satisfying uniform

copying. ∆ is uniform copying1 if:

1In [24, Definition 4.3.1], there is no requirement that ∆I = (uR
I)−1 = (uL

I)−1.

42

X ⊗ Y
=

X

Y

X ⊗ Y
=

X

Y

∆I = uRI = uLI ∆I = (uRI)−1 = (uLI)−1

Recall from Definition 3.1.11, that a semi-Frobenius algebra is a nonunital, special, com-

mutative, †-Frobenius algebra. Therefore, the speciality makes the map ∆ total on all

components.

Denote the partial inverse of ∆ by ∇ := ∆ . We depict ∆ and ∇ graphically as follows:

A discrete inverse category is a category with inverse products. Discrete inverse

categories have meets given by f ∩ g := ∆(f ⊗ g)∇. Inverse products are extra structure,

so an inverse category can be a discrete inverse category in different ways (see [24, Example

4.3.4]). Therefore, we need functors between discrete inverse categories to preserve more

than just restriction.

Definition 4.1.10. A discrete inverse functor from a discrete inverse category X to Y is

a strong monoidal restriction functor F : X→ Y so that the following diagram commutes:

F (X) ∆ //

F (∆) ''

F (X)⊗ F (X)

m⊗
��

F (X ⊗X)

Example 4.1.11. [24, Example 4.3.2] Pinj is a discrete inverse category with Cartesian

monoidal structure. The dagger is given by the relational converse and the inverse products

are given by components:

∆X = λx.(x,x) : X → X ×X

43

We identify a class of maps with restriction idempotents using inverse products:

Definition 4.1.12. Consider a †-monoidal category X with a natural semi-Frobenius struc-

ture, without necessarily being an inverse category. A map e : X → X in X is latchable

when

e = ∆X(f ⊗ 1X)∇X

That is, when the following holds:

e = f

The following Lemma was proven, in slightly different terms, by Giles in [24, Lemma

4.3.5 (i)]:

Lemma 4.1.13. If X is a †-monoidal category with a natural semi-Frobenius algebra struc-

ture satisfying uniform copying (without necessarily being an inverse category), then the

latchable maps commute and are idempotent.

Moreover, if X is a discrete inverse category, the latchable maps are precisely the restric-

tion idempotents.

Proof.

• Consider a †-monoidal category X with a natural semi-Frobenius structure satisfying

uniform copying. First we observe that latchable maps e in X are idempotent.

e e =
e e

e is latchable

=
e

e
∆ is commutative

=
e

e

∆ is semi-Frobenius

=
e

e

∆ is associative

44

=
e

e
e is latchable

= e ∆ is natural

= e ∆ is special

Next, observe that latchable maps e and m and X commute:

e m =
e m

e is latchable

=
e

m
∆ is commutative

=
e

m

∆ is semi-Frobenius

=
e

m

∆ is associative

=
e

m
e is latchable

=
m

e
∆ is commutative

= m e By symmetry

• For the second claim, consider a discrete inverse category X. By the previous bullet

we already know that latchable maps are idempotent. We show, conversely, that

idempotents e of X are latchable:

e = e ∆ is special

= e ∆ is semi-Frobenius

45

=

e

e

e

∆ is natural

=

e

e

e e ee = e

=
e

e

∆ is natural

=
e

e
∆ is semi-Frobenius

=
e e

∆ is commutative

=
e

Where the last line follows as latchable maps are idempotent.

4.2 Restriction and discrete inverse functors

In Chapters 5 and 7, we demonstrate equivalences between discrete inverse categories using

restriction functors which are representable. The pursuit of proving that these functors are

equivalences resulted in the realization that the preservation of discrete inverse structure is

very powerful property for a functor to have: in particular, the proof pf the fullness and

faithfulness of these functors is reduced to much easier cases (Lemmas and 4.2.6 4.2.7).

Definition 4.2.1. Given a restriction category X and any object X in X, define the functor

hX := Total(X)(X,) : X→ Par as follows:

On objects: For each object Y ∈ X, hX(Y) := {f ∈ X(X,Y)|f = 1x};

On maps: For each map Y
f−→ Z in X, for all g ∈ hX(Y),

46

(hX(f))(g) :=


gf if gf = 1X

↑ otherwise

The notation (hX(f))(g) =↑ means hX(f) is undefined on g.

Lemma 4.2.2. hX : X→ Par is a restriction functor.

Proof. To prove hX is a restriction functor is to prove hX preserves identities, composition

and restriction structure.

• First, we prove that hX preserves identities. Take any object Y ∈ X and any map

f ∈ hX(Y). Then, (hX(1Y))(f) = f1Y = f as f1Y = f = 1X .

• Next we prove that hX preserves composition. Consider arbitrary maps Y
f−→ Z

g−→ W

and an h ∈ hX(Y).

Suppose that hfg = 1X , then (hX(fg))(h) = hfg and hf = 1X , then

hX(g)((hX(f))(h)) = (hX(g))(hf) = hfg.

On the other hand, suppose that hfg 6= 1X then

hX(g)((hX(f))(h)) = hX(g)(↑) =↑

If hf = 1X , then

hX(g)(hX(f)(h)) = hX(g)(hf) =↑ .

Therefore, hX preserves composition.

• Finally, we prove that hX preserves restriction.

47

For any f : Y → Z and any g ∈ hX(Y):

(hX(f))(g) =


gf if gf = gf = 1X

↑ otherwise

However,

hX(f)(g) =


g if (hX(f))(g) ↓

↑ otherwise

But, (hX(f))(g) is defined if and only if gf = 1X ; moreover if gf = 1X , then gf =

gf g = 1Xg = g. Therefore, hX preserves restriction.

Because hX : X → Par is a restriction functor, and restriction functors preserve partial

isomorphisms, it follows that:

Lemma 4.2.3. Given an object X of an inverse category X, hX : X → Par restricts to a

†-functor h̃X : X→ Pinj.

Note that h̃X is a †-functor because the †-structures of both categories are determined

by their restriction structures, where restriction is preserved by h̃X .

This functor sometimes preserves inverse products:

Lemma 4.2.4. Given a discrete inverse category X, if h̃I : X → Pinj is a strong monoidal

functor, it is also a discrete inverse functor (where I is the tensor unit).

Proof. Recall that Pinj has a canonical inverse product structure given by:

∆X := λx.(x,x) : X → X ×X

48

so that for any f : X → Y in Pinj, f∆X = ∆Y (f × f).

First, recall from the definition of a semi-Frobenius structure, that ∆I = (uRI)−1 = (uLI)−1.

Moreover, as h̃I is a strong monoidal functor, Total(X)(I, I) = h̃I(I) ∼= I, so there is only

one total endomorphism on the tensor unit in X; namely, 1I .

Consider some f in h̃I(X). Then:

fh̃I(∆X) = h̃I(f)h̃I(∆X) As h̃I(I) = {1I}

= h̃I(f∆X) h̃I is a functor

= h̃I(∆I(f ⊗ f)) ∆ is natural

= h̃I(∆I)h̃I(f ⊗ f) h̃I is a functor

= h̃I(u
R
I)h̃I(f ⊗ f) ∆I = uRI

∼= uRI (f × f) h̃I is a strong monoidal functor

= ∆I(f × f) ∆I = uRI

Therefore h̃I(∆X) = ∆h̃I(X) for all objects X in X.

We develop a criterion for when an inverse functor is faithful:

Lemma 4.2.5. A restriction functor F : X→ Y between inverse categories is faithful if and

only if it reflects and is faithful on restriction idempotents.

F reflects restriction idempotents when for all endomorphisms h : A→ A in X, F (h) =

F (h) implies h = h.

Proof.

• If F is faithful then it is faithful on restriction idempotents. To show it reflects idem-

potents, if F (g) = F (g), then F (g)F (g) = F (gg) = F (g). So g is an idempotent

49

and thus a restriction idempotent, as all idempotents are restriction idempotents in an

inverse category.

• Conversely, suppose F reflects and is faithful on restriction idempotents and that

F (f) = F (g) for f , g which are parallel maps in X. This means that

F (f) = F (f)F (f) = F (f)F (g) = F (fg)

So fg is a restriction idempotent as is g f . But

F (fg) = F (f)F (g) = F (f)F (f) = F (ff)

So fg = ff and g f = f f . Thus g is the partial inverse of f , and hence g = f .

If F is a discrete inverse functor—then we can do even better:

Lemma 4.2.6. A discrete inverse functor F : X→ Y between discrete inverse categories is

faithful if and only if it is faithful on restriction idempotents.

Proof.

• If F is faithful it is certainly faithful on restriction idempotents.

• Conversely, by Lemma 4.2.5, it suffices to prove that F reflects restriction idempotents.

Suppose F (f) = F (f), then

F (f) = F (f) ∩ F (f) = F (f) ∩ F (f) = F (f ∩ f)

Since f and f ∩ f are restriction idempotents and F is faithful on restriction idempo-

tents, then f = f ∩ f ≤ f . But then f ≤ f iff f f = f . So f = f as f f = f .

50

The following criterion is used in Chapters 5 and 7 for proving the fullness of a restricted

class of discrete inverse functors:

Lemma 4.2.7. Let F : X → Y be a discrete inverse functor between discrete inverse

categories and let f : X → Y be a partial isomorphism in Y. If 〈1Y , f 〉 := ∆(1Y ⊗ f) and

〈1X , f〉 := ∆(1X ⊗ f) are in the image of F , then so is f .

Proof. For all maps f : X → Y in Y there are maps: g and h in X such that :

F

 g
h

h


∼= 〈1X , f〉

〈1Y , f 〉
〈1Y , f 〉 F is a discrete inverse functor

=
f

f

f

As 〈f , g〉 := ∆(f ⊗ g)

=
f

f f

f

∆ is natural

= f ff ∆ is natural

= f ff ∆ is associative

= f ff f f is latchable× 2

= f as f := f f

Therefore, f is in the image of F and by symmetry f is as well.

If F is seen as realising a restricted class of circuits, this has an interpretation in terms

51

of circuit synthesis. Given a partial isomorphism f : X → Y , algorithms for the synthesis of

〈1X , f〉, 〈1Y , f 〉 and 〈1Y , f 〉 , an algorithm for synthesizing f is obtained by Lemma 4.2.7.

4.3 Barr’s `2 functor

In [10], Barr describes a contravariant functor from sets and partial injections to Hilbert

spaces. We will use the covariant version of the functor described in [32] (although he

considers the restriction to finite sets).

The functor `2 : Pinj→ Hilb takes:

Objects: For any object X:

`2(X) :=

{
ϕ : X → C

∣∣∣∣∣ ∑
x∈X

|ϕ(x)|2 <∞

}

It is easily verified that `2(X) is a vector space with basis {δx}x∈X , where δx : X → C

is the Kronecker delta function taking x 6= y 7→ 0 and x 7→ 1. Moreover, `2(X) is a

Hilbert space as there is an induced inner product:

〈ψ|ϕ〉 :=
∑
x∈X

ψ(x)ϕ(x)

Where the ψ(x) is the complex conjugate of ψ(x).

Maps: For any map f : X → Y , `2(f) is defined on basis elements, so that for any x ∈ X:

(`2(f))(δx) :=


δf(x) if f(x) = 1X

0 otherwise

Theorem 4.3.1. [30, §4.2, §4.3, §4.9] `2 : Pinj → Hilb is a strong †-symmetric monoidal,

essentially surjective, faithful functor.

52

In the case where X has a terminal object I, note the similarity of h̃I : X → Pinj and

`2 : Pinj → Hilb. Whereas h̃I : X → Pinj evaluates maps on points, sending undefined

evaluations to ↑; `2 : Pinj → Hilb evaluates maps on basis elements sending undefined

evaluations to the zero matrix.

53

Chapter 5

The Controlled-not Gate

In this chapter we model the behaviour of circuits comprised of controlled-not gates and

computational ancillary bits (corresponding to state preparation and post-selected measure-

ment in the standard basis). The controlled-not gate is the unitary matrix taking |b1, b2〉 to

|b1, b1 ⊕ b2〉. We model these circuits as maps in the symmetric monoidal category CNOT

given by finite generators and relations. This follows the work of Lafont, wherein a finite

complete set of identities is given for circuits generated by the controlled-not gate without

ancillary bits [38, §3.1].

We prove that CNOT is discrete inverse equivalent to a concrete category of torsors

and partial maps – in other words the category of affine partial isomorphisms between finite

dimensional Z2 vector spaces. This allows us to use the faithful strong †-symmetric monoidal

functor `2 : Pinj → Hilb to prove the completeness of these identities with respect to the

canonical interpretation into MatC.

54

5.1 The category CNOT

Define the category CNOT to be the PROP generated by the 1 ancillary bits |1〉 and 〈1| as

well as the controlled-not gate:

|1〉 := 〈1| := cnot :=

These generators have a canonical interpretation J KCNOT : CNOT→ MatC:

J|1〉KCNOT :=

0

1

 J〈1|KCNOT :=

[
0 1

]
JcnotKCNOT :=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


The controlled-not gate and the 1-ancillary bits allow the not gate, |0〉 gate, 〈0| gate and

flipped cnot gate to be defined:

:= , := , := , :=

We also allow for “gaps” cnot gates to suppress symmetry maps:

:=

These gates must satisfy the identities given in Figure 5.1.

[CNOT.1] can be stated algebraically as cnot c cnot c cnot = c. [CNOT.2] shows that

cnot is self-inverse. [CNOT.3] shows that control bits can be slid past each other; like-

wise, [CNOT.5] says that target bits can be slid past each other. [CNOT.4] shows how

controlling from |1〉, produces a not gate. [CNOT.6] shows that preparing the state |1〉

entails that |1〉 will be measured. [CNOT.7] shows that controlling from |0〉 makes the

cnot gate disappear. [CNOT.9] shows that multiplication by the zero matrix collapses the

55

[CNOT.1] =

[CNOT.2] =

[CNOT.3] =

[CNOT.4]

=

=

[CNOT.5] =

[CNOT.6] =

[CNOT.7]

=

=

[CNOT.8] =

[CNOT.9] =

Figure 5.1: The identities of CNOT

connectivity of circuits.

[CNOT.8] (in conjunction with [CNOT.2]) allows certain configurations of cnot gates

to be pushed “past each other” with another trailing cnot gate as a side effect. This is the

cnot case of a class of identities given by Iwama et al. [33], which we discuss in great detail

in Chapter 7.

= =

Up to sliding control wires and target wires, all identities are graphically horizontally

symmetric. Therefore there is an obvious †-functor, () : CNOTop → CNOT given by

cnot 7→ cnot, |1〉 7→ 〈1|, 〈1| 7→ |1〉.

It is mechanical to verify that the interpretation J KCNOT : CNOT → MatC is a strict

†-symmetric monoidal functor which reflects the dagger, so this interpretation is sound.

However, proving completeness is highly nontrivial.

56

5.2 Preliminary results for CNOT

Because of Axiom [CNOT.9], it follows that CNOT has zero-maps (although there is no

zero-object). This warrants discussion as zero maps play an important role later.

Definition 5.2.1. The zero circuit in CNOT is:

∅ := : 0→ 0

In order to show this is a zero map, first:

Lemma 5.2.2. ∅ ⊗ ∅ = ∅

Proof.

=

= [CNOT.4]× 2

= [CNOT.2]

= [CNOT.1]

=

We generalize ∅ to an arbitrary domain and codomain:

Definition 5.2.3. For any n and m in N, define the zero map from n to m, ∅n,m : n → m

by the circuit |1〉⊗m ∅ 〈1|⊗n.

These are zero maps:

Lemma 5.2.4.

(i) If f = f ⊗ ∅, for some f : n→ m then f = ∅n,m

57

(ii) If g : m→ p, then ∅n,mg = ∅n,p

(iii) If h : p→ n, then h∅n,m = ∅p,n

Proof.

(i) Consider an arbitrary circuit f : n → m such that f = f ⊗ ∅. Use [CNOT.9] to cut

the wires around every gate in f . Then every cut gate must either be ∅ or 〈1| |1〉. In

the first case, use Lemma 5.2.2 to consume the ∅ obtained by cutting. In the second

case, by [CNOT.6], allow one to remove the circuit. Thus f = f ⊗ ∅ = ∅n,m.

(ii) Clearly ∅n,m∅ = ∅n,m ⊗ ∅ = ∅n,m but then h∅n,m = (h∅n,m)∅ so h∅n,m = ∅p,m.

(iii) Dual to (ii).

5.3 CNOT is a discrete inverse category

In this section, we prove that CNOT is a discrete inverse category. We show “discreteness”

before establishing the inverse category properties.

5.3.1 Inverse products in CNOT

We begin by defining two families of maps ∆n and ∇n for all n ∈ N. We then show that

these maps are semi-Frobenius algebras.

Definition 5.3.1. Define two families of maps {∆n : n→ 2n}n∈N and {∇n : 2n→ n}n∈N as

follows.

On zero wires, define ∆0 := 10.

On one wire, define ∆1, ∇1, respectively by:

:= and dually :=

58

On n wires define ∆, ∇ inductively as follows:

n+ 1
:=

n

and dually
n+ 1

:=
n

As we have defined CNOT by its generators, most of the proofs which follow involve

structural induction; that is, by induction on the generators of CNOT. Moreover, since

CNOT is a PROP, often we can just prove the inductive step.

Lemma 5.3.2. ∆ is a natural transformation.

Proof. We prove ∆ is natural by structural induction on circuits.

For |1〉:

=

= [CNOT.8]

= [CNOT.4]

= [CNOT.7]

= [CNOT.4]

= [CNOT.2]

= [CNOT.6]

59

For 〈1|:

=

= [CNOT.8]

= [CNOT.4]

= [CNOT.7]

= [CNOT.4]

= [CNOT.2]

= [CNOT.6]× 2

For cnot:

=

= [CNOT.3]

= [CNOT.2]

= [CNOT.8]

= [CNOT.5]

= [CNOT.2]

= [CNOT.8]

= [CNOT.2]

60

= [CNOT.8]

=

Lemma 5.3.3. ∆ is cocommutative.

Proof. We prove that ∆ is cocommutative by induction on the number of wires:

• On no wires the result is immediate.

• It suffices to observe, on one wire:

= [CNOT.1]

= [CNOT.2]

= [CNOT.7]

=

Lemma 5.3.4. ∆ is special.

Proof. We prove that ∆ is special by induction on the number of wires.

• On zero wires it is the identity.

• It suffices to observe, on one wire:

61

=

= [CNOT.2]

= Lemma B.0.1 (ii)

Lemma 5.3.5. ∆ is coassociative.

Proof. We prove that ∆ is coassociative by induction on the number of wires.

• On zero wires it is immediate.

• It suffices to observe, on one wire:

=

= [CNOT.2]

= Lemma B.0.1 (i)

= [CNOT.7]× 2

=

The dual propositions for ∇ hold since, ∆ = ∇.

Lemma 5.3.6. (n, ∆n,∇n) is a semi-Frobenius algebra for all n ∈ N.

62

Proof. We prove that (∆,∇) is a semi-Frobenius algebra by induction on the number of

wires.

• On zero wires it is immediate.

• It suffices to observe, on one wire:

=

= [CNOT.3]

= [CNOT.2]

= [CNOT.8]

= [CNOT.2]

= [CNOT.8]

=

Note that ∆ satisfies the uniform copying law by construction.

5.3.2 CNOT is an inverse category

To prove that CNOT is an inverse category, we need to prove that the functor () : CNOTop →

CNOT which horizontally flips circuits satisfies [INV.1], [INV.2] and [INV.3]. It is imme-

diate that [INV.1] holds, as () : CNOTop → CNOT is a dagger functor. It remains to show

that [INV.2] and [INV.3] hold.

To prove that [INV.3] holds, we show that cirucits of the form ff are latchable, and

thus commute.

63

Proposition 5.3.7. All circuits of the form ff are latchable.

Proof. We prove that all circuits of the form ff are latchable by structural induction on f .

Any circuit p with no components is a permutation and, thus, pp is the identity. So

being latchable in this case comes from the fact that the semi-Frobenius algebras are special.

Furthermore, adding a permutation, p, in front of any latchable circuit, h, gives a latchable

circuit as:

(ph)(ph) = phh p = p∆(hh ⊗ 1)∇p = ∆(phh p ⊗ pp)∇ = ∆(((ph)(ph))⊗ 1)∇

Thus we need only consider adding gates to the top left of circuits: adding a gate anywhere

else can be simulated by precomposing with a permutation to move the gates wires to the

top, then adding the gate at the top left, and then precomposing with the inverse of the

permutation.

Thus, it suffices to show inductively that when a circuit of the form ff is latchable,

adding a generator to the top left of f results in a circuit which is still latchable.

For |1〉:

n− 1 n− 1
h =

ff
n− 1 n− 1 By supposition

= n− 1 n− 1

ff

By supposition

= n− 1 n− 1

ff

Lemma 5.3.2

= ff n− 1n− 1 [CNOT.6]

= n− 1 n− 1h

64

For 〈1|:

n+ 1 n+ 1
h = n n

ff By supposition

= n n
ff By supposition

= n n
ff ∆ is natural

= ff
n n Lemma B.0.3

= n+ 1 n+ 1h

For cnot:

n n
h =

ff
n− 2 n− 2

By supposition

=
n− 2 n− 2

ff

By supposition

=

ff

n− 2n− 2
∆ is natural

=
n− 2 n− 2

ff

[CNOT.2]

= n nh

Therefore, as latchable circuits commute, by Lemma 4.1.13:

Proposition 5.3.8. Circuits of the form ff commute.

65

Proof. Circuits of the form ff are latchable, by Proposition 5.3.7. By Lemma 4.1.13,

latchable circuits are idempotent.

It remains to prove that [INV.2] holds which we prove by induction.

Lemma 5.3.9. [INV.2] holds in CNOT with respect to the functor () : CNOTop → CNOT.

Proof. We will prove [INV.2] holds under the functor () by structural induction.

• For the base case, for a permutation f , ff f = f .

• For the inductive hypothesis, suppose that gg g = g.

We proceed by cases for each generator:

For |1〉:

n m n m
f f f

= n− 1 n− 1 m
gg g By supposition

= n− 1 m
gg g [INV.3]

= n− 1 m
gg g [CNOT.6]

= n− 1 mg By the inductive hypothesis

= mn
f By supposition

66

For 〈1|:

n m n m
f f f

=
n− 1 n− 1 m

gg g By supposition

=
n− 1 n− 1 m

gg g [CNOT.6]

= n− 1 mg By the inductive hypothesis

= n m
f By supposition

For cnot:

n m n m
f f f

=
n− 2 n− 2 m

gg g By supposition

=
n− 2 m

gg g [CNOT.2]

=
n− 2 mg By the inductive hypothesis

= mn
f By supposition

Therefore:

Theorem 5.3.10. CNOT is a discrete inverse category.

67

5.4 Torsors

Our aim is to prove that CNOT is a discrete inverse category, equivalent to the category

of partial isomorphism between finitely generated non-empty commutative torsors of char-

acteristic 2, ParIso(CTor2)∗. Torsors are essentially groups without a fixed multiplicative

identity: the category ParIso(CTor2)∗ may be viewed, perhaps more familiarly, as the partial

isomorphism category of finite-dimensional Z2 vector spaces with affine maps.

Definition 5.4.1. A torsor is a set X along with a ternary operation ()×() () : X ×X ×

X → X called para-multiplication, such that for any a, b, c, d, e ∈ X, the following laws hold

[37]:

Para-associativity: (a×b c)×d e = a×d×cb e = a×b (c×d e)

Para-identity: a×b b = b×b a = a

A torsor is said to be commutative, when a ×b c = c ×b a and a torsor is said to have

characteristic 2, when a×b a = b.

The category of torsors Tor has objects torsors and maps homomorphisms of torsors.

A homomorphisms of torsors, f : (X,×) → (Y ,×), is a function X → Y which preserves

para-multiplication.

As this is a category of algebras we know that it is a finitely complete category. This

allows us to form the discrete restriction category Par(Tor), and the discrete inverse category

ParIso(Tor) immediately.

If (X,×) is a non-empty torsor, then X has, for each element z of X, a group structure

with multiplication given by:

· : X2 → X; (x, y) 7→ x×z y.

Conversely, if (X, ·) is a group, then X has a non-empty torsor structure × : X3 → X

such that (x, z, y) 7→ x · z−1 · y [11, Sec. 0.2]. This correspondence, however, does not imply

68

that the category of nonempty torsors and groups are equivalent since their homomorphisms

are different. Although it does give a functor from the category of Torsors to groups.

Some authors, including their originator [37, Definition 18], require the underlying set of

a torsor to be nonempty so torsors always arise as groups. A torsor is also known variously

as a “heap, groud, flock, herd, principal homogeneous space, abstract coset [or] pregroup,”

[11, Sec. 0.2] with the non-emptiness condition appearing in some cases. However, following

[11, Sec. 0.2], we will not impose this condition as we need a category closed to pullbacks,

and the empty torsor can arise as a pullback of non-empty torsors. In particular, we will see

how the empty torsor arises as a subobject of the pullback of non-empty finitely generated

commutative torsors of characteristic 2 .

Definition 5.4.2. Define CTor2 to be the full subcategory of torsors whose objects are

finitely generated commutative torsors of characteristic 2 (including the empty torsor).

There is an equivalent characterization of the objects of CTor2.

Proposition 5.4.3. Every object in CTor2 is either empty or isomorphic to (Zn2 , ⊕ ⊕),

where ⊕ is componentwise addition mod 2. Furthermore, torsor homomorphisms between

non-empty torsors are precisely the affine maps.

An affine map between vector spaces is a linear map that doesn’t necessarily preserve 0.

Proof. For the first claim, consider an object (X, × : X3 → X) in CTor2, where X is

nonempty. As X is inhabited, choose some element z in X. Then X is also an Abelian

group with multiplication + := ×z : X2 → X. As the corresponding torsor is finitely

generated, the group is finitely generated as well. Moreover, as the corresponding torsor has

characteristic 2, all generators have order 2. Furthermore, as the torsor is commutative, the

group is Abelian. As (X, +) is finitely generated, any element of X is the (possibly infinite)

product of finitely many generators. However, as the group is Abelian, we can regroup the

generators together. However, as every generator has finite order, this element is a finite

69

product of finitely many generators. Therefore, (X, +) has finite order as a group, so the set

X is finite.

By the fundamental theorem of finitely generated Abelian groups, as (X, +) has finite

order, it is isomorphic as a group to Zn2 (where the group multiplication of Z2 is given

by componentwise addition). Let f : Zn2 → X be the underlying bijection induced by

this isomorphism of groups. As Zn2 is nonempty, it is endowed with a para-multiplication

⊕ ⊕ : X3 → X. This isomorphism of groups extends to an isomorphism of torsors, as,

for any x, y,w ∈ X:

f(x⊕ y ⊕ w) = f(x⊕ (y ⊕ w))

= f(x) +z f(y ⊕ w) f is a group homomorphism

= f(x) +z (f(y) +z f(w)) f is a group homomorphism

= f(x) +z+f(y)z f(w) Para-associativity of +

= f(x) +f(y) f(w) (X, +) has characteristic 2

so the para-multiplication is preserved: thus (X, +) and (Zn2 , ⊕ ⊕) are isomorphic as

torsors.

For the second claim, consider morphism of non-empty torsors, f : (Zn2 , ⊕ ⊕) →

(Zm2 , ⊕ ⊕). Then, for any x and y in Zn2 :

f(x⊕ y) = f(x⊕ 0⊕ y) = f(x)⊕ f(y)⊕ f(0)

Therefore, f is an affine transformation when Zn2 and Zm2 are seen as vector spaces over Z2.

Conversely, consider an affine transformation of vector spaces f : Zn2 → Zm2 . Then f can

70

be regarded as morphism of torsors as for any x, y, z ∈ Zn2 ,

f(x⊕ y ⊕ z) = f(x⊕ (y ⊕ z))

= f(x)⊕ f(y ⊕ z)⊕ f(0)

= f(x)⊕ f(y)⊕ f(z)⊕ f(0)⊕ f(0)

= f(x)⊕ f(y)⊕ f(z)

As CTor2 is a category of algebras and so is finitely complete, we may construct Par(CTor2)

and ParIso(CTor2). Let ParIso(CTor2)∗ denote ParIso(CTor2) without the empty torsor.

Proposition 5.4.4. ParIso(CTor2)∗ is a discrete inverse category.

Proof. ParIso(CTor2)∗ is an inverse category by construction. Because Par(CTor2)∗ is a dis-

crete Cartesian restriction category with inverse products and ParIso(CTor2)∗ is the category

of partial isomorphisms, it is a discrete inverse category.

One further property of CTor2 is worth mentioning, all its monic maps are regular monics.

This means, more concretely, every subobject of a torsor is determined by some set of

equations. Therefore in Par(CTor2)∗, the restriction idempotents correspond to equations:

Lemma 5.4.5. The monics of CTor2 are regular.

Proof. Consider a monic m : X � Y in CTor2.

Suppose that X is empty. Then we have the following equalizer diagram, where 1 and 2

are the 1 and 2 object commutative torsors of characeristic 2, respectively:

∅ // m // Y ! // 1
∗7→1

//
∗7→0 // 2

Suppose, otherwise, that X 3 x0 is inhabited. Consider the relation ∼ on Y given by:

y ∼ w ⇐⇒ ∃x ∈ X : y ·m(x0) m(x) = w

71

First, we show that it is an equivalence relation.

By the para-identity law, we have y ·m(x0) m(x0) = y, so that y ∼ y. So the relation is

reflexive. Suppose y ∼ y′ for some y, y′ ∈ Y , so that there exists an element x of X such

that y ·m(x0) m(x) = y′. Then:

y′ ·m(x0) m(x) = y ·m(x0) m(x) ·m(x0) m(x) = y ·m(x0) m(x0) = y

So that y′ ∼ y, and thus the relation is symmetric.

Furthermore, suppose that y ∼ y′ and y′ ∼ y′′, where y, y′, y′′ ∈ Y , so that there exists

x,x′ ∈ X such that y ·m(x0) m(x) = y′ and y′ ·m(x0) m(x′) = y′′.

Then

y′′ = y′ ·m(x0) m(x′) = y ·m(x0) m(x) ·m(x0) m(x′)

Since m(x) ·m(x0) m(x′) is an element of m(X) the relation is also transitive.

We now show that this relation is a congruence with respect to the para-multiplication.

Take some y, y′, z,w ∈ Y . Suppose y ∼ y′, so that there exists an element x of X such that

y ·m(x0) m(x) = y′.

Then:

y′ ·z w = y ·m(x0) x ·z w As y ·m(x0) m(x) = y′

= w ·z y ·m(x0) m(x) Commutativity

= y ·z w′ ·m(x0) m(x) Commutativity

So y′ ·z w ∼ y ·z w.

By symmetry, we also have w ·z y′ ∼ w ·z y.

72

Moreover

z ·y′ w = z ·y·m(x0)
m(x) w As y ·m(x0) m(x) = y′

= z ·m(x) m(x0) ·y w Para-associativity

= w ·y z ·m(x) m(x0) Commutativity

= w ·y z ·m(x) m(x0) ·m(x0) m(x0) Para-identity

= w ·y m(x0) ·m(x) z ·m(x0) m(x0) Commutativity

= w ·y m(x0) ·m(x) m(x0) ·m(x0) z Commutativity

= w ·y m(x) ·m(x0) z Characteristic 2

= w ·y z ·m(x0) m(x) Commutativity

So z ·y′ w ∼ w ·y z.

Define the Torsor X/Y to be the subtorsor of X modulo the congruence ∼. We show

that the following diagram is an equalizer:

X // m // Y
! // //

y 7→[y]∼

55 551 //
∗7→[m(x0)]∼ // Y/X

If x ∈ X, then

m(x) = m(x) ·m(x0) m(x0) = m(x0) ·m(x0) m(x)

Therefore, as x0 ∈ X, m(x) ∼ m(x0).

On the other hand, consider some y /∈ X. Suppose for the sake of contradiction that

73

y ∼ m(x0). Then there exists some x ∈ X so that y ·m(x0) m(x) = m(x0). Therefore,

m(x) = m(x) ·m(x0) m(x0) Para-identity

= m(x) ·y·m(x0)
m(x) m(x0) As y ·m(x0) m(x) = m(x0)

= m(x) ·m(x) m(x0) ·y m(x0) Para-associativity

= m(x0) ·y m(x0) Characteristic 2

= y Para-identity

This is a contradiction.

5.5 The equivalence between CNOT and ParIso(CTor2)
∗

The objective of this section is to prove that CNOT and ParIso(CTor2)∗ are (structure-

preserving) equivalent. The proof involves several steps:

(1) Defining a discrete inverse functor H̃0 : CNOT→ ParIso(CTor2)∗.

(2) Showing that H̃0 is full and faithful on restriction idempotents.

(3) Showing that H̃0 is essentially surjective.

(4) Showing that H̃0 is full and faithful.

A key technical step is to reduce the fullness and faithfulness of H̃0 to its fullness and

faithfulness on restriction idempotents (step (2) above). This latter result is based on the

normal form for restriction idempotents in CNOT, which is developed in Section 5.5.4.

5.5.1 Defining the functor H̃0 : CNOT→ ParIso(CTor2)
∗

To construct a functor H̃0 : CNOT → ParIso(CTor2)∗ we consider the following pullback,

where U : CTor2 → Set is the forgetful functor:

74

ParIso(CTor2)∗
ParIso(U) //

� _

��

y
Pinj
� _

��
Par(CTor2)∗

Par(U)
// Par

To prove that CNOT is equivalent to ParIso(CTor2)∗, the category of partial isomor-

phisms of finitely generated non-empty commutative torsors of characteristic 2, we start

by considering a functor h0 : CNOT → Par. On the one hand, we lift it to a functor

H0 : CNOT→ Par(CTor2)∗; and on the other hand, we lift it to a functor h̃0 : CNOT→ Pinj.

Then by the pullback of the diagram Par(CTor2)∗
Par(U)−−−→ Par ←↩ Pinj we are given a unique

functor H̃0 : CNOT→ ParIso(CTor2)∗:

CNOT h0

h̃0

��

H0
))

H̃0
))
ParIso(CTor2)∗

y

ParIso(U) //
� _

��

Pinj
� _

��
Par(CTor2)∗

Par(U)
// Par

Recall the representable restriction functor hX : X → Par from Section 4.2. Fixing

X = CNOT and X = 0, we obtain a functor h0 := Total(CNOT)(0,) : CNOT → Par. As

CNOT is an inverse category, it follows by Lemma 4.2.2 that every map in h0(CNOT) is a

partial isomorphism. Therefore h0 : CNOT→ Par factors through Pinj as h̃0 : CNOT→ Pinj.

Now that we have the candidate functor h̃0 : CNOT → Pinj for the pullback, we must

also show that we can factor h0 through Par(U) : Par(CTor2)∗ → Par. To do so, we exhibit

internal torsor structures in CNOT and show that h0 preserves this structure: thus showing

it can be factored through Par(CTor2)∗. This will allow us to construct the functor H0 :

CNOT→ Par(CTor2)∗ and whence H̃0 : CNOT→ ParIso(CTor2)∗, by pullback.

Proving that H̃0 is a functor from CNOT to Par(CTor2)∗ is not a trivial task.

75

5.5.2 The points of CNOT

Because h̃0 evaluates maps in CNOT on points; their classification is needed. To express

total maps in CNOT(0,n) for any n ∈ N, we define the following family of functions:

Definition 5.5.1. Define a family of functions | 〉 : Zn2 → Total(CNOT)(0,n) indexed by n

for all n ∈ N as follows.

Take |〉 := 10. For any b ∈ Z1
2 define:

|b〉 :=


|1〉 if n = 1

|0〉 otherwise

Moreover, for all n ∈ N such that n > 1, define:

|b1, · · · , bn〉 := |b1〉 ⊗ · · · ⊗ |bn〉

Lemma 5.5.2. Consider a circuit f : n → m with no output ancillary bits. Then, for any

x ∈ Zn2 , there is some y ∈ Zm2 such that f |x〉 = |y〉

Proof. It will suffice to prove our claim on a single controlled-not gate, then by induction,

the more general claim follows immediately.

cnot |0, 0〉 = |0, 0〉:

= [CNOT.7]

cnot |0, 1〉 = |0, 1〉:

= [CNOT.7]

76

cnot |1, 0〉 = |1, 1〉:

=

= [CNOT.8]

= [CNOT.4]

= [CNOT.7]

= [CNOT.4]

= [CNOT.2]

= [CNOT.6]

cnot |1, 1〉 = |1, 0〉:

= [CNOT.4]

=

Using this, we observe that the points of CNOT satisfy:

Lemma 5.5.3. For every f ∈ CNOT(0,n), f is either total or ∅.

Proof. Consider any circuit f : 0→ n for any n ∈ N. We prove that f is either total or ∅ by

structural induction.

• For the base case, remark that permutations are total.

• For the inductive case, suppose that f is either total or zero. Consider a g : n → m

with one component. If f is zero, then fg is zero as well by Lemma 5.2.4. Otherwise,

suppose that f is total. There are three cases:

77

– If |1〉 ∈ g, then fg = f ⊗ g = f ⊗ g = 1⊗ 1 = 1.

– If 〈1| ∈ g, then the gate to the left of 〈1| is either |1〉 or |0〉. If it is |1〉, then as

〈1| |1〉 = 1, it is total. Otherwise, if it is 〈1|, then 〈1| |1〉 = ∅, so fg is zero by

Lemma 5.2.4.

– If cnot ∈ g, then fg is total by Lemma 5.5.2.

This allows us to show:

Lemma 5.5.4. h̃0 : CNOT→ Pinj is a strong symmetric monoidal functor.

Proof. By Lemma 5.5.3, both

h̃0(n⊗m) = Total(CNOT)(0,nm)

and

h̃0(n)× h̃0(m) = Total(CNOT)(0,m)× Total(CNOT)(0,m)

have 2nm elements, so they are isomorphic in Pinj.

Lemma 5.5.3 also implies that h̃0(0) = {10}, so that h̃0(0) is isomorphic to the tensor

unit in Pinj.

Therefore, by Lemma 4.2.4:

Lemma 5.5.5. h̃0 : CNOT→ Pinj is a discrete inverse functor.

5.5.3 Internal torsor structures in CNOT

To prove that h0 takes maps in CNOT to well-defined maps in Par(CTor2)∗, we construct a

torsor-like operation in CNOT which gives the internal torsor structure which was mentioned

previously. This will act as the para-multiplication when we project onto the last 1/3 wires.

78

Definition 5.5.6. Define a family of maps +n : 3n→ 3n in CNOT inductively such that on

no wires +0 := 10, and on one wire:

+1 :=

Furthermore, for any n:

+n+1 :=
+n

+1

Now we show that Total(CNOT)(0,) really does produces maps which preserve torsor

structure.

Lemma 5.5.7. For any map f : n→ m in CNOT, f⊗3+m = +nf
⊗3.

Proof. For any map f : n → m in CNOT, we prove f⊗3+m = +nf
⊗3 by induction on the

size of f .

• For the base case, f is a permutation, so it is immediate that f⊗3+m = +nf
⊗3.

• Suppose that f⊗3+ = +f⊗3.

We proceed by structural induction:

For |1〉: By Lemma 5.5.2, f⊗3+ = g⊗3 + h⊗3 = +(gh)⊗3 = +f⊗3.

For 〈1|: Dually to the previous case, f⊗3+ = g⊗3 + h⊗3 = +(gh)⊗3 = +f⊗3.

For cnot:

+2 =

= [CNOT.3]

79

= Lemma B.0.1 (iii)× 2

= [CNOT.3], [CNOT.5]

= [CNOT.8]× 2

= [CNOT.2]

= [CNOT.3]

= [CNOT.8]

= [CNOT.2]

= [CNOT.8]

=

= +2

Therefore, f⊗3+ = g⊗3 + h⊗3 = +(gh)⊗3 = +f⊗3.

We also show that h0 produces well defined maps in Par(CTor2).

80

Lemma 5.5.8. Consider any n,m ∈ N and map f ∈ CNOT(n,m). For any x, y, z ∈

CNOT(0,n) such that xf = yf = zf = 10, it follows that (x⊗ y ⊗ z) +n f⊗3 = 10.

Proof. Consider an arbitrary map f ∈ CNOT(n,m) and any x, y, z ∈ CNOT(0,n) such that

xf = yf = zf = 10. By Lemma 5.5.7:

(x⊗ y ⊗ z) +n f⊗3 = (x⊗ y ⊗ z)f⊗3+m = (xf ⊗ yf ⊗ zf)+m

= (xf ⊗ yf ⊗ zf)+m = (xf ⊗ yf ⊗ zf)13m

= xf ⊗ yf ⊗ zf = xf ⊗ yf ⊗ zf = 10 ⊗ 10 ⊗ 10 = 10

We now prove that H0 : CNOT→ Par(Tor2)∗ is a functor.

Lemma 5.5.9. h0 can be factored as H0Par(U) and h0 preserves torsor structure. Thus,

CNOT has internal torsor structure which is preserved by h0.

Proof. First, we prove for every f : n → m in CNOT, h0(f) can be regarded as a map in

Par(CTor2)∗. Consider an arbitrary map f : n→ m in CNOT. If f is a zero map, then h0(f)

vacuously preserves torsor structure. Suppose otherwise that there exists some x, y, z ∈ Zn2

and x′, y′, z′ ∈ Zm2 such that |x′〉 = f |x〉, |y′〉 = f |y〉 and |z′〉 = f |z〉. Projecting the first 2

out of 3 wires with the Cartesian restriction structure, by Lemma 5.5.8, h0(f)(x⊕ y ⊕ z) is

defined. Moreover, by Lemma 5.5.7, h0(f)(x⊕ y ⊕ z) = h0(f)(x)⊕ h0(f)(y)⊕ h0(f)(z), so

h0(f) preserves the para-multiplication.

Corollary 5.5.10. The functor h0 can be lifted to a functor H̃0 : CNOT→ ParIso(CTor2)∗.

Proof. As h0 can be factored through Pinj by Lemma 4.2.2 and Par(CTor2)∗ by Lemma 5.5.9,

it is also a functor to H̃0 : CNOT→ ParIso(CTor2)∗ by pullback.

81

5.5.4 Normal form for the idempotents of CNOT

As we will reduce the fullness and faithfulness of H̃0 to its fullness and faithfulness on

restriction idempotents, this section is dedicated to describing a normal form for restriction

idempotents in CNOT. Such a normal form helps establish the fullness and faithfulness of

H̃0 on restriction idempotents.

Recall that restriction idempotents of Par(CTor)∗ are determined by finite sets of torsor

equations. The restriction idempotents of CNOT also have a normal form, as a conjunction

of clauses: we call this the clausal form for restriction idempotents in CNOT. As torsor

equations can be translated into clauses it follows that H̃0 is full on restriction idempotents.

Furthermore, we also show that we perform Gaussian elimination on these clauses for the

faithfulness on idempotents.

Definition 5.5.11. For any n ∈ N, and 1 ≤ i ≤ n, define the map swap(i,n) : n → n on m

wires inductively as follows:

swap(i,n) :=


1n If i = 0

(1i−1 ⊗ c⊗ 1n−(i+1))swap(i+1,n) Otherwise

That is, it pulls the ith wire from the top to the bottom.

For example, consider the circuit swap(2,5):

Definition 5.5.12. Given any n ∈ N and 1 ≤ i ≤ n, define the literal li,n : n→ n:

li,n :=


(swap(i,n−1) ⊗ 11)(1n−2 ⊗ cnot)(swap(i,n−1) ⊗ 11) If i < n

1n−1 ⊗ not Otherwise

For example, consider the literal l2,6 : 6→ 6:

82

=:

Definition 5.5.13. A clause e : n → n is a map in CNOT which is the composition of

literals in the following form:

e = (1n ⊗ 〈0|) li1,nli2,n · · · lim,n (1n ⊗ |0〉)

In a clause, the wire which begins with an input ancillary bit and ends with an output

ancillary bit, on which literals act is called the clause wire. The following are examples of

clauses in which the bottom wire is the clause wire:

Note that the parity of the output bit can be flipped as a consequence of having a clause

containing a literal on the diagonal, ie one of the form ln,n.

Definition 5.5.14. A map in CNOT is said to be in clausal form if it is a sequence of

clauses.

We wish now to show that every restriction idempotent in CNOT can be written in clausal

form:

Lemma 5.5.15. Clauses are idempotent.

Proof. To show idempotence of a clause, we describe how to duplicate it. First, using the

naturality of ∆, split the input ancilla bit on the clause wire |0〉 = ∇ (|0〉 ⊗ |0〉). Then

by repeatedly using Lemma B.0.2 (iii), copy all of the literals onto both of the new clause

wires. Then use the naturality of ∇ on the output ancillary bit 〈b| ∇ := 〈0| ⊗ 〈0| to split

both clauses apart.

83

Proposition 5.5.16. In CNOT

(i) Every restriction idempotent is equivalent to a circuit in clausal form.

(ii) Every circuit in clausal form is a restriction idempotent.

Proof.

(i) Given a restriction idempotent e : n→ n for some n ∈ N, we prove e is in clausal form

by structural induction.

• 1n is in clausal form as 1n = 1n ⊗ 10 = 1n ⊗ 〈1| |1〉.

• Suppose that ff : n→ n is in clausal form.

• We add components to the left of f :

For |1〉: Push the |1〉 past the clauses until it cancels with 〈1|. For every literal

which is on the same wire i; the literal will be replaced with the literal ln,n

(the not gate). Therefore, the clauses which the |1〉 gate passes by remain

clauses.

For 〈1|: If the 〈1| is on wire j, a clause with precisely the literals ln,n and lj,n is

added:

ff
n− 1 n− 1

=
ff

n− 1 n− 1

=
ff

n− 1 n− 1

[CNOT.1]

=
ff

n− 1 n− 1

[CNOT.4]

84

=
ff

n− 1 n− 1

[CNOT.2], [CNOT.8]

For cnot: Push the cnot gate past all the literals with [CNOT.8], until by

[CNOT.1], cnot annihilates with cnot−1 = cnot.

Note, that given any clause, for every literal controlled from the target of

cnot a literal controlled on the control bit of cnot will be added to said clause.

Therefore, as the cnot gates are being pushed inwards, the clauses which they

are pushed past remain clauses.

(ii) Given a circuit t = d1d2 · · · dm in clausal form where d1, · · · , dm are clauses,

tt = d1 · · · dmd1 · · · dm = d2
1d

2
2 · · · d2

m = d1d2 · · · dm

as clauses commute by [CNOT.5] and are idempotent by Lemma 5.5.15. Therefore,

as CNOT is an inverse category t is a restriction idempotent.

Theorem 5.5.17. H̃0 : CNOT → ParIso(CTor2)∗ is full and faithful on restriction idempo-

tents.

Proof. A restriction in Par(Tor2) is given by a span in which both legs are equal and, thus,

monic. Thus, restrictions correspond precisely to subobjects in Tor2. However, these are

determined by sets of torsor equations of the form:

{∑
j

bi,j = ai

}
i

Each equation,
∑

j bi,j = ai, corresponds in turn to a clause which picks out the wires bi,j

and has output ancillary bit 〈ai|. This immediately means that H̃0 is full on restriction

idempotents.

85

Remark that an arbitrary restriction idempotent expressed as a circuit in clausal form,

under H̃0, corresponds to a set of equations. We must show that two restriction idempotents

in CNOT, whose corresponding sets of equations are equivalent in CTor2, must be equal in

CNOT. This amounts to showing that we can perform Gaussian elimination on clauses in

CNOT, as two sets of equations are equivalent in CTor2 if and only if they can be shown so

by Gaussian elimination steps.

Given two clauses c and c′ we show that we can perform the Gaussian elimination step

{c, c′} 7→ {c, c+ c′}

and maintain equality.

We first join the input ancillary bits of both clause wires into |0〉 ⊗ |0〉 := ∆ |0〉 using

naturality of ∆.

By [CNOT.2], we copy two copies of each literal in c to the right of the input ancilla.

By Lemma B.0.2 (iii) push one copy of each new literal through ∆. On one wire all of

the literals will annihilate, and on the other only the common literals between c and c′ will

annihilate. Use Lemma B.0.2 (i) and B.0.2 (ii) to split the literals to the left and right of

∆. This may have shifted the input ancilla of the second clause to be |1〉. In this case, use

[CNOT.2] to push a not gate from the left to right of the clause wire and negate the output

ancillary bit of the second clause. The result is two clauses corresponding to the Gaussian

elimination step. Therefore, we can perform Gaussian elimination on clauses in CNOT.

For example, suppose we are given a circuit determined by the equations:

1 0 1

1 1 0



x1

x2

x3

 =

1

0



86

We can perform Gaussian elimination as follows

x1

x2

x3
= Naturality of ∆

= [CNOT.2]

= Lemma B.0.2 (iii)

= [CNOT.2]

= B.0.2 (ii)

Which represents the reduced system of linear equations:

1 0 1

0 1 1



x1

x2

x3

 =

1

1



Hence, if the image of two circuits are equal under the functor H̃0, then they are the

same.

5.5.5 H̃0 : CNOT→ ParIso(CTor2)
∗ is a discrete inverse equivalence

We already know that H̃0 : CNOT → ParIso(CTor2)∗ is discrete inverse functor. It remains

to show that this functor is essentially surjective, full and faithful.

In order to prove that H̃0 is essentially surjective, we invoke the alternative characteri-

zation of CTor2 given by Proposition 5.4.3.

87

Proposition 5.5.18. H̃0 is essentially surjective.

Proof. Consider any torsor (X,×) in ParIso(CTor2)∗. There is some n ∈ N such that (X,×) ∼=

(Zn2 , ⊕ ⊕) by Proposition 5.4.3. However, by Lemma 5.5.3, Total(CNOT)(0,n) ∼= Zn2 .

We can simulate total maps in CTor2:

Lemma 5.5.19. If f ∈ CTor2(Zn2 ,Zm2), then there is a map g ∈ CNOT(n,m) with H̃0(g) =

〈1, f〉.

Proof. Consider f ∈ CTor2(Zn2 ,Zm2). Recall that f may be regarded as a linear map t : Zn2 →

Zm2 with a shift b : m → m. Consider the standard bases {ei} and {mj} of Zn2 and Zm2 ,

respectively. As t is a linear map, for any 1 ≤ i ≤ n there are unique coefficients ai,j ∈ Z2

for all 1 ≤ j ≤ n such that:

f(ei) =
m∑
j=1

ai,jmj

However, as Zn2 is a vector space over Z2, the coefficients ai,j are either 0 or 1 so they

determine for each i a subset of the mi.

Consider the circuit

g := g1 g2 (1n ⊗ |0, · · · , 0〉)

Where g1 is the composite of literals li,n+j ⊗ 1m−j for which ai,j = 1. And g2 is the

composite of literals ln+j ⊗ 1m−j for which bj = 1.

Given any (c1, · · · , cn) ∈ Zn2 , by Lemma 5.5.2:

g |c1, · · · , cn〉 = |c1, · · · , cn〉 ⊗
m⊗
j=1

∣∣∣∣∣bj +
n∑
i=1

ai,jci

〉

Therefore, H̃0(g)(c1, · · · , cn) = f(c1, · · · , cn) and thus H̃0(g) = f .

For example, consider the map f ∈ CTor2(Z3
2,Z2

2) given by the affine transformation with

a linear component T and shift S such that:

88

T =

1 0 1

1 0 0

 and S =

0

1


Then the corresponding circuit g such that H̃0(g) = 〈1, f〉 is:

We have almost proven fullness; however, we must combine the fullness results for total

maps and restriction idempotents:

Proposition 5.5.20. H̃0 : CNOT→ ParIso(CTor2)∗ is full.

Proof. Suppose A A′
foo g //B is a partial isomorphism in Par(CTor2)∗. Thus f and g are

monics. If A′ is empty we can simulate the map as H̃0(∅n,m) for some n,m ∈ N. On the

other hand, if A′ is non-empty then there is a total map r with fr = 1A′ as the object A′ is

injective (as it is injective as a Z2-vector space). This means the total map A A
rg //B

extends (f , g) (so (f , g) ≤ (1A, rg)) as

A′

f

��

f

~~

g

A B

A

rg

>>

But by Lemma 5.5.19 there is a map k ∈ CNOT with H̃0(k) = 〈1, rg〉. By the fullness of H̃0

on restriction idempotents there is an e with H̃0(e) = (f , f) but then

H̃0(ek) = H̃0(e)H̃0(k) = (f , f)〈1a, rg〉 = 〈(f , g), (f , g)〉.

89

Similarly we can implement 〈(g, f), (g, f)〉 and therefore by Lemma 4.2.7 we can implement

(f , g).

Note that since h̃0 is a strong †-monoidal functor, by Lemma 4.2.4 it is also a discrete

inverse functor. Therefore, by Lemma 4.2.6, it suffices to show that H̃0 is faithful on restric-

tion idempotents to prove that it is faithful. However, we already have proven that H̃0 is

faithful on idempotents in Theorem 5.5.17 so we have:

Proposition 5.5.21. H̃0 : CNOT→ ParIso(CTor2)∗ is faithful.

This implies:

Theorem 5.5.22. The identities of CNOT are complete.

Proof. Because H̃0 : CNOT→ ParIso(CTor2)∗ and the forgetful functor ParIso(U) : ParIso(CTor2)∗ →

FPinj are strong †-symmetric monoidal and faithful, so is their composite H̃0ParIso(U) :

CNOT→ FPinj. Post-composing H̃0ParIso(U) : CNOT→ FPinj with the strong †-symmetric

monoidal, faithful functor `2 : FPinj → FHilb, we obtain a strong †-symmetric monoidal,

faithful functor H̃0`
2 : CNOT→ Hilb.

Recall the canonical interpretation J KCNOT : CNOT → MatC is a strict †-symmetric

monoidal, †-reflecting functor.

Consider, moreover, the faithful strong †-symmetric monoidal equivalence F : MatC →

FHilb taking objects n to the Hilbert space H̃0`
2(n).

Remark that the following diagram of strong †-symmetric monoidal functors commutes:

CNOT

J KCNOT

��

// H̃0 // FPinj
��

`2

��
MatC // F

∼ // // FHilb

Therefore, J KCNOT is faithful, so the identities are complete (as well as sound).

90

Because H̃0 : TOF → ParIso(CTor2)∗ is a discrete inverse functor, which is full, faithful

and essentially surjective:

Theorem 5.5.23. There is an equivalence of categories preserving discrete inverse category

structure, between CNOT and ParIso(CTor)∗.

91

Chapter 6

CNOT and ZXπ

In this chapter, we relate the category CNOT to a category which is complete for real

stabilizers, namely the angle-free fragment of the ZX-calculus: ZXπ.

6.1 ZXπ

The ZX-calculus is a collection of calculi describing the interaction of the complementary

Frobenius algebras corresponding to the Pauli Z and X observables and their phases. The

first iteration of the ZX-calculus was described in [17].

However, we are interested in a simple fragment of the ZX-calculus, namely the angle-free

calculus for real stabilizer circuits, ZXπ, described in [22] (slightly modified to account for

scalars):

Definition 6.1.1. Let ZXπ denote the †-compact closed PROP with generators:

such that

(, , ,)

is a classical structure, corresponding to the Z basis, and the following identities also hold

92

up to swapping colours:

[PP] π π =

[PI] π =
π

π

π =
π

π

[B.U’] =

=

[B.H’] =

[B.M’] =

[H2] =

[ZO] π =
π

[IV] =

[L] = =

= =

[S1] π :=

[S2] ...α... := ...α...

[S3] ...0... := ...
...

Figure 6.1: The identities of ZXπ (where α ∈ {0,π})

The last 3 Axioms are actually definitions, which simplify the presentation of ZXπ. Note

that the axioms of a classical structure are omitted from this box to save space.

These axioms imply that the black and white Frobenius algebras are complementary

where the antipode is the identity.

This category has a canonical †-functor, as all of the stated axioms are horizontally

93

symmetric. It is also †-compact closed.

This category embeds FHilb; the black Frobenius algebra corresponds to the Pauli Z basis;

the white Frobenius algebra corresponds to the Pauli X basis; the gate corresponds

to the Hadamard gate and π and π correspond to Z and X π-phase-shifts

respectively. In particular, the X π-phase-shift is the not gate (see Appendix A for the

aforementioned matrices).

Because the π-phases are given by [S3], by the commutative spider theorem, it is imme-

diate that they are phase shifts:

[PH] π = π

π = π

In bra-ket notation, a black spider from n to m with angle θ is interpreted as follows in

FHilb:

|0〉⊗n 〈0|⊗m + eiθ|1〉⊗n 〈1|⊗m

and a white spider from n to m with angle θ is interpreted as follows in FHilb:

|+〉⊗n 〈+|⊗m + eiθ|−〉⊗n 〈−|⊗m

Note that the controlled-not gate has a succinct representation in ZXπ (this can be verified

by calculation):

This means that ZXπ contains all of the generators of the real Clifford group. Further-

more, the following is known:

Theorem 6.1.2. [22]

ZXπ is complete for real stabilizer states.

94

The original presentation of ZXπ in [22] did not account for scalars; instead, it imposed

the equivalence relation on circuits up to an invertible scalar and ignored the zero scalar

entirely. Therefore, the original completeness result described in [22] is not actually as

strong as Theorem 6.1.2. This means, of course, that this original calculus does not embed

in MatC as the relations are not sound. For example, the following map is interpreted as
√

2,

not 1, in MatC:

Later on, [6, 9] showed that by scaling certain axioms to make them sound, and by adding

Axioms [IV] and [ZO] this fragment of the ZX-calculus is also complete for scalars. The

properly scaled axioms have all been collected in Figure 6.1.

6.2 Embedding CNOT into ZXπ

Consider the interpretation of CNOT into ZXπ, sending:

7→ 7→
π

7→
π

First we observe:

Lemma 6.2.1. [51, Lemma 19] =

95

Proof.

=

=

= [L]× 2

=

=

= [L]

= [B.U′]

=

We also need:

Lemma 6.2.2.

(i) 7→ π

(ii) 7→ 7→

Proof. (i)

7→
ππ

=

π

[IV]

96

=
π

[B.U′]

=
π

=
π

Lemma 6.2.1

= π [IV]

(ii)

:=

7→ π

π

π

=

π

π

[PI]

=

π π

[PH]

=

π π

[B.U′]

97

= [PP]

=

= Lemma 6.2.1, [IV]

=

We explicitly prove that this interpretation is functorial.

Lemma 6.2.3. The interpretation of CNOT into ZXπ is functorial.

Proof. We prove that each axiom holds

[CNOT.2]

7→

= (co)associativity

= [B.H′]

= (co)unitality

←[

98

[CNOT.1]

7→

=

= [B.M′]

=

←[

[CNOT.3] Immediate from commutative spider theorem.

[CNOT.4]

7→ Lemma 6.2.2 (ii)

= [B.U′]

=

← [Lemma 6.2.2 (ii)

[CNOT.5] Immediate from commutative spider theorem.

[CNOT.6] Frobenius algebra is special.

99

[CNOT.7]

7→
π

= ππ [PI], [B.U′]

= π

π

[PH]

←[Lemma 6.2.2 (i)

[CNOT.8]

7→

=

= [B.M′]

=

100

=

=

= [B.H′]

←[

[CNOT.9]

7→
π

Lemma 6.2.2 (ii)

=
π

[ZO]

=
π

Lemma 6.2.1

=
π

=
π

[B.U′]

=
π

π
By symmetry

=
π π

π

101

=

π π

π
[ZO]

←[Lemma 6.2.2 (ii)

Because of the various completeness results discussed so far, the following diagram of

strict †-symmetric monoidal functors commutes, making this functor CNOT→ ZXπ faithful:

CNOT$$

$$��
ZXπ // //MatC

6.3 Extending CNOT to ZXπ

As opposed to the ZX-calculus, the identities of CNOT are given in terms of circuit rela-

tions. When applying rules of the ZX calculus, circuits can be transformed into intermediary

representations so that the flow of information is lost. Various authors have found complete

circuit relations for various fragments of quantum computing. Notably, Selinger found a

complete set of identities for Clifford circuits (stabilizer circuits without ancillary bits) [47].

Similarly, Amy et al. found a complete set of identities for cnot-dihedral circuits (without

ancillary bits) [4].

In this section, we provide a complete set of circuit relations for real stabilizer circuits

(although circuits can have norms greater than 1). We show that CNOT is embedded in

ZXπ and we complete CNOT to ZXπ by adding the Hadamard gate and the scalar
√

2 as

generators along with 5 relations.

Definition 6.3.1. Let CNOT+H denote the PROP freely generated by the axioms of CNOT

with additional generators the Hadamard gate and
√

2:

102

√
2

satisfying the following identities:

[H.I] =

[H.F] =

[H.L] =

[H.Z] √
2 =

[H.S] √
2 =

Figure 6.2: The identities of CNOT +H (in addition to the identities of CNOT)

The inverse of
√

2 is given the alias:

1/
√

2 :=

[H.I] is stating that the Hadamard gate is self-inverse. [H.F] reflects the fact that

composing the controlled-not gate with Hadamards reverses the control and operating bits.

[H.Z] is stating that
√

2 composed with the zero matrix is again the zero matrix. [H.S]

makes
√

2 and 1/
√

2 inverses to each other.

[H.L] can be restated to resemble [S1]:

Lemma 6.3.2.

[H.L’] =

103

Proof.

= ∆ is commutative

=

= [H.F], [H.I]

= [H.L’]

[H.Z] can be restated in slightly different terms:

Lemma 6.3.3.

[H.Z’] =

Proof. Immediate by [H.S] and [H.Z].

There is a derived identity, showing that the Frobenius structure identified with the

inverse products of CNOT is unital:

Lemma 6.3.4.

[H.U]
√

2 = =
√

2

104

Proof.

√
2 =

√
2

= √
2 ∆ is commutative

= √
2

[H.I], [H.F]

= √
2

[CNOT.7]

= √
2

[H.I]

= [H.S]

6.3.1 The completeness of CNOT +H

We construct two functors between CNOT + H and ZXπ and show that they are pairwise

inverses.

Definition 6.3.5. Let F : CNOT + H → ZXπ, be the extension of the interpretation

CNOT→ ZXπ which takes:

√
2 7→ 7→

Let G : ZXπ → CNOT +H be the interpretation sending:

7→ 7→
√

2 7→ 7→
√

2

7→

We first observe:

105

Lemma 6.3.6.

(i) 7→ √
2

(ii) 7→

(iii) 7→

Proof.

(i)

7→
√

2
√

2

= √
2 [H.S]

(ii)

7→

√
2

√
2

=

√
2

√
2

=

√
2

√
2

[H.F]

=

√
2

√
2

[CNOT.1], [CNOT.2]

=

√
2

√
2

106

=

√
2

√
2

[H.F]

=
√

2
√

2

=
√

2
√

2 Lemma B.0.2 (i)

=
√

2
√

2

1/
√

2 1/
√

2 1/
√

2

= 1/
√

2 [H.S]

=

(iii)

7→

= [H.S]

We show that these interpretations are functors:

Lemma 6.3.7. F : CNOT +H → ZXπ is a strict †-symmetric monoidal functor.

Proof. The preservation of the †-symmetric monoidal structure is immediate. As the restric-

tion of F to CNOT is a functor, it suffices to show that [H.I], [H.F], [H.U], [H.L’], [H.S]

and [H.Z’] hold.

[H.I] Immediate.

107

[H.F]

7→

=

=

←[

[H.L’] Immediate.

[H.S] Immediate.

[H.Z’]

7→ π Lemma 6.2.2 (ii)

= π

=
π

[ZO]

=

π

Lemma 6.2.1

=

π

[IV]

108

=

π

[ZO]

=
π

[IV]

=
π

π π ππ

[PP]

=

π

π π

π π

[ZO]

=

π

π π

π

π

=

π

π π

π

π

[B.U′]

=

π

π π

π π
[PH]

=

π

π π [PP]

109

=

π

π π [ZO]

=

π

π π

←[Lemma 6.2.2 (ii)

For the other way around:

Lemma 6.3.8. G : ZXπ → CNOT +H is a strict †-symmetric monoidal functor.

Proof. We prove that each axiom holds:

[PI] This follows by naturality of ∆ in CNOT.

[B.U’] This follows by naturality of ∆ in CNOT and [H.S].

[H2] This follows immediately from [H.I].

[H2] This follows immediately from [H.S].

[PP]

π π 7→

= [H.I]

=

= [H.I]

←[

110

[B.H’]

7→

= [H.F]

= [CNOT.2]

= √
2

√
2

1/
√

21/
√

2

[H.Z′]

← [Lemma 6.3.6 (ii)× 2

[B.M’]

7→

=

= [H.F]

= ∆ natural in CNOT

=
1/
√

2

[H.U]

=
1/
√

2

[H.F]

111

=
1/
√

2

←[Lemma 6.3.6 (ii)

[L]

7→

=

=

= [H.F]

←[

[ZO]

π 7→

√
2

√
2

=

√
2

√
2

[H.I]

= √
2
√

2

1/
√

2

=
√

2
[H.S]

=
√

2
[CNOT.9]

=
√

2

[CNOT.7]

112

=
√

2

=

√
2

√
2

[H.L′]

=

√
2

√
2

[CNOT.9]× 4

=
√

2
√

2

=
√

2
√

2

[CNOT.7]× 4

=
√

2
√

2

1/
√

2 1/
√

2

[CNOT.3]× 4

= [H.S]× 2

= √
2

√
2

√
2

As before

=
√

2
√

2

√
2

√
2

1/
√

2

[H.S]

=

√
2

√
2

√
2

√
2

[H.L′]

←[π

Classical structure: Remark that rules [H.U] and [H.S] complete the semi-Frobenius

structure to the appropriate classical structure.

Proposition 6.3.9. CNOT +H
F−→ ZXπ and ZXπ

G−→ CNOT +H are inverses.

Proof.

113

1. First, we show that GF = 1 .

We only prove the cases for the generators cnot and |1〉 as the claim follows trivially

for the Hadamard gate and by symmetry for 〈1|:

For |1〉:

7→
π

7→
√

2 1/
√

2 Lemma 6.3.6 (ii)

= [H.S]

For cnot:

F7−→

=

G7−→

√
2

Lemma 6.3.6 (i)

=

√
2

[H.F]

=

√
2

[CNOT.9]

114

=

√
2

[H.F]

= [H.U]

= [H.I]

= [CNOT.2]

= [CNOT.1]

=

It is trivial to observe that GF = 1.

Because all of the axioms of CNOT+H and ZXπ satisfy the same “horizontal symmetry”;

we can not only conclude that they are isomorphic, but rather:

Theorem 6.3.10. CNOT +H and ZXπ are strictly †-symmetric monoidally isomorphic.

As CNOT is a discrete inverse category, and the dagger of CNOT+H extends the dagger

of CNOT, it is natural to ask if the inverse category structure, or inverse products extend

to CNOT + H. It clearly isn’t a discrete inverse category, because the no-cloning-theorem

forces ∆ to not be natural. Even if we don’t ask for inverse products, one will find that the

non-zero scalars which aren’t units cause [INV.2] to fail. Even if we quotient by scalars, we

still fail to obtain a discrete inverse category. Fix f := 〈0, 0| and g := 〈0, 0| (H ⊗ 1) cnot. As

g is the subnormalised counit for the compact closed structure, it is trivial to observe that

ff †gg† 6= gg†ff †, by examining the connectivity of both (non-zero) circuits:

115

= [H.U]

=

=

∼

6=

∼

=

=

= [H.U]

We see that compact closed inverse categories are pathological; delineating classical from

quantum computing. In the classical setting, we have copying; on the other hand, in the

quantum setting, we instead have entanglement.

116

Chapter 7

The Toffoli Gate

The Toffoli gate generalizes the controlled-not gate. It is the 3-qubit unitary matrix taking

|b1, b2, b3〉 to |b1, b2, b1 · b2 ⊕ b3〉. One can see that cnot can be simulated with a Toffoli gate

by restricting |b1〉 := |1〉, so that |1, b2, b3〉 gets sent to |1, b2, b2 ⊕ b3〉.

The Toffoli gate is a cornerstone for reversible computing. It was among the first gates

proven to be universal for quantum computing [23]. The Toffoli gate is also used frequently

in quantum computation (especially in quantum error correction [49, 25]); and has even been

physically realized [42, 45].

This chapter builds on Chapter 5 and provides a finite, complete set of identities for the

fragment of quantum computing generated by the Toffoli gate with ancillary bits. Recall that

ancillary bits are a more general notion than auxiliary bits. We call the PROP generated by

the Toffoli gate and ancillary bits with these identities, TOF. In fact, generalized controlled-

not gates are derivable in TOF. Generalized controlled-not gates are not gates with arbitrarily

many control bits; the not gate, controlled-not gate and Toffoli gate being examples thereof.

There is already an infinite, complete set of identities for circuits comprised of generalized

controlled-not gates and auxiliary bits [33]. However, we provide a finite, complete set of

identities for circuits comprised of Toffoli gates and ancillary bits, generalizing this result.

Without ancillary bits, by [38, Lemma 14], it is not possible to give a finite complete set of

117

identities for circuits with generalized controlled-not gates.

In addition to providing a complete set of identities for these circuits, we also prove a

concrete equivalence into the full subcategory of Pinj where the objects are finite powers of

the 2 element set. The key step of this proof is to prove that the functor H̃0, which takes

an object to its (total) points, is full and faithful: this, in turn, relies on providing a normal

form for the restriction idempotents of TOF. This is the same approach that was taken in

Chapter 5.

7.1 The category TOF

Define the category TOF to be the PROP, generated by the 1 ancillary bits |1〉 and 〈1|

(depicted graphically as in CNOT) as well as the Toffoli gate:

|1〉 := |1〉 := tof :=

These generators have an interpretation J KTOF : TOF→ MatC:

J|1〉KTOF :=

0

1

 J〈1|KTOF :=

[
0 1

]
JtofKTOF :=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


The Toffoli gate and the 1-ancillary bits allow cnot, not, |0〉, 〈0|, and flipped tof gate and

118

flipped cnot gate to be defined by:

:= , := , :=

:= , := , :=

We also allow for “gaps” in the tof and cnot gates, as in CNOT.

These gates must satisfy the identities given in Figure 7.1 1.

Axioms [TOF.1]-[TOF.6], [TOF.8]-[TOF.9] are relatively intuitive. [TOF.7] corre-

sponds to tensoring a matrix with the 1 × 1 zero matrix: this is useful for establishing the

restriction structure of TOF. [TOF.7] is used for establishing a normal form for the re-

striction idempotents. Axioms [TOF.10]-[TOF.13] combined with [TOF.9] can be used

to push cnot/tof gates past each other thereby generating another trailing cnot/tof gate: as

show in Lemma 7.2.6 (v) . [TOF.14] is inherited from CNOT and is used to establish the

inverse products of TOF. [TOF.15] expresses that the order of the control bits does not mat-

ter for the Toffoli gate. [TOF.16] is similar to [TOF.15], except for the 3-bit-controlled-not

gate.

Up to sliding control wires and target wires, all identities are graphically horizontally

symmetric. The flipped equivalents of Axioms [TOF.7], [TOF.10], [TOF.11], [TOF.12],

[TOF.13] follow from applying one of the rules [TOF.3], [TOF.4], [TOF.5] or [TOF.6].

Therefore there is an obvious †-functor, () : TOFop → TOF given by tof 7→ tof, |1〉 7→ 〈1|,

〈1| 7→ |1〉.

It is mechanical to verify that, J KCNOT : CNOT→ MatC is a strict †-symmetric monoidal

functor that reflects the dagger, so this interpretation is sound.

As an exercise, we first show that 〈0| |0〉 = 10 (just as 〈1| |1〉 = 10 in [TOF.8]):

1The identities given here are not numbered the same as in the original paper [13], as one identity was
found to be redundant ([CNOT.9]).

119

[TOF.1]

=

=

[TOF.2]

=

=

[TOF.3] =

[TOF.4] =

[TOF.5] =

[TOF.6] =

[TOF.7] =

[TOF.8] =

[TOF.9] =

[TOF.10] =

[TOF.11] =

[TOF.12] =

[TOF.13] =

[TOF.14] =

[TOF.15] =

[TOF.16] =

Figure 7.1: The identities of TOF

120

= [TOF.1]× 2

= [TOF.15]× 2

=

= [TOF.1]

= [TOF.9]

= [TOF.8]× 3

Since we build on the work done in Chapter 5, we start by establishing that the inter-

pretation of CNOT into TOF, where |1〉 7→ |1〉, 〈1| 7→ 〈1|, cnot 7→ cnot is sound:

Lemma 7.1.1. The interpretation of CNOT in TOF, using the derived generators in TOF,

is a strict †-symmetric monoidal dagger reflecting functor.

Proof. The functoriality is the only nontrivial property which must be proven. We verify

that all of the identities of CNOT hold. To this end:

[CNOT.1]: This is [TOF.14].

[CNOT.2]:

:=

= [TOF.1]

= [TOF.9]

= [TOF.8]

121

[CNOT.3]:

=

= [TOF.15]

= [TOF.4]

= [TOF.15]

=

[CNOT.4]:

:=

= [TOF.15]

= [TOF.1]

= [TOF.15]

=:

[CNOT.5]:

:=

= [TOF.3]

122

=:

[CNOT.6]: This is [TOF.8].

[CNOT.7]:

:=

= [TOF.15]

= [TOF.1]

=

= [TOF.8]

[CNOT.8]:

:=

= [TOF.15], [TOF.13], [TOF.9]

= [TOF.1]

= [TOF.9]

=:

[CNOT.9]:

=

123

= [TOF.2]

= [TOF.1]

= [TOF.2]

= [TOF.14]

= [TOF.2]

= [TOF.1]

=

7.2 Controlled-not gates and the Iwama identities

In reversible and quantum computing it is usual to regard the Toffoli gate and cnot as the

not gate “controlled”, respectively, by one and two control wires. In TOF one can define

cnotn the not gate controlled by n wires for any n ∈ N:

Definition 7.2.1. For every n ∈ N, inductively define the (generalized) controlled-not gate,

cnotn : n+ 1→ n+ 1 inductively:

• For the base cases, let cnot0 := not, cnot1 := cnot and cnot2 := tof.

• For all n ∈ N such that n ≥ 2:

cnotn+1 ≡ n :=

The first n wires of cnotn are the control wires while the last wire is the target wire.

As for the cnot and tof gates, allow for cnotn gates to haves “gaps” in between the control

124

wires (and the target wire).

Lemma 7.2.2. Every cnotn gate is self-inverse.

Proof. The base cases are trivial. For the inductive step, suppose that cnotn gates are

self-inverse, then:

n =

=

= [TOF.14]

= [TOF.2]

= [TOF.13], [TOF.9]

= [TOF.5], [TOF.9]

= [TOF.4]

= Inductive hypothesis

= [TOF.13], [TOF.9]

125

= [TOF.5]× 2, [TOF.9]× 2

=

=

Next, we show how tof gates can be “pushed past” each other with a “trailing” cnotn

gate:

Lemma 7.2.3.

(i) = = (ii) =

Proof. Of part (ii):

=

= [TOF.9], [TOF.10]

= [TOF.2]

= [TOF.9], [TOF.11]

126

= [TOF.9]

= [TOF.9], [TOF.12]

= [TOF.11]

= [CNOT.2]

=:

Next we show how we can “unzip” cnotn gates; and simultaneously, we generalize Lemma

7.2.3 to show how a cnotn gate can be “pushed” past a Toffoli gate:

Proposition 7.2.4. Given some n ≥ 1 and k ≥ 1:

(i) cnotn+k gates can be zipped and unzipped:

n

k =

n

k

(ii) cnotn gates can be pushed past Toffoli gates in the following sense:

n

=

(iii) And likewise:

127

n

=

Proof. The proof is by a simultaneous induction for claims (i) and (ii) for all natural numbers

k, by induction on the number of control wires, n, to unzip and the number of control wires

being pushed past a Toffoli gate. Claim (iii) follows as a consequence of (ii) and Lemma

7.2.3.

For the induction, suppose that n, k ≥ 2. The cases when n = 1 or n = 2 follow as a

consequence.

• The base cases of claim (i) follows by the definition of the cnotn gate. The base cases

of claim (ii) Lemma is precisely Lemma 7.2.3(ii).

• Suppose that the inductive claim holds for all k and for some n ≥ 2, graphically:

=

Consider the two identities for n+ 1; first for the zipper:

n+ 1

k
= Inductive hypothesis

=

128

= (ii)

= [TOF.2]

= [TOF.5], Lemma 7.2.2

For the second inductive step:

n

= Inductive step of (i)

= [TOF.9], Lemma 7.2.3(ii)

= Inductive hypothesis

= [TOF.2]

= Inductive step of (i)

129

For claim (iii), we use claims (i) and (ii):

= Inductive step of (i)

= [TOF.9], [TOF.12]

= Inductive step of (ii)

= Inductive step of (i)

=

The ability to zip and unzip controlled-not gates allows us to transpose control wires:

Corollary 7.2.5.

=

Proof. The claim follows vacuously for n < 2. The base case when n = 2 follows immediately

from [TOF.15]. Suppose that the claim holds for some cnotn. Consider a cnotn+1 gate and

unzip this gate one level down. We can transpose the top two control wires by the base case

for n = 2 and we can transpose the bottom n− 1 control wires by the inductive hypothesis.

Finally, to transpose the second and third wire from the top, try to unzip the cnotn+1 gate

130

down by one more step. If this cannot be done – because there is nothing more to unzip –

it means one can directly apply [TOF.16].

Since transpositions generate the symmetric group, the control wires of a cnotn gate can,

therefore, be freely permuted.

Let [x,X] denote a cnot|X| gate with control wires in the set X targeting the wire x /∈ X.

Similarly let �x and �x be, respectively, the |0〉 and 〈0| gates on the wire x.

The following identities are due to Iwama et al. [33]. They show how to push generalized

control not gates past each other in certain key situations:

Lemma 7.2.6 (Iwama’s Identities).

(i) [x,X][x,X] = 1

(ii) When x ∈ X then �x[y,X] = �x

(iii) When the target wire are the same [x,X][x,Y] = [x,Y][x,X]

(iv) When x 6∈ Y and y 6∈ X then [x,X][y,Y] = [y,Y][x,X]

(v) [x,X][y, {x} t Y] = [y,X ∪ Y][y, {x} t Y][x,X]

(vi) �z[z, {x}][y, {x} tX] = �z[z, {x}][y, {z} tX]

Proof.

(i) This is precisely Lemma 7.2.2.

(ii) Using Corollary 7.2.5 it suffices to consider the case where x is the bottom control wire.

Using Proposition 7.2.4 (i) and Lemma 7.2.2:

= Lemma 7.2.4(i)

131

= Lemma 7.2.2

=

=

(iii) The proof follows easily from Axioms [TOF.3], [TOF.4], [TOF.5] and [TOF.7].

(iv) The proof follows easily from Axioms [TOF.4] and [TOF.5].

(v) The proof is by induction on the number of control wires of the second gate.

• The base cases are provided by Proposition 7.2.4 (ii) and (iii).

• Suppose now that the claim holds for all cases in which the second gate has no

more than n control wires. Consider the case when the second gate has n + 1

control wires. Using Corollary 7.2.5 it suffices to consider the case where y is the

bottom wire and x is the second bottom wire:

[x,X][y,Y t {x}]

= [x,X] �z [z,Y][y, {z,x}][z,Y] �z Use Prop. 7.2.4 (i) to unzip [y,Y t {x}]

= �z[z,Y][x,X][y, {z,x}][z,Y]�z

= �z[z,Y][y,X t {z}][y, {z,x}][x,X][z,Y] �z Prop. 7.2.4 (ii), (iii)

= �z[z,Y][y,X t {z}][y, {z,x}][z,Y][x,X]�z

= �z[z,Y][y,X t {z}][z,Y][y, {z,x}][y,Y t {x}][x,X] �z Prop. 7.2.4 (ii), (iii)

= �z[z,Y][z,Y][y,X t {z}][y,X ∪ Y][y, {z,x}][y,Y t {x}][x,X] �z Ind. Hyp.

= �z[y,X t {z}][y,X ∪ Y][y, {z,x}][y,Y t {x}][x,X]�z

= �z[y,X t {z}][y,X ∪ Y][y, {z,x}] �z [y,Y t {x}][x,X]

= �z[y,X ∪ Y] �z [y,Y t {x}][x,X] Lemma 7.2.6 (ii)

= �z �z [y,X ∪ Y][y,Y t {x}][x,X]

132

= [y,X ∪ Y][y,Y t {x}][x,X]

• Using Corollary 7.2.5, it suffices to observe:

= [TOF.4]

= Lemma 7.2.4(i)

= [TOF.2]

= [TOF.11]

= [TOF.2]

= [TOF.11]

= Lemma 7.2.4(i)

7.3 TOF is a discrete inverse category

Next we prove that TOF is a discrete inverse category.

The diagonal map in TOF is the image of the diagonal map, ∆ : n → n ⊗ n, in CNOT

under the canonical functor CNOT→ TOF:

133

Definition 7.3.1. Define a family of maps ∆ := {∆n}n∈N with the cnot gate and 0-ancillary

bits inductively, as in Chapter 5, such that ∆0 = 10 = (uL0)−1 = (uR0)−1,

∆1 := := and for all n > 1: ∆n := n :=
n− 1

Much of the proofs are inherited from Chapter 5 using Lemma 7.1.1; extending the results

of CNOT to TOF.

Lemma 7.3.2. ∆ is a natural transformation in TOF.

Proof. We prove that ∆ is a natural transformation by structural induction. We have only

to prove the inductive case for tof as the cases for the 1-ancillary bits are proven in Lemma

5.3.2:

=

= [TOF.9]

= [TOF.11]

= [TOF.2]

= [TOF.13]

= [TOF.9]

= [TOF.15], [TOF.11]

134

= [TOF.9]

= [TOF.13]

=

To prove that TOF is a discrete inverse category with respect to †-functor () : TOFop →

TOF it must also be shown that [INV.1], [INV.2] and [INV.3] hold. As () : TOFop →

TOF is a †-functor [INV.1] is immediate. It remains to prove [INV.2] and [INV.3]:

Lemma 7.3.3. For all maps f in TOF [INV.2] holds, that is ff f = f .

Proof. We prove that [INV.2] holds by structural induction. Again we have only to prove

the inductive case for tof as the cases for the ancillary bits are proven in Lemma 5.3.9.

Suppose inductively that ff f = f for some circuit f , then we need to show that we can

extend f by a tof gate and preserve the property. This is almost immediate by [TOF.9]:

f f f = f f f = f

To prove that [INV.3] holds, again, we identify the restriction idempotents of TOF with

latchable circuits. We already know that latchable circuits commute with each other, by

Lemma 4.1.13; therefore, to prove that all circuits of the form ff are latchable implies that

[INV.3] holds.

Lemma 7.3.4. Circuits of the form ff in TOF are latchable and, thus, [INV.3] holds.

135

Proof. We prove that circuits of the form ff in TOF are latchable by structural induction.

We have only to prove the inductive case for tof as the cases for the 1-ancillary bits are

proven in 5.3.9. Suppose that some circuit f is latchable, then we must show inductively

that conjugating a Toffoli gate will result in a latchable circuit:

f f =

f f

=

ff

=

ff

Therefore:

Proposition 7.3.5. TOF is a discrete inverse category with this structure.

Proof. Lemmas 7.3.3 and 7.3.4 show that TOF is an inverse category. Lemma 7.3.2 and the

fact that the semi-Frobenius identities hold in CNOT imply that (n, ∆n, ∆n) forms a natural

special, commutative, semi-Frobenius algebra for all n ∈ N. Thus, TOF is a discrete inverse

category.

7.4 The points of TOF

The (total) points of TOF are iterated tensors of the input ancillary bits (|0〉 and |1〉) and

can be represented using ket notation |b1, · · · , bn〉 := |b1〉 ⊗ · · · ⊗ |bn〉, as in Chapter 5. We

start by observing that the Toffoli gate in TOF behaves as expected on these points:

Lemma 7.4.1. tof |x1,x2,x3〉 = |x1,x2,x1 · x2 + x3〉

Proof. tof |000〉 = |000〉:

= [TOF.2]

136

tof |001〉 = |001〉:

= [TOF.2]

tof |010〉 = |010〉:

= [TOF.2]

tof |011〉 = |011〉:

= [TOF.2]

tof |100〉 = |100〉:

= [TOF.15]

= [TOF.2]

=

tof |101〉 = |101〉:

= [TOF.15]

=

= [TOF.2]

137

tof |110〉 = |111〉:

:=

= [TOF.1]

= [TOF.15]

= [TOF.1]

= [TOF.1]

= [TOF.9]

=

tof |111〉 = |110〉:

= [TOF.1]

= [TOF.1]

= [TOF.1]

=

=:

The points above which are expressed in ket notation are clearly total. However, not all

maps with domain 0 are total: in particular, as in CNOT, the maps ∅0,m for m ∈ N are not

total:

Definition 7.4.2. Define ∅ := 〈0| |1〉, and ∅n,m = |1〉⊗m ∅ 〈1|⊗n.

138

When any map is tensored with such a map it becomes one of them:

Lemma 7.4.3. For all circuits f ∈ TOF(n,m), f ⊗ ∅ = ∅n,m.

Proof. By the functionality of the interpretation of CNOT into TOF and [14, Lemma A.2]

note that ∅ is idempotent. Therefore, use [CNOT.9] to cut all of the wires around all Toffoli

gates. Notice that when the wires round a Toffoli gate is cut this results in the map:

〈111| tof |111〉 = 〈11| cnot |11〉 = 〈1| not |1〉 = 〈1| |0〉 =: ∅

When all wires of a circuit are cut it will therefore take the form:

|1〉⊗m (〈1| |1〉)⊗` ∅⊗k 〈1|⊗n = |1〉⊗m 1⊗`0 ∅⊗k 〈1|⊗n = |1〉⊗m ∅ 〈1|⊗n = ∅n,m

Just as before, this gives the following result:

Corollary 7.4.4. ∅n,m are zero maps.

There are only two sorts of points, those that are expressible as bras—and maps of the

form ∅0,n for some n ∈ N:

Lemma 7.4.5. For all n ∈ N and f ∈ TOF(0,n), f = ∅0,n or f = |b1, · · · , bn〉 for some

b1, · · · , bn ∈ Z2.

Proof. Given any circuit f ∈ TOF(0,n), pull all of the |1〉 gates to the left of the circuit and

all of the 〈1| gate to the right. In the middle, there will only be tof gates; thus, apply the |1〉

gates to the tof gates using Lemma 7.4.1. This will result in a series of |1〉 and |0〉 gates on

the left. Repeatedly apply these |1〉 and |0〉 gates to the tof gates using Lemma 7.4.1 until

there are only a series of |1〉 and |0〉 gates on the left and a series of 〈1| gates on the right,

and nothing in the middle. If a |1〉 and 〈1| gate meet, they compose to form the identity on

139

0. If this process can eliminate all of the 〈1| gates, then we are done. Otherwise, if |0〉 and

〈1| gate meet, they compose to form ∅; therefore, by Lemma 7.4.3, f = ∅0,n.

Therefore:

Lemma 7.4.6. h̃0 : TOF→ Pinj is a strong symmetric monoidal functor.

The proof is the same as Lemma 5.5.4, for CNOT.

This implies, in conjunction with Lemma 4.2.4, that:

Lemma 7.4.7. h̃0 : TOF→ Pinj is a discrete inverse functor.

7.5 Partial injective functions and TOF

Recall the representable restriction functor hX : X→ Par given in Definition 4.2.1.

Fix X = TOF and x = 0. Recall that h0 : TOF→ Par can be lifted to an inverse-product

preserving functor h̃0 : TOF→ Pinj.

Define FPinj2 to be the full subcategory of Pinj (sets and partial isomorphisms) with

objects finite powers of the two element set. By Lemma 7.4.5, the object h̃0(n) corresponds

to the set {|0〉, |1〉}n in FPinj2 ⊂ Pinj; therefore, by restricting the codomain of h̃0 we obtain

a functor H̃0 : TOF→ FPinj2. We will prove that this functor is an equivalence of categories.

7.6 A normal form for the idempotents of TOF

As in Chapter 5, our objective is to reduce the fullness and faithfulness of H̃0 : TOF→ FPinj2

to its fullness and faithfulness on restriction idempotents. cnotn gates will be used to define a

class of circuits which will allow a normal form for the idempotents of TOF to be established.

It is also worth noting that the following class of circuits corresponds to the canonical form

of Iwama et al. [33, Definition 4]:

140

Definition 7.6.1. A circuit f : n → n is said to be in polynomial form when it is the

composition of circuits f = c1 · · · ck where each ci is a cnotj gate with control the first n− 1

wires and target the last wire.

For example, the following circuit corresponding to the polynomial x1x2 + x2x4 + x1x2 +

x1x2 + x2x3x4 + x4 is in polynomial form:

x1
x2
x3
x4

Clearly all polynomials (in normal form) can be represented by a circuit in polynomial

form, where each monomial corresponds to a cnotn gate. Moreover, this correspondence is

bijective, as cnotn gates targeting the same wire commute, and cnotn gates are self-inverse

by Lemma 7.2.2.

For example, the following identity holds in Z2[x1,x2,x3,x4]

x1x2 + x2x4 + x1x2 + x2x3x4 + x4 = x2x4 + x2x3x4 + x4

and this corresponds to the following identity in TOF:

x1
x2
x3
x4

=
x1
x2
x3
x4

Since the restriction idempotents in FPinj are determined by Boolean equations or, equiv-

alently, by the zeros of multivariate polynomials over Z2, we use polynomial form circuits to

construct a normal form for the restriction idempotents of TOF. By restricting the value of

the bottom wire to be 0, the evaluation of this circuit on total points is defined if and only if

the corresponding tuple of bits is in the kernel of the function corresponding to polynomial

evaluation:

Definition 7.6.2. A circuit e : n → n in TOF is a polyform if e = (1n ⊗ 〈0|) q (1n ⊗ |0〉)

141

for some q : n+ 1→ n+ 1 in polynomial form.

For example the following circuit corresponding to the equation x2x4 + x2x3x4 + x4 = 0

is a polyform:
x1
x2
x3
x4

Given a polynomial form circuit q, let the circuit q denote the circuit where every

cnotn gate of q is additionally controlled by wire with the black dot. Note that this is

well-defined by Corollary 7.2.5.

Given a polynomial form circuit q : n+ 1→ n+ 1, by the repeated application of Lemma

7.2.6 (v) for each constituent cnotn gate, it is useful to observe:

qn = qq n

Our aim is now to show that the idempotents of TOF are always equivalent to a polyform

so these circuits provide a normal form for the idempotents.

Lemma 7.6.3. Polyforms are idempotents (and therefore restriction idempotents).

Proof. Consider some map e := (1n ⊗ 〈0|) q (1n ⊗ |0〉) a polyform, as above, then:

e e = q q

=
q q

=
q q

[TOF.14]

=
q q

[TOF.2]

=
qqq

Lemma. 7.2.6 (v)

=
q

Lemma 7.2.2

142

= q

= e [TOF.2]

We prove that the converse also holds using 3 lemmas:

Proposition 7.6.4. All idempotents in TOF are equivalent to a circuit which is a polyform.

Given a polyform, f , by structural induction, it suffices to show that sandwiching f with

a generating gate, g, to obtain (1⊗ g⊗ 1)f(1⊗ g ⊗ 1), always results in a circuit which has

a polyform. There are 3 cases, one for each generating circuit:

Lemma 7.6.5. If f : n → n is a polyform then sandwiching f by a tof gate results in a

circuit with a polyform.

Proof. By Lemma 7.2.6 (v), push g through f until it meets the other g = g and then

annihilate both generalized controlled-not gates by Lemma 7.2.2. This circuit is still a

polyform.

Lemma 7.6.6. If f : n → n is a polyform then sandwiching f by a |1〉 gate results in a

circuit equivalent to a polyform.

Proof. It suffices to observe for the inductive step that:

= [TOF.15], [TOF.1]

= Lemma 7.2.3(ii)

= [TOF.9]

143

= [TOF.2]

=

Lemma 7.6.7. If f : n→ n is a polyform then sandwiching f by a |1〉 and 〈1| gate results

in a circuit with a polyform.

Proof. Suppose f : n→ n is a polyform (1n ⊗ 〈0| ⊗ 1m) h (1n ⊗ |0〉 ⊗ 1m), then:

h =
h

=
h

[TOF.14]

=
h

[TOF.1]

=
h

[TOF.1]

=
h

[TOF.11]

=
h

=
h

=
h hh

Lemma 7.2.2

144

=

h h

hh Lemma 7.2.6 (ii)

= h h Lemma 7.2.6 (v)

= h h

= h h [TOF.11]

= h h [TOF.7]

= h h Lemma 7.2.6 (v)

= h h [TOF.9]

= h h [TOF.1]

= h hh Lemma 7.2.6 (v)

= h Lemma 7.2.2

= h [TOF.2]

= h

= h

145

We have now established with Lemma 7.6.3 and Proposition 7.6.4:

Proposition 7.6.8. Polyforms are a normal form for the idempotents in TOF.

This implies, as the idempotents of FPinj2 are determined by multivariate polynomials

over Z2:

Corollary 7.6.9. H̃0 : TOF→ FPinj2 is full and faithful on restriction idempotents.

Recall that h̃0 is faithful in general, so this follows from the fullness on idempotents in

specific.

7.6.1 H̃0 : TOF→ FPinj2 is a discrete inverse equivalence

We know that H̃0 : TOF→ FPinj2 is a discrete inverse functor. It remains to show that this

functor in full and faithful.

Just as in Chapter 5, to prove the fullness of H̃0 : TOF → FPinj2 we “simulate” all the

total maps in FPinj2 with extra outputs:

Lemma 7.6.10. For every total map f ∈ FPinj2(n,m), there is some g ∈ TOF such that

H̃0(g) = 〈1Zn
2
, f〉.

Proof. Consider a total f ∈ FPinj2(n,m). For any i such that 1 ≤ i ≤ m, observe that fπi

corresponds to a polynomial in Z[x1, · · · ,xn] and thus, there is a circuit gi : n + 1 → n + 1

in polynomial form such that H̃0(hi) = 〈1Zn
2
, fπi〉 where hi := gi (1n ⊗ |0〉).

Now, inductively define the circuit Pi for all i such that 0 ≤ i ≤ m, such that: P0 = 1n

and for every i such that 0 ≤ i < m, Pi+1 := hi+1(Pi ⊗ 11).

Then H̃0(Pm) = 〈1Zn
2
, fπ1, · · · , fπm〉 = 〈1n, f〉.

Using this result with the fullness on idempotents, this allows us to show:

Proposition 7.6.11. H̃0 : TOF→ FPinj2 is full.

146

Proof. Consider a map f ∈ FPinj2(Zn2 ,Zm2) for arbitrary n,m ∈ Z. By Lemma 4.2.7, if

we can simulate 〈1, f〉 and 〈1, f 〉, we can simulate f . However, partial maps of the form

〈1, g〉 : X → X × Y are restrictions of a total map, unless Y is empty. The case of Y being

empty does not occur in FPinj2 as the empty set is not an object. Thus, all such maps are

restrictions of total maps. Therefore, by Lemma 7.6.10 there is some h ∈ TOF such that

H̃0(h) ≥ 〈1, g〉 for any g. However, by Proposition 7.6.9, H̃0 : TOF → FPinj2 is full on

restriction idempotents, so there is some e = e such that H0(e) = g and so H0(eh) = 〈1, g〉

which completes the proof.

The faithfulness of H̃0 is reduced to its faithfulness on restriction idempotents:

Proposition 7.6.12. H̃0 : TOF→ FPinj2 is faithful.

This implies:

Theorem 7.6.13. The identities of TOF are complete.

The proof is essentially the same as the proof of Theorem 5.5.22, for the completeness of

CNOT.

Because H̃0 : TOF → FPinj2 is a discrete inverse functor, which is full, faithful and

essentially surjective:

Theorem 7.6.14. TOF is discrete inverse-equivalent to FPinj2.

147

Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, complete sets of identities are given for both the affine and entire fragments of

classical reversible circuits with ancillary bits. In both cases, a discrete inverse equivalence

into a subcategory of sets and partial isomorphisms is exhibited.

The proofs for both fragments have the same structure. First, it is proven that the

category of circuits forms a discrete inverse category. Next, a normal form for the restriction

idempotents in this category is constructed. The normal form is used to show that the

discrete inverse functor h̃0 is full and faithful. To this end, two new insights for discrete

inverse functors were necessary. In particular, Lemmas 4.2.7 and 4.2.6 help reduce the

fullness/faithfulness of discrete inverse functors to the behaviour on idempotents. Therefore,

by postcomposing h̃0 with Barr’s `2 we obtain both completeness results.

We also demonstrated an embedding from CNOT into the angle-free fragment of the

ZX-calculus, ZXπ. We then extended the identities of CNOT by adding the Hadamard gate

as a generator. This adds (co)units to the inverse products of CNOT: yielding a classical

structure corresponding to the Pauli X observable.

148

8.2 Future work

An immediate direction for future work would be to extend these classification results for the

controlled-not gate and Toffoli gate to qudit (d valued instead of binary) classical reversible

computing. The qudit generalizations of the Toffoli and controlled-not gates would have

order d. This seems easier when d is prime, or perhaps even when d is a power of a prime.

This leads me to pose the following question; is the category generated by the obvious

extension of the Toffoli gate to d-dimensions along with the ancillary bits for 1 equivalent to

the full subcategory of sets and partial injections where the objects are sets whose cardinality

is a power of d.

After the extension to qudits, it would be interesting to see if this result could be extended

to all of finite sets and partial isomorphisms using the isomorphism of sets Znp ×Zmq ∼= Zpnqm ;

a similar question was posed for the ZX-calculus in [52]. Work has already been performed

on interacting Frobenius algebras, with applications to the ZX-calculus [21], so it would be

interesting to see if some of their results could be generalized to the case of semi-Frobenius

algebras.

Another interesting direction would be to consider the Fredkin and not gates as genera-

tors instead of the controlled not—or Toffoli gate. This presents a challenge, because such a

category would not have all inverse products, but rather only ternary inverse products. This

would require a reformulation of the notion of a discrete inverse category, and in particular,

a generalized Frobenius law for ternary semigroups. Ternary Frobenius algebras in com-

pact closed categories have previously been researched [27], however, a general symmetric

monoidal axiomatization of ternary Frobenius algebras would be needed.

Although the calculus which is presented in Chapter 7 is universal for reversible circuits

with ancillary bits; recall that it is not reversible for quantum computing in general. It would

be interesting to extend TOF to an approximately universal fragment of quantum computing

by adding the Hadamard gate [3], just as we extended CNOT to the real fragment of stabilizer

quantum mechanics. The proof would likely involve a two way translation between either

149

∆ZX or ZHπ. ∆ZX is the extension of ZXπ with the triangle generator as a generator [51].

The triangle generator is the map given by |0〉 〈0| + |1〉 〈0| + |0〉 〈1|, and allows the Toffoli

gate to be described relatively easily; although, the Axioms are hard to translate to Toffoli

and Hadamard gates. The phase-free fragment of the ZH-calculus, ZHπ, on the other hand

is the extension of ZXπ with “Hadamard spiders” [50]. Although ∆ZX and ZHπ are sound,

universal and complete for the same fragment of quantum mechanics, the identities of ZHπ

appear to be easier to translate into Toffoli and Hadamard gates.

150

Bibliography

[1] Scott Aaronson, Daniel Grier, and Luke Schaeffer. The classification of reversible bit

operations. In 8th Innovations in Theoretical Computer Science Conference (ITCS

2017), volume 67 of Leibniz International Proceedings in Informatics (LIPIcs), pages

23:1–23:34. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[2] Lowell Abrams. Frobenius algebra structures in topological quantum field theory and

quantum cohomology. PhD thesis, Johns Hopkins University, 1997.

[3] Dorit Aharonov. A simple proof that Toffoli and Hadamard are quantum universal.

arXiv preprint quant-ph/0301040, 2003.

[4] Matthew Amy, Jianxin Chen, and Neil J. Ross. A finite presentation of CNOT-dihedral

operators. arXiv preprint arXiv:1701.00140, 2017.

[5] Miriam Backens. The ZX-calculus is complete for stabilizer quantum mechanics. New

Journal of Physics, 16(9):093021, 2014.

[6] Miriam Backens. Making the stabilizer ZX-calculus complete for scalars. arXiv preprint

arXiv:1507.03854, 2015.

[7] Miriam Backens. Completeness and the ZX-calculus. PhD thesis, University of Oxford,

2016.

[8] Miriam Backens and Aleks Kissinger. ZH: A complete graphical calculus for quantum

computations involving classical non-linearity. arXiv preprint arXiv:1805.02175, 2018.

151

[9] Miriam Backens, Simon Perdrix, and Quanlong Wang. A simplified stabilizer ZX-

calculus. arXiv preprint arXiv:1602.04744, 2016.

[10] Michael Barr. Algebraically compact functors. Journal of Pure and Applied Algebra,

82(3):211–231, 1992.

[11] Wolfgang Bertram and Michael Kinyon. Associative geometries. I: Torsors, linear rela-

tions and grassmannians. arXiv preprint arXiv:0903.5441, 2009.

[12] Albert Camus. Le mythe de Sisyphe: essai sur l’absurde. 1942.

[13] Robin Cockett and Cole Comfort. The Category TOF. Electronic Proceedings in The-

oretical Computer Science, 287:67–84, 2019.

[14] Robin Cockett, Cole Comfort, and Priyaa Srinivasan. The Category CNOT. Electronic

Proceedings in Theoretical Computer Science, 266:258–293, 2018.

[15] Robin Cockett, Xiuzhan Guo, and Pieter Hofstra. Range categories II: Towards regu-

larity. Theory and Applications of Categories, 26(18):453–500, 2012.

[16] Robin Cockett and Stephen Lack. Restriction categories I: categories of partial maps.

Theoretical computer science, 270(1):223–259, 2002.

[17] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra

and diagrammatics. New Journal of Physics, 13(4):043016, 2011.

[18] Bob Coecke and Aleks Kissinger. Picturing quantum processes. Cambridge University

Press, 2017.

[19] Bob Coecke, Dusko Pavlovic, and Jamie Vicary. A new description of orthogonal bases.

Mathematical Structures in Computer Science, 23(3):555–567, 2013.

[20] Cole Comfort. Circuit relations for real stabilizers: Towards TOF+H, 2019.

152

[21] Ross Duncan and Kevin Dunne. Interacting Frobenius algebras are Hopf. In Proceedings

of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16,

pages 535–544, New York, NY, USA, 2016. ACM.

[22] Ross Duncan and Simon Perdrix. Pivoting makes the ZX-calculus complete for real

stabilizers. arXiv preprint arXiv:1307.7048, 2013.

[23] Edward Fredkin and Tommaso Toffoli. Conservative logic. In Collision-based computing,

pages 47–81. Springer, 2002.

[24] Brett Giles. An investigation of some theoretical aspects of reversible computing. PhD

thesis, University of Calgary, 2014.

[25] Daniel Gottesman. Stabilizer codes and quantum error correction. PhD thesis, California

Institute of Technology, 1997.

[26] Daniel Gottesman. The Heisenberg representation of quantum computers. arXiv

preprint quant-ph/9807006, 1998.

[27] Marino Gran, Chris Heunen, and Sean Tull. Monoidal characterisation of groupoids

and connectors. arXiv preprint arXiv:1906.02056, 2019.

[28] Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger, and Benôıt

Valiron. An introduction to quantum programming in Quipper. In International Con-

ference on Reversible Computation, pages 110–124. Springer, 2013.

[29] Amar Hadzihasanovic. The algebra of entanglement and the geometry of composition.

PhD thesis, University of Oxford, 2017.

[30] Chris Heunen. On the functor l2. In Computation, Logic, Games, and Quantum Foun-

dations. The Many Facets of Samson Abramsky, pages 107–121. Springer, 2013.

[31] Chris Heunen and Jamie Vicary. Introduction to categorical quantum mechanics.

153

[32] Peter Hines. Quantum circuit oracles for abstract machine computations. Theoretical

Computer Science, 411(11):1501 – 1520, 2010.

[33] Kazuo Iwama, Yahiko Kambayashi, and Shigeru Yamashita. Transformation rules for

designing CNOT-based quantum circuits. In Proceedings of the 39th annual Design

Automation Conference, pages 419–424. ACM, 2002.

[34] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of

the ZX-calculus for Clifford+T quantum mechanics. In Proceedings of the 33rd Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages 559–568, New

York, NY, USA, 2018. ACM.

[35] Robin Kaarsgaard. The logic of reversible computing. PhD thesis, University of Copen-

hagen, 2017.

[36] Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assistant for diagram-

matic reasoning. In International Conference on Automated Deduction, pages 326–336.

Springer, 2015.

[37] Maxim Kontsevich. Operads and motives in deformation quantization. Letters in Math-

ematical Physics, 48(1):35–72, 1999.

[38] Yves Lafont. Towards an algebraic theory of boolean circuits. Journal of Pure and

Applied Algebra, 184(2-3):257–310, 2003.

[39] Rolf Landauer. Irreversibility and heat generation in the computing process. IBM

journal of research and development, 5(3):183–191, 1961.

[40] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, New

York, 1971. Graduate Texts in Mathematics, Vol. 5.

[41] Karl Marx. Grundrisse der Kritik der Politischen Okonomie.

154

[42] T Monz, K Kim, W Hänsel, M Riebe, AS Villar, P Schindler, M Chwalla, M Hennrich,

and R Blatt. Realization of the quantum Toffoli gate with trapped ions. Physical review

letters, 102(4):040501, 2009.

[43] Kang Feng Ng and Quanlong Wang. Completeness of the ZX-calculus for pure qubit

Clifford+T quantum mechanics. arXiv preprint arXiv:1801.07993, 2018.

[44] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum informa-

tion.

[45] Matthew D Reed, Leonardo DiCarlo, Simon E Nigg, Luyan Sun, Luigi Frunzio, Steven M

Girvin, and Robert J Schoelkopf. Realization of three-qubit quantum error correction

with superconducting circuits. Nature, 482(7385):382, 2012.

[46] Peter Selinger. A survey of graphical languages for monoidal categories. In New struc-

tures for physics, pages 289–355. Springer, 2010.

[47] Peter Selinger. Generators and relations for n-qubit Clifford operators. Logical Methods

in Computer Science, 11, 2015.

[48] Vivek V Shende, Aditya K Prasad, Igor L Markov, and John P Hayes. Synthesis of

reversible logic circuits. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 22(6):710–722, 2003.

[49] Peter W Shor. Fault-tolerant quantum computation. In Foundations of Computer

Science, 1996. Proceedings., 37th Annual Symposium on, pages 56–65. IEEE, 1996.

[50] John van de Wetering and Sal Wolffs. Completeness of the phase-free ZH-calculus, 2019.

[51] Renaud Vilmart. A ZX-calculus with triangles for Toffoli-Hadamard, Clifford+T, and

beyond. arXiv preprint arXiv:1804.03084, 2018.

[52] Quanlong Wang. Completeness of the ZX-calculus. PhD thesis, University of Oxford,

2018.

155

[53] John Watrous. Lecture 12: Grover’s algorithm, March 2006. https://cs.uwaterloo.

ca/~watrous/LectureNotes/CPSC519.Winter2006/12.pdf.

156

https://cs.uwaterloo.ca/~watrous/LectureNotes/CPSC519.Winter2006/12.pdf
https://cs.uwaterloo.ca/~watrous/LectureNotes/CPSC519.Winter2006/12.pdf

Appendix A

Matrices and Constants

Boltzmann’s constant (kB)

kB := 1.380649× 10−23J/K

π/4-phase (ω)

ω := eiπ/4

Plus state and effect

|+〉 :=
1√
2

1

1

 〈+| := 1√
2

[
1 1

]

Minus state and effect

|−〉 :=
1√
2

 1

−1

 〈−| := 1√
2

[
1 −1

]

157

Z spider (co)units

|0〉+ |1〉 =
√

2|+〉 =

1

1

 〈0|+ 〈1| =
√

2〈+| =
[
1 1

]

Zero ancillary bits

|0〉 :=

1

0

 〈0| :=
[
1 0

]

X spider (co)units

|+〉+ |−〉 = 2|0〉 =

2

0

 〈+|+ 〈−| = 2〈0| =
[
2 0

]

One ancillary bits

|1〉 :=

0

1

 〈1| :=
[
0 1

]

Pauli X matrix/not gate/X spider π-phase

not :=

0 1

1 0


Pauli Y matrix 0 −i

i 0


π-phase-shift gate/Pauli Z matrix/Z spider π-phase

1 0

0 eπi

 =

1 0

0 −1


158

Controlled-not/controlled-X gate

cnot :=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



Controlled-Z gate 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


Toffoli gate

tof :=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


Swap gate (c1,1)

swap :=



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



159

Hadamard gate

H := |+〉 〈0|+ |−〉 〈1| = 1√
2

1 1

1 −1


π/2 phase-shift gate

S :=

1 0

0 eiπ/2

 =

1 0

0 i


Z spider multiplication 1 0 0 0

0 0 0 1


X spider multiplication

1√
2

1 0 0 1

0 1 1 0



160

Appendix B

Basic Calcululations for CNOT

Lemma B.0.1.

(i)

= [CNOT.8]

= [CNOT.5]

= [CNOT.8]

(ii)

:=

= [CNOT.4]

= [CNOT.2]

= [CNOT.6]

161

(iii)

= [CNOT.2]

= [CNOT.8]

(iv)

= [CNOT.4]

= [CNOT.8]

= [CNOT.3]

= [CNOT.8]

= [CNOT.4]

Lemma B.0.2.

(i)

= =

(ii)

= = = = = = =

162

(iii)

= = = =

(iv)

= = = = = =

Lemma B.0.3. ∇1 ((|1〉 〈1|)⊗ 11) ∆1

Proof.

:=

= [CNOT.4]

= [CNOT.2]

= [CNOT.4]

= [CNOT.4]× 2

= [CNOT.2]× 2

= [CNOT.1]× 2

=

= [CNOT.7]× 3

= [CNOT.2]

= [CNOT.6]× 2

163

	Abstract
	Preface
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures and Illustrations
	List of Symbols, Abbreviations and Nomenclature
	Epigraph
	Introduction
	Reversible computing
	Quantum computing as reversible computing
	Chapter outline

	Category Theory
	Basic category theory
	Monoidal categories
	Strict monoidal categories and PROPs
	Monoidal functors

	Quantum Computing
	Categorical quantum computing
	†-categories and compact closed categories
	Hilbert spaces
	Frobenius algebras and complementarity

	Stabilizer quantum mechanics

	Restriction and Inverse Categories
	Restriction and inverse categories
	Discrete restriction categories and inverse products

	Restriction and discrete inverse functors
	Barr's l2 functor

	The Controlled-not Gate
	The category CNOT
	Preliminary results for CNOT
	CNOT is a discrete inverse category
	Inverse products in CNOT
	CNOT is an inverse category

	Torsors
	The equivalence CNOT=ParIso(CTor2)
	Defining the functor H0:CNOT -> ParIso(CTor2)*
	The points of CNOT
	Internal torsor structures in CNOT
	Normal form for the idempotents of CNOT
	H0 is a discrete inverse equivalence

	CNOT and the angle-free fragment ZX-calculus
	The angle-free fragment ZX-calculus
	Embedding CNOT into the real stabilizer fragment of the ZX-calculus
	Extending CNOT to the real stabilizer fragment of the ZX-calculus
	The completeness of CNOT+H

	The Toffoli Gate
	The category TOF
	Controlled-not gates and the Iwama identities
	TOF is a discrete inverse category
	The points of TOF
	Partial injective functions and TOF
	A normal form for the idempotents of TOF
	H0 is a discrete inverse equivalence

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Matrices and Constants
	Basic Calcululations for CNOT

