THE UNIVERSITY OF CALGARY

An Implementation of Charity

Min Zeng

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

March, 2003

(© Min Zeng 2003

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies for acceptance, a thesis entitled “An Implementation of Charity”
submitted by Min Zeng in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE.

Supervisor, Dr. Robin Cockett
Department of Computer Science

Dr. John Aycock
Department of Computer Science

Dr. Richard Zach
Department of Philosophy

Date

ii

Abstract

This thesis describes an implementation of core-Charity which consists of a virtual
machine (VMC) and a separate compiler to translate Charity code into code for that
machine.

The design of the virtual machine was inspired by the ABC machine of Clean.
It is a general purpose byte code machine which incorporates garbage collection and
the separation of data into basic types and heap pointers.

The core-Charity compiler concentrates on providing an efficient implementation
of core Charity code into the virtual machine. Previous implementations suffered
from excessive heap usage which necessitated frequent garbage collection. In this
implementation a variety of techniques are used to reduce heap usage and improve
execution speed.

The resulting Charity programs are substantially faster than those produced by

previous Charity implementations.

v

Acknowledgements

I would like to express my sincere gratitude to Dr. Robin Cockett for guiding me
through the process of researching and completing this thesis. This work would not
have been possible without his support, encouragement and patience.

I am also grateful to Jeff Green, Dana Harrington and David Pereira, for reading
the draft of this thesis, correcting numerous English errors in it and giving me useful
suggestions.

Finally, thanks to my wife, Winnie, for her understanding, patience and love.

Table of Contents

Approval Page
Abstract
Acknowledgements
Table of Contents

1 Introduction
1.1 The Charity Programming Language
1.1.1 Overview
1.1.2 Inductive datatypes
1.1.3 Coinductive datatypes
1.1.4 Combinators and macros
1.1.5 Higher-order functions
1.2 Implementations of Charity

2 The Virtual Machine for Charity (VMC)
2.1 Introduction
2.2 Overview. e e
2.3 The VMC assembly language
2.4 Other virtual machines
2.4.1 The Charity Abstract Machine
2.4.2 The Spineless Tagless G-Machine
2.4.3 The abstract machine for Standard ML of New Jersey
244 The ABC machine
2.5 Representing Charity data in VMC
2.5.1 Primitive data and tuples
2.5.2 Inductive Data
2.5.3 Coinductive data representation

3 Intermediate representation for Charity code
3.1 Structure of Intermediate Representation

3.1.1 Representation of type expressions and multi-functions

3.1.2 Symbol Table
3.2 Fold, Unfold and Map

3.3 Transforming combinator invocations

vi

ii

iv

<

2.

0O~ O U1 N = =

3.3.1 Introduction
3.3.2 Environment variables
3.3.3 Generating new functions
3.3.4 Avoiding code explosiono L
3.4 Simplification and Optimization
3.5 Polymorphic functions and basic values
3.6 Type Checking Again o

4 VMC Code Generation
4.1 Overview e e e
4.2 Code Generation Rules
4.3 Optimizations
4.3.1 Simple inductive datatypeso
4.3.2 Inductive datatype with only one constructor
4.3.3 Higher-order coinductive datatypes with only one destructor .
4.3.4 Peephole optimizations on VMC code

5 Results and Conclusion
Bibliography

A VMC specification
A.1 Formal Syntax of VMC program
A2 Data
A21 Basicdata
A22 Pointerdata L
A.3 Imstruction Set
A.3.1 Arithmetic instructions
A.3.2 Logical and bit instructions
A.3.3 Comparison instructions
A.3.4 Data conversion instructions
A.3.5 Branch instructions
A.3.6 Constant instructions
A.3.7 Stack instructions
A.3.8 Tupleinstructions,
A.3.9 Array instructionso
A.3.10 String instructions

vii

72
72
73
81
82
83
84
85

88

92

B VMC interpreter user’s manual 114

B.1 Configuration 114
B.2 Command linesyntax 115
B.3 Commands 116

viii

2.1
2.2
2.3
24

3.1
3.2

List of Figures

Overall structure of VMC o000 13
How a tuple is stored in the heap 14
How succ zero is stored in the heap 28
How (fst:3, snd:5) is stored intheheap 32
consl vs. cONS2 Lo e 38
Two possible storage formats of [5,6] 64

X

Chapter 1

Introduction

1.1 The Charity Programming Language

1.1.1 Overview

Charity [10, 11] is a unique programming language motivated by a category theoretic
model of computation [30]. In typical functional style [8, 7], a Charity program is
a collection of functions. Each function generates its output solely from its input
and no side-effects are allowed, thus there are no updateable variables or assignment
statements. Charity programs are strongly typed, that is, the types of functions
are resolved at compile time and type mismatch errors can never arise at run time.
However, some fundamental differences exist between Charity and other functional

languages:

e General recursion, which plays a very important role in functional languages, is
not allowed in Charity. The sacrifice of general recursion gives Charity a special
property: all Charity programs are guaranteed to terminate. This property is

very useful in program transformation and verification.

e Charity is a datatype-oriented language, its power comes from defining new
datatypes and the transformations between them. In addition to the inductive
datatypes available in other functional languages, Charity has another class

of datatypes called coinductive datatypes, which arise as the categorical dual

of inductive types. Coinductive datatypes can represent potentially infinite
data structures, model states in imperative languages, and simulate objects in
object-oriented languages. Coinductive datatypes greatly enhance the compu-

tation power of Charity.

e Charity can be both lazy and strict. Since Charity programs always terminate,
whether or not arguments to functions evaluated lazily or strictly will not
change the semantics of Charity programs. Coinductive data in Charity is
always evaluated lazily. It is possible, therefore, to implement Charity as a

strict language and use coinductive data when laziness is needed.

In the following sections, we will use simple examples to show the primary facili-
ties in Charity; the detailed syntax and semantics of these facilities will be discussed

in other chapters.

1.1.2 Inductive datatypes

Inductive datatypes are similar to datatypes in other functional languages. Below

are the datatype definitions for boolean and natural numbers:

data bool -> C

false: 1 -> C
| true: 1 -> C.

data nat -> C

zero: 1 > C
| succ: C -> C.
The keyword data starts a datatype definition. The expression bool -> C spec-
ifies the name of the datatype: bool, and the state variable: C. The state variable

can be viewed as an alias for the datatype being defined. false, true, zero and

succ are constructors, special functions that construct inductive data from data of
other types. The expression following a constructor is the type of the constructor.
The type of false is 1 -> C, which means that its input type is 1 and its output
type is C, which is the alias for bool. 1 stands for the unit datatype; there is only
one member of this type and it is represented by (). The output type of a construc-
tor must always be the state variable. The type of succ is C -> C, which says that
succ takes data of type nat as input and generates data of type nat as output. For
example, succ zero, the representation of the natural number “1”, is of type nat, .

Inductive datatypes can also have one or more type variables. A datatype with
type variables is called a polymorphic datatype. For example, we use the following

definition for the list datatype:

data 1list(A)->C = nil: 1 ->¢C

| cons: A,C -> C.
Here, A is a type variable whose value can be any datatype. For example, 1ist (nat)
is the type of a list of natural numbers, 1ist(bool) is the type of a list of boolean
values, and 1ist (1ist(bool)) is the type of a list whose elements are lists of boolean
values. The input type of cons is A,C, which says that cons has two input param-
eters: the first parameter is of type A, and the second argument is of type C, i.e.
list(A). The concrete type that A represents can often be inferred from the argu-
ments of cons. For example, from cons(true,nil) we can infer that A equals type

bool, so the type of the expression is 1ist(bool).

Three operations are by default available with a defined inductive datatype: case,

fold and map. Below are three examples in that order:

x =>{ false => true
| true => false

} x.

def not

def add = x,y => {l| zero: () =>y
| succ: n => succ n

1} x.

def addone = L => list{succl}L.

The above examples define three functions: not, add and addone. The not
function illustrates the use of case. The part inside the {} is a case. In general, a
case operation takes an inductive value as input and examines the “root” of the value
to determine which action to perform. In this example, it checks the constructor of
the boolean variable x and returns the opposite value of x.

The add function illustrates the use of fold. The part inside the {| [} is a fold.
A fold takes an inductive value as input, examines the root of the value, applies the
fold itself over the recursive part of the value, and then performs the action specified
in the fold. In this example, the fold examines x: if it is zero, y is returned; if it
is succ, the fold itself is applied to the argument of succ (which is also a natural
number) to get a natural number n, thereupon returning succ n.

The addone function illustrates the use of map. Here list{succ} is the map. The
input type of a map is a polymorphic datatype that has one or more type variables.
A map may take one or more functions, with each function corresponding to a type
variable in the polymorphic datatype. It applies the functions to the type variable
part of the data while preserving the structure of the data. In this example, map

applies succ to every natural number in the list L.

1.1.3 Coinductive datatypes

One way in which Charity differs from other functional languages is that Charity
allows coinductive data. Coinductive datatypes provide a means of representing
potentially infinite structures which are evaluated lazily. Here is the definition of

infinite lists as a coinductive datatype:

data C -> inflist(A) = head: C -> A

| tail: C -> C.
Note that the state variable, C, is now at the left side of the arrow. This distinguishes
a coinductive datatype definition from an inductive datatype definition. head and
tail are destructors, special functions that destruct coinductive data into the data of
other types. Coinductive datatypes are similar to abstract datatypes: the coinductive

datatype definition defines the ‘interface’ of the data.

To create coinductive data, three operations are available: record, unfold and

map. Below is an example:

def nats = () => (| x => head: x
| tail: succ x
|) (succ zero).

def zeronats = () => (head: zero, tail: nats).

def newnats = () => inflist{succl}(nats).

The first function, nats, generates an object which represents an infinite list of
natural numbers 1,2,3,..., by using an unfold. x represents the internal state of
the object, which is a natural number. The expression following head: and tail:

specifies the action to take when the corresponding destructor is called. When head

is called, the internal state x is returned, which serves as the head of the infinite list.
When tail is called, the internal state is incremented by 1, then the unfold itself is
recursively applied on the new internal state to generate a new object, which will be
returned as the result. succ zero is the initial internal state of the unfold, so the
infinite list starts from 1.

The function zeronats generates the infinite list 0,1,2,..., by using a record.
A record works by simply giving the values to be returned by each destructor. So
when head is applied on the object, zero is returned, when tail is applied on the
object, the infinite list 1,2,... is returned lazily.

The last function newnats uses map to convert 1,2,... into 2,3,.... Conceptu-
ally, the map for coinductive data is very similar to the map for inductive data, since
the type variable part of the data is transformed but the structure of the datatype
remains the same. The difference is that the map on coinductive data is always

evaluated lazily.

1.1.4 Combinators and macros

The original Charity was a first order language and did not have any higher-order
functions. However, Charity provides a simple facility to pass functions as parame-

ters. Here is an example:

def filter{f} =
L =>{] nil: () => nil
| cons: x,1 => { true => cons(x,1)
| false =>1
}(E x)
> L.

Quite often we want to filter out elements in a list that do not satisfy a certain
condition. For generality, the condition is passed to filter as a functional parameter
f. The functional parameter f is called a macro, and the function filter is called
a combinator.

To filter out zeros in a list of natural numbers, we only need to define a nonzero

predicate and then apply filter{nonzero} over the list.

def nonzero = x => { zero => false
| succ(x) => true
T x.

A combinator name along with its macro arguments, e.g. filter{nonzero}, is called

a combinator invocation.

1.1.5 Higher-order functions

Although functions can be passed as arguments to combinators, functions were not
first-class citizens in the original Charity. A function could not be returned as the
result of another function or be stored in a data structure. Higher-order capabilities
were introduced by allowing the destructors to have extra parameters [28]. This
enhancement effectively gives Charity the capability of higher-order functions, since,
to introduce higher-order functions, all that is required is to define the following

datatype:
data C -> exp(A,B) = fn: A,C ->B.
fn is a destructor with an additional parameters A. A record of the above type looks

like (fn:x=>...), that is, the value specified for fn is a function. Since coinductive

data can be passed as parameters and returned as results, we achieve the power

of a higher-order language by using coinductive datatypes to represent functions.
Below is the filter example rewritten using coinductive data to pass functions as

arguments:

def filter =
f, L = {| nil: () => nil
| cons: x,1 => { true => cons(x,l)

| false => 1
}(£n(x,£))
[} L.
def nonzero = (fn: x => { zero => false
| succ(x) => true
}ox
).

def filterzero = L => filter(nonzero, L).

1.2 Implementations of Charity

The original implementation, developed by Tom Fukushima, was an interpreter writ-
ten in SML, which was an implementation of core-Charity (i.e. without pattern-
matching) which ran on a very basic categorical machine. The next implementation
[36] was an interpreter written in C, and was significantly faster (over 100 times)
than the original SML implementation but also took a significantly longer time to
develop. Though reasonably fast, this C implementation suffers from the following

problems:

e The front-end and back-end of the interpreter are very closely integrated, which

made modification and debugging very difficult.

e Writing the front-end in C is complicated and error prone, because C is not
good at handling complex data structures and does not provide any automatic
memory management facility. Adding new features to Charity meant exploring
tens of thousands of lines of C source code. Some bugs were still there after

years of usage.

e The back-end is based on CHARM (Charity Abstract Machine) [17, 36], a
simple machine which, however, suffers from excessive heap usage. It is also

hard to add new features to Charity without significant changes to CHARM.
This thesis describes a different approach, which has the following advantages:

e The front-end and back-end are two separated programs. The front-end is
a parser that translates core-Charity code into a clearly defined, platform-
independent low-level language. The back-end is an interpreter for this low-
level language. Modifications of one will not affect the other as long as the

low-level language remains unchanged.

e As compilation speed is not a major issue, the front-end is written in the func-
tional language SML, a more suitable tool than C for writing a compiler. The

SML code is considerably shorter and clearer, thus is much easier to maintain.

e The back-end is based on a virtual machine called VMC (Virtual Machine for
Charity), which is a simple, flexible and efficient virtual machine. The VMC is
designed to model a concrete machine instead of specific language features, so

that new features of Charity can be implemented efficiently without changes to

10

the target VMC. It is also potentially straightforward to translate VMC code

into native machine code.

The next chapter will describe the VMC, and the following chapters will de-
scribe the translation from Charity to VMC. A complete specification of VMC is in

appendix A.

Chapter 2

The Virtual Machine for Charity (VMC)

2.1 Introduction

The Virtual Machine for Charity (VMC) is an abstract machine with a stack-based
architecture and instruction set. The instruction set of the VMC is used as target
language in the translation of Charity, that is, Charity code is compiled into VMC
code, and then executed by an interpreter or further translated into concrete machine

code. The advantages of this approach are:

e A more structured implementation can be achieved. By using a virtual ma-
chine, we have a clearer view of how the language is conceptually implemented

and what the trade-offs are.

e Implementations can be ported more easily to different platforms because we
only need to write a VMC interpreter/compiler for each platform, while the

compiler that translates Charity code into VMC code remains intact.

e By separating the front-end and back-end into different programs, we can op-
timize each according to criteria relevant to its function. The front-end can be
written in a functional language, such as SML, making it easier to understand
and modify, while the back-end (interpreter) can be implemented in C/C++

for speed.

Consequently, the VMC is designed with the following objectives in mind:

11

12

Portability The VMC should not assume any particular processor details, such as

addressing modes, number of registers, etc.

Simplicity The VMC should be simple enough to be implemented easily and effi-

ciently on many different platforms.

Efficiency The VMC instruction set should be able to interpret Charity code effi-

ciently. Overhead introduced by this translation should be minimized.

2.2 Overview

Figure 2.1 illustrates the overall structure of VMC, which consists the following

components:

B-stack This is the stack for basic values, such as integers, real numbers, code
addresses, etc. Each unit on B-stack is 32 bits. Data smaller than 32 bits, such
as characters, will be expanded into 32 bits before being put on B-stack. 64
bits basic data, such as long integers, will occupy 2 units. Units on B-stack are
referenced by their relative position from top of the stack, with the top most

unit being unit 0.

P-stack Pointers to heap elements are placed in this stack. As for the B-stack,
every pointer on the P-stack is 32 bits and is referenced by its relative position

from top of the stack.

Heap The heap is used to contain compound data structures. Unlike other virtual

machines, such as the ABC machine [26], which uses a special node format to

13

1P Code stream

addl | retB 20

r--——- - - - L
| . | |
I . i node i [
8 —— node | t-----o--- o
| s |
5 : |
| . . |
L ! ! |
: : | ode | i node | !
> | ! ! |
63 —J | L______J Lo e e oo o J |
Lo]
B-stack P-stack Heap

Figure 2.1: Overall structure of VMC

store inductive data, the VMC is not defined with respect to inductive or coin-
ductive datatypes, everything in the heap is either a tuple or an array. Induc-
tive data is stored as a tuple with the first element indicating the constructor.
Coinductive data is stored as a tuple of closures, one for each destructor, where
each closure is a tuple composed of a code entry and its arguments. A tuple

can contain an arbitrary number of basic values and pointer values.

Figure 2.2 shows how a tuple composed of m basic values and n pointer values is
stored in the heap (each row is 32 bits wide). The first row is the header of the

tuple that indicates the number of basic values and pointer values in the tuple.

14

basic value 1

basic value m

pointer 1

pointer n

Figure 2.2: How a tuple is stored in the heap

The format of the header is not accessible by VMC code and is internal to
the virtual machine, allowing machine-specific implementation while retaining
portability. This layout of tuples makes it easy to tell pointers from basic

values, which is important for garbage collection.

Garbage collection [35, 5] in the VMC is implicit, and is automatically invoked
whenever a program tries to allocate memory from the heap but is unable
to do so due to lack of space. The current implementation used a simple 2-
space-copying collector [14], but more advanced garbage collectors, such as
generational garbage collectors [24, 4, 27], could be used to improve perfor-

mance.
Code stream The VMC code sequence to be executed.

IP Instruction Pointer, a register that points to the next instruction to be executed.

15

2.3 The VMC assembly language

The VMC assembly is best introduced by an example such as the following, which

sums 1...100:

_start: ; program starts here
constl 1 ; push parameter 1 on B-stack
constI 100 ; push parameter 100 on B-stack
call _sum_m2n ; call subroutine _sum_m2n
halt ; stop

_sum_m2n: ; sum takes two parameters, m and n
dupB 1 ; push m
dupB 1 ; push n
gtl ; m>n?
ifzero QL ; no, continue
constI 0 ; yes, put 0 on B-stack as result
retB 2 0 ; return

QL:
dupB 1 ; push m
constl 1 ; push 1
addI ; m+1
dupB 1 ; push n
call _sum_m2n ; recursion, sum_m2n(m+1,n)
dupB 2 ; push m
addI ; m+sum(m+1,n)
retB 2 0

A VMC program is composed of labels, comments and instructions. In the above
example, _start, _sum_m2n and @L are labels, which indicate positions in the program.
Labels always start with either a _, indicating a global label, or a @, indicating a
local label. Allowing for local labels helps to avoid name clashes between source files.
Text from a semicolon to the end of line is treated as a comment and is ignored by
the VMC translator. Instructions always start with an operator followed by a list of

operands, separated by spaces. A formal specification of the instruction set can be

16

found in appendix A. Here we describe some of the core instructions.

constl 7: push the constant integer ¢ onto the B-stack. For example, if the content
of B-stack is 5.6.1, with 5 being the top item, then after executing constI 1,

the contents of the B-stack becomes 1.5.6..L.

dupB i: push the ith item on the B-stack onto the B-stack. For example, if the
contents of the B-stack is 3.5.7.L, then after executing dupB 1, it becomes

5.3.5.7. L.
dupP i: push the ith item on the P-stack onto the P-stack. Similar to dupB.

moveB i j: change the jth item on the B-stack to the value of the ith item on
the B-stack. For example, if the content of the B-stack is 3.5.7.1, then after

executing moveB 0 2, the contents of the B-stack becomes 3.5.3. L.

moveP 4 j: change the jth item on the P-stack to the value of the ith item on the

P-stack. Similar to moveB.

newtuple m n: Create a tuple in heap, which consists of the top m items on the
B-stack and the top n items on the P-stack. The top m items on the B-stack
and the top n items on the P-stack are popped off and a pointer to the new
tuple is pushed onto the P-stack. For example, if the contents of the B-stack
is 5.6.7..L, the contents of the P-stack is p.q. L, then after executing newtuple
2 1, the contents of the B-stack becomes 7.1 and the contents of the P-stack

becomes p'.q. L, where p’ points to the tuple (5.6, p) in the heap.

detuple Pops off the top item on the P-stack, which points to a tuple in the heap,

then pushes all the basic values in the tuple onto the B-stack and pushes all

17

the pointers in the tuple onto the P-stack. This instruction can be viewed
as the reverse operation of newtuple. For example, if the contents of the B-
stack is 7., the contents of the P-stack is p’.q.L, where p’ points to a tuple
(5.6,p), then after executing detuple, the contents of the B-stack becomes
5.6.7.1, and the contents of the P-stack becomes p.q. L. Note that a newtuple
instruction followed immediately by a detuple instruction has no effect on
the virtual machine except that it creates a node in the heap which will be
garbage collected. An optimization described in section 4.3.4 is based on this

observation.

call L: Pushes the current value of IP (instruction pointer) onto the B-stack and
then changes IP to the address of L. This instruction is usually used to call a

subroutine.

xcall: Exchange the values of IP with the top value on the B-stack. This instruction

is used to call a subroutine whose address is at the top of the B-stack.

retB m n: This instruction is used to return from a subroutine which has m basic
arguments and n pointer arguments and returns a basic value. The topmost
item on the B-stack will be the result of the subroutine. The item right below
the result is the return address. The top m + 2 items on the B-stack and the
top n items on the P-stack are popped off, then the result is pushed back onto
the B-stack, and the IP is changed to the return address. For example, if the
contents of the B-stack is 10.L.4.6.2_L, the contents of the P-stack is p.q.r.L,
then after executing retB 2 1, the contents of the B-stack becomes 10.2.L,

the contents of the P-stack becomes ¢.r.L, and the IP points to L.

18

retP m n: This instruction is similar to retB, except that the result is now at the
top of the P-stack and the return address is on top of the B-stack. So m + 1
items are popped off the B-stack, n + 1 items are popped off the P-stack, then

the result is pushed back onto the P-stack, and IP is set to the return address.

case Lg --- L,: This instruction pops off the top item from the B-stack, which is a
small non-negative integer 7, and sets IP to L;. For example, if the contents
of B-stack is 1.3.1, then after executing case @one @two @three, the con-
tents of B-stack becomes 3.1, and IP points to @two (Note that the first label

corresponds to 0) .

2.4 Other virtual machines

Using a virtual machine to implement a functional language is quite common. Here

we review four other virtual machines and compare them to the VMC.

2.4.1 The Charity Abstract Machine

The previous implementation of Charity is based on the Charity Abstract Machine
(CHARM) [17, 36], which is an adaptation of the Categorical Abstract Machine [12].
Charity programs are expressed as typed combinators and evaluated through a set

of rewrite rules. The CHARM consists of:

e A value stack holding current value of a computation. Actually it is not a real
stack, as at any time, it holds just one value: a pointer to a heap item. It

would be more accurate to call it the current value register.

19

A code stack listing the remaining sequence of instructions to execute, similar
to the Code Stream plus IP in the VMC. Actually code is not pushed or popped,

only the code pointer is manipulated.

A dump stack holding continuations. A continuation will be pushed onto the

dump stack when calling a function or evaluating a pair.

A function stack holding a list of functions passed as parameters.

A heap to store products, inductive and coinductive data.

The number of instructions in CHARM is small, and the instructions closely resemble
the operations in category theory. So the CHARM is relatively easy to implement,
and the translation from Charity to CHARM is not complicated. However, CHARM

suffers from excessive heap usage for the following reasons:

e The environment of a function is passed to the function as a pair in the heap
with the environment as the second element of the pair. Furthermore, if there

are multiple environment variables, they have to be organized as nested pairs.

e As the value stack is not a real stack, multiple arguments to a function must

be stored in a heap node and passed as a single argument.

e There are no n-tuples in CHARM. Rather, n-tuples in Charity are translated

into nested pairs which take up much more space than n-tuples.

e Basic data is boxed.

20

2.4.2 The Spineless Tagless G-Machine

The Spineless Tagless G-machine [22] is an abstract machine designed to support
lazy higher-order functional languages. It is a synthesis of the G-machine [19] and
the TIM machine [13], borrowing the best of both architectures. The STG machine
is the backend for Haskell [18], a popular lazy functional language.

The STG language, which is the virtual machine code of the Spineless Tagless
G-machine, is a very simple purely-functional language. Compared with the VMC,
the Spineless Tagless G-Machine is specified at a much higher level, resembling the
language to be implemented instead of a concrete machine. However, the distin-
guishing feature of the STG language is that it has a formal operational semantics
as well as the usual denotational semantics. The operational semantics of the STG

language is comparable with VMC. The machine consists five components:
e The code, similar to the code stream in the VMC.

e The argument stack, which contains a mixture of closure addresses and primi-

tive values.
e The return stack, which contains continuations.
e The update stack, which contains update frames.
e The heap.

e The global environments, which gives the addresses of all closures defined at

top level.

21

The mapping from the abstract machine to stock hardware, as described in [22],
shows many similarities with the VMC. The three stacks are mapped into two stacks:
A-stack for pointers and B-stack for non-pointers, with the name taken from the
ABC machine [29]. The heap is a collection of closures of variable size. Each closure
has a uniform layout: the first word of a closure is a pointer, which points to its
static info table (not in the heap). Following the info pointer is a block of heap
pointers, these are followed by a block of values other than heap pointers. This
separation of heap pointers from other values is done for the same reason as in the
VMC (to facilitate garbage collection). The info table contains a number of fields,
including the address of the code to evaluate the closure (the standard entry code),
the addresses of code to garbage collect the closure (used during garbage collection),
and some other information. Different closures may share the same info table to
save memory.

The STG machine is tagless in the sense that a closure does not contain any
tags to indicate its status, such as the size of the closure, the number of pointer
arguments and non-pointer arguments, whether it is in head normal form, etc. All
this information is encoded either in the info table, or in the code segments pointed
to by the info table. For example, the standard entry code for a closure that is
already in head normal form is a simple return instruction.

It is also worthwhile to discuss how the STG machine updates a closure. After a
closure is evaluated, it should be overwritten with the result to avoid being evaluated
again, but the size of the result (also a closure) might be larger than the size of the
original closure. The STG machine solves this problem by overwriting the original

closure with a small indirection closure which contains only a info table pointer

22

and a pointer to the result. The standard entry code for the indirection closure
simply loads the result closure and returns. The use of indirection closures results
in extra memory allocation, but this is partially remedied since indirection closures
are removed during garbage collection.

The major difference between the layout of closures in the STG machine and the
layout of heap nodes in VMC, is that a VMC node does not have an info pointer. The
STG machine is designed to implement lazy functional languages, so every closure
needs a code pointer which points to the code to evaluate it. The VMC is designed
to implement Charity, which we choose to implement strictly (except for coinductive
data), so that code pointers are not always needed. A coinductive datum in Charity
is represented as a record (a group of pointers, each of which points to a closure) in
the VMC. The record serves naturally as the indirection node and so an update in

the VMC does not need an indirection node.

2.4.3 The abstract machine for Standard ML of New Jersey

Standard ML of New Jersey (SML/NJ) [2] is a compiler and programming envi-
ronment for the Standard ML programming language [15, 25]. The core-Charity
compiler described in the following chapters has been written in this language.
In his book Compiling with Continuations [6], A.W. Appel described an abstract-
continuation-machine, which serves as an intermediate step in compiling SML into
a particular concrete machine code.

Just like the other abstract machines, the abstract-continuation-machine has a
heap for complex data. The interesting part of the machine is that it has a set of

registers and does not have a stack. The CPS (continuation-passing style) trans-

23

formation used in the compiler ensures that a function application can never be an
argument of another application, and so it is not necessary to have a stack for nested
function calls. Appel argues that garbage collection can be cheaper than stack allo-
cation [1] and so passing arguments as heap pointers can be as efficient as passing
arguments on the stack.

The number of registers in the abstract machine is determined by the number
of registers on target concrete machine. Most instructions in the virtual machine
operate on registers only, values in registers are saved to (or loaded from) heap
nodes explicitly. This makes it very easy to map the abstract machine into a concrete
machine. The CPS compiler ensures that the program will not ‘run out of registers’
at any point by using a register spilling algorithm.

Another interesting aspect of the abstraction machine is how it differentiates
between basic values and heap pointers: the low-order bit of each value is used as a
tag to indicate whether it is a basic value or a heap pointer. This method is certainly
space-efficient, but it makes arithmetic operations awkward: one cannot calculate
with full 32 bit integers, and the tag bits must be stripped off operands and added
to results. However, Appel estimate the cost of handling tag bits to be only 1.65
percent of total runtime in a typical SML application [3].

Overall, the abstract-continuation-machine is a very simple machine that can be
readily mapped into a concrete machine. But the efficiency of the machine relies
on the CPS translation and related optimizations. A very important property of
CPS is that all arguments to functions are variables or constants, never nontrivial
subexpressions. This means arguments of a function should be evaluated before

being passed to the function. Thus CPS is best suited to strict functional languages.

24

The coinductive data in Charity is evaluated lazily which means that CPS is not

directly applicable.

2.4.4 The ABC machine

The ABC machine [29, 26] is the backend for Concurrent Clean, a lazy higher-order
functional language. The Concurrent Clean system is one of the fastest implemen-

tations of lazy functional languages. The name ABC comes from its three stacks:

A-stack: the stack to store pointers to heap items.
B-stack: the stack to store basic values such as integers.

C-stack: the stack to store return addresses in a subroutine call.

In addition to the three stacks, the ABC machine has a graph store (heap), a program
store, a program counter, and a descriptor store. The descriptor store contains a
set of descriptors, which contains information associated with symbols such as arity,
instruction entry, which is called for curried applications, and the name of the symbol.

The design of the VMC borrowed the idea of having a separate pointer stack and
basic stack from the ABC machine. The A-stack in the ABC machine is equivalent
to the P-stack in VMC, and the B-stack in the VMC can be considered to be a
combination of the B-stack and the C-stack in the ABC machine. The VMC does
not have a descriptor store, because the arity and name of a symbol are handled by
the compiler rather than by the virtual machine.

The major difference between the ABC and VMC machines lies in the structure
of the heap nodes. As a lazy functional language, Clean was implemented as a graph

reduction system. A heap node in the ABC machine has the following fields:

25

e A descriptor identifier which is an entry in the descriptor store. Different
constructors will have different entries in the descriptor store, so this field can

also be used for matching constructors.

e A code pointer which points to code that will evaluate the node to root normal
form. The code pointer in a node that is already in root normal form points

to a simple return instruction.

e A sequence of heap pointers that points to the arguments of the node, or, in

the case that the node represents a boxed basic data, a basic value.

This node format does not allow basic values to be stored directly in a node (unless
the node itself represents a boxed basic datum), because it does not provide enough
information for the garbage collector to differentiate between basic values and heap
pointers. This is an inefficient part of the ABC machine. For example, an integer
argument of a node can not be stored directly in the node, instead, the integer has
to be boxed and a pointer to the boxed integer is stored in the node. Furthermore,
a boxed integer has the same format as the other heap nodes, i.e. it also contains
a descriptor identifier and a code pointer, which means the cost of boxing is rather
high.

The variable-sized heap node makes updating a node difficult. Unlike the STG
machine, which uses an indirection node (section 2.4.2), the implementation of the
ABC machine solves this problem by splitting each node into two parts: the fixed-
sized part contains the descriptor id, the code pointer and a pointer to the variable-
sized part. The variable-sized part contains the pointers to arguments. Now the

fixed-size part of a node can always be overwritten with the fixed-size part of another

26

node. The downside of this solution is that it takes more space to store a node, and

access to the arguments needs an extra level of indirection.

2.5 Representing Charity data in VMC

All datatypes supported by Charity can be represented efficiently in VMC. Here we
will use some simple examples to show how data of different types can be created

and manipulated in Charity.

2.5.1 Primitive data and tuples

Primitive datatypes, such as integers or floating point numbers, can be represented
and manipulated directly on the B-stack. Most arithmetic operations, such as plus

and multiply, are directly supported by VMC. For example:

def cube = x => x * X * X.

can be translated into the following VMC code:

_cube: ; X is on top of B-stack
dupB 0O ;X
dupB 0O ;X
mull ; YEX*X
dupB 1 ;X
mull 3 Xky
retB 1 0

Tuples can consist a mixture of basic data and pointer data. Basic data does not

need to be boxed. For example, the following code will create the tuple (4, (5,6)):

27

constl 6 ; push 6 on B-stack
constl 5 ; push 5 on B-stack
newtuple 2 0 ; create tuple (5,6), pointer on P-stack
constl 4 ; push 4 on B-stack

; take 1 item from B-stack, 1 item from P-stack
; to create a tuple, which is (4,(5,6))
newtuple 1 1

2.5.2 Inductive Data

Each constructor of an inductive datatype will be given a constructor number, start-
ing from 0. Inductive data will then be represented as a tuple, with the construc-
tor number as the first field. The following definitions define the natural number

datatype:

data nat > C = zero: 1 > C
| succ: C -> C.

The constructor number of zero and succ are 0 and 1 respectively. So the data zero
will be represented as a boxed 0, while succ zero will be represented as a pair: the
first part of the pair is the integer 1, the second part is a pointer to a boxed 0 (a
zero). The following VMC code will create a succ zero: figure 2.3 shows how it is

stored in the heap.

constI O ; constructor number of zero
newtuple 1 0 ; create zero

constIl 1 ; constructor number of succ
newtuple 1 1 ; create succ zero

Consider the 1ist datatype:

28

sSuccC zero

1 1 Zero

Figure 2.3: How succ zero is stored in the heap

data list(A) -> C = nil: 1 ->C

| cons: A,C -> C.
The constructor number of nil and cons are 0 and 1 respectively. So nil will be
represented as a boxed 0, while cons(zero,nil) will be represented as a triple:
the first part of the triple is the integer 1, the second part is a pointer to zero,
the third part is a pointer to nil. The following VMC code will create the data

cons(zero, cons(succ zero, nil)).

constIl O ; constructor number of nil
newtuple 1 0 ; create nil

constl O ; constructor number of zero
newtuple 1 0 ; create zero

constIl 1 ; constructor number of succ
newtuple 1 1 ; create succ zero

constI 1 ; constructor number of comns
newtuple 1 2 ; create cons(succ zero, nil)
constIl O ; constructor number of zero
newtuple 1 0 ; create zero

constI 1 ; constructor number of cons

newtuple 1 2 ; create cons(zero, cons(succ zero, nil))

29

A constructor that does not have any argument is represented by a small boxed
integer, like the zero and nil. Since all the constructors such as zero and nil
are represented identically and will never be updated, it is more efficient to create
only one boxed 0 in the heap and use this node whenever a zero or nil is needed.
The VMC provides a newint instruction for this optimization. newint ¢ returns a
pointer to a boxed integer i; the system must ensure that this boxed integer will
never be updated. Currently the VMC interpreter pre-creates boxed integers 0 to
15 at the start of the heap, if the parameter of newint falls within this range, it will
simply return the pointer to one of the pre-created nodes, otherwise, a new boxed
integer will be created. In some cases, this seemingly small optimization can actually
reduce heap usage by over 25 percent. Using the newint instruction, the above code

sequence becomes:

newint O ; create nil

newint O ; Create zero

constI 1 ; constructor number of succ

newtuple 1 1 ; create succ zero

constI 1 ; constructor number of cons

newtuple 1 2 ; create cons(succ zero, nil)

newint O ; create zero

constI 1 ; constructor number of cons

newtuple 1 2 ; create cons(zero, cons(succ zero, nil))

2.5.3 Coinductive data representation

Coinductive data with n destructors can be represented in VMC as a n-tuple of

closure pointers, with each closure corresponding to a destructor. A closure is a

30

tuple with its first field being a code label (address), and the other fields being the
arguments of the code.

When a destructor is applied to a coinductive data, the destructor fetches the
corresponding closure from the coinductive data then evaluates that closure. To
evaluate a closure, a simple detuple instruction will push everything in the closure
onto the stacks, with the code label on top of the B-stack. Thereupon, a simple
xcall instruction will run the code at that label and remove it from the stack.

Here we use a simple coinductive datatype Lprod as an example.

data C -> Lprod = fst: C -> int
| snd: C -> int.

The code generated for destructors is very short, so it is generated as inline code
instead of as a function call. The code generated for destructor fst and snd will

looks like this:

;code generated for destructor fst

dupP O ; to avoid the record pointer being popped off by getfield
getfieldP 0 ; get the first closure in the record

detuple ; put everything in the closure in stack

xcall ; call the associated code

;code generated for destructor snd

dupP O ; to avoid the record pointer being popped off by getfield
getfieldP 1 ; get the second pointer in the record

detuple ; put everything in the closure in stack

xcall ; call the associated code

When evaluating a closure, the record that contains the pointer to the closure
will be passed to the code associated with the closure, so that the record can be
updated. Upon return from the code, the result of the computation should be on

top of the B-stack or P-stack.

31

The code to create a record is divided into two parts: the first part is the code
associated with each closure, the second part is the code to create closures and
tuples. For example, to create a record (fst:3, snd:5), the code associated with
each closure must be produced first. In this case, a simple return instruction is
sufficient because neither 3 nor 5 needs further evaluation. The result is stored
directly in the closure, so that at entry of the following closure code, the result (3 or

5) is already on top of the B-stack.

_rec3bfst: ; code entry for the first closure
retB 0 1 ; pop off the record pointer and return
_rec35snd: ; code entry for the second closure
retB 0 1 ; pop off the record pointer and return

Now we show the code to create the closures and the record.

constI 5 ;

constA _rec35snd ; code entry

newtuple 2 0 ; create the closure for snd
constl 3 ;

constA _rec3bfst ; code entry

newtuple 2 0 ; create the closure for fst
newtuple 0 2 ; create the record

Figure 2.4 shows the how the record (fst:3, snd:5) is stored in the heap.
A slightly more complicated example illustrates how non-trivial closure are cre-

ated:

def foo = x => (fst:x+x, snd:x*x).

will be translated into:

2 0
(fst:3, snd:b5) _rec3bfst
0 2 3
2 0
_rec35snd
3

Figure 2.4: How (fst:3, snd:5) is stored in the heap

_foofst: ; code entry for the first closure
dupB 0O ; X is on top of B-stack
addIl ;) X+X

;create a new closure to store the result

dupB 0O ; result
constA _fooret ; code entry for the new closure
newtuple 2 0 ; create the closure
setfieldP O ;update the record with the new closure
ret

_foosnd: ; code entry for the second closure
dupB 0O ; X 1s on top of B-stack
mull ; X*X

;create a new closure to store the result
dupB 0 ; result
constA _fooret ; code entry for the new closure

33

newtuple 2 0 ; create the closure
setfieldP 1 ;update the record with the new closure
ret

_fooret:
retB 0 1

_foo: ; code entry for function foo
dupB 0 ; X, argument for the second closure
constA _foosnd ; code entry for the second closure
newtuple 2 0 ; create the second closure
dupB 0O ; X, argument for the first closure
constA _foofst ; code entry for the first closure
newtuple 2 0 ; create the first closure
newtuple 0 2 ; create the record
retP 1 0

In the above code, x is stored in the closures as a parameter, the code associated
with the closures will compute x+x and x*x respectively and update the record.

More complicated coinductive data, such as those created by an unfold, can always
be translated into a record (section 3.2), then be translated into VMC code in a
manner similar to the above. For higher-order destructors, things are even simpler:
the result of the computation does not need to be saved, as different parameters to
the destructor will give different results. Hence, it is not necessary to build a new

closure and update the record (section 4.2).

Chapter 3

Intermediate representation for Charity code

To translate Charity code into VMC code, we go through the following steps:

1. Lexical and syntactic analysis: this is achieved with the help of the lex and

yacc tools of SML. The result of this step is a syntax tree.

2. Semantic checks: this step checks the syntax tree to find any semantic errors.
The most important component of semantic checking is type-checking. This
follows the method described in [33]. The syntax tree is passed to the next step
if no error is found, otherwise an error message is given and the translation

stops.

3. Translation into an intermediate representation (IR): this step translates the
syntax tree into the internal representation of Charity program (IR). This extra
level of translation makes the compiler better structured, and, furthermore, this

internal representation facilitates manipulations.

4. Transformations of the IR: Combinator invocations are transformed into nor-
mal function calls, and different versions of polymorphic functions are gener-

ated to handle unboxed data efficiently.

5. Translation of the IR into VMC code: the simplified IR is translated into VMC

code by several translation rules.

34

35

This chapter describes the IR and the transformations over it. The next chapter

will describe the translation from IR to VMC code.

3.1 Structure of Intermediate Representation

3.1.1 Representation of type expressions and multi-functions

We shall explain the structure of the IR using SML datatypes. The description is

thus very close to the actual SML code. A Charity type expression can be:
e A type variable, which can match any type, e.g. A
e A type’s name, with or without arguments, e.g. list(A)
e Products of several types, e.g. list(A) * A *int

The following ML datatype is a representation of a Charity type expression:

datatype TypeExp

= tVAR of int (x Type Variable *)
| tNAME of string * TypeExp list (* Type name *)
| tPRODS of TypeExp list (* Productsx)

Here each type variable is distinguished by an integer. If there are n type variables
in a type expression, we indicate each with an integer from 1 to n. For example,

list(A) * B with be represented as
tPRODS [tNAME("list",[tVAR 11), tVAR 2]
The type of a Charity function is an arrow from a list of type expressions to

another type expression, e.g. A,list(A) — B, which can be represented by the

following ML type:

36
type FunType = TypeExp list * TypeExp

The new implementation extends the syntax of the arrow type to allow multiple
inputs (a “multi-function”):

Sl,...,Sn—>T

where S; and T are any type expressions except arrow types. The purpose of this
new syntax is to specify precisely how the arguments are passed to the function. For

example, the following two functions f and g have distinct types:

def f: int , list(int) -> int
def g: int * list(int) -> int

f has two arguments, while g has only one argument which is a pair. The following
figure shows the different stack status at the entry of f and g while calling f(2, [4, 5])

and ¢(2, [4, 5]).

Code B-stack | P-stack | Heap
f(2,[4,5]) 2bs | pps|p—[45]
9(2,[4,5]) bs | p'ps|p — (2,[45])

The type of f is expressed in ML as

([tNAME("int",[1),
tNAME("1ist", [tNAME("int",[1)1)
1,
tNAME("int",[1))

while type of g will be expressed as

37

([tPRODS [tNAME("int",[1),
tNAME ("list", [tNAME("int",[1)])
]
1,
tNAME("int", []1))

The new syntax also controls how inductive data is stored in the heap. As an

example, consider the following two definitions of the list datatype:

nilli: 1 -> C
| consl: int,C -> C.

data listl -> C

nil2: 1 -> C
| cons2: int*C -> C.

data list2 -> C

Here consl takes two arguments: an integer and a list. cons2 takes only one
argument: a pair that consists of an integer and a list. Figure 3.1 shows how
cons1(5,nil1) and cons2(5,nil2) are stored in the heap. The definition of 1ist1

is obviously more space-efficient, but there are cases where 1ist2 is more desirable.

The definition of TypeExp makes it easy to analyze and transform type expres-
sions in a program, but more difficult to read. So in the following sections, type
expressions are represented in a way very similar to that in Charity, except that T'n
is used to represent type variable n. For example, list(A), B — A will be expressed

as list(T1),72 — T1.

3.1.2 Symbol Table

The symbol table is a list of pairs, the first element of the pair is a symbol, and the

second element of the pair is the property of the symbol, which indicate the type

cons1(5,nill)

consl

nill

cons2(5,nil2)

cons2 1

nil2

Figure 3.1: consl vs. cons2

38

of the symbol and its corresponding values. We use the following ML datatype to

represent properties of symbols:

datatype SymProperty

= ALIAS
| DATA

| CODATA
| CTR

| DTR

| FUN

of
of
of
of
of
of

int * TypeExp

int * ((string*TypeExp) list)
int * ((string*TypeExp) list)
string * int * TypeExp

string * int * TypeExp
TypeExp * TypeExp list * Term

(*
(*
(*
(*
(*
(*

Alias
Inductive
Coinductive
Constructor
Destructor
Function

*)
*)
*)
*)
*)
*)

The properties of an alias are the number of type variables that it has and the type

expression it represents. For example:

data listlist(A) = list(list(A))

will be translated into the symbol table entry:

("listlist",

ALIAS(1, list(1ist(T1))))

39

Here we indicate that we defined a type alias named “listlist”, it has one type variable
T1, and is equivalent to the type list(list(Ty)).

The properties of an inductive or coinductive datatype definition are the number
of type variables in the datatype definition and a list of constructor/destructor names
and constructor/destructor types. When translating the structor types, the state

variable C' is translated into a special type variable, T0. For example:

data list(A) -> C = nil: -> C
| cons: A, C -> C.

data C->inflist(A)= head: C -> A
| tail: C -> C.

Will be translated into

("list", DATA(1, [("nil"™, (=> TO)),
("cons", (T1,TO -> T0))1))

("inflist", CODATA(1, [("head", (TO -> T1)),
("tail", (TO -> T0))1))

The properties of a constructor/destructor are: the name of the datatype, the
number of the structor and the type of the structor. A structor is treated as a
function in type checking, and so TO in the type of the structor is replaced with the
data name. In the last example, the following entries will be added to the symbol

table:

("nil", CTR("list", 0, (-> 1list(T1))))

("cons", CTR("1list", 1, (T1,list(T1) -> 1ist(T1))))
("head", DTR("list", 0, (inflist(T1) -> T1)))

("tail", DTR("tail", 1, (inflist(T1) -> inflist(T1))))

40

The properties of a function definition are the type of the function, the types of
the macros, and the function’s body. We use the following ML datatype to represent

the body of a function:

datatype Term

INT of integer (* integer constant *)

STR of string (* string constant *)

VAR of string (* variable *)

TUPLE of Term list (* n-tuple, including O-tuplex)
APP of Term * Term (* application *)

|
|
|
|
| RECORD of string * Term list (* record *)
| CASE of string * Term list (% case *)

|

|

|

|

|

MACRO of int (* macro *)

CTR of string * int (* constructor *)
DTR of string * int (* destructor *)
CALL of string * Term list (* call a function *)
ABS of string list * Term (* abstraction *)

A record in Charity will be represented by a RECORD, which consists of the data
type’s name and a list of record phrases. The list of record phrases are sorted to
match the order of destructors declared in the data definition. A case in Charity is
similarly represented by a CASE. Each macro is given a number starting from 1, in
their declaration order. An abstraction is composed of a list of variable names and

a term. Here is an example:
def f{g} = x => (%, g x)

By type inference, the types of f and g are determined to be 71 — T'1 * T2 and

T1 — T2, respectively. The body of f is translated into:

ABS(["x"], TUPLE [VAR "x", APP(MACRO 1, VAR "x")1)

Here macro g is translated into MACRO 1. The resulting entry in the symbol table is

41

("f", FUN(C T1 -> T1xT2, [T1 -> T2],
ABS(["x"], TUPLE [VAR "x", APP(MACRO 1, VAR "x")]))
)
For clarity, in this thesis, a term is represented in a form similar to that of
Charity code, as in Table 3.1. For example, the body of f in the above example will

be represented as

r = (z,m; x)

3.2 Fold, Unfold and Map

There are no structures which correspond directly to fold, unfold and map. Instead,
fold, unfold and map can be expressed with (possibly recursive) case/record. For an
inductive datatype D, the system automatically generates two combinators fold_D
and map_D. For a coinductive datatype D, unfold_D and map_D are generated.
Then a fold/unfold/map will simply be translated into a combinator invocation. For

example, if we define list as

data list(A) -> C = nil: 1

| cons: A,C -
The compiler will generate two combinators named fold_list and map_list. Where
fold_list has two macros which correspond to the two fold phrases, map_list has one
macro corresponding to one map phrase. So the body of the function
def app = L1,L2 => {| nil: => L2

| cons: a,l => cons(a,l)
[} L1.

42

will be translated into

= L2
L1, L2 = fold_list L1

a,l = clt (a,l)
Formally, an inductive datatype D is defined as

a : ELE?.. . EP—C

¢ : ELNEZ ... E¥C
data D(Ay,...,Ap) = C =

. 1 2 kn
¢o : ELE? ... Ek C

Where A; is a type variable, C is the state variable, k; is the number of arguments
of constructor 1. Ef is a type expression to specify the type of constructor i’s jth

argument. EY is defined as:

E == A type variable
| C state variable
| EyxEy---x Ey product

| T(Ei,...,Ey) datatype

Given a type expression E as defined above, we generate a combinator 0{f, g1, .., gm},
where 0¥ takes an input z of type E, maps f over the state variable part (the recur-

sive part) of z, and maps g; over the type variable A; part of . We use the following

rules to recursively generate the body o

04 = 9
0 - f
gEv*En = fy, ..

for:

Lok = (0%, 05k}

0T(E1,...,Ek) — map_T{eEl, ceey OEk}

Then fold_D and map_D can be defined as:

fold_D{gy,...,gn} = case®;

V1, Vo, ..

V1,02, ...

{ V1,V2,. ..

1
-y Uky = gl(Fl TR

1
’UkZ i 92 (F2 /U]_’...

1
s Uk, = dn (Fn Viy-w-

aFlkl Ukn)

)FZkz Uk2)

J F’I];:n Ukn)

N

7

43

where F/ = 9Pl {fold_-D, I, ..., I,}, I, is the identity abstraction which can be de-

fined as {z = z}.

map_D{gi,...,gm} = case”;

where Gg = OEg{map_D, Giy--rJm}-

V1,029, ..

V1,V2,...

V1,V2,...
\

; Uk

n

D (1
LU = cf (G, ..

D 1
yUky = C (G2 U1, ---

= CE (G,ll Viy. .-

; Glfl Ulﬂl)

) ng Uk2)

? G:'Cln Ukn)

\

7/

For example, the list datatype is defined as

nil : —C
data list(A) —» C =
cons : A,C—C

Here n=2,m =1, k; =0 and ky = 2, so we get

- =
fold_list{g1, go} = case"™ 9:0)

V1, Vg = 92(F21 U1,F22 v7)

' = Clist
map_list{g} = case!’! 0

v, V9 = cH(GL vy, G2 vy)
where
E} = 0% {fold list, 1} = 0*{foldlist,1} = I
F2 = 0% {fold list,1} = 0°{fold.list,I} = fold_list
GY = 0%{map_list,g} = 0 {map_list,q} = g

G2 = 0% {map_list,g} = 0°{map_list,g} = map_list

Substituting the above equations into the body of fold_list and map_list, we get

fold_list{g,, g.} = case'™’ 10)

v1, V2 = go(I vy, fold list vy)

. = Clist()
map_list{g} = case!® '

list

vy, vy = ¢yt (g vy, map_list vy)

44

45

Note that although both fold_list and map_list are recursive, we write fold_list instead
of fold_list{g:, g2} for the recursive call, since the macros are always the same, and
because it simplifies the work below (section 3.3), since the macros in the recursive
calls need not be substituted out.

Coinductive datatypes are defined as follows:

d, : HLH? .. H'"C—>FE

dy, : HLHZ .., HY C—E,
data C — D(A4, ..., Ap) =

d, : HH? .. Hk C—E,

Here n is the number of destructors, m is the number of type variables, and k; is the
number of higher-order arguments of destructor d; (d; is not higher-order if k; = 0).
Hf is the type of d;’s jth higher order argument, F; is d;’s result type. H;j and F

are defined in the same manner as the E/ in the inductive datatype. Note that a

higher-order destructor declared in the form
. 1 k;
dj:C— Hj,...,H;’ = Ej
is just syntactic sugar: the system actually reads it as

d;:H},...,Hy’,C - Ej

unfold_D and map_D are generated as:

unfold_D{gy, ..., gn}

Viyeo oy Uy

4

= z = rec?/

map—D{gla cee 7gm}

=
<
x
4

= z = recP/

Note that unfold in the form of

=

dj : Uj:>7'j

will be translated into

unfold_-D{...,{z = =},...,{vj,xc = 7;},...}

9E1{unfold_D, Ila ceey Im} 91(”1, .

Viyeooy Uk = 0P2{unfold D, I,... I} go(v, ..

Vi, ..k, = OF{unfold D, I,,.... I} gu(v1,..

0" {map_D, g1, ..., gm} dP(vy, ...

Vi, ..Uk = 0P {map.D,g,...,gm} d5 (v, ..

Vi,V = 0P {map.D,gi,...,gm} A2 (v,, ...

oy Uk, T)

'7(01927'1‘)

Uk, T))

avkux)

,’Uk2,33)

avknax))

47

Here are two examples:
1. We define the datatype for infinite list as

data C->IL(A)= head: C—>A
| tail: C->C.

Here n =2, m =1, ky = ks = 0, Then the unfold and map will be generated

as

E
unfold ID{gs, g2} = ¢ = recttd 0 LunfolddL Iy gy

= 07 {unfold_IL, I} g5 x

= 0% {map_IL,g} d'* z
map_IL{g} = v = rec'" t '

= 02 {map_IL, g} di* z

Since 0" {f, g} = 0*{f, 9} = g and 0"2{f, g} = 0°{f, g} = f, we get

= lgiz
unfold_IL{g., g2} = = = rec'* '

= unfold_IL g; x

= gdlfyg
map_IL{g} = v = rec'" '
= map_IL d}" z

2. The exponential which allows the use of higher-order functions is defined as

data C — exp(A,B) = fn:C - A= B

For clarity, we rewrite it as

data C' — exp(A;, Ag) = fn: A;,C — Ay

48

Son=1,m=2,k =1.
unfold_exp{g} =z = rece‘”p{v = 0% {unfold_exp, I, 1} g(v, :L')}

map_exp{g1, 92} = v = rece“’{v = 0" {map_exp, g1, g2} 7" (v, x)}

Here eEl{fa 91792} = HAZ{fa glaQQ} = 02, SO
unfold_exp{g} = x = rec®?{v = I g(v,z)}

map_exp{gi, g2} = x = rec*{v = g, A7 (v,z)}

3.3 Transforming combinator invocations

3.3.1 Introduction

Charity does not support higher-order functions explicitly (see example 2 above).
However, Charity gives explicit support for the use of combinators. Combinators
can be used to obtain some of the functionality of higher-order functions. There are

at least two possible ways to implement combinators:

1. Compile macros in combinators as higher-order functions. That is, each macro
is an actual argument of the combinator and its value is passed on the P-
stack in the form of a closure, which is composed of a code pointer and its
environment. This method usually yields smaller code size than method 2,
however, the cost of building/decomposing closures usually will mean slower

execution speed and higher heap usage.

49

2. Compile macros in combinators as macros in the original meaning of the word.
That is, multiple new functions are generated, each corresponding to a combi-
nator invocation with different macro arguments, with a combinator invocation
transformed into a call to the corresponding new function. A detailed explana-
tion follows. Obviously, code size will usually be larger—possibly exponentially
larger (see discussion in section 3.3.4)— than in method 1, but since no closures
need to be created and passed as arguments, the execution speed will generally

be faster and heap usage will be lower.

Method 2 is attractive as the benefit of faster code and lower heap usage is usually
higher than that gained from smaller code size. Furthermore, we can always define

the exponential datatype in Charity:

data C — exp(A,B) = fn:C — A= B.

Charity then effectively accepts higher-order functions that can be passed as param-
eters in the form of records of type exp. So if the user prefers smaller code size,
they can always use the exp datatype instead of macros. If execution speed is more
important, then the user can choose macros. Thus method 2 promises to give the
user more control. However, there is a problem: this sometimes leads to a code
explosion. So we actually implement a hybrid method as explained in section 3.3.4.

Here is a simple example to show the basic idea of method 2.

g} = 2= (z,97)

h = = fly= (y,y)}z

20

Here f is a combinator, h is not a combinator, but it contains a combinator invocation
f{y = (y,y)}. To translate combinator invocation in h, we generate a new function
/' by substituting g with ¥y = (y,y) in the body of f, then substitute f{y = (y,y)}

in A with f’, and we get

ff=z=(@{y= vy}

h = z=fz

However, if we change the above example to

Het = z=(z,97)

h = n,y= f{z=(y,2)}

After similar substitutions, we get

ffro=z=@{2=(y2)})

h = z,y=f'zx

Now a problem arises: we have an undefined variable y in f’. To solve this, we add
a parameter y to f’, and change the call to f’ correspondingly so that f’ takes two

arguments. This technique is called A-lifting [20].

' = zy=(z.{z=(y,2)} v)

h = z,y=f(z,9)

The above example shows the basic idea of transforming combinators invocations

into normal function calls. We describe the general steps in the following sections

o1

3.3.2 Environment variables

First, we define the notion of an environment variable. We say a variable v is an
environment variable of a term 7 if v occurs in 7 but is not defined in 7. The set of
all environment variables of 7 is called the environment of 7, denote as env(r). To

find the environment variables of 7, we apply the following rules recursively:

e Variable:
env(z) = {z}
e Tuple:
env((7y,...,7,)) = env(r) U- - Uenv(r,)
e Abstraction:
env(vy,..., v, = 7) = env(r) — {vy,..., v}

Function call:

env(f{r,...,mn}) =env(r) U---Uenv(r,)

o Case:

env(case?{r,...,7,}) = env(r) U--- Uenv{r,)

Record:

env(rec?{r,...,7}) = env{r) U---Uenv(r,)

52

e Application:

env(m 7o) = env{m) Uenv(ry)

e Other:

env(r) =0

Given an abstraction with environment variables, we can transform it into an
abstraction without environment variables by adding those environment variables as
new parameters of the abstraction. For example, x = z 4+ y has an environment
variable y, by adding y as a new parameter of the abstraction, we get z,y = = + vy
which has no environment variables.

The following rules will transform a term with environment variables into a term

without environment variables.

e Abstractions:

lift(vy, ..., 0, = T) =01, ..., Up,€1,...,6 =T

where eq, ..., e = env{vy,..., v, = T).

e All other terms:

ift(r) = e1,...,e, = T

where ey, ..., ep = env(T).

93

3.3.3 Generating new functions

To translate combinators into normal functions, the basic idea is to generate a new
function for each combinator invocation, then a combinator invocation can be sub-
stituted by a call to the new function.

First, we discuss how to generate a new function f’ which is equivalent to

f{r,-.., T}, where f is defined as vy, ..., v, = 7. The naive approach is to simply
substitute the macros my, ..., m, in 7 with actual macro arguments 74, ..., 7,, that
is, f' =wv1,...,0m = 7', where 7 = 7[1;/m;]’_,. However, we have to consider the

following problems:

1. If 74,...,7, contains unbound variables, the term vy, ..., v, = 7 will contain
unbound variables as well. The solution is to use A-lifting as given in the

previous section:

! . ! !
fr=10ft(v, .. v =T = v, Uy €1, 6 =T

where €1,...,6 = enV(f{Tla .. '1Tﬂ}>'

2. If f is a recursive combinator (as happens, for example, with the fold_D gener-
ated by the system), then an invocation of f within 7 should be replaced with
a call to f’. However, the lifted function f’ may have more arguments than f.
This means we cannot simply substitute f with f’ due to the type mismatch.

The solution is to substitute f with the following abstraction:

Viyeoos Um = f'(V1,. ., Um, €1, .., €L)

o4

The above abstraction takes the same number of arguments as f, and calls f’

with the correct number of arguments as well. Obviously its type matches that

of f.

3. T,...,T, may contain an unbound variable which has the same name as a
variable defined in f, in which case, the unbound variable will be mistakenly
captured as a local variable defined in f. The solution is to rename all the
unbound variables ey, . .., e, to new variables €}, ..., e} before the substitution,
where €}, ..., e} are system generated variable names that are all guaranteed

to be unique.

After f'is generated, we can generate the term to substitute f{7,...,7,}. Sim-

ilar to the problem discussed above, we cannot simply use f’ as the substitute.

Instead, we use the following abstraction to substitute f{r,...,7,}:
!
Wiy ooy Wiy €152y = [(W1, Wy €1, ..., k)
where wyq, ..., w,, are new variables distinct from ey, ..., e;.

This gives the following translation rule, G[—], for translating a combinator

invocation into a call to a new function: Let f{my,...,m,} =wv1,..., v, = 7, then

Glf{ir, . ., =wi,...,wm,e1,....ex = f{(wi,..., wm,e1,...,€1)}

where

{e1,...,ex} =env{m) U---Uenv(r,)

95

and wy, ..., w,, are new variables distinct from e;,...,e;. f’ is the name of a new

function defined as:

Viy ooy Umy €1,y = T[n/ flir /my]
where €, ..., ¢, are new variables corresponding to ey, ..., e, and
' ! k
T, = T [ej/ej]jzl
n = {v,- o, m = f{v1, . Um, €, ek)}

The following rules, M[—], will transform a term with combinator invocations

into a term without combinator invocations:

combinator invocation M[f{r,....,m} = G[f{M[n],..., M[r.]}]

abstraction Mvy,...,vp = 7] =v1,...,0, = M][7]

tuple M[(11,...,m)] = (M[n],-.., M[7.])

case MJcaseP{r,...,7}] = case?{M[r], ..., M[.]}
record MrecP{r, ..., 7, }] = rec?{M[7],..., M[7,]}
application M[r 7] = M[n] M[n]

other Mt =71

The new functions generated by the G rules may also contain function calls with

macros, which should also be transformed by applying the M rules.

26

3.3.4 Avoiding code explosion

Note the M rules for a function call f{7,...,7,}: it applies the M rules on 7; before
applying the G rules. So the inner-most combinator invocations will be transformed
first. This transformation order helps to reduce the number of newly generated

functions. Consider the following example:

fAm} = z=2+ (ma)
g{m} = z= (nz)+ (mz)

h = z=g{f{r=2rx2}}

Here h calls combinator g, while the macro parameter is also a combinator invocation:

f{z = z xx}. If the outer-most combinator invocation is transformed first, we get:

h = z=4¢=x

¢ = 2= (fe=arala)+ (flo > axa)a)

Now the f{z = x * z} was duplicated in the new function ¢’. To transform com-
binator invocations in ¢’, two new functions f’ and f” have to be generated though

they are identical:

h = z=¢=x

g = =2+ (")

' = z=>z+{r=>2x2}0)
" = z=>z+({zr=>zx2}x)

Though it is possible to avoid generating identical new functions by comparing newly

generated functions with previous ones, it would be computationally expensive. How-

o7

ever, if the inner-most combinator invocation is transformed first, we get:

h = z=9{f}x

! = z=>z+{z=>2x2}2)

Then the g{f'} in h is transformed:

h = z=4¢=x
g = z=(f2)+(f 2
flr' = z=2+{zx=>2x+*xz}x)

Only f' is generated by this transformation order. Thus, by transforming inner-
most combinator invocations first, we avoid duplicating combinator invocations and
creating multiple copies of identical new functions.
However, the above approach does not catch everything. Consider the following

program:

f = gly=>y+y}

g{m} = h{z=>mmaz}

h{m} = k{z=mmz}

k{m} = z=>mmux

To transform combinator invocations in f, a new function ¢’ is generated:

f =149

g = hMae=>{y=>y+y}{y=vy+y}az}

o8

To transform combinator invocations in ¢’, a new function A’ is generated:

f=19
gl — hl
yo) v =ly=syttlysytula

{r={y=y+yt{y=y+tyta}a

Finally, to transform combinator invocations in A’, a new function &’ is generated:

f =19
gl — hl
hl — kl
(() 3
t= {z=>{y=y+yt{y=>y-+y}z}
T = <

z={y=y+ut{y=y+ytztz
Bo= >

r= {r={y=y+yt{y=>vy+y}z}

r={y=v+y}{y=>y+yta} o |

Note how the size of the new functions have increased exponentially in each step,
this is an example of code explosion discussed earlier. To avoid code explosion, we
create a new function for each term that was passed as a macro parameter, if the
corresponding macro occurs more than once in the function definition. Taking the

above program as example, to transform combinator invocations in f, a new function

59
p1 is generated in addition to the new function ¢':
f=149

g = hiz=pp oz}

Pno= y=yty

Similarly, new functions p, and p;3 are generated along A’ and &', and the final result

1S

f=19
g =N
W= K
K= z=pspsa
P3 = T =pPaP2 X
P2 = T=pip1 T

o= y=yty

Compared with the previous method, this method generates three new functions, but
the total size of these functions is much smaller. Similar to the techniques discusses
in last section, if the new functions p1, ..., p3 contains environment variables, we can
A-lift them by adding the environment variables as new parameters. And we also
need to ‘wrap’ the call to the new function with an abstraction to make the type of
the new abstraction match the type of the old abstraction.

Formally, given f{r,...,7,}, where f is a function defined as vq,...,v, = T,

we define the following H rule:

H[f{m,...,m}] = f{r,--.,7,

60

where
)
L occurs(m;, 7) > 1,env(7;) = ¢
=9 wi,...,wp = h(wy,...,wge,...,e) occurs(my,T) > 1, env(r;) = {ey,..., e}
| = occurs(m;, 7) < 1

here occurs(m;, 7) is the number of times m; occurs in 7, h is a new function defined
as h = lift(r;).
We have changed the M rules described in last section so that it applies the H

rule before applying the G rule:

M[f{m,...,m}l = GIHLAM[n], ..., M[m]}]

3.4 Simplification and Optimization

The system-generated fold_D, unfold_D and map_D combinators may contain re-
dundant terms, and the procedure to transform combinator invocations may also
introduce some unnecessary abstractions. The following rules can be used to sim-

plify and optimize a term:

e Applying the identity function on a term will always generate the same term.

Ol 7]=r71

61

e An abstraction without parameters is equivalent to the term at the right side
of the arrow.

Ol=7]=r

e If an argument to an abstraction is a constant or variable, or the corresponding
parameter occurred no more than once in the abstraction, then the parameter

can be substituted with the argument.

OI[{Ul,...,?)i,...,Un :>7']} (Tl,---:Tia---aTn)]l
= OI[{Ul, ey Vic1,Vig1y e ooy Up = ’I’][TZ/’UZ]} (Tl, ey i1, Tigly e - - ,Tn)]l

(if 7; is a constant or a variable, or 7; occurred no more than once in 7)

For example:

O{z = fa} 7] = Olf 7]

Here x occurred only once in the abstraction so it can be replaced by the actual

arguments. As another example:

O{z,y=>z*xzx+yx*xy} (1,5)] =0[{zx = zxx+5%5} 7]

The parameter 5 corresponding to y is a constant, so the y in the abstraction

can be replaced by 5.

e Two abstractions can be combined under certain circumstances:

O[{vi,---,vn = 0} {wi, ...y w0 = (11, ..,)} 7]

= OHwy,...,wm = nn/vi™,} 7]

62

If for all 4, 1 < i < n, 7; is either a constant or variable, or v; occurs no
more than once in 7, then the two abstractions can be combined into one. For

example:

O{z,y=>z+y}{z=(2,2)} 7] =O0[{z = 2+ 2} 7]

If a case is applied right after the construction of an inductive data, the case

and the construction can be eliminated:

O[case”{r,..., 7} (c n)] = O[r 1]

For example:

O[case’™ {1, 7} cons(5,z)] = O[r (5,2)]

If a destructor is applied right after the creation of a record, the destructor

and the record creation can be eliminated:

O[d; rec?{7,...,m})] = O[r]

O|[diD My oy, rec?®{r, ... D] = Ofn (1, ..., 7m)]

3.5 Polymorphic functions and basic values

A polymorphic function is a function whose type contains type variables. For exam-

ple

f=z=(z,2)

63

is a polymorphic function whose type is A — A x A. A is a type variable and can
be assigned to any actual type, including basic types such as int. However, for
efficiency purpose, VMC has two stacks, a basic stack and a pointer stack. The
input parameter resides on B-stack if it is a basic value such as an int, while it will
reside on P-stack if it is a pointer value such as a 1ist. The VMC code for these two
cases are very different. If we can generate a ‘basic’ version and a ‘pointer’ version
of f, we can solve this problem. That is, we consider f as a template which has two
translations into VMC code: f? and f”. f? is the version to handle basic types
and f¥ is the version for pointer types. When f is called with actual parameter,
the compiler can determine, based on the type of the parameter, which version of
f should be used, and generate the corresponding code. For example, consider the

function

g=0=f3

Here f is applied to the argument 3, which has a basic type, so the compiler knows
that it must use the code fB. Unfortunately, there are cases where it is impossible

to tell the exact type of an argument, for example:

def app = L1,L2 => {| nil: => L2
|cons: a,1=> cons(a,l)
|} L2.

def start = app([]1,[1).

Here app is of type list(A),list(A) = list(A), it has one type variable A, so two
versions of app exist. But in start, [1 could be either a list of basic data or a
list of pointer data. Hence there is a choice between version of app. Actually it

doesn’t matter; both versions will run correctly. In such cases, we will simply call

64

the version that has already been used somewhere else, to reduce the size of code. If
both versions have been used, then the compiler will choose the pointer version.
Multiple versions of constructors also have to be generated to store data more

efficiently. Consider the datatype 1list:

nil: 1 -> C

data list(A)->C =
| cons: A, C —> C.

This datatype list has one type variable so that it can represent a list of any datatype,
including a list of integers. Figure 3.2 shows two possible ways of storing a list of

integers [5,6]: Obviously, format (A) is more space efficient. To achieve this, the

(A) (B)

110
2 |1 2|1 5
cons cons
5 2|1 — 2 11
cons cons
6
110 110
nil nil
110
6 |

Figure 3.2: Two possible storage formats of [5,6]

constructor cons must have a basic version and a pointer version as well.
The downside of this template-like approach is increased code size. The number

of VMC code versions required for a function is exponential in the number of type

65

variables. In practice, most functions have only a small number of type variables so
this worst case scenario does not happen. However, to cater for those cases in which
the number of type variables is large, the compiler generates the different versions
by demand only.

A lot of research has been done on the use of basic (unboxed) values with polymor-
phic functions. One commonly used method is to box the basic values before passing
them to the polymorphic function and unbox the result when necessary [23, 31]. But
the cost of boxing/unboxing can be very high for complicated data structures. For
example, the type of

p0 =z = {(y0,y1) = y0} =

is Ax B — A. When passing a pair of integers to p0, we have to project the compo-
nents of the tuple, box them, then build a new tuple. The cost of boxing/unboxing
outweighs the cost of the polymorphic function. An alternative approach, by using
Intensional Type Analysis, is to pass types as arguments to polymorphic functions in
order to determine the representation of an object [16, 34]. This approach avoids the
cost of boxing/unboxing, at the price of run time type analysis. The template-like
approach is more efficient and has been used, for instance, by Blelloch in a NESL
compiler [9], and by Jones to eliminate Haskell overloading [21]. Furthermore, Jones

reports that this approach does not lead to excessive code-blowup.

3.6 Type Checking Again

The first type checking ensures the validity of the program. However, to generate

VMC code, we also need type information:

66

e In order to decide which version of a polymorphic function is being called, we

need the exact type of that call.
e To decide which stack a variable resides on, we need the type of the variable.

e For an abstraction, the type of the result is needed so that we know which

stack the result resides on.

For these reasons, a second pass of type-checking is done in order to gather the needed
type information. We do this in three phases: first, we add type tags (actually
type variable identifiers) to every tuple, abstraction, and function call. Then we
decompose the term and generate type equations. Last, we solve the equations and
now we can determine the actual types of each tagged terms. The following ML

datatype is used to denote the tagged terms.

datatype Tagged

= tINT of integer (x integer constant *)
tSTR of string (x string constant *)
tVAR of string (* variable *)
tTUPLE of Tagged list* int list (* n-tuple, including O-tuplex)

tRECORD of string * Tagged list (* record *)
tCASE of string * Tagged list (* case *)
tCALL of string * int list (* call a function %)

|

|

|

| tAPP of Tagged * Tagged (* application *)

|

|

|

| tABS of (string * int) list * Tagged * int (* abstraction *)

The datatype Tagged is similar to the Term defined before, except at this stage, all
the combinator invocations have been transformed into normal function calls. All
the type tags are type-variables, so we actually use an integer to denote the type
variable. However, for clarity, we will represent them as a type expression here. The

type tags for a function call (including constructors and destructors) corresponds to

67

the type variables in the type of the function. For example, a call to function f of
type list(A),list(B) — Ax B, will be tagged with a list of new type variables [X, Y],
which corresponds to A and B. If X is solved to be of type int (a basic type), and
Y to be of type string (a pointer type), then we know the version we are calling is
fBP. The type tags for an abstraction are type tags corresponding to each of the
variables declared in the abstraction and a type variable corresponds to the result
type. We will represent a tagged term by 7!, where 7 is the term and ¢ is the type
variable.

Translation from a term to a tagged term is straightforward, we simply go over
the whole term and tag terms with a new type variables. For every function call f,
we look up the symbol table and find its type, if there are m type variables in its
type, we tag f with [Xi,..., X,;,], where X; is a new type variable.

The following rules decompose a tagged term and generate type equations (on

the right):

e Integer constant:

M mt =T
e String constant:
M string =T
e Variable:
z:Skx:T S_T Fy:Skax:T (z 4 y)

I'kx:T

68

Null-tuple:

n-Tuple:
Lk (r,...,m) 0Xn e T
'ekn: Xy -+ 1:X,

Xikoo kX, =T

Application:
TE(nm):T
'Fs:A THf:A>T

Abstraction: here X, ..., X,, = Y is the type tag associated with the abstrac-

tion.

CFop,... v, = 7XXeY o G T
v Xy, 0,0,: X FE Y

Y=T,X % -%X,=8

Function call: here X; are the type variables tagged on f, the type of f (by
looking up the symbol table) is in the form Fi,..., Ey — F, type variables

within E; are T,...,T,.

Tk fXeeXa g 5T

(E1 k.- *Ek)[Xz/Tz]f:l = S,F: T

69

e Record: here coinductive datatype D is defined as

d, : HLH .. H" C— E

dy : H) H? .. HY C— E,
data C — D(T4,...,T,) =

d, Hé,H?Z,...,H,’j",C%En
Then the rule is

[Frect{r,...,7}:T
r-n:v --- I'km7,:F,

L(Al,...,Am) :T

where Fy = (H} « H? % ---x HY — E)[L(A4,..., Ay)/C)[A/ T,

e Case: here D is defined as

¢ : ELE2...,EM=C

¢ : EYE2...E¥»C
data D(T1,...,T,) — C =

cn @ ELE2 ... Ef—C
Then the rule is

[t case?{r,...,7}:S =T
r-«:Fp—->T7 -« T'bmr:E —T

D(Al,,Am):S

where F; = (E} x E? % - % EF)[L(Ay, ..., A,) /Ol A/ TR,

The unification [33] algorithm is then applied on the set of equations generated: a

solution is always obtained as the validity of the program has been guaranteed by the

70

first type-checking pass. Then the term is traversed and the solution is substituted
into the type variables which tag the terms. Finally, as we are only concerned with
whether the tag is a basic type or pointer type, we re-tag a term 7 as 72 if the term

is a basic type, or as ¥ if it is a pointer type.

INT i — i

STR s — 8

VAR “z” —

TUPLE [r1,...,7n] = (T1,---,T0)
APP(1y,73) — T Ty

RECORD(D, [r1, ..., Tu|)— recP{r,..., 7}
CASE(D, [r,...,m]) — caseP{m,..., 7.}
MACRO i —

CTR(D, 1) — cf

DTR(D, 1) — df
CALL(“f",[m1,-- -,]) = f{m,---,Tn}
ABS([z1,..., 2], 7) — Z1,...,Zp, =T

Table 3.1: Representation of ML datatype Term

71

Chapter 4

VMC Code Generation

4.1 Overview

After a Charity program is translated into VMC code, its variables during execution
reside on stacks and are referenced by their positions relative to the top of the stacks.
Since values are frequently pushed onto or popped off stacks, the position of a variable
is hard to calculate. To solve this problem, we simulate the stacks by using a list K
to represent current status of the stacks. Each element in K is of the form of v¥,
where v is the name of a variable (An empty string ¢ is used if it is an intermediate
value which has no name). X can be either B or P, representing the type of the
variable. The list K allows us to determine which stack a variable resides on and its
current, position.

The following subsidiary functions are used in code generation:

e type(K,v) searches for v in K, starting at the head, and returns the type tag

of v, which is either B or P.

e pos(K,v) searches for v in K, starting at the head and ending at v, then
returns the number of elements encountered which is of the same type as v.
For example, if v is of type B, then it returns the number of basic elements

before v.

e bent(S) counts the number of B elements in S, which is a set of type tags.

72

73

e pcnt(S) counts the number of P elements in S.

4.2 Code Generation Rules

Given a term tagged with types as described in last chapter, we generate a list of
VMC code using the following three sets of rules. The F rule is used on the top-level
abstraction of a function only. The R rule is used on the phrases of a record, and
the T rules are used for all the other circumstances. Each rule generates a VMC
code list as the result. The R rules may generate a separate code list, which are not

immediately concatenated to the other code lists.

e Top-level abstraction: each function body is an abstraction, it needs to be
treated differently because there is a return address on the B-stack and we also

need to generate the return instruction. Here ¢b = bent({Xy,...,X,}) and

cp = pent({ Xy, ..., Xn})

TI[[¢B’ /UXn’ R aUXl]) T]l
FI[{U1, e, Up = T}Xl,...,xn_”g]l . ’

I‘etB Cb cp

T[[¢B, vXn, ... 0¥, 7
FI[{U1,...,UTL :>7-}X1,...,Xn_>p]l _ |[[. .]]l

I'etP Cb Cp

e Abstraction: we need to pop off the input arguments and move the results
to their proper positions. If the abstraction has more than one argument, we

detuple first, because in this case, its argument is a tuple on P-stack. A sim-

74

ple optimization will eliminate any consecutive newtuple and detuple (section
4.3.4). v:: K denotes a list with v as its head and K as its tail. Code inside ||
is generated only if the condition specified at the subscript to the brackets is

satisfied.

[detuple]

n>1
T[[Uff” e vf(l K 7]
[moveB 0 ¢b |y_p

T[K,{vi,...,v, = 7}X0Xn2Y] =
[moveP 0 ¢p Jy_p

popB ¢b

popP cp

where

cb = bent({Xy,...,Xn})

ep = pent({Xy,..., Xu})

e Integer constant:

T[[K,’i]l =| constI 2

e String constant:

TI[Ka 5]] =| newstr s

75

e Variable:

dupB pos(K,v) | if type(K,v) =B

T[K,v] = |

dupP pos(K,v) | if type(K,v) =P

e n-Tuple: here the empty string ¢ stands for an intermediate value that has no

name.

T[K,n]

T[¢* :: K, 7
TIK, (r, ..., 1) Kirn] =
T[¢Xn-1 12 pXn2 oo ¢%1 12 K, 7]

newtuple cb cp

e Application:

T|K,T
TI[K,Tl TQ]]: |[2]]

T[K,m]

e Function call: Let m be the number of arguments of f, n be the number of

type variables of f and fX1X2~Xn 3 version of f with its type variables equal

76

to Xl;---;Xn-

detuple
ifm>1

Call fXIXZ---Xn

TI[K, le,Xg,...,Xn]l =

call leXz...Xn lf m S 1

e Built-in function call: (e.g. the operator +) the body of these functions are

pre-defined lists of VMC code.

body of f | if f has 0 or 1 argument,

TIK, f] =

detuple)
if f has more than one arguments

body of f

155X

e Constructor application: CZX is a version of the constructor with its type

variables equal to X1, ..

T[K,c; "] = <

where

e Destructor application:

T[K,d;]

q

., X,,. Denote the type of ¢

1

X1,...

detuple
constI 1

newtuple cb+1 cp

constI 2

newtuple cb+1 cp

cb = bent(Ey,...,Ey)

cp = bent(Ey, ..., Ey)

detuple
getfieldP i
detuple

xcall

dupP O
getfieldP i
detuple

xcall

"as Ey,...

ifm>1

ifm<=1

if d; is higher-order

if d; is not higher-order

7

yEn, — F.

e Case: here L; and Lg are unique labels.

T[K,caseP{r,...,m}] =

LQI

LEZ

detuple

case L;...

T[K,m]

goto Lg

T[K,]

goto Lg

T[K,]

78

e Record: a record is represented in the VMC as a tuple of closures. Each closure

is composed of a code pointer (which is actually a integer) and its parameters.

First, we introduce an auxiliary rule P, which generates code to push a list of

variables onto the stack. The X; below is the type tag of v;.

PIIK, [7)1,’[}2, ..

where X; = type(K, v;).

Su]] =

T[K,v1]

Tvi o2 K, vs]

We now give the rule to translate record:

T[K,recP{r,..

S Tat]

Pl¢" -

newtuple 0 n

P[K, env(r)]
constA L,
newtuple b1+1 p;
P[¢" :: K, env(m)]
constA Lo
newtuple by+1 po
P[¢* :: ¢" :: K, env(r3)]

Tlvy? = vt o2 K, s
Tlopmt e ot K]
Lli
R[[l,Tl]]
LQ:
and | R[2,7]
L,:
R[n,]
o' 1 K, env(7,)]

79

80

env(T) is the list of environment variables of 7, b; is the number of basic vari-
ables in env(7;), and p; is the number of pointer variables in env(7;). The code
generated for a record consists two parts: the first part builds the tuple of clo-
sures; the second part is the collection of code segments that are being pointed
to by the closures. The second part is a separate piece of code and should not

be concatenated with the first part.

For clarity, the second part relies on another rule R. The R rule generates
the suspended computation code by first A-lifting the abstraction (recall: each
phrase in a record is in the form of an abstraction, even if the corresponding
destructor is not higher-order), then translating the lifted abstraction by the
F or T rule. The following rule is applied if destructor ¢ is higher-order.
e, ...,e, are environment variables of {vy,..., v, =}, Y; = type(K,e;), Z =

(X1, ., Xm, V1, .., Vi k.

RI[Z’ {/Ul’ ceey Um :> t}Xh"'aXm—)T]l

= F[{vi,-..,vm,€1,...,6 = t}Xl""’Xm’Yl""’Yk_)T]]

If destructor ¢ is not higher-order, the closure needs to be updated with the

81

result.

TIl, {e1,---,ex = T}Yl,...,Yk—)B]]
dupB 0
constA Lp
Rli,{=1}78] = newtuple 2 0
setfieldP 1 1
Lg:

retB 0 1

T[], {e1,. .., ex = 7}Vir=YemP]
dupP O
constA Lp
Rli,{=7}7"] = newtuple 1 1
setfieldP 2 1
Lp:

retP 0 1

4.3 Optimizations

Many of the code generation rules can be modified to generate more efficient code.

The following optimizations are described in this section:
e Basic optimizations to datatype representation (4.3.1, 4.3.2, 4.3.3).

e Peephole optimization on the VMC code, including the newtuple/detuple

82

elimination which is crucial in reducing heap usage.

4.3.1 Simple inductive datatypes

If an inductive datatype has no type argument and none of its constructors has
any arguments, we call it a simple inductive datatype. The boolean datatype, for

example, is a simple inductive datatype:

data boolean -> C = false: 1->C

| true: 1->C.
A simple inductive datatype can always be represented by a small integer. If we
represent simple inductive datatypes as integers, we can improve speed and memory
efficiency because now we do not need to box/unbox it. To achieve this, we treat
simple inductive datatypes as basic types in type-checking, and the code generation

rules need to be modified:

e The constructors for simple inductive datatypes simply put an integer on top

of the B-stack.

T[K,ci] =| constI i

83

e The case on a simple inductive data does not unbox the data:

case Ly...L,
Ly:
T[K,m]
goto Lpg
Loy:
T|K, CaseD{Tl,...,Tn}]] — T[K,]
goto Lg
Ls:
L,:
T[K,m]
Lg:

4.3.2 Inductive datatype with only one constructor

If an inductive datatype has only one constructor, we do not need to store the
constructor number in the heap node. Consequently, we need to change the following

code generation rules:

Constructor: if the constructor has multiple arguments, we simply create a tuple
of its arguments. However, since the arguments are already in a tuple, the

constructor actually does nothing! If the constructor has only one argument,

X1,X2,...,

we simply box it. ¢ Xn is a version of constructor with its type variables

84

equal to Xi,...,X,. Denote the type of cXt»~*» as F,..., E,, — F.

newtuple 1 0

TI[K, CXl,...,Xn]] = ¢

newtuple 0 1

constIl O

iftm>1

ifm=1and F1 =B

ifm=1and £, =P

ifm=0

Case: a case on inductive data with only one constructor does not generate the

case instruction

T[K,case®{1}] =

detuple
T[K,7]

4.3.3 Higher-order coinductive datatypes with only one destructor

If a coinductive datatype has only one destructor, and the destructor is higher-order,

then we can use a closure itself as the record instead of creating a 1-tuple of closures.

The following code generation rules are used:

e Record:

P[K, env(T)]
T[K, TeCD{T}]] =| constA Lp

newtuple cb+1 cp

LDI
R[K,1,7]

85

where
cb = bent(env(r))

cp = pent(env(r))

e Destructor:

detuple
T[K,d] = detuple

xcall

This optimization is very useful, because Charity does not support higher-order func-
tions directly, instead, higher-order functions are usually implemented by defining a

coinductive datatype such as

data C — exp(A,B) = fn:C — A= B.

This optimization makes the implementation of higher-order functions as efficient as

languages that support higher-order functions directly.

4.3.4 Peephole optimizations on VMC code

As the last step of translation, some simple peephole optimizations are applied on

the generated VMC code.

e If a newtuple instruction is immediately followed by a detuple instruction,

then these two instructions can be eliminated.

newtuple m n
— €

detuple

86

This optimization is critical in reducing heap usage. For a Charity expression
f(z,y), we generate the codes for (z,y) first, then the code for calling f. The
last instruction for (z,y) is a newtuple, and the first instruction for calling f is
a detuple if f is a function with multiple arguments. Obviously the newtuple
and detuple are unnecessary. It is possible to change the code generation rules
to avoid generating such code, but that makes the rules very complex. Instead,

the above optimization at the VMC code level is sufficient.

A case L; L, immediately followed by the definition of L; can be translated
into a ifnonzero L, The latter can usually be implemented more efficiently

on modern CPUs.

case L, Ly
— | ifnonzero L,

Lli

A constI ¢ immediately followed by a newtuple 1 0 can be replaced by a
newint ¢ instruction. A constructor without any arguments (such as the nil
in the definition of list) will be represented by a boxed small integer. Since
such constructors will not be updated, the virtual machine creates only one
heap node for each small integer and re-use it. Heap usage can be reduced by
up to 25 percent by this optimization. Note this optimization requires that the

boxed integer will never be updated.

constI ¢
— | newint 1

newtuple 1 0

87

e The following instructions have no effect at all and can be simply eliminated:

popB 0 — €

popP 0 — €

moveB 7 72 — €

moveP 7 1 — €

Chapter 5

Results and Conclusion

This thesis describes the Virtual Machine for Charity and the detailed translation
steps from Charity code to VMC code. The compiler is written in SML, and the
virtual machine is implemented as an interpreter written in C++.

This new implementation is significantly faster than the old one and consumes
much less memory. The following table shows the speed and memory usage of run-
ning the same programs under the new implementation and the old one. The test

environment is Intel Xeon 1.4G running Window 2000.

Program Time(new) Time 1(old) Time 2(old) Heap size(new) Heap size(old)
pegs(1) 0.42s s 2s 2M 5M
pegs(2) 7s 163s 21s 32M 80M
primes 7.4s 71s 57s 1M 2.5M

pegs is a program to solve the peg solitaire game. It uses an exhaustive search
to find the solution. pegs(1) and pegs(2) are the same program with different input.
primes is a program that finds the first 1000 prime numbers.

The old interpreter starts with a very small heap, and increases the heap size grad-
ually as more memory is needed. This accounts for the run-time decrease between
the initial execution and subsequent execution of a program in the old interpreter.

To be fair, we measured both times. The new implementation does not have this

38

89

issue so repeated executions takes the same amount of time. The old interpreter
does not provide memory usage statistics, so the heap size of the old implementation
is a rough estimate observed from Windows 2000’s task manager.

The contributions of this thesis are:

Design and specification of VMC: The structure of VMC is simpler than many
other virtual machines, yet it can represent both inductive data and coinductive
data efficiently. Basic values (unboxed) can be stored and represented directly
in VMC, and a heap node can contain a mixture of basic values and heap

pointers.

The translation from Charity code to VMC code and related optimizations:
The translation aims to reduce heap usage and to improve execution speed.

This is achieved by the following approaches:

1. The new multi-function types (3.1.1) allow several function parameters
to be passed on stack, eliminating tuple formation. The multi-function

types also allow more efficient representation of data structures.

2. Combinators invocations are transformed into normal functions calls by
macro-substitution (3.3), which avoids the cost of building closures for

macro parameters.

3. Polymorphic functions are compiled into different versions (3.5) so that
basic data can be represented and manipulated in their natural unboxed

form. It also allows more efficient representation of polymorphic datatypes.

4. The intermediate representation is simplified and optimized following the

90

rules in section 3.4.

5. Code generation rules are optimized to allow more efficient representation

of certain datatypes (section 4.3.1,4.3.2, 4.3.3).

6. Some peephole optimizations are applied on the generated VMC code

(section 4.3.4).

Implementation of the core-Charity translator and the VMC interpreter:
The core-Charity translator consists of 2000 lines of SML code, much shorter
and cleaner than the previous implementation. The VMC interpreter provides

a rich set of commands to debug VMC programs.
Possible future work could be:

e Implementing pattern-matching [32]. This feature is available in old imple-
mentation but has not been implemented in the new implementation, due to

limited time.

e Implementing new features of Charity, such as modules, more extensive 1/0,

etc.

e Compiling VMC code into native machine code. VMC is designed to model a
concrete machine, so it is relatively easy to map VMC code into native machine

code. The main issue here might be how to make use of registers efficiently.

e Proving the correctness of the translation rules. One of the more interesting
aspects of Charity is that it is based uncompromisingly on the formal theory

of datatypes. Thus, it is highly suitable to implementations for which proofs

91

of correctness are required. It would therefore be very nice to be assured that

the implementation of Charity itself is correct!

1]

2]

3]

[4]

[5]

[6]

7]

8]

Bibliography

A. W. Appel. Garbage collection can be faster than stack allocation. Informa-

tion Processing Letters, 25(4):275-279, 1987.

A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. In
J. Maluszynnski and M. Wirsing, editors, Programming Language Implemen-

tation and Logic Programming, pages 1-13, 1991.

Andrew W. Appel. Runtime tags aren’t necessary. Lisp and Symbolic Compu-

tation, 2:153-162, 1989.

Andrew W. Appel. Simple generational garbage collection and fast allocation.

Software—Practice and Experience, 19(2):171-183, February 1989.

Andrew W. Appel. Garbage collection. In Peter Lee, editor, Topics in Ad-
vanced Language Implementation, pages 89—-100. MIT Press, Cambridge, Mas-

sachusetts, 1991.

Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

J. Backus. Can programming be liberated from the Von Neumann style? Com-

munications of the ACM, 21(8):613-641, 1978.

R. Bird and P. L. Wadler. Introduction to Functional Programming. Prentice

Hall, Hemel Hempstead, 1988. (pbk).

92

[9]

[10]

[11]

[12]

[13]

[14]

[15]

93

Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha, and Sid-
dhartha Chatterjee. Implementation of a portable nested data-parallel language.

Journal of Parallel and Distributed Computing, 21(1):4-14, 1994.

Robin Cockett. Charitable thoughts, 1996. (draft lecture notes,

http://www.cpsc.ucalgary.ca/projects/charity/home.html).

Robin Cockett and Tom Fukushima. About Charity. Yellow Series Report No.
92/480/18, Department of Computer Science, The University of Calgary, June

1992.

G. Cousineau, P. L. Curien, and M. Mauny. The categorical abstract machine.
In J.-P. Jouannaud, editor, Functional Programming Languages and Computer

Architecture, pages 50-64. Springer-Verlag, Berlin, DE, 1985.

J. Fairbairn and S. Wray. Tim: A simple, lazy abstract machine to execute
supercombinators. In G. Kahn, editor, Functional Programming Languages and
Computer Architecture, pages 34—46. Springer-Verlag, Berlin, DE, 1987. Lecture
Notes in Computer Science 274; Proceedings of Conference held at Portland,

OR.

R. R. Fenichel and J. C. Yochelson. A LISP garbage-collector for virtual memory
computer systems. Communications of the ACM, 12(11):611-612, November

1969.

Robert Harper. Introduction to Standard ML. Technical Report ECS-LFCS-86-
14, Laboratory for Foundations of Computer Science, Department of Computer

Science, University of Edinburgh, November 1986.

[16]

[17]

18]

[19]

[20]

[21]

[22]

94

Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. In Conference Record of POPL °95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 130-141,

San Francisco, California, 1995.

Mike Hermann. A lazy graph reduction machine for Charity: CHarity Abstract
Reduction Machine (CHARM). (unfinished), July 1992.

P. R. Hudak, P. L. Wadler, et al. Report on the programming language haskell,
a non-strict purely functional language, version 1.2. ACM SIGPLAN Notices,
27(5), 1992.

T. Johnsson. Efficient compilation of lazy evaluation. SIGPLAN Notices,

19(6):58-69, June 1984.

Thomas Johnsson. Lambda lifting: transforming programs to recursive equa-
tions. In Functional programming languages and computer architecture, New

York, NY, USA, 1985. Springer-Verlag Inc.

Mark P. Jones. Dictionary-free overloading by partial evaluation. In Par-
tial Evaluation and Semantics-Based Program Manipulation, Orlando, Florida,
June 1994 (Technical Report 94/9, Department of Computer Science, University
of Melbourne), pages 107-117, 1994.

Simon L. Peyton Jones. Implementing lazy functional languages on stock hard-
ware: The spineless tagless g-machine. Journal of Functional Programming,

2(2):127-202, 1992.

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

95

Xavier Leroy. Unboxed objects and polymorphic typing. In 19th symposium

Principles of Programming Languages, pages 177-188. ACM Press, 1992.

Henry Lieberman and Carl E. Hewitt. A real-time garbage collector based on

the lifetimes of objects. Communications of the ACM, 26(6):419-429, 1983.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT

Press, Cambridge, MA, 1990.

R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph

Rewriting. Addison-Wesley, Reading, MA, 1993.

P. M. Sansom and S. L. Peyton Jones. Generational garbage collection for
Haskell. Research Report FP-1993-2, Department of Computer Science, Uni-

versity of Glasgow, Glasgow, UK, 1993.

Marc A. Schroeder. Higher-order Charity. Master’s thesis, The University of

Calgary, July 1997.

Sjaak Smesters, Erick Nocker, Jon van Gronigen, and Rinus Plasmeijer. Gen-
erating efficient code for lazy functional languages. In John Hughes, editor,
Functional Programming Languages and Computer Architecture, pages 592—617.

Springer Verlag, June 1991.

Dwight L. Spencer. Clategorical Programming with Functorial Strength. PhD

thesis, The Oregon Graduate Institute of Science and Technology, January 1993.

Peter Thiemann. Unboxed values and polymorphic typing revisited. In Func-

tional Programming Languages and Computer Architecture, pages 24-35, 1995.

96

[32] Charles Tuckey. Pattern matching in Charity. Master’s thesis, The University

of Calgary, July 1997.

[33] Peter Vesely. Typechecking the Charity term logic, April 1997. (documentation,

http://www.cpsc.ucalgary.ca/projects/charity/home.html).

[34] Stephanie Weirich. Encoding intensional type analysis. Lecture Notes in Com-

puter Science, 2028, 2001.

[35] Paul R. Wilson. Uniprocessor garbage collection techniques. In Proc. Int. Work-

shop on Memory Management, Saint-Malo (France), 1992. Springer-Verlag.

[36] Dale Barry Yee. Implementing the Charity abstract machine. Master’s thesis,

The University of Calgary, September 1995.

Appendix A

VMC specification

A.1 Formal Syntax of VMC program

VMC Program
code_list
separator

code
instruction
operator
operands
operand

label

identifier

N e A

code_list

code | code separator code_list
LF | BAR

instruction | label : | ! identifier
operator | operator operands
identifier

operand | operand operands
label | number | string

[e]|_] [a-z|A-Z|0-9| 1%

[a-z|A-Z] [a-z|A-Z|0-9| 1

97

98

A.2 Data

A.2.1 Basic data
Char 8-bit signed character.
Short 16-bit signed integer.
Integer 32-bit signed integer.
Long 64-bit signed integer.
Float 32-bit real number.
Double 64-bit real number

Address Internally a 32-bit integer, but represented by labels in VMC code.

A.2.2 Pointer data
tuple Each field must be 32-bits, but can be of different type.
array Each element must be of the same type, but not restricted to 32-bit data.

string An array of Char with 0 at the end of the string.

A.3 Instruction Set

Instructions are specified by state transition tables. The state of VMC can be de-
scribed by four elements: Instruction pointer, B-stack, P-stack, Heap. Elements
not affected by the instruction are not shown in the tables. Symbols used in the

transition tables are:

{instr}.cs

b.bs

b.ps

b,q

[es|

IP status. instr is the next instruction to be executed.
cs represent the code sequence following instr.
B-stack status. b is the top element

bs represents all the elements under b.

P-stack status. p is the top element

ps represents all the elements under p.

any 32-bit basic value

any 64-bit basic value

pointer

the address of code sequence cs

Char (8-bit)

Short (16-bit)

Integer (32-bit)

Float (32-bit)

Long (64-bit)

Double (64-bit)

32 bit data, the lowest 8 bits be ¢ and other bits be 0
32 bit data, the lowest 16 bits be s and other bits be 0
a tuple with m basic values and n pointers.

an array with n items.

non-negative integer.

99

100

A.3.1 Arithmetic instructions

All Arithmetic instructions take input from the B-stack, pop off the inputs and push
the result on B-stack. The last character in the instruction name indicates the type

of operands: 1 for Integer, F for Float, L. for Long and D for Double.

addI,addF,addL,addD addition
subl,subF,subX,subD subtraction
mull,mulF,mull,mulD multiplication
divI,divF,divL,divD division
modI,modF,modL,modD modulus

negl,negF,negl,negD negation

Code B-stack = Code B-stack Comment
{addI}.cs iy.i1.bs = cs i'.bs i =1+ 1,
{addF}.cs fo.f1.bs = cs flos f'=fi+ fo
{addL}.cs ls.l1.bs = cs l'bs U'=1+1y
{addD}.cs ds.di.bs = cs d.bs d=d +d,
{subI}.cs iy.i;.bs = cs v.bs i =1, — 19
{subF}.cs fo.f1.bs = cs flos f'=fi—fa
{subL}.cs ls.l;.bs = cs l'bs U'=1 =1
{subD}.cs dy.di.bs = cs d.bs d=d —d,
{mull}.cs iy.i;.bs = cs '.bs 1 =1 X iy
{mulF}.cs fo.f1.bs = cs flbs f'=fi1 x fo
{mullL}.cs ls.l1.bs = cs l'bs U'=1; xIy
{mulD}.cs do.di.bs = cs d.bs d=d xd
{divI}.cs ig.i.bs = cs .bs i =1 =1y
{divF}.cs fo.f1.bs = cs flos f'=fi/fe
{divL}.cs ls.l1.bs = cs l'bs U'=10 <1,
{divD}.cs do.di.bs = cs d'.bs d =di/dy
{modI}.cs iy.i;.bs = cs i'.bs i =1, mod i,

modF ;.cs 2./1-08 = cs .bs = f1 mod Jo
f2-f1:b flbs f''= fi mod f.

modL.cs 2.l1.08 = cs .bs = 1 mod [y
{ } ly.1;.b l'bs U'=1 dl
modD.cs 2.01.08 = cs .0s = @y mod do
{ } dy.d;.b dbs d=d dd
neglt.cs 1.08 = cs .08 1 = —1

g . b ! b */
negk;.cs 08 = cs .08 = —

g £ flbs fr=—f
neglL{.cs 08 = cSs .08 = —

g l.b l'bs U l
negD¢{.cs 08 = cs .08 = —
{negD} d.b d.bs d d

101

102

A.3.2 Logical and bit instructions

Logical and bit instructions take inputs from B-stack, pop off the inputs and then

put the result on the B-stack. All instructions operate on integers only.

and,or,not logical And, Or, Not
bitand,bitor,bitnot bitwise And, Or, Not
bitxor bitwise eXclusive Or

shl,shr shift left, shift right

Code B-stack
{and}.cs 0.0.bs
{and}.cs 0.i.bs
{and}.cs .0.bs
{and}.cs is.i1.bs

{or}.cs 0.0.bs
{or}.cs 0.i.bs
{or}.cs 4.0.bs
{or}.cs iy.i1.bs
{not}.cs i.bs

Code B-stack Comment

cs 0.bs

cs 0.bs i#0

cs 0.bs 1#0

cs 1.bs 11 #0,i3 #0
cs 0.bs

cs 1.bs 1 #0

cs 1l.bs 1 #0

cs 1.bs i1 # 0,49 #0
cs 0.bs i#0

R R R R R A R R R AR A

{not}.cs 0.bs cs 1.bs
{bitand}.cs is.i1.bs cs i'.bs ' =1, bitand 7
{bitor}.cs iy.iy.bs cs 7'.bs i =1, bitor iy
{bitnot}.cs i.bs cs i'.bs ' = Dbitnot i
{bitxor}.cs is.i1.bs cs i'.bs i’ =1, bitxor i
{shl}.cs iy.i;.bs cs i'bs i =iy x 2"
{shr}.cs is.i1.bs cs i'bs i =i = 2%

A.3.3 Comparison instructions

Except for the eqP instruction, all comparison instructions take inputs from B-stack,
pop off the inputs and put the result on B-stack. The result is always a 0 or 1. The
last character of each instruction indicate the type of operands: I for Integer, F for

Float, L for Long and D for Double.

eql,eqF,eql,eqD equal

gtl,gtF,gtl,gtD greater than

gel,geF,gel,geD greater than or equal to

eqP test whether two pointers are equal

Code B-stack P-stack = Code B-stack P-stack | Condition

{eqI}.cs i.1.bs = cs 1.bs
{eql}.cs i.d'.bs = cs 0.bs P F£ 0
{eqF}.cs f.f.bs = cs 1.bs
{eqF}.cs f.f'.bs = cs 0.bs f#f
{eqL}.cs [.1.bs = cs 1.bs
{eqL}.cs 1.I'.bs = cs 0.bs e
{eqD}.cs d.d.bs = cs 1.bs
{eqD}.cs d.d'.bs = cs 0.bs d#d
{eqP}.cs bs ppps = cs 1.bs S
{eqP}.cs bs p.gps = cs 0.bs ps | p#q
{gtI}.cs i9.iy.bs = cs 1.bs 11 > 19
{gtI}.cs i9.iy.bs = cs 0.bs 11 < 19
{gtF}.cs fo.f1.bs = cs 1.bs fi>fo
{gtF}.cs fo.f1.bs = cs 0.bs fi< fo
{gtL}.cs lo.ly.bs = cs 1.bs >
{gtL}.cs la.ly.bs = cs 0.bs I <ly
{gtD}.cs dy.d;.bs = cs 1.bs di > dy
{gtD}.cs dy.dy.bs = cs 0.bs di < d,
{gel}l.cs ig.iy.bs = cs 1.bs 11 > 1y
{gel}l.cs ig.iy.bs = cs 0.bs 1 < iy
{geF}.cs i9.iy.bs = cs 1.bs fi>fo
{geF}.cs i9.iy.bs = cs 0.bs fi< fo
{geL}.cs i9.i1.bs = cs 1.bs li > 1
{geL}.cs i9.i1.bs = cs 0.bs L <ly
{geD}.cs i9.iy.bs = cs 1.bs dy > do
{geD}.cs i9.iy.bs = cs 0.bs di < dsy

103

104

A.3.4 Data conversion instructions

Data conversion instructions convert one basic datum to the equivalent basic datum
of another type. Each instruction takes one input from the B-stack, pops off the
input and puts the result on the B-stack. The first letter of each instruction name
indicates the type of input, the last letter of each instruction name indicates the

type of output: c for Char, s for Short, i for Integer, f for Float, 1 for Long and d for

Double.
c2i Char to Integer
s2i Short to Integer

i2¢,i2s,i2f,i21,i2d Integer to Char, Short, Float, Long and Double
£2i,f21,f2d Float to Integer, Long and Double
12i,12f,12d Long to Integer, Float and Double

d2i,d2f,d21 Double to Integer, Float and Long

105

Code B-stack = Code B-stack Comment
{c2i}.es (0:¢).bs = cs ibs i=c
{s2i}.cs (0:s).bs = cs i.bs i=s
{i2c}.cs i.bs = cs (0:¢)bs c=i
{i2s}.cs i.bs = cs (0:s).bs s=i
{i2f}.cs i.bs = cs fbs f=1
{i21}.cs i.bs = cs lbs 1=1i
{i2d}.cs i.bs = cs dbs d=1
{f2i}.cs fbs = cs i.bs i=|f]
{f21}.cs fbs = cs lbs 1= |f]
{f2d}.cs fbs = cs dbs d=f
{12i}.cs lbs = cs i.bs =1
{12f}.cs lbs = cs fbs f=I
{12d}.cs Lbs = cs dbs d=1
{d2i}.cs d.bs = cs i.bs i =|d]
{d21}.cs d.bs = cs l.bs 1 =|d]
{a2f}.cs d.bs = cs fbs f=d

A.3.5 Branch instructions

Unconditional branch instructions either go to a constant address specified in the in-
struction or take the address from the B-stack. Conditional branch instructions check
the top value on the B-stack to determine whether to go to a specific address. retX

instructions pops off the inputs for subroutine and keeps the result on top of stacks.

106

goto L goto a specific address L

ret pops off the top value on the B-stack then goto there
call L push current address on the B-stack then goto L

xcall same as call except the goto address is on top of B-stack

case Ly---L, goto L; where i is the top value on B-stack
ifzero L goto L if the top value of the B-stack is zero
ifnonzero L goto L if the top value of the B-stack is not zero
ifpos L goto L if the top value of the B-stack is positive
ifneg L goto L if the top value of the B-stack is negative
retM m n ¢ j pop off 7 basic values and j pointers as the result, then pop off
one basic value as the return address, then pop off m basic values and n

pointers, push the result back and go to the return address.

retB m n equivalent to retM m n 1 0
retP m n equivalent to retM m n 0 1
retU m n equivalent to retM m n 2 0

halt stop the execution of virtual machine.

107

Code B-stack = Code B-stack Condition
{goto lcs’|}.cs = cs'
{ret}.cs |cs'|.bs = cs' bs
{call lcs’l}.cs bs = cs' |es|.bs
{xcall}.cs |cs'|.bs = cs' |es|.bs
{case |csy|---|cs)|}.es i.bs = cs; bs 0<i<k
{ifzero lcs’l}.cs 0.bs = cs' bs
{ifzero lcs’|}.cs i.bs = cs bs i#0
{ifnonzero |cs’|}.cs 0.bs = cs bs
{ifnonzero |cs’|}.cs i.bs = cs' bs 1#0
{ifpos lcs’|}.cs i.bs = cs' bs >0
{ifpos lcs’|}.cs i.bs = cs bs <0
ifneg lcs’|}.cs 1.bs = cs' bs <0
g
{ifneg lcs’|}.cs i.bs = cs bs >0
{halt}.cs = €
Code B-stack P-stack
{retM m n @ j}.cs by.---.bifcs'|.by. oo by bs Phc o pipLc PR
= cs' by.---.b.bs Py -p;ps
{retB m n}.cs b.les'|.by. - - - by bs Pl .Dn-PS
= cs' b'.bs ps
{retP m n}.cs les'|.by. -« - .bp,.bs p.pic DpD
= cs' bs p'.ps
{retU m n}.cs b .bYy.|cs'|.by. - - - by bs Pl -Dn-PS
= cs' b’ .b,.bs ps

108

A.3.6 Constant instructions

Constant instructions put a constant on top of B-stack. The last character of the
instruction name indicate the type of the constant: I for Integer, F for Float, L for

Long and D for double, A for address (label).

constI ¢ push a Integer on top of B-stack
constF f push a Float on top of B-stack
constL [push a Long on top of B-stack
constD d push a Double on top of B-stack

constA L push address of label L on top of B-stack

Code B-stack = Code B-stack

{constI i}.cs bs = cs i.bs
{constF f}.cs bs = cs f.bs
{constL l}.cs bs = cs l.bs
{constD d}.cs bs = s d.bs
{constA |cs'|}.cs bs = cs |es'|.bs

A.3.7 Stack instructions

Stack instructions manipulate items on B-stack and P-stack. The last charac-
ter in the instruction name indicate which stack to manipulate and the size of

data: B for B-stack 32 bit item, U for B-stack 64 bit item and P for P-stack.

109

dupB, dupU, dupP duplicate an item and put it on top of stack
moveB, moveU, moveP set the value of one item to the value of another

swapB, swapU, swapP swap the top two item

Code B-stack P-stack
{dupB k}.cs bo.by. - - - .bg.bs
= CcS by.bg.by. - - - .by.bs
{dupU k}.cs bo.by. - -« .b.bgy1.8
= CcS bk.bk+1.b0.b1. < .bk.bk+1.b8
{dupP £k}.cs Po-P1- - -Pk-PS
= cs Di-Po-P1-" - -Pk-PS
{popB n}.cs bi.- - .by.bs
= cs bs
{popP n}.cs Pi.***.Pn-DS
= cs ps
{moveB j k}.cs bo. - -+ .bg_1.bg.bgy1. - - - .b;.bs
= CcS bg.--- -bkfl-bj-bk+1- <. .bj.bS
{moveB j k}.cs bo. -+ .bj. - .bg_1.b.bs
= cs bo.---.bj. - -.bg_1.b;.bs
{moveU j k}.cs bg.--.bg_1.bk.bgp1. -+ .bj.bj11.bs
= CS bo. s -bk—l-bj-bj+1- s .bj.bj_H.bS
{moveU j k}.CS b(). cee -bj-bj—|—1- T .bk_l.bk.bk+1.b8
= CS bo. s -bj-bj—|—1- s .bk_l.bj.bj+1.b8
{moveP j k}.cs Po-*** -Pk—1-Pk-Phk+1-* * * -Dj-PS
= cs Do- " -Pk—1-Pj-Pk+1-"" " -Pj-PS
{moveP j k}.cs Po- - -Dj-*** -Pk—1-Pk-PS
= cS Po-----Pj-" - .Dk-1-Pj-DS
{swapB}.cs by.by.bs
= cs by.by.bs
{swapU}.cs U1.Usg.bs
= cs Ug.1U1.bS
{swapP}.cs P1.P2.DS

= cS P2.pP1-PS

110

A.3.8 Tuple instructions

Tuple instruction create and manipulate tuples. The last capitalized character indi-
cates the type of the value in the tuple: B for basic value, P for heap pointer, and
U for 64 bit basic value. The newint instruction is for an optimization purpose:
A constructor without argument (such as the nil in the definition of list) will be
represented by a boxed small integer. Since such constructor will not be updated,
the virtual machine can create only one tuple for each small integer and re-use them.

Heap usage is reduced significantly by this optimization.

newtuple m n create a tuple with m basic data and n pointer data on stacks.
detuple load all fields of a tuple onto stacks.

getfieldB 1 put the value of field 7 on B-stack

getfieldP 1 put the value of field 7 on P-stack

getfieldU 1 put the value of 64 bit field 7 on B-stack

setfieldB i set the value of field 7 to the top 32 bit value on B-stack
setfieldP 1 set the value of field 7 to the top 64 bit value on B-stack
setfieldU 1 set the value of field 7 to the top pointer on P-stack
tuplesizeB get the number of basic fields in a tuple

tuplesizeP get the number of pointer fields in a tuple

newint ¢ create a 1-tuple which contains an constant integer i.

111

Code B-stack P-stack Heap
{newtuple m n}.cs by.---.by.bs p1.---.py.ps
= cs b q.ps q = (bi- bypi---pn)
{detuple}.cs bs qps q— (b1 -bmpr--pn)
= cs by.o--bp.bs pr.cccpp.ps
{getfieldB k}.cs bs qps q— (zo---xg---)
= cs xy.bs ps
{getfieldU k}.cs bs qps q— (To-- - TgTyr---)
= cs Tg-Tgt1-bs ps
{getfieldP k}.cs qps q— (zo---xg--+)
= cs Tp.ps
{setfieldB k}.cs b'.bs qps q— (zo- -x--+)
= cs bs ps q— (zg---b'--")
{setfieldU k}.cs b;.b,.bs qps q— (To-* TkTpyr---)
= cs bs ps q— (xo---bby---)
{setfieldP k}.cs p.aps q— (zo---xg---)
= cs ps qg— (wo---p'--)
{tuplesizeB}.cs bs qps q— (b1 -bppr---pn)
= cs m.bs ps
{tuplesizeP}.cs bs qps q— (b1 -bppr---pn)
= cs n.bs ps
{newint i}.cs bs ps
= cs bs qg.ps q— (3)

A.3.9 Array instructions

Array instructions create and manipulate arrays. The capitalized last character in
the instruction name indicate the type of array items: C for Char, S for Short, B for

32-bit basic data, U for 64-bit basic data and P for pointer.

newArrayX create a array, each item is of type X
getitemX get the value of an item in an array, the item is of type X
setitemX set the value of an item in an array, the item is of type X

arraysizeX get the size of an array, item in the array is of type X

112

Code B-stack P-stack Heap
{newarrayC}.cs n.bs ps
cs bs q.ps q— [coer - ey
{newarrayS}.cs n.bs ps
cs bs q-ps q— [SoS1-*Sp_1]
{newarrayB}.cs n.bs ps
cs bs q.ps q — [boby - by 1]
{newarrayU}.cs n.bs ps
cs bs q.ps q — [ugty - Up 1]
{newarrayP}.cs n.bs ps
_ cs bs q-ps__q = [pop1 - Pp—1]
{getitemC}.cs k.bs q.ps q— [coer ey
cs c.bs ps
{getitemS}.cs k.bs q.ps q— [SoS1* " Sp—1]
cs (0 sg).bs ps
{getitemB}.cs k.bs q.ps q — [boby - - by 1]
cs by.bs ps
{getitemU}.cs k.bs q.ps q — [ugty - Up 1]
cs uy.bs ps
{getitemP}.cs k.bs q.-ps q— [pop1- - Pr_1]
cs bs Di-PS
{setitemC}.cs (0:¢).k.bs q.ps q— [co-Ch—1CkCry1 " Cpi]
{setitemS} o (0:5).k 28 e]
etitemS}.cs : 8').k.bs q-ps q— [So " Sk_1SkSks1" " Sn_1]
Cestivent) cs - Ib)s q-ps q—[So - Sk—18Sk+1" " Sn1]
itemB}.cs k.bs q.ps q— [bo---bg 1bgbgi1 by 1]
(estTvemt] cs - 25 q-ps g = [bo-- by 1b'biy1 by 4]
itemU}.cs u'.k.bs q-ps q— [Ug- - Up_1UpUgs1 - Up_1]
— cs bs aps g [0 -+ - Up—1U Ug 1 - - Un—1]
setitemP}.cs kbs p.gps q— [po Pr—1PkPE+1 " Poi]
T cs Igs q-ps g = [po- - Pr_1P'Prs1 - Pnoi]
rraysizeC}.cs s q-ps q— [coct - Cpi]
cs n.bs ps)
{arraysizeS}.cs bs q.-ps q— [SoS1 - Sp—1]
cs n.bs s
{arraysizeB}.cs bs q.-ps q — [boby - - by_1]
cs n.bs ps
{arraysizeU}.cs bs q-ps q — [ugly - Up_1]
cs n.bs ps
{arraysizeP}.cs bs q-ps q— [pop1- - Pn_1]
cs n.bs ps

113

A.3.10 String instructions

String instructions create and manipulate strings. A string is stored in a character
array, with a null character in the array indicating the end of string, equivalent to a
string in the C programming language. So array instructions can be used to get or

set a single character of the string.

newstr str create an array which contains str and a trailing null character

strlen get the length of a string, excluding the trailing null character.
strcat create a new string by concatenating two strings
Code B-stack P-stack Heap
{newstr “co---c,”}.cs ps

= cs qg.ps q— [cocr -+ - c,0]

{strlen}.cs bs qg-ps q— lc1--cy0]
= cs n.bs ps

{strcat}.cs bs p.pps p—lei---c,0,p — [c)--- 0]
= cs bs qg.ps q—lc1---cpcy--- 0]

Appendix B

VMC interpreter user’s manual

The VMC interpreter is an implementation of VMC according to the VMC specifi-
cation. An interpreter will not provide optimal performance, but it makes testing

and debugging VMC code easier.

B.1 Configuration

Two versions of the VMC interpreter exist, a normal version and a ‘fast’ version.
The normal version does a lot of validity checks at run time and will not crash if the
VMC code is incorrect. For example, before the execution of a popP 7 instruction,
the interpreter checks if there are at least n items on the P-stack. If the check
fails, the interpreter stops the execution of the program and prints an error message.
However, these integrity checks slow the machine down significantly. The fast version
assumes the correctness for VMC code it executes and does not do these checks. The
fast version should be used to run VMC code that is known to be valid, for example,
the code generated by the Charity compiler.

Before loading VMC code into memory, the interpreter calls the C preproces-
sor (cpp) to process the VMC code, so all the preprocessor commands in C (e.g.
#include, #define, etc.) can be used in VMC code. This makes manually writing
VMC code easier.

The interpreter contains three files, all of which should be put into the same

114

115

directory and the directory needs to be in the search path for executables.
vmc The normal version of the VMC interpreter
vmcfast The ‘fast’ version of the VMC interpreter

cpp The C preprocessor, which is used by the interpreter to preprocess VMC code

before loading.

B.2 Command line syntax

The command line syntax of the interpreter is as following, where vmcfast replaces

vmc if the fast version is desired.
vmc [-?7] [-Heap:m] [-Stack:n] [filename]

The -7 parameter request help, the interpreter will display information of the
command line syntax.

The -Heap:m is the optional parameter to specify the size of the heap in VMC,
in megabytes. The default value of m is 8.

The -Stack:n is the optional parameter to specify the size of the stacks in VMC,
in megabytes. The B-stack and P-stack in the interpreter share the same piece of
memory and grow in opposite directions. So this parameter specifies the total size
of the stacks. The default value of n is 1 megabyte.

The filename is optional. If no filename is given, the interpreter enters interac-
tive mode, which will be discussed in next section. Otherwise, the interpreter enters
execution mode and executes the specified file until it halts. If the filename has no

suffix, then .vmc is appended as its suffix.

116

Here is an example that run a file test.vmc, with heap size set to 16MB and

stack size set to 4MB.

vmc -Heap:16 -Stack:4 test

B.3 Commands

Run the interpreter without given a filename, the interpreter enters interactive mode,

and shows the following message:

Virtual Machine for Charity version 1.02

copyright (c¢) 2001,2002 Charity Development Group

Enter a command, type help for a list of available commands
VMC>>

Now the interpreter is ready to accept user commands. To see the list of available

commands, you may use the help command.

VMC>> help

load filename -- load a program into memory, default suffix is .vmc
reload -- reset the system then load the last file

exec filename -- load & run a program

run [address]-- run from the first instruction or a given address
thread n -- change current thread to thread n

stat [n] -- show status of thread n or current thread

clear -— clear the stacks and the heap

reset -— restore to initial states

quit -— exit the program

ip [address] -- show or set current address

d address -- display tuple at heap address

dstr address -- display string at heap address

d? address -- display array, 7 is array type which can be c¢,s,i,1,f,d
u [address] -- unassembly

p -- proceed(step over)

117

t -- trace(step through)

g [address] -- run from current address and stop at given address
setbp address -- set break point

clrbp address -- clear break point

clrbp -— clear all break points

showbp -- show current break points

istk n —- show the nth element on B-stack, as an int
fstk n —— show the nth element on B-stack, as an float
1stk n —-— show the nth element on B-stack, as an long
dstk n —-- show the nth element on B-stack, as an double
pstk n -— show the nth element on P-stack

An address is either a number or a label
VMC>>

Here is a explanation for each command:

load The load filename command pre-processes a source file by calling cpp, then
loads the result into the code store. If the filename has no extension, the default
extension .vmc is assumed. If a program is composed of several source files,
they can be loaded one by one. However, if file A references a label in file B,

then file B must be loaded before file A.

reload This command has no parameters. It re-initializes the system first, then load
the most recently loaded file. If you are debugging a VMC program and make

some modifications to the source code, this command can be very convenient.

exec This command is equivalent to a 1oad command followed by a run command.

thread VMC supports multiple threads, each thread has its own IP and stacks.
Most of the commands here operate on the current thread only. This command

sets the current thread.

118

stat This command shows the status of current thread. Here is an example status

VMC>> stat

Thread 0 HEAP USED: 64 Unit GC=0
STACK USED: 5 / 262144

B-Stack(3): 10, 20, 9, #
P-Stack(2): 35, 44{2}, #

VMC>>

The first line indicates current thread number, how much heap space has been
used (each unit is 32-bit) and how many times garbage collection has been run.
The second line shows how much stack space has been used and the total size
of stack space. Each stack unit is 32 bit. The third line shows the top 10 items
on the B-stack, as integers, starting from the top item. If there are less than
10 items, # is shown indicating the bottom of the stack. The fourth line shows
the top 10 items on the P-stack. Here pointers are represented as integers. The
d command is used to view the heap item referenced by a pointer. If a pointer
points to a l-element boxed integer, that integer is directly shown inside the
curly brackets. So in the above example, 44{2} means a pointer which points

to a boxed integer 2.
clear Clear the stacks and heap, but keep the loaded programs and breakpoints.

reset re-initialize the interpreter, stacks, heap, breakpoints and clear all loaded

programs. This is equivalent to restarting the interpreter.

quit exit the interpreter. You may also press ctrl-d (under unix) or ctrl-z (under

windows) to quit the interpreter.

119

ip This command has an optional parameter, which can be either a label or a num-
ber. When the optional parameter is present, this command sets IP (the in-

struction pointer) to the specified address. Otherwise it just shows current

IP.
d display the heap data referenced by a pointer.

dc,ds,di,df,dl,dd display the heap data as an array of Char, Short, Integer, Float,

Long or Double
u Unassemble from current IP or a specified address.

P Single step execution without entering procedure calls. If current instruction is a

call or xcall, stop only after the subroutine returns.

t Single step execution with entering procedure calls. This command differs from p
in that it stop immediately after execute one instruction, no matter what the

instruction is.

g There is one optional parameter for this command, which specifies the stop ad-
dress. This command will execute from current IP till the specified stop ad-

dress, a breakpoint or halt is encountered.

setbp Set a breakpoint. The break point can be represented either by a number or

a label.

clrbp Clear a specific breakpoint if an address is given as parameter, else clear all

the breakpoints.

120

showbp Show all the breakpoints.

istk Show an item on the B-stack as an integer. The argument of this command

specifies the position of item, with the top item being in position 0.

fstk,lstk,dstk Similar to istk except showing the item as Float, Long, or Double

correspondingly.

pstk Show an item on the P-stack. The argument of this command specifies the

position of the item, with the top item being in position 0.

