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Abstract

The Categorical Message Passing Language (CaMPL) is a statically-typed concurrent

programming language. The sequential side of CaMPL is functional in style, and the

concurrent side uses message passing as its core communication model in contrast to

shared memory. The semantics of CaMPL lies in a linear actegory which is a linearly

distributive category with a distributive monoidal category acting on it.

To implement higher-order functions such as map or fold on the concurrent side, or to

define concurrent type classes in CaMPL, it is necessary to pass processes as arguments

to other processes. Although this ability is already present in any closed linear type

system, such as CaMPL’s, supporting arbitrary recursive process definitions requires the

ability to reuse passed processes. However, concurrent resources in CaMPL are linear

and therefore cannot be duplicated. As a result, passing processes as linear closures does

not provide the required flexibility.

To solve this issue, one must pass processes as sequential data. This enables a process

to receive another process as a sequential input or to transmit it as a message over a

channel. However, this means that one must be able to convert a process into sequential

data, and also be able to convert it back into a callable concurrent process. Categorically,

this means that the concurrent side is enriched in its sequential side, with hom-objects in

the sequential category representing stored processes. The abstract categorical machinery

that characterizes the storing of concurrent processes as sequential data, and the using

of the stored processes is the theory of copowers. This characterizes what we understand

to be higher-order message passing.

In this thesis, we prove that giving a right-enriched category with copowers is equiv-

alent to giving a right actegory with hom-objects. While this result is known in the

closed symmetric setting, our contribution extends the equivalence to non-closed and
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non-symmetric monoidal settings. This generalization is motivated by the semantics of

higher-order message passing in CaMPL, which need not to be closed.

We have also implemented the store and use language constructs in CaMPL’s com-

piler and abstract machine and we describe the changes made to each stage of CaMPL’s

compiler in order to support this extension.
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Chapter 1

Introduction

The Categorical Message Passing Language (CaMPL) is a statically-typed concurrent

programming language with a categorical semantics. The sequential side of CaMPL is

functional in style, supporting features such as data types, codata types and pattern

matching. The concurrent side uses message passing as its core communication model, in

contrast to shared memory. A CaMPL program consists of a list of definitions, including

sequential (co)data type declarations, sequential function definitions, concurrent (co)data

type definitions—referred to as (co)protocols—and process definitions. Each process

operates with a sequential input context and communicates through input and output

polarity channels, which are typed using protocols.

CaMPL is based on the work of Cockett and Pastro [19], which provides both a formal

proof theory of message passing and its categorical semantics. CaMPL was implemented

by Prashant Kumar [25] and more recently, adding races, by Jared Pon [30] at the Uni-

versity of Calgary.

The semantics of CaMPL is given by a linear actegory [19], which consists of a

monoidal category acting on a linearly distributive category [11] using two action functors:

◦ : A× X→ X and • : Aop × X→ X,
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where ◦ is the parameterized left adjoint of •, that is, for every object A ∈ A, A ◦ − ⊣

A • − : X→ X.

In CaMPL, the category A corresponds to the sequential side of the language, while

X models the concurrent side. The functors ◦ and • allow for sending and receiving

sequential messages (objects of A) along concurrent channels (objects of X). In the

programming syntax, the ◦ functor corresponds to the concurrent type Put, and the

• functor corresponds to the type Get. The parameterized adjunction means that a

process behaves equivalently when it sends or receives a message on either input or

output channels.

A desirable feature to incorporate into CaMPL is support for higher-order pro-

cesses, that is, allowing concurrent processes to be passed as arguments to other pro-

cesses, in other words, to be treated as “first-class citizens”. This form of process passing

is already supported on the concurrent side of CaMPL, as it is a ∗-autonomous cate-

gory [2], which is closed, and thus inherently supports such higher-order behavior by

Γ, A ⊢ B

Γ ⊢ A⊥ ⊕B := A ⊸ B

This allows a process A ⊸ B to be passed to another process through an input polarity

channel of type A⊥ ⊕ B and be “applied” to an input channel A to yield an output

channel B. This can be written in CaMPL as shown in the following code snippet:

proc apply :: | A, Neg(A) (+) B => B =

| a, neg_a_b => b ->

fork neg_a_b as

neg_a -> neg_a |=| neg(a)

b' -> b |=| b'

However, since channels are concurrent resources, they are linear and cannot be du-

plicated. Thus, passing a process as a concurrent channel does not support arbitrary
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recursive process definitions that may require channel duplication. For example, consider

a process that receives two input channels: one of type A and another of type A⊥ ⊕ A,

representing an input process of type A ⊸ A. Additionally consider that it has an output

channel of type A, along with a sequential counter n : Int. The goal is to apply the input

process to the input channel n times. This suggests the following CaMPL code to define

this process:

proc q :: Int | A, Neg(A) (+) A => A =

n | x, p => y -> case n of

0 -> x |=| y -- base case

_ -> plug -- recursive case

apply(x, p => z) -- apply p

q( n - 1 | z, p => y) -- recurse

However, this code snippet is not a valid CaMPL program, as the channel p is used more

than once, violating the linearity constraint imposed on concurrent resources.

The solution to the problem is to store the concurrent process as sequential data which

can then be duplicated and used multiple times. To achieve this, we introduce two new

language constructs:

• store: Converts a concurrent process into sequential data.

• use: Allows the calling of a stored process.

We define a new sequential data type Store(Φ|Γ ⊩ ∆) to represent stored processes.

Using these new constructs, the previous program can be rewritten correctly as follows:

proc q :: Int, Store( | A => A) | A => A =

n, p | x => y -> case n of

0 -> x |=| y -- base case

_ -> plug -- recursive case

3



use(p)( | x => z) -- use the stored process

q( n - 1, p | z => y) -- recurse

The categorical semantics that enables storing concurrent processes as sequential data

is given by an enrichment of the concurrent world in the sequential world. This is ab-

stractly given by the equivalence between a right A-actegory [9] with hom-objects and a

right A-enriched category with copowers. Specifically, if an A-actegory is equipped with

hom-objects, meaning that the action functor ◁ : X × A → X admits a right adjoint

written as X ◁ − ⊣ Hom(X,−) : A → X, then it forms an A-enriched category with

copowers. This theorem was proven by Kelly and Janelidze [20] under the assumption

that the category A is right-closed, and it was investigated more generally in a bicategori-

cal setting by Gordon and Power [17]. In this thesis, we extend these results to non-closed

(non-symmetric) case by defining what “having copowers” means in the non-closed setting

based on [28].

An A-enriched category X has copowers if, for any A ∈ A and X ∈ X, there exists

a morphism η : A → Hom(X,X ◁ A) in A, referred to as the unit of the copower, such

that for each morphism f : B → Hom(X ◁A, Y ), there exists a bijective correspondence

B
f−→ Hom(X ◁ A, Y )

A⊗B
(η⊗f)m−−−−→ Hom(X, Y )

where m is the composition morphism in A. This definition is equivalent, in the case that

A is closed, to having a A-natural isomorphism γ : Hom(X ◁A, Y )
∼−→ A ⊸ Hom(X, Y ).

We also prove that a category is both powered and copowered if and only if, for any

A ∈ A, the action functor has a parameterized left adjoint −◁ A ⊣ A ▶ −. This result

is particularly important for us because such an adjunction exists in a linear actegory,

which is the underlying structure of CaMPL’s semantics.

4



1.1 Contribution of the Thesis

This thesis presents both the theoretical foundations and practical implementation of

higher-order processes in CaMPL. A central contribution of this work is the proof that

there is an equivalence between right A-enriched categories with copowers and right A-

actegories equipped with hom-objects in cases where A is neither closed nor symmetric.

This equivalence had not been previously proved in this setting. Furthermore, we prove

that with some extra conditions in X, a right A-actegory with hom-objects is a linear/non-

linear model [4].

Beyond the theoretical contributions, this project also involves the full integration

of the store and use language constructs in CaMPL, which enable the storage of a

process as sequential data and its arbitrary reuse. The design and implementation of

these mechanisms are discussed in detail in Chapter 4 of this thesis.

1.2 Structure of the Thesis

This thesis consists of two main parts: the categorical semantics and theory behind higher-

order processes, and the implementation details of higher-order processes in CaMPL.

Specifically:

• Chapter 2 presents the fundamental definitions from category theory used in the

thesis.

• Chapter 3 provides a theoretical perspective on higher-order processes, which is

essential before proceeding to implementation. It defines their semantics and proves

a theorem establishing an equivalence between a right actegory with hom-objects

and enriched categories with copowers. It then provides a proof that shows that

with some extra conditions on X (the category being act on), the A-actegory with
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hom-objects is a non-closed linear/non-linear model.

• Chapter 4 details the implementation of higher-order processes in CaMPL. It ex-

amines different stages of the compiler – including parsing, type checking and infer-

ence, λ-lifting, pattern matching compilation, and the abstract machine – explaining

the modifications made at each stage to integrate store and use commands.

• Chapter 5 presents the conclusion and possible directions for future work.

The material discussed in Chapter 3 and parts of Chapter 2 of this thesis was also

presented as a conference paper [12] at the Applied Category Theory Conference (ACT)

2025. The content in these chapters builds upon and extends the ideas introduced in

that presentation, providing additional details, proofs, and discussions not included in

the conference version.

1.3 Related Work

In this section, we examine related work on higher-order concurrency from both the cat-

egory theory and programming languages perspectives. On the category theory side, we

review the work of Kelly and Janelidze [20] on powers and copowers in monoidal closed

categories, as well as the contributions of Gordon and Power [17], who investigate these

structures within the framework of bicategories. From the programming languages per-

spective, we explore support for higher-order concurrency in the Haskell programming

language and in Concurrent ML (CML) and the programming language created by Ton-

inho et al. [32], which is based on the π-calculus and session types.
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1.3.1 Related Work in Category Theory

1. G. Janelidze and G. M. Kelly (2001) [20]: In their paper, Janelidze and

Kelly describe how an action of a monoidal category V = (V,⊗, I) on a category A

corresponds to a strong monoidal functor:

F : V→ [A,A].

Here [A,A] is the category of endofunctors on A, equipped with the strict monoidal

structure ([A,A], ◦, 1A), where ◦ denotes composition and 1A is the identity endo-

functor. Such a functor F induces an action functor

∗ : V× A→ A,

given by, for all A ∈ A and X ∈ V, X ∗ A = F (X)(A).

They observe that in many practical cases, the functor F admits a right adjoint G,

and this motivates a study of the conditions under which such a right adjoint exists.

A necessary condition for the existence of G is that each functor − ∗ A : V → A

admits a right adjoint. This is characterized by a natural isomorphism:

A(X ∗ A,B) ∼= V(X,A(A,B)).

They show that in the important case where V is a right-closed monoidal category,

giving a category A together with an action of V such that each functor − ∗A has

a right adjoint is to endow A with the structure of a tensored V-category.

Furthermore, they observe that in the case where V is a symmetric monoidal closed

category, the existence of right adjoints for both − ∗ A and X ∗ − is equivalent to
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A being a V-category that is both tensored and cotensored [24].

2. Gordon and Power (1997) [17]: Gordon and Power study the theory of categories

enriched over a bicategory W , developing a framework that generalizes classical

results such as Gabriel-Ulmer duality to this enriched setting. A central technical

contribution of their work is the identification of an equivalence between the 2-

category of W-categories that admit tensors (i.e., copowers) and the 2-category of

closed W-representations. This equivalence holds under mild assumptions on the

bicategory W and its subbicategories.

They show that the existence of tensors (i.e., copowers) with respect to 1-cells

of a locally dense subbicategory ω ⊆ W allows one to embed W-categories fully

faithfully into a particular representation. Moreover, when both tensors and coten-

sors (i.e., both copowers and powers) exist, these enriched categories correspond

to closed representations in the 2-category Lax(W ,Cat). The enriched version

of Gabriel-Ulmer duality they develop depends crucially on the existence of such

powers and copowers, showing that locally finitely presentable W-categories can

be described in terms of small W-categories with finite colimits, as in the classi-

cal setting. This work emphasizes the foundational role of powers and copowers

in enabling the passage between syntactic and semantic descriptions in enriched

category theory over bicategories.

1.3.2 Related Work in Programming Languages

1. Concurrent ML (John Reppy (1991) [31]): Concurrent ML (CML) is an ex-

tension of Standard ML (SML) designed for high-level concurrent programming.

CML integrates concurrency with SML’s functional programming features, provid-

ing a model where threads are created dynamically and communicate synchronously
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through typed channels. Channels are also created dynamically, and they are typed

based on the value they carry, i.e. ‘a chan is the type of channel that carries value

of type ‘a. Multiple threads can access the same channel–so they differ from chan-

nels in CaMPL.

Synchronous communication between threads is done using two primitive functions

send:‘a chan * ‘a -> unit and recv:‘a chan -> ‘a. This means that a call

send(a, v) will block until there is a matching recv(a) in another thread of

computation. This is in contrast to CaMPL which is non-blocking.

A key shortcoming of CML is the lack of static guarantees against deadlocks or

livelocks. CML relies entirely on the programmer to follow protocol conventions

correctly. For instance, in a client-server interaction, the client must send a request

before attempting to receive a reply, and must read exactly one reply before issuing

another request. Violating these constraints can lead to out-of-sync communication

and lack of progress (i.e. a deadlock).

CML introduces a model of higher-order concurrency based on first-class event val-

ues. These values represent potential communication actions and can be composed

before being executed. Synchronization is not immediate; instead, it is explicitly

triggered using the sync operation.

Basic operations such as receive and transmit, construct event values correspond-

ing to input and output over channels. More expressive constructs are provided via

higher-order combinators such as wrap and choose for composing and selecting

events.

2. Concurrent Haskell (S.P. Jones, A. Gordon and S. Finne (1996) [21]):

Concurrent Haskell is an extension to the purely-functional language Haskell that

introduces concurrency for handling interactive and distributed systems.
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The core of Concurrent Haskell revolves around two main additions: processes

and atomically mutable state. Processes are spawned using the forkIO function,

which initiates a concurrent action, allowing multiple processes to run indepen-

dently. Communication between processes is done via shared memory which is

implemented through a mutable structure called MVar, which holds a value that

can be read or written atomically, ensuring safe interaction between processes.

This model also allows the encapsulation of mutable state within the functional

paradigm, enabling safe and controlled concurrency.

A significant aspect of Concurrent Haskell is its integration of concurrency with

Haskell’s existing monadic I/O system, which uses a state-transformer model to

handle input and output operations. This makes the process of concurrency seam-

less within Haskell’s functional framework. The language avoids the complexities

of non-determinism, providing a clear separation between functional computations

and concurrent operations.

The semantics of Concurrent Haskell are designed to maintain the determinism of

functional programming while allowing for non-deterministic concurrency in I/O

operations. This is achieved through a layered semantics that separates determinis-

tic and concurrent behavior, ensuring that functional correctness is preserved even

in concurrent applications.

3. B. Toninho, L. Caires and F. Pfenning [32]: This paper extends the authors’

earlier work on session-type systems [8] by integrating higher-order message passing

into a concurrent computation framework. In addition to the standard constructs

of the π-calculus, their proposed language introduces a contextual monad to en-

capsulate open concurrent computations. These encapsulated computations can

be both passed as values in functional programming and communicated between

processes, supporting a uniform and symmetric treatment of higher-order functions
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and higher-order processes.

Within this framework, a process P is viewed as offering a service of type A along

a channel c, denoted P :: c : A. Processes may also consume services provided

on other channels c1, . . . , cn, each with its own session type Ai, yielding the linear

typing judgment:

c1 : A1, . . . , cn : An ⊢ P :: c : A

Here, each channel ci must be used exactly once in P , respecting its corresponding

session type Ai.

To support higher-order communication, they enrich the type system with contex-

tual monadic types, written as {a : A← ai : Ai}, representing a process that offers

session A along channel a, while making use of channels ai at types Ai.

The key syntactic construct they introduce is the internalization of process expres-

sions through the monadic form:

a← {P} ← a1, . . . , an

This corresponds to the monadic return operation: a process P using channels

a1, . . . , an to provide a service along channel a. The monadic bind is represented

as:

a←M ← a1, . . . , an; Pa

which denotes the composition of a monadic object M (using channels a1, . . . , an)

with a continuation process Pa that consumes the service on a. This construct

spawns a new process to run M , providing a fresh channel a in parallel with Pa.

In CaMPL, their contextual monad can be modeled using the constructs store, use,
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and plug. The monadic return corresponds to storing a process p :: a1, . . . , an ⇒ a,

written as store(p). The bind operation can be represented as:

plug

use(p)( | a_1,...,a_n => a)

p_a ( | a, b_1,...,b_n => c)

This code expresses the composition of a stored process p with a continuation p a

that uses channel a as input, closely mirroring the semantics of the monadic bind in

their system. While the language provides a model for higher-order concurrency, it

is based on a rather complex type theory and lacks a categorical semantics—unlike

CaMPL, which is explicitly designed with a categorical semantics and a derived

type system.
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Chapter 2

Background

In this section, we first present the category theory definitions needed in this thesis,

followed by a brief explanation of the Categorical Message Passing Language (CaMPL),

highlighting its various constructs.

2.1 Categories

A category C consists of [27]

1. a collection of objects {A,B,C, ...}

2. a collection of maps (or morphisms) f : A→ B, g : B → C, ...

3. an identity map 1A : A→ A, ∀A ∈ C

4. and for each pair of maps f : A → B and g : B → C, a composition morphism

fg : A→ C

These data must satisfy the following axioms:

1. Identity Law: ∀f : A→ B, 1Af = f and f1B = f

13



2. Associativity Law ∀f : A→ B, g : B → C and h : C → D, (fg)h = f(gh)

For any two objects A,B ∈ Obj(C), the set of all morphisms from A to B is denoted

as C(A,B) and is called the hom-set. A map f : A→ B, is called an isomorphism if

there exists a map f−1 : B → A such that ff−1 = 1A and f−1f = 1B.

An example of a category is Set, in which the objects are sets and the maps are . The

composition is the usual function composition, and the identity is the identity function.

For a category C the opposite category, referred to as Cop, has the same objects as

C, but the direction of the maps is reversed, meaning that for any f : A → B in C,

f op : B → A is in Cop.

2.2 Functors

Given two categories C and D, F : C → D is called a functor [27], and it consists of a

map from the objects of C to the objects of D and a map from maps of C to the maps of

D, such that:

1. if f : A→ B ∈ C then F (f) : F (A)→ F (B) ∈ D

2. ∀A ∈ C, F (1A) = 1F (A) (functors must preserve identity)

3. ∀f : A → B, g : B → C ∈ C, F (fg) = F (f)F (g) (functors must preserve composi-

tion)

An example of a functor is the list functor, which is an endofunctor on the category of

sets, typically written as L : Set→ Set.

Lemma 2.2.1. Categories and functors form a category Cat.

Proof. Cat is a category in which objects are categories and maps are functors. Each

category has an identity functor and the composition of functors is associative, so the

lemma is immediate.
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If F : C → D is a functor, then F op : Cop → Dop is also a functor. A functor

whose domain is the opposite category Cop is called a contravariant functor from C

as it reverses the direction of morphisms in C. In contrast, a functor with domain C

is sometimes referred to as a covariant functor, to emphasize that it preserves the

direction of morphisms.

Functors may have a domain that is a product of two or more categories, which means

they take more than one argument. Consider a functor F : A × B → C. Fixing either

argument of F at an object A ∈ A or B ∈ B yields new functors:

FA = F (A,−) : B→ C and FB = F (−, B) : A→ C

Conversely, given a family of such functors FA and FB we may reconstruct F .

Proposition 2.2.2. To give a functor F : A × B → C is to give a family of functors

FA : B → C for each A ∈ A and FB : A → C for each B ∈ B such that FA(B) = FB(A)

and for any g : A→ A′ ∈ A and f : B → B′ ∈ B, FA(f)FB′(g) = FB(g)FA′(f).

Proof. Let F : A × B → X be a functor, and define FA = F (A,−) : B → C and

FB = F (−, B) : A → C. Clearly FA(B) = F (A,B) = FB(A) and FA(f)F
′
B(g) =

F (1, f)F (g, 1) = F (g, 1)F (1, f) = FB(g)F
′
A(f). Conversely let FA and FB be functors

with the specified equalities. Define F (f, g) = FA(f)FB′(g) = FB(g)FA′(f). We want to

show that F is a functor. The proposed F satisfies the identity law because F (1, 1) =

FA(1)F
′
B(1) = FB(1)F

′
A(1) = 1, and satisfies the composition law because:

F (f, g)F (f ′, g′) = FA(f)FB′(g)FA′(f ′)FB′′(g′)

= FA(f)FA(f
′)FB′′(g)FB′′(g′)

= FA(ff
′)FB′′(gg′)

= F (ff ′, gg′)
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2.3 Natural Transformations

Given two functors F,G : C→ D, a natural transformation α : F ⇒ G is, for each A ∈ C,

a family of maps αA : F (A) → G(A) in D such that for any map f : A → A′ in C, the

following diagram commutes:

F (A) G(A)

F (A′) G(A′)

αA

F (f) G(f)

αA

An example of a natural transformation is the flattening of a list written as flattenA :

L(L(A)) → L(A), which takes a list of lists and produces a single flattened list. It is

natural because for any function f : A→ B, applying f to each element in a list of lists

and then flattening is the same as first flattening the list and then applying f to each

element; that is, the following diagram commutes:

L(L(A)) L(A)

L(L(B)) L(B)

L(L(f))

flattenA

L(f)

flattenB

Proposition 2.3.1. Cat(C,D) is a category with functors as objects and natural trans-

formations as maps.

Proof. We want to show that the identity law holds and the composition is associative. We

know that every functor has an identity transformation given by 1F (A) : F (A) → F (A).

We define the composition of natural transformations simply as (αβ)A = αAβA. If this

composition works then it is associative. It remains to check that the requirement on the
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composite transformation holds. This can be seen by pasting the transformation squares

together:

F (C1) F (C2)

G(C1) G(C2)

H(C1) H(C2)

F (f)

αC1
αC2

G(f)

βC1
βC2

H(f)

2.4 Initial and Final Objects

An initial object [10] in a category C is an object, often denoted by 0, such that for

any object A ∈ C, there is a unique map ?A : 0 → A. Dually, a final object [10] in a

category C is an object, often denoted by 1, such that for any object A ∈ A, there is a

unique map !A : A→ 1.

In Set, the initial object is the empty set, and the final object is the one element set.

In Cat, the initial object is the empty category, and the final object is the category with

one object and one map.

2.5 Products and Coproducts

Let A and B be any two objects in a category C. The product [10] of A and B is an

object A × B equipped with two maps π0 : A × B → A and π1 : A × B → B called the

first and the second projection maps respectively such that, for any object D ∈ C with

two maps f : D → A and g : D → B, there is a unique map ⟨f, g⟩ : D → A × B such

that the following diagram commutes:
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A

D A×B

B

⟨f,g⟩

f

g

π0

π1

Dually, for two arbitrary objects A and B in a category C, the coproduct [10] of

A and B is an object A + B in C equipped with two maps σ0 : A → A + B and

σ1 : B → A+B called the first and the second coprojection maps respectively, such that,

for any object E ∈ C with two maps f : A → E and g : B → E, there is a unique map

⟨f |g⟩ : A+B → E such that the following diagram commutes:

A

A+B E

B

f
σ0

⟨f |g⟩

g
σ1

2.6 Adjoints

Let G : Y→ X be a functor and X an object of X, then a map ηX : X → G(U) has the

universal property for the functor G at the object X if for any f : X → G(Y ) there is

a unique f ♯ : U → Y such that the following diagram commutes:

X G(U)

G(Y )

ηX

f G(f♯)

An example of a universal property is the following [10]: let X denote the category

of directed graphs and Y the category of categories. Consider the functor G : Y → X,
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which sends each category to its underlying directed graph by forgetting the composition

and identity structure. The map that assigns to each directed graph the inclusion into

the underlying graph of its free (or path) category—by identifying its edges with paths

of length one—satisfies the universal property with respect to the functor G. That is,

this inclusion is universal among all functors from X to Y that compose with G to yield

the identity on X.

Dual to the universal property, a map ϵY : F (V )→ Y , has the couniversal property

for the functor F at the object Y if for any g : F (X)→ Y there is a unique g♭ : X → V

such that the following diagram commutes:

F (V ) Y

F (X)

ϵY

F (g♭)
g

Let F : X→ Y and G : Y→ X be functors, then F is a left adjoint to G if there is

a natural transformation ηX : X → G(F (X)) with the universal property called the unit

of the adjunction. Dually, G is right adjoint to F if there is a natural transformation

ϵY : F (G(Y ))→ Y with the couniversal property, called the counit of the adjunction.

In an adjunction (η, ϵ) : F ⊢ G : X→ Y, the following diagrams commute:

G(Y ) G(F (G(Y )))

G(Y )

ηG(Y )

G(ϵ)

F (X) F (G(F (X)))

F (X)

F (ηX)

ϵF (X)

these commuting diagrams result in two identities ηG(Y )G(ϵY ) = 1G(Y ) and F (ηX)ϵF (X) =

1F (X) which are called the triangle identities.

Having an adjunction (η, ϵ) : F ⊣ G : X→ Y, is equivalent to having a (−)♯ and (−)♭
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operators where [10]:

X
f=g♭−−−→ G(Y )

F (X)
g=f♯

−−−→ Y

such that:

• ((f)♯)♭ = f and ((g)♭)♯ = g,

• (F (h)fk)♭ = hf ♭G(k) and (hgG(k))♯ = F (h)g♯k.

Here is an example of an adjunction: If the category C has chosen binary products,

the diagonal functor ∆ : C→ C× C is left adjoint to the product functor, written as:

∆ ⊣ − ×− : C→ C× C

In this adjunction the unit is the diagonal map ∆ : A → A × A and the counit is the

pair of projections (π0, π1) : (A × B,A × B) → (A,B). The triangle identities in this

adjunction can be expressed as follows:

A×B (A×B)× (A×B)

A×B

∆

π0×π1

(A,A) (A× A,A× A)

(A,A)

(∆,∆)

(π0,π1)

The left commuting diagram gives us the identity ∆(π0, π1) := ⟨π0, π1⟩ = 1A×B, which

is called “surjective pairing”.

2.6.1 Parameterized Adjoints

Let X,Y,Z be categories. An X-parameterized adjunction [27] between Y and Z

consists of a pair of functors

F : Z× X→ Y, G : Xop × Y→ Z
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such that for every object X ∈ X, the functor FX := F (−, X) : Z→ Y has a right adjoint

GX := G(X,−) : Y→ Z, and the adjunction bijection

F (Z,X)→ Y

Z → G(X, Y )

is natural in Y ∈ Y, and Z ∈ Z.

Lemma 2.6.1. 1 If F : Z× X→ Y is a functor and if, for each X ∈ X, F (−, X) has a

right adjoint such that F (−, X) ⊣ G(X,−) : Z → Y then G : Xop × Y → Z is a functor

where, for all f ∈ X and g ∈ Y, G(f, g) := (F (1, f)ϵg)♭.

Proof. We want to show that G is a functor, so we have to show that it satisfies the unit

and composition laws.

We have:

G(1X , 1Z) = (F (1G(X,Z), 1X)ϵ)
♭

= ϵ♭

= 1G(X,Z)

Which proves the unit law.

And if we have f : X → X ′, f ′ : X ′ → X ′′ and g : Y → Y ′ and g′ : Y ′ → Y ′′, then we

1This lemma was proved in [27]
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can write:

G(ff ′, gg′) = (F (ff ′, 1)ϵgg′)♭

= (F (f, 1)(F (f ′, 1)ϵg)g′)♭

= (F (f, 1)G(f ′, g)♯g′)♭

= (F (f, 1)F (1, G(f ′, g))ϵg′)♭

= (F (1, G(f ′, g))F (f, 1)ϵg′)♭

= G(f ′, g)(F (f, 1)ϵg′)♭

= G(f ′, g)G(f, g′)

Which proves the composition law.

Corollary 2.6.2. In a parameterized adjunction, the unit η and the counit ϵ are dinat-

ural, meaning that F (f, 1)ϵ = F (1, G(f, 1))ϵ and ηG(f, 1) = ηG(1, F (f, 1)). That is the

following diagrams commute:

Y G(X ′, F (X ′, Y ))

G(X,F (X, Y )) G(X,F (X ′, Y ))

η

η G(f,1)

G(1,F (f,1))

F (X,G(X ′, Y )) F (X ′, G(X ′, Y ))

F (X,G(X, Y )) Y

F (f,1)

F (1,G(f,1) ϵ

ϵ

22



Proof. To prove this, it is enough to use Lemma 2.6.1 as shown:

ηG(1, F (f, 1)) = η(ϵF (f, 1))♭ (Lemma 2.6.1)

= η(F (1, G(1, F (f, 1)))ϵ)♭ (naturality of ϵ)

= η(F (1, (F (f, 1)ϵ)♭)ϵ)♭ (Lemma 2.6.1)

= η(F (1, f(ϵ)♭)ϵ)♭ (property of (−)♭)

= η(F (1, f)ϵ)♭ (ϵ♭ = 1)

= ηG(f, 1) (Lemma 2.6.1)

F (f, 1)ϵ = ((F (f, 1)ϵ)♭)♯

= (G(f, 1))♯

= F (1, G(f, 1))ϵ

2.7 Monoidal Categories

A monoidal category [3] X, is a category equipped with

1. a functor ⊗ : X× X→ X called the “tensor product”

2. an object I ∈ X called the “tensor unit”

3. a natural isomorphism a⊗ : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) called the “associator”

4. and two natural isomorphisms uL
⊗ : I ⊗ X → X and uR

⊗ : X ⊗ I → X called the

“left unitor” and the “right unitor” respectively.

In addition, the following diagrams must commute:
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1. Associativity of a⊗:

((X ⊗ Y )⊗ Z)⊗W (X ⊗ Y )⊗ (Z ⊗W )

(X ⊗ (Y ⊗ Z))⊗W X ⊗ (Y ⊗ (Z ⊗W ))

X ⊗ ((Y ⊗ Z)⊗W )

a⊗

a⊗⊗1 a⊗

a⊗ 1⊗a⊗

2. Identity:

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

a⊗

uR
⊗ 1⊗uL

⊗

An example of a monoidal category is Set, where the tensor product is given by the

cartesian product and the unit object is the singleton set.

A monoidal category is symmetric if it also has a natural isomorphism s : A⊗B →

B ⊗ A and the following diagrams commute:

A⊗B B ⊗ A

A⊗B

s

s

A⊗ I I ⊗ A

A

s

uR
⊗ uL

⊗

A⊗ (B ⊗ C) (A⊗B)⊗ C

A⊗ (C ⊗B) C ⊗ (A⊗B)

(A⊗ C)⊗B (C ⊗ A)⊗B

a⊗

1⊗s s

a⊗ a⊗

s⊗1
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2.7.1 Closed Monoidal Categories

A monoidal category A is said to be right-closed [3] if for any A ∈ A, the functor A⊗−

has a right adjoint which we write as A ⊗ − ⊣ A ⊸ − : A → A, meaning that there

exists a bijective correspondence, natural in B and C,

A⊗B
f=uncurry(g)−−−−−−−→ C

B
g=curry(f)−−−−−−→ A ⊸ C

In the left-closed case, for each B ∈ B there is a bijective correspondence, natural in A

and C,

A⊗B
f=uncurry(g)−−−−−−−→ C

A
g=curry(f)−−−−−−→ C ⊸B

In the symmetric case, B ⊸ C ∼= C ⊸B.

2.7.2 Cartesian Categories

A cartesian category [15] is a monoidal category where the tensor product is given by

the categorical product, and the unit object is the final object. For any object A in a

cartesian category, there is a diagonal map ∆A : A → A× A, arising from the universal

property of the product (see 2.6), and a map eA : A→ I, where I is the unit object, since

I is terminal. In the context of computer science, ∆ can be interpreted as “duplicating

data,” while e corresponds to “deleting data.”

2.7.3 Monoidal Functors and Natural Transformations

Let (X, ⊗X, IX) and (Y, ⊗Y, IY) be two monoidal categories. A monoidal functor [14]

functor between them is

1. a functor F : X→ Y
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2. a natural transformation m⊗ : F (X)⊗Y F (Y )→ F (X ⊗X Y )

3. a map mI : IY → F (IX)

such that the following diagrams commute:

1. (Associativity)

(F (X)⊗Y F (Y ))⊗Y F (Z) F (X)⊗Y (F (Y )⊗Y F (Z))

F (X ⊗X Y )⊗Y F (Z) F (X)⊗Y F (Y ⊗X Z)

F ((X ⊗X Y )⊗X Z) F (X ⊗X (Y ⊗X Z))

a⊗Y

m⊗⊗Y1 1⊗Ym⊗

m⊗ m⊗

F (a⊗X )

2. (Unitality)

IY ⊗Y F (X) F (IX)⊗Y F (X)

F (X) F (IX ⊗X X)

mI⊗Y1

uL
⊗Y

m⊗

F (uL
⊗X

)

F (X)⊗Y IY F (X)⊗Y F (IX)

F (X) F (X ⊗X IX)

1⊗YmI

uR
⊗Y

m⊗

F (uR
⊗X

)

When m⊗ and mI are isomorphisms, F is called a strong monoidal functor.

Given two monoidal Functors F,G : X → Y, a natural transformation α : F ⇒ G

is a monoidal natural transformation if for any X, Y ∈ X the following diagrams

commute:

F (X)⊗Y F (Y ) G(X)⊗Y G(Y )

F (X ⊗X Y ) G(X ⊗X Y )

αX⊗YαY

mF
⊗ mG

⊗

αX⊗XY

IY

F (IX) G(IX)

mF
I mG

I

αIX

26



2.7.4 Monoidal Adjunctions

If X and Y are monoidal categories then a monoidal adjunction [23] between them is an

ordinary adjunction (η, ϵ), F ⊣ G : X→ Y in which both F and G are monoidal functors

and η (unit) and ϵ (counit) are monoidal natural transformations. For η and ϵ to be

monoidal natural transformations, the following diagrams must commute:

X ⊗ Y G(F (X))⊗G(F (Y ))

G(F (X ⊗ Y )) G(F (X)⊗ F (Y ))

η⊗η

η mG
⊗

G(mF
⊗)

F (G(X))⊗ F (G(Y )) F (G(X)⊗G(Y ))

X ⊗ Y F (G(X ⊗ Y ))

mF
⊗

ϵ⊗ϵ F (mG
⊗)

ϵ

I G(F (I))

G(I)

η

mG
I

G(mF
I )

F (G(I)) I

F (I)

ϵ

mF
I

F (mG
I )

Proposition 2.7.1. Given an adjunction (η, ϵ), F ⊣ G : X → Y, in which X and Y are

monoidal categories, (G,mG
⊗,m

G
I ) is monoidal if and only if (F, nF

⊗, n
F
I ) is comonoidal and

mG
⊗, n

F
⊗ and mG

I , n
F
I are mates. Furthermore, η and ϵ satisfy the following coherences:

X ⊗ Y G(F (X))⊗G(F (Y ))

G(F (X ⊗ Y )) G(F (X)⊗ F (Y ))

η⊗η

η mG
⊗

G(nF
⊗)

F (G(X))⊗ F (G(Y )) F (G(X)⊗G(Y ))

X ⊗ Y F (G(X ⊗ Y ))

ϵ⊗ϵ

nF
⊗

F (mG
⊗)

ϵ

I G(F (I))

G(I)

η

mG
I

G(nF
I )

F (G(I)) I

F (I)

ϵ

F (mG
I )

nF
I

Proof. We begin by proving the forward implication. Assuming that F is comonoidal,

we define the monoidal structure maps of G to be the mates of nF
⊗ : F (X ⊗X Y ) →
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F (X)⊗Y F (Y ) and nF
I : F (IX)→ IY as below:

G(X)⊗X G(Y ) G(F (G(X)⊗X G(Y )))

G(F (G(X))⊗Y F (G(Y )))

G(X ⊗Y Y )

η

mG
⊗

G(nF
⊗)

G(ϵ⊗ϵ)

IX G(F (IX))

G(IY)

η

mG
I

G(nF
I )

We first have to prove that mG
⊗ := ηG(nF

I )G(ϵ ⊗ ϵ) and mG
I := ηG(nF

I ) satisfy the

conditions mentioned in Section 2.7.3. Specifically, we start by proving associativity of

mG
⊗. We must prove a⊗(1⊗mG

⊗)m
G
⊗ = (mG

⊗ ⊗ 1)mG
⊗G(a⊗). We have:
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a⊗(1⊗mG
⊗)m

G
⊗ = a⊗(1⊗mG

⊗)ηG(nF
⊗)G(ϵ⊗ ϵ) (definition of mG

⊗)

= a⊗ηG(F (1⊗mG
⊗))G(nF

⊗)G(ϵ⊗ ϵ) (naturality of η)

= a⊗ηG(F (1⊗mG
⊗)n

F
⊗(ϵ⊗ ϵ)

= a⊗ηG(nF
⊗(1⊗ F (mG

⊗))(ϵ⊗ ϵ) (naturality of nF
⊗)

= a⊗ηG(nF
⊗(ϵ⊗ F (mG

⊗)ϵ)

= a⊗ηG(nF
⊗(ϵ⊗ F (ηG(nF

⊗)(ϵ⊗ ϵ))ϵ) (definition of mG
⊗)

= a⊗ηG(nF
⊗(ϵ⊗ F (η)ϵnF

⊗(ϵ⊗ ϵ)) (naturality of ϵ)

= a⊗ηG(nF
⊗(ϵ⊗ nF

⊗(ϵ⊗ ϵ)) (triangle identity)

= a⊗ηG(nF
⊗(1

F
⊗)(ϵ⊗ (ϵ⊗ ϵ))

= ηG(F (a⊗)n
F
⊗(1

F
⊗)(ϵ⊗ (ϵ⊗ ϵ)) (naturality of η)

= ηG(nF
⊗(n

F
⊗ ⊗ 1)a⊗(ϵ⊗ (ϵ⊗ ϵ)) (associativity of nF

⊗)

= ηG(nF
⊗(n

F
⊗ ⊗ 1)((ϵ⊗ ϵ)⊗ ϵ)a⊗) (naturality of a⊗)

= ηG(nF
⊗(F (η)F⊗(ϵ⊗ ϵ)⊗ ϵ)a⊗) (triangle identity)

= ηG(nF
⊗(F (η)F⊗(ϵ⊗ ϵ)⊗ ϵ)a⊗) (triangle identity)

= ηG(nF
⊗(F (ηG(nF

⊗(ϵ⊗ ϵ)))ϵ⊗ ϵ)a⊗) (naturality of ϵ)

= ηG(nF
⊗(F (ηG(nF

⊗(ϵ⊗ ϵ)))⊗ 1)(ϵ⊗ ϵ)a⊗)

= ηG(nF
⊗(F (ηG(nF

⊗(ϵ⊗ ϵ)))⊗ F (1))(ϵ⊗ ϵ)a⊗)

= ηG(nF
⊗(F (ηG(nF

⊗(ϵ⊗ ϵ)))⊗ F (1))(ϵ⊗ ϵ)a⊗)

= ηG(F (ηG(nF
⊗(ϵ⊗ ϵ)))⊗ 1)nF

⊗(ϵ⊗ ϵ)a⊗) (naturality of nF
⊗)

= (ηG(nF
⊗(ϵ⊗ ϵ))⊗ 1)ηG(nF

⊗(ϵ⊗ ϵ)a⊗) (naturality of η)

= (mG
⊗ ⊗ 1)mG

⊗G(a⊗) (definition of mG
⊗)
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And next we will prove that (mG
I ⊗ 1)mG

⊗G(uL
⊗) = uL

⊗. We have:

(mG
I ⊗ 1)mG

⊗G(uL
⊗) = (mG

I ⊗ 1)ηG(nF
⊗(ϵ⊗ ϵ)uL

⊗) (definition of mG
⊗)

= ηG(F (mG
I ⊗ 1)nF

⊗(ϵ⊗ ϵ)uL
⊗) (naturality of η)

= ηG(nF
⊗F (mG

I ⊗ F (1))(ϵ⊗ ϵ)uL
⊗) (naturality of nF

⊗)

= ηG(nF
⊗F (mG

I ϵ⊗ 1)(1⊗ ϵ)uL
⊗)

= ηG(nF
⊗F (ηG(nF

I )ϵ⊗ 1)(1⊗ ϵ)uL
⊗) (definition of mG

I )

= ηG(nF
⊗F (η)ϵ(nF

I ⊗ 1)(1⊗ ϵ)uL
⊗) (naturality of ϵ)

= ηG(nF
⊗F (η)ϵ(nF

I ⊗ 1)uL
⊗ϵ) (naturality of uL

⊗)

= ηG(nF
⊗(n

F
I ⊗ 1)uL

⊗ϵ) (triangle identity)

= ηG(nF
⊗n

F
⊗F (uL

⊗)(ϵ) ((nF
I ⊗ 1)uL

⊗ = nF
⊗F (uL

⊗))

= ηG(F (uL
⊗)ϵ)

= uL
⊗ηG(ϵ) (naturality of η)

= uL
⊗ (triangle identity)

and proving (1⊗mG
I )m

G
⊗G(uR

⊗) = uR
⊗ is done similarly.

Now we have to prove the second part of the proposition, which is to prove that η and ϵ

satisfy the specified coherences.

For η we first have to show that (η ⊗ η)mG
⊗ = ηG(nF

⊗).

(η ⊗ η)mG
⊗ = (η ⊗ η)ηG(nF

⊗)G(ϵ⊗ ϵ) (definition of mG
⊗)

= ηG(F (η ⊗ η)nF
⊗(ϵ⊗ ϵ)) (naturality of η)

= ηG(nF
⊗(F (η)⊗ F (η))(ϵ⊗ ϵ)) (naturality of nF

⊗)

= ηG(nF
⊗) (triangle identity)
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We also have to show that mG
I = ηG(nF

I ) which holds by the definition of mG
I . For ϵ we

first have to show that F (mG
⊗)ϵ = nF

⊗(ϵ⊗ ϵ):

F (mG
⊗)ϵ = F (η)F (G(nF

⊗(ϵ⊗ ϵ)))ϵ (definition of mG
⊗)

= F (η)ϵnF
⊗(ϵ⊗ ϵ) (naturality of ϵ)

= nF
⊗(ϵ⊗ ϵ) (triangle identity)

It remains to show that F (mG
I )ϵ = nF

I :

F (mG
I )ϵ = F (η)F (G(nF

I ))ϵ (definition of mG
I )

= F (η)ϵnF
I (naturality of ϵ)

= nF
I (triangle identity)

Therefore, we proved that G is monoidal and η and ϵ satisfy the mentioned coherences.

Dually, The backward implication of the proposition holds.

Corollary 2.7.2. Given an adjunction (η, ϵ) : F ⊣ G : X→ Y, if F is strong monoidal,

then G is monoidal with respect to the mates of the monoidal structure maps of F , and

the adjunction is monoidal.
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2.7.5 Linear/Non-Linear Adjunctions

A (non-closed) linear/non-linear (LNL) adjunction [5] consists of

(i) a cartesian category (C, 1,×)

(ii) a symmetric monoidal category (L, I,⊗)

(iii) a pair of symmetric monoidal functors (G,mG
⊗,m

G
I ) : L→ C and (F, nF

⊗, n
F
I ) : C→

L between them which form a symmetric monoidal adjunction F ⊣ G.

A linear category [5] is a symmetric monoidal category (X,⊗, I) with a symmetric

monoidal comonad (!, ϵ, δ,m⊗,mI) on X and two monoidal natural transformations ex :

!X → I and dX : !X → !X⊗!X such that

(i) Each (!X, eX , dX) is a commutative comonoid.

(ii) eX and dX are coalgebra maps.

(iii) All coalgebra maps between free coalgebras preserve the comonoid structure.

In [5], Benton shows that in a linear/non-linear adjunction (η, ϵ), F ⊣ G : A → X, the

category X forms a linear category, where the comonad is given by !X := F (G(X)) which

is clearly monoidal since F and G are monoidal, and the maps eX and dX are defined as

follows and satisfy the required coherences.

F (G(X)) I

F (1)

eX

F (∗G(X))
(mF

I )−1

F (G(X)) F (G(X))⊗ F (G(X))

F (G(X)⊗G(X))

dX

F (∆)
(mF

⊗)−1

Conversely, he shows that a linear category X gives rise to a (non-closed) linear/non-

linear adjunction by considering the Eilenberg–Moore category X!, which is cartesian,

and showing that the adjunction between X! and X is monoidal.
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2.7.6 Linearly Distributive Categories

A linearly distributive category [11] is monoidal category with two monoidal struc-

tures (⊗, ⊤) and (⊕, ⊥), called “tensor” and “par” respectively. The two monoidal

structures are linked by two linear distributors, d⊗⊕ and d⊕⊗.

d⊗⊕ : X ⊗ (Y ⊕ Z)→ (X ⊗ Y )⊕ Z

d⊕⊗ : (Y ⊕ Z)⊗X → Y ⊕ (Z ⊗X)

A linearly distributive category is symmetric if both the tensor and par are symmetric

(by c⊗ and c⊕). Note that in this case, the following two additional linear distributors

are induced by d⊗⊕, d
⊕
⊗, c⊗, and c⊕.

d⊗′
⊕ : X ⊗ (Y ⊕ Z)→ Y ⊕ (X ⊗ Z)

d⊕′
⊗ : (Y ⊕ Z)⊗X → (Y ⊗X)⊕ Z

The above data must satisfy certain coherence conditions:

1. Units and distributions:

⊤⊗ (X ⊕ Y )

(⊤⊗X)⊕ Y X ⊕ Y

d⊗⊕

uL
⊗

uL
⊗⊕1

(⊤⊕X)⊗ Y

⊤⊕ (X ⊗ Y ) X ⊗ Y

d⊕⊗

uL
⊕⊗1

uL
⊕

(X ⊕ Y )⊗⊤

(X ⊗⊤)⊕ Y X ⊕ Y

d⊗⊕

uR
⊗

uR
⊗⊕1

Y ⊗ (X ⊕⊤)

Y ⊕ (X ⊗⊤) Y ⊗X

d⊕⊗

1⊗uR
⊕

uR
⊕
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2. Associativity and distributions:

(X ⊗ Y )⊗ (Z ⊕W ) X ⊗ (Y ⊗ (Z ⊕W ))

X ⊗ ((Y ⊗ Z)⊕W )

((X ⊗ Y )⊗ Z)⊕W (X ⊗ (Y ⊗ Z))⊕W

a⊗

d⊗⊕

1⊗d⊗⊕

d⊗⊕

a⊗⊕1

3. Distributions and distributions:

(X ⊕ Y )⊗ (Z ⊕W ) X ⊕ (Y ⊗ (Z ⊕W ))

((X ⊕ Y )⊗ Z)⊕W

(X ⊕ (Y ⊗ Z))⊕W X ⊕ ((Y ⊗ Z)⊕W )

d⊕⊗

d⊗⊕

1⊕d⊗⊕

d⊕⊗⊕1

a⊕

4. Coassociativity and distributions:

X ⊗ ((Y ⊕ Z)⊕W ) X ⊗ (Y ⊕ (Z ⊕W ))

(X ⊗ (Y ⊕ Z))⊕W Y ⊕ (X ⊗ (Z ⊕W ))

(Y ⊕ (X ⊗ Z))⊕W Y ⊕ ((X ⊗ Z)⊕W )

1⊗a⊕

d⊗⊕ d⊗′
⊕

d⊗′
⊕ ⊕1 1⊕d⊗⊕

a⊕

An example of a linearly distributive category is distributive lattice where the objects

are elements and maps are comparisons. In this case, ⊗ is the meet ∧ and ⊕ is the join

∨.
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f

x1 : A x2 : B

y1 : C y2 : D

Figure 2.1: Typed Circuit

Circuit Diagrams for Linearly Distributive Categories

The use of string diagrams was introduced in [22] to represent morphisms in monoidal

categories. This graphical approach was further extended in [7] to capture the relationship

between proof theory and linearly distributive categories.

A circuit diagram in this context is built from a set of types and components. Each

component is treated as a black box with a fixed number of typed input and output ports.

Wires are attached to these ports to interconnect components, forming a circuit. The

types of the wires must match the types of the ports they connect to.

As an example, Figure 2.1 indicates a component f with two input ports of types A

and B, and two output ports of types C and D. Suppose wires x1 and x2 (of types A and

B, respectively) are attached to the inputs, and wires y1 and y2 (of types C and D) are

attached to the outputs. The circuit expression representing this component is written

as:

[x1, x2]f [y1, y2].

Multiple circuit expressions can be composed by concatenating them. For instance:

[x2, x3]f [y2, y4][x1, y2]g[y1, y3]
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f

g

x1 : A x2 : B x3 : C

y1 : D

y2 : E

y3 : F y4 : G

Figure 2.2: circuit diagram of composing f and g

represents the circuit shown in Figure 2.2.

Recall that linearly distributive categories have two tensor products: tersor (⊗) and

par (⊕). Circuits in these settings are introduced in [1]. Using components from a set S,

with ports labeled by formulas built from atomic types in a set P as:

(i) Any atomic type A ∈ P is a formula,

(ii) If A and B are formulas, then A⊗B and A⊕B are also formulas,

(iii) The units ⊤ and ⊥ are formulas.

Special components, referred to as links, are used in the circuits for linearly distributive

categories to indicate the tensor and par structures [7]. These include:
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[A,B]⊗ I[A⊗B] ⊗-introduction

[A⊗B]⊗ E[A,B] ⊗-elimination

[A,B]⊕ I[A⊕B] ⊕-introduction

[A⊕B]⊕ E[A,B] ⊕-elimination

[ ]⊤I[⊤] unit introduction

[A,⊤]⊤E[A] unit elimination

[ ]⊥E[⊥] counit introduction

[A]⊥I[A,⊥] counit elimination

Figure 2.3 illustrates the graphical forms of these links, where the ⊗E and ⊕I links

are “switchable” links in the sense of Girard [16]. From the proof-theoretic standpoint,

⊗I and ⊗E act as the introduction and elimination rules for tensor, whereas ⊕I and ⊕E

serve as the introduction and elimination rules for par.
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Figure 2.3: Introduction and elimination rules for ⊗,⊗,⊤,⊥ (adapted from [6])

To construct a valid circuit, one must adhere to the judgment rules of the type theory

which determine the well-formed proofs. Girard [16] proposed a correctness criterion for

circuits: a circuit is valid if, for every choice of “switch settings” for switchable links, the

resulting graph is acyclic and connected. This ensures that once a switching is chosen,

there exists a unique path between any two components.

However, checking Girard’s criterion directly is computationally expensive. If a circuit

has n switchable links, then 2n different switchings must be tested. Danos and Regnier [13]

introduced a more efficient method using sequentialization. A circuit involving ⊗ and ⊕

is sequential if it can be reduced to a single sequent box via a sequence of reduction
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steps [7]. This reduction demonstrates the validity of the proof. Figure 2.4 illustrates

the sequentialization procedure. These rules allow us to group non-switching components

into boxes, apply cut rules, and eliminate switching links. According to [7], a sequential

circuit (also called a proof net) corresponds to a morphism in a linearly distributive

category.

Figure 2.4: Sequentialization Procedure (adapted from [6])

The equivalence of proof nets is governed by a rewriting system consisting of three

rule types: reductions, expansions, and equivalences, as shown in Figure 2.5. Reduction

rules simplify circuits, expansion rules unpack wires, and equivalence rules adjust unit
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links. These transformations are only valid if they preserve the legality of the circuit.

Figure 2.5: Reduction, expansion, and equivalence rules for ⊗, ⊕, ⊤, ⊥ (adapted from [6])

2.8 Enrichment

A category X is enriched [24] in the monoidal category (A,⊗, I) if:

1. For every pair of objects X, Y ∈ X, there is a hom-object Hom(X, Y ) ∈ A

2. For every triple X, Y, Z ∈ X, a “composition” morphism exists in A:

mXY Z : Hom(X, Y )⊗ Hom(Y, Z)→ Hom(X,Z)
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3. For every object X ∈ X there is a “unit” morphism in A:

id : I → Hom(X,X)

Such that the following diagrams commute:

(a) Associativity of the composition:

Hom(X, Y )⊗ Hom(Y, Z)⊗ Hom(Z,W ) Hom(X,Z)⊗ Hom(Z,W )

Hom(X, Y )⊗ Hom(Y,W ) Hom(X,W )

mXY Z⊗1Hom(Z,W )

1Hom(X,Y )⊗mY ZW mXZW

mXY W

(b) Identity on the left:

I ⊗ Hom(X, Y ) Hom(X,X)⊗ Hom(X, Y )

Hom(X, Y )
uL
⊗

idX⊗1Hom(X,Y )

mXXY

(c) Identity on the right:

Hom(X, Y )⊗ I Hom(X, Y )⊗ Hom(Y, Y )

Hom(X, Y )
uR
⊗

1Hom(X,Y )⊗idY

mXY Y

2.8.1 Enriched Functors and Natural Transformations

For A-enriched categories X and Y, an A-functor F [24] consists of a map F : obj(X)→

obj(Y), and for each X, Y ∈ X a map FXY : Hom(X, Y )→ Hom(F (X), F (Y )) in A, such

that the following diagrams commute:

Hom(X, Y )⊗ Hom(Y, Z) Hom(X,Z)

Hom(F (X), F (Y ))⊗ Hom(F (Y ), F (Z)) Hom(F (X), F (Z))

m

FXY ⊗FY Z FXZ

m
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I Hom(X,X)

Hom(F (X), F (X))

id

id FXX

For A-functors F, G: X→ Y, an A-natural transformation α : F ⇒ G [24] is a family of

components ⌜αX⌝ : I → Hom(F (X), G(X)) in A, satisfying:

I ⊗Hom(X,Y ) Hom(F (X), G(X))⊗Hom(G(X), G(Y ))

Hom(X,Y ) Hom(F (X), G(Y ))

Hom(X,Y )⊗ I Hom(F (X), F (Y ))⊗Hom(F (Y ), G(Y ))

⌜αX⌝⊗GXY

m(uL
⊗)−1

(uR
⊗)−1

FXY ⊗⌜αY ⌝

m

2.8.2 The Underlying Ordinary Category

The underlying ordinary category [24] of the A-enriched category X is denoted by

⌜X⌝ and has the same objects as X while a map f : X → Y in ⌜X⌝ is just an element

⌜f⌝ : I → Hom(X, Y ). The composition of two maps f : X → Y and g : Y → Z in ⌜X⌝

is given by:

I
(uR

⊗)−1

−−−−→ I ⊗ I
⌜f⌝⊗⌜g⌝−−−−→ Hom(X, Y )⊗ Hom(Y, Z)

m−→ Hom(X,Z)

and the identity 1A : X → X is id : I → Hom(X,X).

2.8.3 Behavior of the Hom Functor

Let X be an A-enriched category, the hom functor is a functor of the form:

Hom : ⌜X⌝op × ⌜X⌝→ A
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that sends objects X, Y ∈ X to the hom-object Hom(X, Y ) ∈ A. Fixing an object X ∈ X,

the hom functor induces a functor

Hom(X,−) : ⌜X⌝→ A,

which we will use extensively throughout this thesis. This functor acts on objects by

sending Y ∈ X to Hom(X, Y ), and on morphisms as follows.

Given a morphism f : Y → Z in X, the induced morphism Hom(1X , f) : Hom(X, Y )→

Hom(X,Z) is defined via the enriched composition as:

Hom(1X , f) = (uR
⊗)

−1(1⊗ ⌜f⌝)m

This action can be illustrated by the following commutative diagram:

Hom(X, Y ) Hom(X, Y )⊗ I Hom(X, Y )⊗ Hom(Y, Z)

Hom(X,Z)

(uR
⊗)−1

Hom(1,f)

1⊗⌜f⌝

m

This diagram reflects how morphisms in the enriched category are composed internally

in A, with identities and composition behaving coherently with the monoidal structure.

In particular, this construction ensures that the enriched category X behaves analogously

to an ordinary category, but with morphisms generalized to objects in the base monoidal

category A.

The following lemma about the behavior of the hom functor and composition mor-

phism is used frequently in proofs throughout this thesis.

Lemma 2.8.1. In any A-enriched category X, for all f : Z → Z ′ we have (1 ⊗

Hom(1, f))m = mHom(1, f).
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Hom(X, Y )⊗ Hom(Y, Z) Hom(X, Y )⊗ Hom(Y, Z ′)

Hom(X,Z) Hom(X,Z ′)

1⊗Hom(1,f)

m m

Hom(1,f)

Proof.

mHom(1, f) = m(uR
⊗)

−1(1⊗ ⌜f⌝)m

= (uR
⊗)

−1(m⊗ 1)(1⊗ ⌜f⌝)m

= (uR
⊗)

−1(m⊗ ⌜f⌝)m

= (uR
⊗)

−1((1⊗ 1)m⊗ ⌜f⌝)m

= (uR
⊗)

−1a⊗(1⊗ (1⊗ ⌜f⌝)m

= (1⊗ (uR
⊗)

−1(1⊗ ⌜f⌝)m)m

= (1⊗ Hom(1, f))m

2.9 Actegories

A right A-actegory consists of a monoidal category (A,⊗, I), a category X, an action

functor ◁ : X×A→ X and two natural isomorphism a◁ : X ◁ (A⊗B)→ (X ◁A)◁B

and u◁ : X ◁ I → X satisfying the following coherences [9]:

X ◁ (A⊗ (B ⊗ C)) X ◁ ((A⊗B)⊗ C)

(X ◁ A)◁ (B ⊗ C) (X ◁ (A⊗B))◁ C

((X ◁ A)◁B)◁ C

1◁a⊗

a◁ a◁

a◁
a◁◁1

44



X ◁ (A⊗ I) (X ◁ A)◁ I

X ◁ A

a◁

1◁uR
⊗ u◁

X ◁ (I ⊗ A) (X ◁ I)◁ A

X ◁ A

a◁

1◁uL
⊗

u◁◁1

An example of an actegory, is Set, with an action on itself given by the cartesian product.

More generally any monoidal category acts on itself by the tensor product.

Similar to right A-actegories, left A-actegories are equipped with an action functor

▷ : A× X→ X along with two natural isomorphisms a▷ : (A⊗B)▷X → A▷ (B ▷X)

and u▷ : I ▷X → X satisfying similar coherences.

A right A-actegory is precisely a left Arev-actegory, where Arev is the monoidal

category obtained by equipping the underlying category of A with the tensor product

A⊗rev B := B ⊗ A and appropriately adjusting the rest of the structure.

2.9.1 Monoidal Actegories

A monoidal right A-actegory is a monoidal category (X,⊗X, IX) with a functor ◁ :

X×A→ X and two monoidal natural transformations a◁ and u◁ defined as in Definition

2.9, along with a natural map a◁⊗ : (X⊗XY )◁A→ X⊗X (Y ◁A) such that the following

diagrams commute

((X ⊗X Y )◁A)◁B

(X ⊗X Y )◁ (A⊗B)

((X ⊗X (Y ◁A))◁B

X ⊗X (Y ◁ (A⊗B))

X ⊗X ((Y ◁A)◁B)

a◁
⊗◁1

a◁

a◁
⊗

a◁
⊗

1⊗Xa◁

(X ⊗X Y )◁ 1 X ⊗X (Y ◁ 1)

X ⊗X Y

a◁
⊗

u◁
1⊗Xu◁

An example of a monoidal actegory is a monoidal category, which acts on itself, and

the map a◁⊗ in this case is the associator a⊗ : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z).
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In a right monoidal actegory X, if X is symmetric monoidal, then the action functor

is monoidal. When the monoidal category X is symmetric, then there is an isomorphism

s : X⊗XY ≃ Y ⊗XX. Using this map, we can construct a◁⊗
′ : (X⊗XY )◁A→ (X◁A)⊗XY

as a◁⊗
′ = (s◁ 1)a◁⊗s. We can define the monoidal structure for ◁ by defining m◁

I : IX →

IX ◁ IA as m◁
I := u−1

◁ and m◁
⊗ : (X ⊗X Y ) ◁ (A ⊗A B) → (X ◁ A) ⊗X (Y ◁ B) by the

following composite.

(X ⊗X Y )◁ (A⊗B) ((X ⊗X Y )◁ A)◁B

((X ◁ A)⊗X Y )◁B

(X ◁ A)⊗X (Y ◁B)

a◁

m◁
⊗

a◁⊗
′◁1

a◁⊗

This is how a monoidal actegory is defined in [9].

An actegory is called strong monoidal when a◁⊗ is an isomorphism, since in this case,

the action functor is strong monoidal.

2.9.2 Linear Actegories

A (symmetric) linear actegory [19] is a monoidal actegory in which a monoidal cat-

egory A acts on a linearly distributive category X both covarient and controvariantly. A

linear actegory consists of the following data:

• a symmetric monoidal category (A, ∗, I, a∗, uL
∗ , u

R
∗ )

• a linearly distributive category X as in 2.7.6

• two action functors:

◦ : A× X→ X and • : Aop × X→ X

such that ◦ is paramterized left adjoint of •, i.e. ∀A ∈ A, A ◦ − ⊣ A • − : X→ X
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• The following natural isomorphisms in X for all A,B ∈ A and X, Y ∈ X:

u◦ : I ◦X → X, u• : X → I •X,

a∗◦ : (A ∗B) ◦X → A ◦ (B ◦X), a∗• : A • (B •X)→ (A ∗B) •X,

a◦⊗ : A ◦ (X ⊗ Y )→ (A ◦X)⊗ Y, a•⊕ : (A •X)⊕ Y → A • (X ⊕ Y ),

• The following natural morphisms in X for all A,B ∈ A and X, Y ∈ X:

d◦⊕ : A ◦ (X ⊕ Y )→ (A ◦X)⊕ Y, d•⊗ : (A •X)⊗ Y → A • (X ⊗ Y ),

d◦• : A ◦ (B •X)→ B • (A ◦X).

• The following natural isomorphisms from the symmetries of ∗, ⊗, and ⊕:

a∗
′

◦ : (A ∗B) ◦X → B ◦ (A ◦X), a∗
′

• : B • (A •X)→ (A ∗B) •X,

a◦⊗′ : A ◦ (X ⊗ Y )→ X ⊗ (A ◦ Y ), a•⊕′ : X ⊕ (A • Y )→ A • (X ⊕ Y ),

d◦⊕′ : A ◦ (X ⊕ Y )→ X ⊕ (A ◦ Y ), d•⊗′ : X ⊗ (A • Y )→ A • (X ⊗ Y ).

This data must satisfy several coherence conditions besides the ones that are required by

being a strong monoidal actegory. These coherences are expressed below.

• Unit and distributivity:

I ◦ (X ⊕ Y ) (I ◦X)⊕ Y

X ⊕ Y

d◦⊕

u◦
u◦⊕1

I ◦ (X ⊗ Y ) (I ◦X)⊗ Y

X ⊗ Y

a◦⊗

u◦
u◦⊗1
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I ◦ (A •X) A • (I ◦X)

A •X

d◦•

u◦
A•u◦

A ◦X A ◦ (I •X)

I • (A ◦X)

1◦u•

u• d◦•

which result in the following equalities:

d◦⊕(u◦ ⊕ 1) = u◦ (u• ⊗ Y )d•⊗ = u•

d◦
′

⊕(1⊕ u◦) = u◦ (1⊗ u•)d
•′
⊗ = u•

a◦⊗(u◦ ⊗ 1) = u◦ (u• ⊕ 1)a•⊕ = u•

a◦
′

⊗(1⊗ u◦) = u◦ (1⊕ u•)a
•′
⊕ = u•

d◦◦(1 • u◦) = u◦ (1 ◦ u•)d
◦
• = u•

d◦
′

◦ (1 • u◦) = u◦ (1 ◦ u•)d
◦′
• = u•

(1 ◦ u•)d
◦
• = u• d◦•(1 • u◦) = u◦

• Associativity:

(A ∗ (B ∗ C)) ◦X A ◦ ((B ∗ C) ◦X)

((A ∗B) ∗ C) ◦X A ◦ (B ◦ (C ◦X))

(A ∗B) ◦ (C ◦X)

a∗◦

a∗◦1 1◦a∗◦

a∗◦
a∗◦
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A ◦ (B ◦ (C •X)) A ◦ (C • (B ◦X))

(A ∗B) ◦ (C •X) C • (A ◦ (B ◦X))

C • ((A ∗B) ◦X)

1◦d◦•

d◦•a∗◦

d•◦
1•a∗◦

A ◦ (B ◦ (X ⊗ Y )) A ◦ ((B ◦X)⊗ Y )

(A ∗B) ◦ (X ⊗ Y ) (A ◦ (B ◦X))⊗ Y

((A ∗B) ◦X)⊗ Y

1◦a◦⊗

a◦⊗

a◦⊗

a∗◦

a∗◦⊗1

(A ◦ (X ⊗ Y ))⊗ Z ((A ◦X)⊗ Y )⊗ Z

A ◦ ((X ⊗ Y )⊗ Z) (A ◦X)⊗ (Y ⊗ Z)

A ◦ (X ⊗ (Y ⊗ Z))

a◦⊗⊗1

a⊗a◦⊗

1◦a⊗
a◦⊗

• Distributivity and associativity:

A ◦ (B ◦ (X ⊕ Y )) A ◦ ((B ◦X)⊕ Y )

(A ∗B) ◦ (X ⊕ Y ) (A ◦ (B ◦X))⊕ Y

((A ∗B) ◦X)⊕ Y

1◦d◦⊕

d◦⊕a∗◦

d◦⊕
a∗◦⊕1
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A ◦ ((X ⊗ Y )⊕ Z) (A ◦ (X ⊗ Y ))⊕ Z

A ◦ (X ⊗ (Y ⊕ Z)) ((A ◦X)⊗ Y )⊕ Z

(A ◦X)⊗ (Y ⊕ Z)

d◦⊕

a◦⊗⊕11◦d⊗⊕

a◦⊗
d⊗⊕

(A ◦ (Y ⊕ Z))⊗X ((A ◦ Y )⊕ Z)⊗X

A ◦ ((Y ⊕ Z)⊗X) (A ◦ Y )⊕ (Z ⊗X)

A ◦ (Y ⊕ (Z ⊗X))

d◦⊕⊗1

d⊕⊗a◦⊗

1◦d⊕⊗ d◦⊕

A ◦ ((X ⊕ Y )⊕ Z) (A ◦ (X ⊕ Y ))⊕ Z

A ◦ (X ⊕ (Y ⊕ Z)) ((A ◦X)⊕ Y )⊕ Z

(A ◦X)⊕ (Y ⊕ Z)

d◦⊕

d◦⊕11◦a⊕

d◦⊕ a⊕

• And the remaining two are

A ◦ ((B •X)⊗ Y ) (A ◦ (B •X))⊗ Y

A ◦ (B • (X ⊗ Y )) (B • (A ◦X))⊗ Y

B • (A ◦ (X ⊗ Y )) B • ((A ◦X)⊗ Y )

a◦⊗

1◦d•⊗ d◦•⊗1

d◦• d•⊗

1•a◦⊗
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A ◦ ((B •X)⊕ Y ) (A ◦ (B •X))⊕ Y

A ◦ (B • (X ⊕ Y )) (B • (A ◦X))⊕ Y

B • (A ◦ (X ⊕ Y )) B • ((A ◦X)⊕ Y )

d◦⊕

1◦a•⊕ d◦•⊕1

d◦• a•⊕

1•d◦⊕

Any monoidal closed category (regarded as a compact linearly distributive category)

acts on itself via the tensor product ⊗ and the internal hom ⊸. However, these actions

do not in general give a linear actegory, as the required isomorphism a•⊕ : (A •X)⊗Y →

A • (X ⊕ Y ) may not exist. Although, if we restrict the action to the compact objects

(that is, those objects for which the map (A ⊸ I) ⊗ B → A ⊸ B is an isomorphism),

then the structure becomes a linear actegory with the same actions.
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Chapter 3

Actegories and Copowers

3.1 Introduction

A right A-actegory X consists of a monoidal category A acting on a category X in a

manner compatible with the monoidal structure. This may be formulated as a strong

monoidal functor F : A → End(X) where End(X) is the category of endofunctors of

X with the monoidal structure given by composition. Alternatively, an A-actegory may

be viewed more directly with an action functor ◁ : X × A → X as in Definition 2.9

above. In an A-actegory, if the action functor ◁ : X × A → X admits a right adjoint

written as X◁− ⊣ Hom(X,−) : A→ X, then X is referred to as a right A-actegory with

hom-objects.

A category X is right A-enriched, if for every pair of objects X, Y ∈ X, an object

Hom(X, Y ) exists in A, and there are composition m : Hom(X, Y ) ⊗ Hom(Y, Z) →

Hom(Z,W ) and unit id : I → Hom(X,X) morphisms satisfying cohereneces specified in

Section 2.8. A right A-enriched category X is said to be copowered [28], if for any A ∈ A

and X ∈ X, there exists an object X ◁A ∈ X and a morphism η : A→ Hom(X,X ◁A)

in A referred to as the unit of the copower, such that for each B ∈ A, Y ∈ X and map
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f : B → Hom(X ◁ A, Y ) ∈ A, there exists a bijective correspondence

B
f−→ Hom(X ◁ A, Y )

A⊗B
(η⊗f)m−−−−→ Hom(X, Y )

where m is the composition morphism in A.

The primary goal of this work is to establish an equivalence between right A-actegories

with hom-objects and right A-enriched categories with copowers. Specifically, we prove

the following key theorem:

Theorem 3.1.1. To give a right actegory with hom-objects is to give a right enriched

category with copowers.

The proof proceeds as follows:

1. We show that given a right A-actegory with hom-objects, one can construct a right

enrichment over A. We then show that copowers are given by the action.

2. Conversely, we demonstrate that a right A-enriched category with copowers induces

a right A-actegory structure with right hom-objects.

3. One structure determines the other structure. The copower is the action and the

Hom functor is the Hom of enrichment, and thus going back and forth is the identity.

Then, we establish the dual theorem by carefully changing right actegory to left acte-

gory, right enrichment to left enrichment, transferring to Arev, and going to the opposite

categories which will give us an equivalence between having a left (Arev)op-actegory Xop

with hom-objects and a left (Arev)op-category with powers.

In the end we prove that in a right A-actegory X with hom-objects, if ∀A ∈ A, the

action functor − ◁ A has a right adjoint as − ◁ A ⊣ A ▶ − : ⌜X⌝ → ⌜X⌝, then X is a

left (Arev)op-actegory with hom-objects.
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3.2 Copowers

Generally, copowers are defined for a right monoidal-closed category A and an A-enriched

category X by an A-natural isomorphism:

γ : Hom(X ◁ A, Y )→ A ⊸ Hom(X, Y )

However in this thesis we will give a definition that works when A is not right monoidal-

closed.

Definition 3.2.1. An A-enriched category X has copowers [28] if, for any A ∈ A and

X ∈ X, there exists an object X ◁A ∈ X and a morphism η : A→ Hom(X,X ◁A) in A

(called the unit of the copower) such that for any B ∈ A and Y ∈ X there is a bijective

correspondence:

B
f−→ Hom(X ◁ A, Y )

A⊗B
(η⊗f)m−−−−→ Hom(X, Y )

Later in this section, we show that this definition is equivalent to having an A-natural

isomorphism γ : Hom(A ◁ X, Y ) → A ⊸ Hom(X, Y ) when A is right monoidal-closed.

We first prove the following lemma.

Lemma 3.2.1. Given a bijective correspondence

B
f=(g)⇑−−−−→ Hom(X ◁ A, Y )

A⊗B
g=(f)⇓−−−−→ Hom(X, Y )

with the two combinators (−)⇓ and (−)⇑, the followings are equivalent:

(i) ∃ η : A→ Hom(X,X ◁ A) and (f)⇓ = (η ⊗ f)m

(ii) The Following properties hold for (−)⇓ and (−)⇑:
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(a) (1⊗ h)(f)⇓ = (hf)⇓

(b) h(f)⇑ = ((1⊗ h)f)⇑

(c) ((f)⇓ ⊗ g)m = a⊗((f ⊗ g)m)⇓

(d) ((f)⇑ ⊗ g)m = (a⊗(f ⊗ g)m)⇑

Proof. We start with proving (ii)⇒ (i). We can define η := (uR
⊗)

−1(id)⇓ using the given

bijection as below:

I
id−→ Hom(X ◁ A,X ◁ A)

A⊗ I
(id)⇓−−−→ Hom(X,X ◁ A)

A
(uR

⊗)−1

−−−−→ A⊗ I
(id)⇓−−−→ Hom(X,X ◁ A)

We have:

(η ⊗ f)m = (((uR
⊗)

−1(id)⇓)⊗ f)m

= ((uR
⊗)

−1 ⊗ 1)(1⊗ f)((id)⇓ ⊗ 1)m

= ((uR
⊗)

−1 ⊗ 1)(1⊗ f)a⊗((id⊗ 1)m)⇓

= ((uR
⊗)

−1 ⊗ 1)a⊗(1⊗ f)((id⊗ 1)m)⇓

= ((uR
⊗)

−1 ⊗ 1)a⊗(1⊗ f)((uL
⊗)

−1)⇓

= ((uR
⊗)

−1 ⊗ 1)a⊗(f(u
L
⊗)

−1)⇓

= (1⊗ (uL
⊗)

−1)(f(uL
⊗)

−1)⇓

= ((uL
⊗)

−1f(uL
⊗)

−1)⇓

= (f(uL
⊗)

−1uL
⊗)

⇓

= (f)⇓

Next, we prove (i)⇒ (ii). We have:
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(a)

(1⊗ h)(f)⇓ = (1⊗ h)(η ⊗ f)m

= (η ⊗ hf)m

= (hf)⇓

(b)

h(g)⇑ = ((h(g)⇑)⇓)⇑

= ((η ⊗ h(g)⇑)m)⇑

= ((1⊗ h)(η ⊗ (g)⇑)m)⇑

= ((1⊗ h)((g)⇑)⇓)⇑

= ((1⊗ h)g)⇑

(c)

((f)⇓ ⊗ g)m = ((η ⊗ f)m⊗ g)m

= a⊗(η ⊗ (f ⊗ g)m)m

= a⊗((f ⊗ g)m)⇓
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(d)

((f)⇑ ⊗ g)m = ((((f)⇑ ⊗ g)m)⇓)⇑

= ((η ⊗ ((f)⇑ ⊗ g)m)m)⇑

= (a⊗((η ⊗ (f)⇑)m⊗ g)m)⇑

= (a⊗(((f)
⇑)⇓ ⊗ g)m)⇑

= (a⊗(f ⊗ g)m)⇑

Corollary 3.2.2. Given the bijective correspondence discussed in Lemma 3.2.1, the fol-

lowing properties hold for (−)⇑ and (−)⇓:

(i) (1⊗ h)(f)⇓Hom(1, k) = (hfHom(1, k))⇓

(ii) h(g)⇑Hom(1, k) = ((1⊗ h)gHom(1, k))⇑

The preceding lemma plays a crucial role, as it provides an alternative characterization

of copowers using the combinators (−)⇑ and (−)⇓. This reformulation is particularly

valuable as these combinators offer a more flexible and compositional perspective on

copowers. Throughout this chapter, they will be used extensively in the development of

subsequent results, including the proof of the main theorem.

Lemma 3.2.3. In a right monoidal-closed category A, if γ : Hom(X ◁ A, Y ) → A ⊸

Hom(X, Y ) is A-natural in Y , then (uncurry(γ)⊗ 1)m = a⊗(1⊗m)uncurry(γ).

Proof.

γ is a natural transformation between two A-functors G := Hom(X ◁ A,−) : X → A

and F := A ⊸ Hom(X,−) : X → A. Since it is A-natural in Y , the following diagram

commutes:
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Hom(X,Y )⊗ I (Hom(X ◁A,X) ⊸ Hom(X ◁A, Y ))⊗ (Hom(X ◁A, Y ) ⊸ (A ⊸ Hom(X,Y )))

Hom(X,Y ) Hom(X ◁A,X) ⊸ (A ⊸ Hom(X,Y )

I ⊗Hom(X,Y ) (Hom(X ◁A, Y ) ⊸ (A ⊸ Hom(X,Y )))⊗ ((A ⊸ Hom(X,X)) ⊸ (A ⊸ Hom(X,Y )))

G⊗⌜γ⌝

m⊸(uR
⊗)−1

(uL
⊗)−1

⌜γ⌝⊗F

m⊸

Which means

(uR
⊗)

−1(G⊗ ⌜γ⌝)m⊸ = (uL
⊗)

−1(⌜γ⌝⊗ F )m⊸ (3.1)

We can define ⌜γ⌝ := curry(uR
⊗γ) as:

Hom(X ◁ A, Y )⊗ I A ⊸ Hom(X, Y )

Hom(X ◁ A, Y )

uncurry(⌜γ⌝)

uR
⊗ γ

We can define m⊸ := curry((a⊗)
−1(ϵ⊗ 1)ϵ) as below, in which ϵ : A⊗ (A ⊸ B)→ B is

the counit of adjunction between the A ⊸ − and A⊗− (known as the “evaluation” map).

A⊗ (A ⊸ B ⊗B ⊸ C) C

(A⊗ A ⊸ B)⊗B ⊸ C B ⊗B ⊸ C

uncurry(m⊸)

(a⊗)−1

ϵ⊗1

ϵ

We can define F := curry(curry((a⊗)
−1(ϵ⊗ 1)m)) as below:
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A⊗ ((A ⊸ Hom(X,X))⊗ Hom(X, Y )) Hom(X, Y )

(A⊗ (A ⊸ Hom(X,X))⊗ Hom(X, Y ) Hom(X,X)⊗ Hom(X, Y )

uncurry(uncurry((F ))

(a⊗)−1

ϵ⊗1

m

Finally, we can define G := curry(m) as below:

Hom(X ◁ A,X)⊗ Hom(X, Y ) Hom(X ◁ A, Y )
m=uncurry(G)

Using the definitions above, we can rewrite the left hand side identity we have due to

naturality as below:

(uR
⊗)

−1(G⊗ ⌜γ⌝)m⊸ = (uR
⊗)

−1(curry(m)⊗ curry(uR
⊗γ))curry((a⊗)

−1(ϵ⊗ 1)ϵ)

= curry(m)(uR
⊗)

−1(1⊗ curry(uR
⊗γ))curry((a⊗)

−1(ϵ⊗ 1)ϵ)

(naturality of (uR
⊗)

−1)

= curry(m)(uR
⊗)

−1curry((1⊗ (1⊗ curry(uR
⊗γ)))(a⊗)

−1(ϵ⊗ 1)ϵ)

= curry(m)(uR
⊗)

−1curry((a⊗)
−1(ϵ⊗ 1)(1⊗ curry(uR

⊗γ))ϵ)

(naturality of (a⊗)
−1)

= curry(m)(uR
⊗)

−1curry((a⊗)
−1(ϵ⊗ 1)(uR

⊗γ))

= curry(m)curry((1⊗ (uR
⊗)

−1)(a⊗)
−1(ϵ⊗ 1)(uR

⊗γ))

= curry(m)curry((1⊗ (uR
⊗)

−1)(a⊗)
−1uR

⊗(ϵγ)) (naturality of uR
⊗)

= curry(m)curry(ϵγ)

= curry((1⊗ curry(m))ϵγ)

= curry(mγ)
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And on the right hand side we have:

(uL
⊗)

−1(⌜γ⌝⊗ F )m⊸ = (uL
⊗)

−1(1⊗ F )(curry(uR
⊗γ)⊗ 1)curry((a⊗)

−1(ϵ⊗ 1)ϵ)

= F (uL
⊗)

−1(curry(uR
⊗γ)⊗ 1)curry((a⊗)

−1(ϵ⊗ 1)ϵ)

(naturality of (uL
⊗)

−1)

= F (uL
⊗)

−1curry((1⊗ (curry(uR
⊗γ)⊗ 1))(a⊗)

−1(ϵ⊗ 1)ϵ)

= F (uL
⊗)

−1curry((a⊗)
−1(curry(uR

⊗γ)⊗ 1)(ϵ⊗ 1)ϵ)

(naturality of (a⊗)
−1)

= F (uL
⊗)

−1curry((a⊗)
−1((1⊗ curry(uR

⊗γ))ϵ⊗ 1)ϵ)

(naturality of (a⊗)
−1)

= F (uL
⊗)

−1curry((a⊗)
−1(uR

⊗γ ⊗ 1)ϵ) (naturality of (a⊗)
−1)

= F curry((1⊗ (uL
⊗)

−1)(a⊗)
−1(uR

⊗γ ⊗ 1)ϵ)

= F curry(((uL
⊗)

−1 ⊗ 1)(uR
⊗γ ⊗ 1)ϵ)

= F curry((γ ⊗ 1)ϵ)

= curry(curry((a⊗)
−1(ϵ⊗ 1)m))curry((γ ⊗ 1)ϵ)

= curry((γ ⊗ 1)(1⊗ curry(curry((a⊗)
−1(ϵ⊗ 1)m)))ϵ)

= curry((γ ⊗ 1)curry((a⊗)
−1(ϵ⊗ 1)m))

So we can re-write 3.1 as:

curry(mγ) = curry((γ ⊗ 1)curry((a⊗)
−1(ϵ⊗ 1)m))
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We may now apply the “uncurry” operation twice to both sides of the identity, yielding:

uncurry(uncurry(curry(mγ))) = uncurry(uncurry(curry((γ ⊗ 1)curry((a⊗)
−1(ϵ⊗ 1)m))))

Now we simplify both sides again. On the left-hand side we have:

uncurry(uncurry(curry(mγ))) = uncurry(mγ)

= (1⊗m)uncurry(γ)

and on the right-hand side we have:

uncurry(uncurry(curry((γ ⊗ 1)curry((a⊗)
−1(ϵ⊗ 1)m)))) = uncurry((γ ⊗ 1)curry((a⊗)

−1(ϵ⊗ 1)m))

= (1⊗ (γ ⊗ 1))curry((a⊗)
−1(ϵ⊗ 1)m)

= (1⊗ (γ ⊗ 1))(a⊗)
−1(ϵ⊗ 1)m

= (a⊗)
−1((1⊗ γ)ϵ⊗ 1)m

= (a⊗)
−1(uncurry(γ)⊗ 1)m

Which means that we can re-write the identity 3.1 as:

(1⊗m)uncurry(γ) = (a⊗)
−1(uncurry(γ)⊗ 1)m

And by pre-composing a⊗ on both sides, we get

a⊗(1⊗m)uncurry(γ) = (uncurry(γ)⊗ 1)m
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We now make use of Lemma 3.2.3 to prove the following proposition. This result

demonstrates that our definition of copowers in the non-closed setting is equivalent to

the definition of copowers provided by [20] in the context of a closed monoidal category.

This equivalence highlights the compatibility of the two approaches and justifies our

choice of definition in the more general, non-closed setting.

Proposition 3.2.4. For an A-enriched category X, where A is a right monoidal-closed

category, the following statements are equivalent:

(i) There exists an isomorphism γ : Hom(X ◁ A, Y ) → A ⊸ Hom(X, Y ) which is

A-natural in Y .

(ii) There exist a bijective correspondence

B
f=(g)⇑−−−−→ Hom(X ◁ A, Y )

A⊗B
g=(f)⇓−−−−→ Hom(X, Y )

and a map η : A→ Hom(X,X ◁ A) such that (f)⇓ = (η ⊗ f)m

Proof. We start with proving (i)⇒ (ii). Using γ we can write:

A⊗B
g−−−−−−−−−−→

(f)⇓=uncurry(fγ)
Hom(X, Y )

B
curry(g)−−−−→

fγ
A ⊸ Hom(X, Y )

B
(g)⇑=curry(g)γ−1

−−−−−−−−−−→
f

Hom(X ◁ A, Y )
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We have to show that ((g)⇑)⇓ = g and ((f)⇓)⇑ = f

((g)⇑)⇓ = (curry(g)γ−1)⇓

= uncurry(curry(g)γ−1γ)

= uncurry(curry(g))

= g

((f)⇓)⇑ = (uncurry(fγ))⇑

= curry(uncurry(fγ))γ−1

= fγγ−1

= f

We can define η := (uR
⊗)

−1(1⊗ id)uncurry(γ) as below:

Hom(X ◁ A,X ◁ A)
γ−→ A ⊸ Hom(X,X ◁ A)

A⊗ Hom(X ◁ A,X ◁ A)
uncurry(γ)−−−−−−→ Hom(X,X ◁ A)

A
(uR

⊗)−1

−−−−→ A⊗ I
(1⊗id)−−−→ A⊗ Hom(X ◁ A,X ◁ A)

uncurry(γ)−−−−−−→ Hom(X,X ◁ A)
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We have to prove that the defined η satisfies (f)⇓ = (η ⊗ f)m:

(η ⊗ f)m = ((uR
⊗)

−1(1⊗ id)uncurry(γ)⊗ f)m (def of η)

= (1⊗ f)((uR
⊗)

−1 ⊗ 1)((1⊗ id)⊗ 1)(uncurry(γ)⊗ 1)m

= (1⊗ f)((uR
⊗)

−1 ⊗ 1)((1⊗ id)⊗ 1)a⊗(1⊗m)uncurry(γ) (Lemma 3.2.3)

= (1⊗ f)((uR
⊗)

−1 ⊗ 1)a⊗(1⊗ (id⊗ 1))(1⊗m)uncurry(γ)

= (1⊗ f)((uR
⊗)

−1 ⊗ 1)a⊗(1⊗ (id⊗ 1)m)uncurry(γ)

= (1⊗ f)((uR
⊗)

−1 ⊗ 1)a⊗(1⊗ uL
⊗)uncurry(γ)

= (1⊗ f)((uR
⊗)

−1 ⊗ 1)(uR
⊗ ⊗ 1)uncurry(γ)

= (1⊗ f)uncurry(γ)

= uncurry(fγ)

= (f)⇓

Next we have to prove (ii)⇒ (i). We define the map α : A ⊸ Hom(X, Y )→ Hom(X ◁

A, Y ) as:

A ⊸ Hom(X, Y )
α=(ev)⇑−−−−−→ Hom(X ◁ A, Y )

A⊗ A ⊸ Hom(X, Y )
ev−→ Hom(X, Y )

A ⊸ Hom(X, Y )
1−→ A ⊸ Hom(X, Y )

and the map β : Hom(X ◁ A, Y )→ A ⊸ Hom(X, Y ) as:

Hom(X ◁ A, Y )
β=curry(1⇓)−−−−−−−→ A ⊸ Hom(X, Y )

A⊗ Hom(X ◁ A, Y )
1⇓−→ Hom(X, Y )

Hom(X ◁ A, Y )
1−→ Hom(X ◁ A, Y )

Then we have:
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(1⊗ αβ)ev = (1⊗ α)(1⊗ β)ev

= (1⊗ (ev)⇑)(1⊗ curry(1⇓))ev

= (1⊗ (ev)⇑)(1⇓)

= ((ev)⇑)⇓

= ev

So αβ = 1. We also have:

αβ = curry(1⇓)(ev)⇑

= ((1⊗ curry(1⇓))ev)⇑

= (1⇓)⇑

= 1

So βα = 1. So α and β are mutually inverse and thus, isomorphisms.

It remains to prove that (uncurry(γ)⊗ 1)m = a⊗(1⊗m)uncurry(γ).

(uncurry(γ)⊗ 1)m = (uncurry(curry((1)⇓)⊗ 1)m

= ((1)⇓ ⊗ 1)m

= a⊗(m)⇓

= a⊗(1⊗m)(1)⇓

= a⊗(1⊗m)uncurry(curry((1)⇓)

= a⊗(1⊗m)uncurry(γ)
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3.3 Right actegories with hom-objects have copow-

ers

In this section, we establish the first direction of Theorem 3.1.1. Specifically, we aim to

prove the following proposition, which serves as the forward implication of the theorem

and constitutes a key step in the overall argument.

Proposition 3.3.1. If X is a right A-actegory with hom-objects, that is there is an

adjunction
A→ Hom(X, Y )

X ◁ A→ Y

then X is an A-enriched category with copowers.

Proof. We start with proving the enrichment. In the A-actegory X, we take ‘m’ to be

the composition morphism and ‘id’ to be the unit as below:

X ◁ Hom(X,Z) Z

X ◁ Hom(X, Y )⊗ Hom(Y, Z)

ϵ

1◁m a◁(ϵ◁1)ϵ

X ◁ Hom(X,X) X

X ◁ I

ϵ

1◁id u◁

In order to have an enrichment, we have to show the associativity of the composition and

identity rules for id:

1. Left identity:

X ◁Hom(X,Y ) Y

X ◁Hom(X,X)⊗Hom(X,Y ) X ◁Hom(X,X)◁Hom(X,Y ) X ◁Hom(X,Y )

X ◁ I ⊗Hom(X,Y ) X ◁ I ◁Hom(X,Y )

(3.2)

ϵ

(3.3)

1◁m

a◁ ϵ◁1

ϵ

(3.4)
1◁id⊗1

a◁

1◁uL
⊗

1◁id◁1
u◁◁1

(3.5)
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Square 3.2 is the definition ofm, square 3.3 commutes because a◁ is natural, triangle

3.4 is the definition of id and finally 3.5 commutes because of section 2.9. So the

whole diagram above commutes,

(1◁ idX ⊗ 1)(1◁mXXY )ϵ = (1◁ uL
⊗)ϵ

Since ϵ is the counit of the adjunction, based on the couniversal property we have:

X ◁ Hom(X, Y ) Y

X ◁ I ⊗ Hom(X, Y )

ϵ

1◁uL
⊗ (1◁uL

⊗)ϵ

X ◁ Hom(X, Y ) Y

X ◁ I ⊗ Hom(X, Y )

ϵ

(1◁id⊗1)(1◁mXXY )
(1◁id⊗1)(1◁mXXY )ϵ=(1◁uL

⊗)ϵ

Since the map from X ◁ I ⊗Hom(X, Y ) to X ◁Hom(X, Y ) must be unique, then

we have:

1◁ uL
⊗ = (1◁ id⊗ 1)(1◁mXXY )

which proves the left identity.

2. Right identity:

X ◁Hom(X,Y ) Y

X ◁Hom(X,Y )⊗Hom(Y, Y ) X ◁Hom(X,Y )◁Hom(Y, Y ) Y ◁Hom(Y, Y )

X ◁Hom(X,Y )⊗ I X ◁Hom(X,Y )◁ I

(3.6)

ϵ

(3.7)

1◁m

a◁

ϵ◁1

ϵ

(3.8)
1◁1⊗id

a◁

1◁uR
⊗

1◁1◁idY
1◁u◁

(3.9)

Square 3.6 is the definition ofm, square 3.7 commutes because a◁ is natural, triangle

3.8 is the definition of id and finally 3.8 commutes because of section 2.9. Thus the

whole diagram above commutes, so we have

(1◁ 1⊗ idY )(1◁mXY Y )ϵ = (1◁ uR
⊗)ϵ
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Since ϵ is the counit of the adjunction, based on the couniversal property we have:

X ◁ Hom(X, Y ) Y

X ◁ Hom(X, Y )⊗ I

ϵ

1◁uR
⊗ (1◁uR

⊗)ϵ

X ◁ Hom(X, Y ) Y

X ◁ Hom(X, Y )⊗ I

ϵ

(1◁1⊗idY )(1◁mXY Y )
(1◁1⊗idY )(1◁mXY Y )ϵ=(1◁uR

⊗)ϵ

Since the map from X ◁Hom(X, Y )⊗ I to X ◁Hom(X, Y ) must be unique, then

we have:

1◁ uR
⊗ = (1◁ 1⊗ idY )(1◁mXY Y )

which proves the identity on the right.

3. Associativity of composition:

(1◁ (1⊗m))(1◁m)ϵ = (1◁ (1⊗m))a◁(ϵ◁ 1)ϵ (def of m)

= a◁(1◁m)(ϵ◁ 1)ϵ (naturality of a◁)

= a◁(ϵ◁ 1)(1◁m)ϵ

= a◁(ϵ◁ 1)a◁(ϵ◁ 1)ϵ (def of m)

= a◁a◁((ϵ◁ 1)◁ 1)(ϵ◁ 1)ϵ (naturality of a◁)

= (1◁ a⊗)a◁(a◁ ◁ 1)((ϵ◁ 1)◁ 1)(ϵ◁ 1)ϵ

(associativity of a◁)

= (1◁ a⊗)a◁(a◁(ϵ◁ 1)◁ 1)(ϵ◁ 1)ϵ

= (1◁ a⊗)a◁((1◁m)◁ 1)(ϵ◁ 1)ϵ (def of m)

= (1◁ a⊗)(1◁ (m⊗ 1))a◁(ϵ◁ 1)ϵ (naturality of a◁)

= (1◁ a⊗)(1◁ (m⊗ 1))(1◁m)ϵ (def of m)
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so we have:

(1◁ (1⊗m))(1◁m)ϵ = (1◁ a⊗)(1◁ (m⊗ 1))(1◁m)ϵ

Since ϵ is the counit of the adjunction, based on the couniversal property we have:

X ◁ Hom(X,W ) W

X ◁ Hom(X, Y )⊗ Hom(Y, Z)⊗ Hom(Z,W )

ϵ

1◁(1⊗mY ZW ))(1◁mXY W ) (1◁(1⊗mY ZW ))(1◁mXY W )ϵ

X ◁ Hom(X,W ) W

X ◁ (Hom(X, Y )⊗ Hom(Y, Z)⊗ Hom(Z,W )

ϵ

(1◁a⊗)(1◁(mXY Z⊗1))(1◁mXZW ) (1◁a⊗)(1◁(mXY Z⊗1))(1◁mXZW )ϵ=(1◁(1⊗mY ZW ))(1◁mXY W )ϵ

Since the map from X◁(Hom(X, Y )⊗Hom(Y, Z)⊗Hom(Z,W ) to X◁Hom(X,W )

must be unique, we have:

(1◁ a⊗)(1◁ (mXY Z ⊗ 1))(1◁mXZW ) = (1◁ (1⊗mY ZW ))(1◁mXYW )

which proves the associativity of the composition.

Above we have shown that we have an enrichment of the category X in the category A.

Next, we prove that X has copowers over A. Using the adjunction, we define the (−)⇑

and (−)⇓ combinators as:

X ◁ A⊗B
a◁−→

B
f−→ Hom(X ◁ A, Y )

X ◁ A◁B
f♯

−→ Y

A⊗B
(a◁f♯)♭−−−−→ Hom(X, Y )

X ◁ A◁B
a−1
◁−−→

A⊗B
g−→ Hom(X, Y )

X ◁ A⊗B
g♯−→ Y

B
(a−1

◁ g♯)♭

−−−−−→ Hom(X ◁ A, Y )
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(f)⇓ = (a◁f
♯)♭ and (g)⇑ = (a−1

◁ g♯)♭

We have to prove that ((f)⇓)⇑ = f and ((g)⇑)⇓ = g

((g)⇑)⇓ = ((a−1
◁ g♯)♭)⇓

= (a◁((a
−1
◁ g♯)♭)♯)♭

= (a◁a
−1
◁ g♯)♭

= (g♯)♭

= g

((f)⇓)⇑ = ((a◁f
♯)♭)⇑

= (a−1
◁ ((a◁f

♯)♭)♯)♭

= (a−1
◁ a◁f

♯)♭

= (f ♯)♭

= f

We take η := 1♭ (the unit of the ajdunction). We have to prove that (f)⇓ = (η ⊗ f)m

(f)⇓ = (a◁f
♯)♭

= (a◁(1◁ f)ϵ)♭ (f ♯ = (1◁ f)ϵ)

= ((1◁ (1⊗ f))a◁ϵ)
♭ (naturality of a◁)

= (1⊗ f)a♭◁Hom(1, ϵ)

= (1⊗ f)((1◁ (η ⊗ η)m)ϵ)♭Hom(1, ϵ)

= (1⊗ f)(η ⊗ η)mϵ♭Hom(1, ϵ)

= (1⊗ f)(η ⊗ η)m(1♯)♭Hom(1, ϵ)

= (1⊗ f)(η ⊗ η)mHom(1, ϵ)

= (η ⊗ f)(1⊗ ηHom(1, ϵ))m

= (η ⊗ f)m (triangle identity)
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3.4 Categories with copowers are right actegories with

hom-object

In the previous section, we established that any right actegory equipped with hom-objects

admits copowers. In this section, we prove the converse direction of Theorem 3.1.1. This

will be accomplished by proving the following proposition, which demonstrates that the

existence of copowers (together with certain coherence conditions) implies the presence

of a right actegory structure with hom-objects.

Proposition 3.4.1. In any A-enriched category X with copowers, for each X ∈ X there

is an adjunction
A→ Hom(X, Y )

X ◁ A→ Y

and X is an A-actegory, with an action ◁ : X × A → X and two morphisms a◁ :=

(1◁ (η ⊗ η)m)ϵ : X ◁ A⊗B → X ◁ A◁B and u◁ := (1◁ id)ϵ : X ◁ I → X.

Proof. We start with proving that Hom(X,−) is a functor. We have:

Hom(1, 1) = (uR
⊗)

−1(1⊗ ⌜1⌝)m

= (uR
⊗)

−1(1⊗ id)m

= (uR
⊗)

−1uR
⊗

= 1
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So Hom(X,−) satisfies the identity, and we have:

Hom(1, fg) = (uR
⊗)

−1(1⊗ ⌜fg⌝)m

= (uR
⊗)

−1(1⊗ ((uL
⊗)

−1(⌜f⌝⊗ ⌜g⌝)m))m

= (uR
⊗)

−1(1⊗ (uL
⊗)

−1)(1⊗ (⌜f⌝⊗ ⌜g⌝)m)m

= (uR
⊗)

−1(1⊗ (uL
⊗)

−1)a⊗((1⊗ ⌜f⌝)m⊗ ⌜g⌝)m

= (uR
⊗)

−1((uR
⊗)

−1 ⊗ 1)((1⊗ ⌜f⌝)m⊗ ⌜g⌝)m

= (uR
⊗)

−1((uR
⊗)

−1(1⊗ ⌜f⌝)m⊗ ⌜g⌝)m

= (uR
⊗)

−1(Hom(1, f)⊗ ⌜g⌝)m

= Hom(1, f)Hom(g, f)

Which shows that Hom(X,−) also satisfies the composition, and thus is a functor.

Next we prove that the unit of the copower η : A → Hom(X,X ◁ A) has the universal

property.

Using the property of copowers, we have ⌜f ♯⌝ = (uR
⊗f)

⇑:

A⊗ I
uR
⊗−→ A

f−→ Hom(X, y)

I
⌜f♯⌝=(uR

⊗f)⇑

−−−−−−−→ Hom(X ◁ A, Y )
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So We have:

ηHom(1, f ♯) = (uR
⊗)

−1(η ⊗ ⌜f ♯⌝)m

= (uR
⊗)

−1(η ⊗ (uR
⊗f)

⇑)m

= (uR
⊗)

−1((uR
⊗f)

⇑)⇓

= (uR
⊗)

−1uR
⊗f

= f

Which proves that the diagram below commutes:

A Hom(X,X ◁ A)

Hom(X, Y )

η

f Hom(1,f♯)

It remains to prove that for any f , ηHom(1, f ♯) is unique. Suppose there is another map

Hom(1, g) : Hom(X, Y )→ Hom(X,X ◁ A), such that ηHom(1, g) = f . We have:

ηHom(1, g) = (uR
⊗)

−1(η ⊗ ⌜g⌝)m

= (uR
⊗)

−1(⌜g⌝)⇓ = f

which means (⌜g⌝)⇓ = uR
⊗f . By applying (−)⇑ on both sides we get ⌜g⌝ = (uR

⊗f)
⇑ = ⌜f ♯⌝

which means Hom(1, g) = Hom(1, f ♯) so this proves the uniqueness of Hom(1, f ♯).

Therefore, η has the universal property. As a result, the adjunction exists, X◁− : A→ X

is a functor and ϵ : X ◁ Hom(X, Y )→ Y is the counit of the adjunction.
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Next we prove that X is an A-actegory. Let a◁ : X ◁ (A⊗ B)→ X ◁ A◁ B be defined

as:

X ◁ (A⊗B) X ◁ (Hom(X,X ◁ A)⊗ Hom(X ◁ A,X ◁ A◁B))

X ◁ Hom(X,X ◁ A◁B)

X ◁ A◁B

1◁(η⊗η)

a◁

1◁m

ϵ

a−1
◁ : X ◁ A ◁ B → X ◁ (A ⊗ B) can be expressed as a map ⌜a−1

◁ ⌝ : I → Hom(X ◁

A◁ B,X ◁ (A⊗ B)) in category ⌜X⌝, which can be obtained using the property of the

copower as:

A⊗B
η−→ Hom(X,X ◁ (A⊗B))

B
(η)⇑−−→ Hom(X ◁ A,X ◁ (A⊗B))

B ⊗ I
uR
⊗(η)⇑

−−−−→ Hom(X ◁ A,X ◁ (A⊗B))

I
(uR

⊗(η)⇑)⇑

−−−−−−→ Hom(X ◁ A◁B,X ◁ (A⊗B))
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Thus,

a◁a
−1
◁ = ((1◁ (η ⊗ η)m)ϵ)a−1

◁

= (1◁ (η ⊗ η)mHom(1, a−1
◁ ))ϵ (naturality of ϵ)

= (1◁ (η ⊗ ηHom(1, a−1
◁ ))m)ϵ (lemma 2.8.1)

= (1◁ (η ⊗ ((uR
⊗)

−1(η ⊗ ⌜a−1
◁ ⌝)m))m)ϵ (corollary 3.2.2)

= (1◁ (η ⊗ ((uR
⊗)

−1(⌜a−1
◁ ⌝)⇓)m)ϵ (definition 3.2.1)

= (1◁ (η ⊗ ((uR
⊗)

−1((uR
⊗(η)

⇑)⇑)⇓)m)ϵ (def of ⌜a−1
◁ ⌝)

= (1◁ (η ⊗ ((uR
⊗)

−1uR
⊗(η)

⇑)m)ϵ (((f)⇑)⇓ = f)

= (1◁ (η ⊗ (η)⇑)m)ϵ

= (1◁ ((η)⇑)⇓)ϵ (definition 3.2.1)

= (1◁ η)ϵ

= 1 (triangle identity)
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a−1
◁ a◁ = (1◁ ((uR

⊗)
−1(η ⊗ ⌜a−1

◁ ⌝)m))ϵa◁

= (1◁ ((uR
⊗)

−1(η ⊗ ⌜a−1
◁ ⌝)mHom(1, a◁))ϵ (naturality of ϵ)

= (1◁ ((uR
⊗)

−1((η ⊗ ⌜a−1
◁ ⌝Hom(1, a−1

◁ ))m)ϵ (lemma 2.8.1)

= (1◁ ((uR
⊗)

−1((η ⊗ (uR
⊗(η)

⇑)⇑Hom(1, a◁))m)ϵ (def of ⌜a−1
◁ ⌝)

= (1◁ ((uR
⊗)

−1((η ⊗ (uR
⊗(η)

⇑Hom(1, a◁))
⇑)m)ϵ (corollary 3.2.2)

= (1◁ ((uR
⊗)

−1((η ⊗ (uR
⊗(ηHom(1, a◁))

⇑)⇑)m)ϵ (corollary 3.2.2)

= (1◁ ((uR
⊗)

−1((η ⊗ (uR
⊗(ηHom(1, (1◁ (η)⇓)ϵ)))⇑)⇑)m)ϵ (def of a◁)

= (1◁ ((uR
⊗)

−1((η ⊗ (uR
⊗((η)

⇓ηHom(1, ϵ)))⇑)⇑)m)ϵ (naturality of η)

= (1◁ ((uR
⊗)

−1((η ⊗ (uR
⊗((η)

⇓)⇑)⇑)m)ϵ (triangle identity)

= (1◁ ((uR
⊗)

−1((η ⊗ (uR
⊗η)

⇑)m)ϵ (((f)⇓)⇑ = f)

= (1◁ ((uR
⊗)

−1((uR
⊗η)

⇑)⇓)ϵ (definition 3.2.1)

= (1◁ ((uR
⊗)

−1uR
⊗η)ϵ (((f)⇓)⇑ = f)

= (1◁ η)ϵ

= 1 (triangle identity)

Therefore we can conclude that a◁ is an isomorphism.
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In order to have an actegory, the following coherence for a◁ must hold:

X ◁ A⊗ (B ⊗ C) X ◁ (A⊗B)⊗ C

X ◁ A◁B ⊗ C X ◁ (A⊗B)◁ C

X ◁ A◁B ◁ C

a◁

1◁a⊗

a◁

a◁
a◁◁1

Based on our definition of a◁, on the left-hand-side of the diagram we have:

(1◁ a⊗)a◁a◁ = (1◁ a⊗)(1◁ (η ⊗ η)m)ϵa◁

= (1◁ a⊗(η ⊗ η)m)ϵa◁

= (1◁ a⊗(η ⊗ η)mHom(1, a◁))ϵ (naturality of ϵ)

= (1◁ a⊗(η ⊗ ηHom(1, a◁))m)ϵ (lemma 2.8.1)

= (1◁ a⊗(η ⊗ ηHom(1, (1◁ (η ⊗ η)m)ϵ))m)ϵ (def of a◁)

= (1◁ a⊗(η ⊗ (η ⊗ η)mηHom(1, ϵ))m)ϵ (naturality of η)

= (1◁ a⊗(η ⊗ (η ⊗ η)m)m)ϵ (triangle identity)
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And on the right-hand-side we have:

a◁(a◁ ◁ 1) = (1◁ (η ⊗ η)m)ϵ(a◁ ◁ 1) (definition of a◁)

= (1◁ (η ⊗ η)mHom(1, a◁ ◁ 1))ϵ (naturality of ϵ)

= (1◁ (η ⊗ ηHom(1, a◁ ◁ 1))m)ϵ (lemma 2.8.1)

= (1◁ (η ⊗ ηHom(a◁, 1))m)ϵ (corollary 2.6.2)

= (1◁ (η ⊗ ((uR
⊗)

−1(⌜a◁⌝⊗ η)m))m)ϵ

= (1◁ ((uR
⊗)

−1(η ⊗ (⌜a◁⌝⊗ η))m)m)ϵ

= (1◁ ((uL
⊗)

−1(η ⊗ ⌜a◁⌝)m⊗ η))m)ϵ (associativity of m)

= (1◁ ((ηHom(1, a◁)⊗ η))m)ϵ

= (1◁ ((ηHom(1, (1◁ (η ⊗ η)m)ϵ)⊗ η))m)ϵ (def of a◁)

= (1◁ (((η ⊗ η)mηHom(1, ϵ)⊗ η))m)ϵ (naturality of η)

= (1◁ (((η ⊗ η)m⊗ η))m)ϵ (triangle identity)

= (1◁ (((η ⊗ (η ⊗ η)m)m)ϵ (associativity of m)

Therefore the right-hand-side and the left-hand-side of the diagram are equal, so the

diagram commutes and the coherence for a◁ holds.

One of the most effective ways to prove such identities is through the use of circuit

diagrams. Figure 3.1 illustrates a simplified circuit diagram corresponding to the right-

hand side of the identity discussed above, and Figure 3.2 depicts the left-hand side. As

shown, the simplified diagrams are identical, confirming the equality of the two sides.
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Figure 3.1: Circuit diagram proof for (1◁ a⊗)a◁a◁ = (1◁ a⊗(η ⊗ (η ⊗ η)m)m)ϵ
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Figure 3.2: Circuit diagram proof for a◁(1◁ a◁) = (1◁ a⊗(η ⊗ (η ⊗ η)m)m)ϵ
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We also need a◁ to be natural in every argument. Therefore, the following diagrams

should commute:

X ◁ (A⊗B) (X ◁A)◁B

X ◁ (A⊗B′) (X ◁A)◁B′

a◁

1◁(1⊗h) 1◁h(3.10)

a◁

X ◁ (A⊗B) (X ◁A)◁B

X ◁ (A′ ⊗B) (X ◁A′)◁B

a◁

1◁(g⊗1) (1◁g)◁1(3.11)

a◁

X ◁ (A⊗B) (X ◁A)◁B

Y ◁ (A⊗B) (Y ◁A)◁B

a◁

f◁1 (f◁1)◁1(3.12)

a◁

For (3.10) we have:

a◁(1◁ h) = (1◁ (η ⊗ η)m)ϵ(1◁ h)

= (1◁ (η ⊗ η)mHom(1, 1◁ h))ϵ (naturality of ϵ)

= (1◁ (η ⊗ (ηHom(1, 1◁ h)))m)ϵ

= (1◁ (η ⊗ (hη))m)ϵ (naturality of η)

= (1◁ (1⊗ h)(η ⊗ η)m)ϵ

= (1◁ (1⊗ h))(1◁ (η ⊗ η)m)ϵ

= (1◁ (1⊗ h))a◁
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For (3.11) we have:

a◁((1◁ g)◁ 1) = (1◁ (η ⊗ η)m)ϵ((1◁ g)◁ 1)

= (1◁ (η ⊗ η)mHom(1, ((1◁ g)◁ 1)))ϵ (naturality of ϵ)

= (1◁ (η ⊗ (ηHom(1, ((1◁ g)◁ 1))))m)ϵ (lemma 2.8.1)

= (1◁ (η ⊗ (ηHom((1◁ g), 1)))m)ϵ (corollary 2.6.2)

= (1◁ (η ⊗ ((uR
⊗)

−1(⌜1◁ g⌝⊗ η)m))m)ϵ

= (1◁ (((uL
⊗)

−1(η ⊗ ⌜1◁ g⌝)m)⊗ η))m)ϵ (associativity of m)

= (1◁ (ηHom(1, 1◁ g)⊗ η)m)ϵ

= (1◁ (gη ⊗ η)m)ϵ (naturality of η)

= (1◁ (g ⊗ 1)(η ⊗ η)m)ϵ

= (1◁ (g ⊗ 1))(1◁ (η ⊗ η)m)ϵ

= (1◁ (g ⊗ 1))a◁
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For (3.12) we have:

a◁((f ◁ 1)◁ 1) = (1◁ (η ⊗ η)m)ϵ((f ◁ 1)◁ 1)

= (1◁ (η ⊗ η)mHom(1, (f ◁ 1)◁ 1))ϵ (naturality of ϵ)

= (1◁ (η ⊗ (ηHom(1, (f ◁ 1)◁ 1)))m)ϵ (lemma 2.8.1)

= (1◁ (η ⊗ (ηHom(f ◁ 1, 1)))m)ϵ (corollary 2.6.2)

= (1◁ (η ⊗ ((uL
⊗)

−1(⌜f ◁ 1⌝⊗ η)m))m)ϵ

= (1◁ (1⊗ (uL
⊗)

−1)(η ⊗ ((⌜f ◁ 1⌝⊗ η)m))m)ϵ

= (1◁ (1⊗ (uL
⊗)

−1)a⊗((η ⊗ ⌜f ◁ 1⌝)m⊗ η)m)ϵ (associativity of m)

= (1◁ ((uR
⊗)

−1(η ⊗ ⌜f ◁ 1⌝)m⊗ η)m)ϵ

= (1◁ ((ηHom(1, f ◁ 1))⊗ η)m)ϵ

= (1◁ ((ηHom(f, 1))⊗ η)m)ϵ (corollary 2.6.2)

= (1◁ (((uR
⊗)

−1(⌜f⌝⊗ η)m)⊗ η)m)ϵ

= (1◁ (uR
⊗)

−1(⌜f⌝⊗ (η ⊗ η)m)m)ϵ (associativity of m)

= (1◁ (uR
⊗)

−1(⌜f⌝⊗ (η ⊗ η)mηHom(1, ϵ))m)ϵ (triangle identity)

= (1◁ (uR
⊗)

−1(⌜f⌝⊗ ηHom(1, 1◁ ((η ⊗ η)m)ϵ))m)ϵ (naturality of η)

= (1◁ (uR
⊗)

−1(⌜f⌝⊗ ηHom(1, a◁))m)ϵ (def of a◁)

= (1◁ (uR
⊗)

−1(⌜f⌝⊗ η)mHom(1, a◁))ϵ (lemma 2.8.1)

= (1◁ (uR
⊗)

−1(⌜f⌝⊗ η)m)ϵa◁ (naturality of ϵ)

= (1◁ (ηHom(f, 1)))ϵa◁

= (f ◁ 1)a◁

Therefore a◁ is natural.
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The other map required to form an actegory is u◁ : X ◁ I → I which is defined by

u◁ := (1◁ id)ϵ:

X ◁ I X ◁ Hom(X,X)

X

1◁id

u◁
ϵ

We can also express u◁ as a map ⌜u◁⌝ : I → Hom(X ◁ I,X) in the category ⌜X⌝ which

can be obtained using the property of copowers as:

I
u◁=(uL

⊗id)⇑

−−−−−−−→ Hom(X ◁ I,X)

I ⊗ I
uL
⊗−→ I

id−→ Hom(X,X)

The inverse of ⌜u◁⌝ can be written as ⌜u−1
◁ ⌝ := ηI : I → Hom(X,X ◁ I). We must show

that u−1
◁ is inverse to u◁ that is equivalently the following:

u◁u
−1
◁ = (uR

⊗)
−1(⌜u◁⌝⊗ ⌜u−1

◁ ⌝)m

= (uR
⊗)

−1((uL
⊗id)

⇑ ⊗ η)m

= (uR
⊗)

−1(((uL
⊗id)⊗ η)m)⇑

= ((1⊗ (uR
⊗)

−1)(uL
⊗ ⊗ 1)(id⊗ η)m)⇑

= (uL
⊗(u

L
⊗)

−1(id⊗ η)m)⇑

= (uL
⊗η)

⇑

= id
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and

u−1
◁ u◁ = (uL

⊗)
−1(⌜u−1

◁ ⌝⊗ ⌜u◁⌝)m

= (uL
⊗)

−1(η ⊗ (uL
⊗id)

⇑)m

= (uL
⊗)

−1((uL
⊗id)

⇑)⇓

= (uL
⊗)

−1uL
⊗id

= id

Therefore u◁ is an isomorphism.

Next, we show that u◁ satisfies the following coherences:

X ◁ A⊗ I A◁X ◁ I

X ◁ A

a◁

1◁uR
⊗ u◁

X ◁ I ⊗ A X ◁ I ◁ A

X ◁ A

a◁

1◁uL
⊗ u◁◁1

a◁u◁ = (1◁ (η ⊗ η)m)ϵu◁

= (1◁ (η ⊗ η)mHom(1, u◁))ϵ (naturality of ϵ)

= (1◁ (η ⊗ (ηHom(1, u◁)))m)ϵ (lemma 2.8.1)

= (1◁ (η ⊗ (ηHom(1, (1◁ id)ϵ)))m)ϵ (def of u◁)

= (1◁ (η ⊗ (idηHom(1, ϵ)))m)ϵ (naturality of η)

= (1◁ (η ⊗ id)m)ϵ (triangle identity)

= (1◁ uR
⊗η)ϵ

= (1◁ uR
⊗)(1◁ η)ϵ

= 1◁ uR
⊗ (triangle identity)
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a◁(u◁ ◁ 1) = (1◁ (η ⊗ η)m)ϵ(u◁ ◁ 1)

= (1◁ (η ⊗ η)mHom(1, u◁ ◁ 1))ϵ (naturality of ϵ)

= (1◁ (η ⊗ (ηHom(1, u◁ ◁ 1)))m)ϵ (lemma 2.8.1)

= (1◁ (η ⊗ (ηHom(u◁, 1)))m)ϵ (corollary 2.6.2)

= (1◁ (η ⊗ ((uL
⊗)

−1(⌜u◁⌝⊗ η)m))m)ϵ

= (1◁ (1⊗ (uL
⊗)

−1)(η ⊗ (⌜u◁⌝⊗ η)m)m)ϵ

= (1◁ (1⊗ (uL
⊗)

−1)a⊗((η ⊗ ⌜u◁⌝)m⊗ η)m)ϵ (associativity of m)

= (1◁ ((uR
⊗)

−1 ⊗ 1)((η ⊗ ⌜u◁⌝)m⊗ η)m)ϵ

= (1◁ ((uR
⊗)

−1(η ⊗ ⌜u◁⌝)m⊗ η)m)ϵ

= (1◁ (ηHom(1, u◁)⊗ η)m)ϵ

= (1◁ (ηHom(1, (1◁ id)ϵ)⊗ η)m)ϵ (def of u◁)

= (1◁ (idηHom(1, ϵ)⊗ η)m)ϵ (naturality of η)

= (1◁ (id⊗ η)m)ϵ (triangle identity)

= (1◁ uL
⊗η)ϵ

= (1◁ uL
⊗)(1◁ η)ϵ

= 1◁ uL
⊗ (triangle identity)
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Finally, u◁ has to be natural, so the following diagaram must commute:

X ◁ I X

Y ◁ I Y

u◁

f◁1 f

u◁

(f ◁ 1)u◁ = (1◁ (ηHom(f, 1)))ϵu◁

= (1◁ ((uR
⊗)

−1(⌜f⌝⊗ η)m))ϵu◁

= (1◁ (((uR
⊗)

−1(⌜f⌝⊗ η)m)Hom(1, u◁)))ϵ (naturality of ϵ)

= (1◁ (((uR
⊗)

−1(⌜f⌝⊗ (ηHom(1, u◁)))m)))ϵ (lemma 2.8.1)

= (1◁ (((uR
⊗)

−1(⌜f⌝⊗ (ηHom(1, (1◁ id)ϵ)))m)))ϵ (def of u◁)

= (1◁ (((uR
⊗)

−1(⌜f⌝⊗ (idηHom(1, ϵ)))m)))ϵ (naturality of η)

= (1◁ (((uR
⊗)

−1(⌜f⌝⊗ id)m)))ϵ (triangle of identity)

= (1◁ (((uR
⊗)

−1(id⊗ ⌜f⌝)m)))ϵ

= (1◁ idHom(1, f))ϵ

= (1◁ id)ϵf (naturality of ϵ)

= u◁f

By proving Propositions 3.3.1 and 3.4.1, we prove the Theorem 3.1.1 and establish the

equivalence between right A-actegories with hom-objects and right A-enriched categories

with copowers. This result has not previously been proven in the general case where A

is neither monoidal closed nor symmetric.
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3.5 Powers

In the previous sections, we discussed copowers and the equivalence between right acte-

gories with hom-objects and right enriched categories with copowers. In this section, we

introduce the dual concept of copowers, known as powers, and obtain the dual of Theorem

3.1.1. Finally, we show that if the action functor in a right actegory with hom-objects

admits a right adjoint, this adjoint gives a power, just like the action gives a copower.

3.5.1 Obtaining The Dual Theorem

In this section we establish the dual of Theorem 3.1.1 by first changing right actegory

to left actegory, second changing right enrichment to left enrichment and transferring

to Arev, and finally going to the opposite categories. This will give us an equivalence

between having a left Aop-actegory with hom-objects and a left-enriched category with

powers. This processes can be shown as followes:

(i) To give a right A-actegory with hom-objects that is

X ◁− ⊣ Hom(X,−) : A→ X

is to give a right A-enriched category with copowers, that is the follwoing bijective

correspondence exists in A:

B
f−→ Hom(X ◁ A, Y )

A⊗B
(η⊗f)m−−−−→ Hom(X, Y )

(ii) To give a left Arev-actegory with hom-objects that is

−▷X ⊣ Hom(X,−) : Arev → X
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is to give a left Arev-enriched category with copowers, that is the follwoing bijective

correspondence exists in Arev:

B
f−→ Hom(A▷X, Y )

B ⊗ A
(f⊗η)m−−−−→ Hom(X, Y )

(iii) To give a left (Arev)op-actegory with hom-objects that is

Homop(X,−) ⊣ − ▶ X : (Arev)op → Xop

is to give a left (Arev)op-coenriched category with powers, that is the following

bijective correspondence exists in (Arev)op:

B
f←− Homop(A ▶ X, Y )

B ⊗ A
(fop⊗ϵ)mop

←−−−−−− Homop(X, Y )

(iv) To give a left (Arev)op-actegory with hom-objects that is

Hom(−, X) ⊣ − ▶ X : (Arev)op → Xop

is to give a left Arev-enriched category with powers, that is the following bijection

exists in Arev:

B
f−→ Hom(Y,A ▶ X)

B ⊗ A
(f⊗ϵ)m−−−−→ Hom(Y,X)

So we can express the dual theorem as:

Theorem 3.5.1. To give a left (Arev)op-actegory with hom-objects, is to give an Arev-

enriched category with powers.
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We now show that in a right actegory with hom-objects, if the action functor has a

right adjoint (in its other argument) the right adjoint action yields powers just as the

action yields copowers. More importantly, in this case, both powers and copowers can

have the same hom-object, demonstrating that they induce the same enrichment up to

equivalence.

Theorem 3.5.2. A right A-actegory X with hom-objects is a left (Arev)op-actegory with

hom-objects if and only if ∀A ∈ A, the action functor has a right adjoint as −◁A ⊣ A ▶

− : X→ X.

Proof. We start with proving a right A-actegory X with right hom-objects is a left

(Arev)op-actegory with left hom-objects provided that the action functor has a right ad-

joint (η′, ϵ′) : − ◁ A ⊣ A ▶ − : X → X. Since X is a right A-actegory with hom-objects

there is an adjunction (η, ϵ) : X ◁ − ⊣ Hom(X,−) : A → X. Using the two adjunctions

we obtain the following bijective correspondence:

Hom(X, Y )
fop

−−→ A in (Arev)op

A
f−→ Hom(X, Y ) in A

X ◁ A
(1◁f)ϵ−−−−→ Y

X
η′(1▶((1◁f)ϵ))−−−−−−−−→ A ▶ Y

Therefore, we can define the (−)♭ operator as f ♭ = η′(1 ▶ ((1◁ f)ϵ)). It suffices to prove

that (Hom(k, 1)f oph)♭ = kf ♭(h ▶ 1) which means (hfHom(k, 1))♭ = kf ♭(h ▶ 1). We
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have:

(hfHom(k, 1))♭ = η′(1 ▶ ((1◁ hfHom(k, 1))ϵ))

= η′(h ▶ (1◁ fHom(k, 1))ϵ) (dinaturality of η′, (Lemma 2.6.2))

= η′(h ▶ ((k ◁ f)ϵ)) = k(η′(h ▶ ((1◁ f)ϵ)))

= k(η′(1 ▶ ((1◁ f)ϵ)))(h ▶ 1) = kf ♭(h ▶ 1)

Consequently, Hom(X,−) ⊣ − ▶ X : X → (Arev)op which means that an (Arev)op-

actegory has hom-objects. Now, we prove the other direction of the theorem. Using the

two adjunctions (η, ϵ) : X ◁ − ⊣ Hom(X,−) : A → X and (η′′, ϵ′′) : Hom(X,−) ⊣ − ▶

X : X→ (Arev)op we have the following bijcective correspondence:

X ◁ A
f−→ Y

A
ηHom(1,f)−−−−−−→ Hom(X, Y ) in A

Hom(X, Y )
Hom(f,1)η−−−−−−→ A in (Arev)op

X
η′(Hom(f,1)η▶1)−−−−−−−−−→ A ▶ Y

So we can define the (−)♭ operator as f ♭ = η′(Hom(f, 1)η ▶ 1). It suffices to show that

((h◁ 1)fk)♭ = hf ♭(1 ▶ k). We have:

hf ♭(1 ▶ k) = hη′(Hom(f, 1)η ▶ 1)(1 ▶ k) = hη′(1 ▶ k)(Hom(f, 1)η ▶ 1)

= hη′(Hom(kf, 1)η ▶ 1) (dinaturality of η′ (Corollary 2.6.2))

= η′(Hom(kf, 1)Hom(1, h)η ▶ 1) (naturality of η′)

= η′(Hom(kf(h◁ 1), 1)η ▶ 1) (dinaturality of η (Corollary 2.6.2))

= ((h◁ 1)fk)♭
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This proves that there is an adjunction −◁ A ⊣ A ▶ − : X→ X.

Using Theorems 3.5.2 and 3.5.1, we can conclude that a category is both powered and

copowered if and only if the power and the copower form an adjoint pair.

3.6 Right Actegory with Hom-Objects as a Linear/Non-

Linear Adjunction

In this section, we delve deeper into the structure of actegories enriched with hom-objects.

Specifically, we consider a strong monoidal A-actegory with hom-objects in which the act-

ing category A is cartesian. This gives rise to a linear/non-linear adjunction as introduced

in Section 2.7.5.

Theorem 3.6.1. A strong monoidal A-actegory with hom-objects in which category A is

cartesian, gives a (non-closed) linear/non-linear adjunction.

Proof. In order for such a an actegory to be a linear/non-linear adjunction, we have to

show that there is a monoidal adjunction between A and X. In this setting, we have two

functors F := I ◁ − : A → X and G := Hom(I,−) : X → A. We have an adjunction

F ⊣ G : X→ A and we prove that this adjunction is monoidal. We define nF
I : I → I ◁ 1

as nF
I := u−1

◁ and mF
⊗ : (I ◁ A)⊗ (I ◁B)→ I ◁ (A×B) by the following composite:

(I ◁ A)⊗ (I ◁B) ((I ◁ A)⊗ I)◁B

(I ◁ A)◁B

I ◁ (A×B)

(a◁⊗)−1

mF
⊗

uR
⊗◁1

a−1
◁

It is clear that mF
⊗ is an isomorphism because it is a composition of isomorphisms.

The map nF
I is also clearly an isomorphism because u◁ is an isomorphism. We have to
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show that they satisfy the coherence conditions described in Section 2.7.3 which means

we have to prove that (mF
⊗⊗ 1)mF

⊗(1◁ a×) = a⊗(1⊗mF
⊗)m

F
⊗, (n

F
I ⊗ 1)mF

⊗(1◁ uL
×) = uL

⊗

and (1⊗ nF
I )m

F
⊗(1◁ uR

×) = uR
⊗. For the first one we have:

(mF
⊗ ⊗ 1)mF

⊗(1◁ a×) = ((a◁⊗)
−1 ⊗ 1)((uR

⊗ ◁ 1)⊗ 1)(a−1
◁ ⊗ 1)(a◁⊗)

−1(uR
⊗ ◁ 1)a−1

◁ (1◁ a×)

= ((a◁⊗)
−1 ⊗ 1)((uR

⊗ ◁ 1)⊗ 1)(a◁⊗)
−1((a−1

◁ ⊗ 1)◁ 1)(uR
⊗ ◁ 1)a−1

◁ (1◁ a×)

(naturality of (a◁⊗)
−1)

= ((a◁⊗)
−1 ⊗ 1)(a◁⊗)

−1(((uR
⊗ ◁ 1)⊗ 1)◁ 1)((a−1

◁ ⊗ 1)◁ 1)(uR
⊗ ◁ 1)a−1

◁ (1◁ a×)

(naturality of (a◁⊗)
−1)

= ((a◁⊗)
−1 ⊗ 1)(a◁⊗)

−1(((uR
⊗ ◁ 1)⊗ 1)◁ 1)(uR

⊗ ◁ 1)(a−1
◁ ◁ 1)a−1

◁ (1◁ a×)

(naturality of uR
⊗)

= ((a◁⊗)
−1 ⊗ 1)(a◁⊗)

−1(((uR
⊗ ◁ 1)⊗ 1)◁ 1)(uR

⊗ ◁ 1)a−1
◁ a−1

◁ (associativity of a−1
◁ )

= (a◁⊗)
−1(((a◁⊗)

−1 ⊗ 1)◁ 1)(((uR
⊗ ◁ 1)⊗ 1)◁ 1)(uR

⊗ ◁ 1)a−1
◁ a−1

◁

(naturality of (a◁⊗)
−1)

= (a◁⊗)
−1(((a◁⊗)

−1 ⊗ 1)◁ 1)(uR
⊗ ◁ 1)((uR

⊗ ◁ 1)◁ 1)a−1
◁ a−1

◁

(naturality of (a◁⊗)
−1)

= (a◁⊗)
−1(((a◁⊗)

−1 ⊗ 1)◁ 1)(uR
⊗ ◁ 1)a−1

◁ (uR
⊗ ◁ 1)a−1

◁ (naturality of a−1
◁ )

= (a◁⊗)
−1(uR

⊗ ◁ 1)((a◁⊗)
−1 ◁ 1)a−1

◁ (uR
⊗ ◁ 1)a−1

◁ (naturality of uR
⊗)

= (a◁⊗)
−1(uR

⊗ ◁ 1)((a◁⊗)
−1 ◁ 1)a−1

◁ (uR
⊗ ◁ 1)a−1

◁ (naturality of uR
⊗)

= (a◁⊗)
−1(a⊗ ◁ 1)((1⊗ uR

⊗)◁ 1)((a◁⊗)
−1 ◁ 1)a−1

◁ (uR
⊗ ◁ 1)a−1

◁

(uR
⊗ ⊗ 1 = a⊗(1⊗ uR

⊗))

= a⊗(1⊗ (a◁⊗)
−1)(a◁⊗)

−1((1⊗ uR
⊗)◁ 1)((a◁⊗)

−1 ◁ 1)a−1
◁ (uR

⊗ ◁ 1)a−1
◁

(associativity of (a◁⊗)
−1)

= a⊗(1⊗ (a◁⊗)
−1)(1⊗ (uR

⊗ ◁ 1))(a◁⊗)
−1((a◁⊗)

−1 ◁ 1)a−1
◁ (uR

⊗ ◁ 1)a−1
◁

(naturality of (a◁⊗)
−1)

= a⊗(1⊗ (a◁⊗)
−1)(1⊗ (uR

⊗ ◁ 1))(1⊗ a−1
◁ )(a◁⊗)

−1(uR
⊗ ◁ 1)a−1

◁ (diagram 2.9.1)

= a⊗(1⊗mF
⊗)m

F
⊗
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For the second one we have:

(I ◁ A)⊗ (I ◁ I ′)

(I ◁ A)⊗ I ((I ◁ A)⊗ I)◁ I ′

I ◁ A (I ◁ A)◁ I ′

I ◁ (A× I ′)

(a◁⊗)−11⊗u−1
◁

u−1
◁

uR
⊗ uR

⊗◁1

u−1
◁

a−1
◁

1◁uR
×

The top triangle commutes because of 2.9.1, the middle square commutes because of

naturality of u◁ and the bottom triangle commutes because of the coherence regarding

a◁ and u◁ mentioned in Section 2.9.

And finally for the last one we have:

I ⊗ (I ◁ A) (I ◁ I ′)⊗ (I ◁ A)

(I ⊗ I)◁ A ((I ◁ I ′)⊗ I)◁ A

I ◁ A (I ◁ I ′)◁ A

I ◁ (I ′ × A)

u−1
◁ ⊗1

(a◁⊗)−1

uL
⊗

(a◁⊗)−1

uR
⊗◁1

(u−1
◁ ⊗1)◁1

uR
⊗◁1

u−1
◁ ◁1

a−1
◁

1◁uL
×

The top square commutes because of naturality of a◁⊗, the bottom square commutes

becuase uR
⊗ is natural, the bottom triangle commutes because of the coherence regarding

a◁ and u◁ mentioned in Section 2.9.
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This proves that F := I◁− is a strong monoidal functor, which based on Proposition

2.7.2, we can conclude that G := Hom(I,−) is monoidal and the unit and counit of the

adjunction are monoidal natural transformations, Therefore the adjunction is monoidal

and we have a linear/non-linear adjunction.

This result shows that, based on Section 2.7.5, a strong monoidal A-actegory X in

which A is a cartesian category, is a linear category with !X := I ◁ Hom(I,X).
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Chapter 4

Implementation of Higher-Order

Processes in CaMPL

In the previous chapters, we explored the categorical foundations of higher-order processes

in detail. In this chapter, we shift focus to the implementation of higher-order processes

in the Categorical Message Passing Language (CaMPL).

To introduce the setting, we begin by presenting the syntax and semantics of CaMPL

to establish a clear understanding of the language. We then explain how higher-order

processes are introduced by integrating the store and use constructs, and describe the

necessary modifications across the various stages of compilation.

4.1 Syntax and Semantics of the Categorical Mes-

sage Passing Language (CaMPL)

Categorical Message Passing Language (CaMPL) is a functional-style concurrent pro-

gramming language that implements concurrency through message passing.

The categorical semantics of CaMPL is modeled by a linear actegory, where a sym-
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metric monoidal category S—representing the semantics of the sequential side—acts on a

symmetric linearly distributive category C—representing the semantics of the concurrent

side. This interaction is defined by two action functors:

◦ : S× C→ C and • : Sop × C→ C.

These functors describe how sequential data, or messages, are transmitted through chan-

nels, which are modeled as concurrent types. The ◦ functor is the left parameterized left

adjoint of • in the sense that

A ∈ A, A ◦ ⊣ A • : C→ C

and this parameterized adjunction indicates that a process transmitting or receiving a

message can do this equivalently on input or output polarity channels.

To provide an understanding of CaMPL programs, we first present the syntax and

semantics of sequential data and constructs. We then discuss the syntax and semantics of

the concurrent constructs. Finally, we explain how sequential messages are transmitted

along concurrent channels by introducing the syntax and semantics of message passing.

4.1.1 Syntax and Semantics of the Sequential Side

The semantics of the sequential fragment of CaMPL is modeled by a cartesian category S,

where objects represent sequential types and morphisms represent sequential functions.

The identity morphism corresponds to the identity function, and composition is given by

function composition.

This category is equipped with both products and coproducts. Products are used to

define codata by combining multiple types (e.g., records), while coproducts are used to

define data by forming disjoint unions of types (e.g., the Either data type). CaMPL also
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includes control-flow constructs such as switch and if expressions, which enable decision-

making based on values and patterns. Further details on the syntax and semantics of

sequential CaMPL can be found in [25] and [30].

4.1.2 Syntax and Semantics of the Concurrent Side

Semantics of the concurrent side of CaMPL is given by a linearly distributive category

C with two monoidal structures ⊗ (tensor) and ⊕ (par). In this category, objects are

concurrent channel types and morphisms are processes between the channels. The identity

morphism is just a channel and composition of morphisms is given by plugging processes

to each other so that they can communicate along a channel. In order to prevent deadlocks

and livelocks, processes have to be plugged to each other along exactly one channel. When

more than one channel is required for connecting two processes, the ⊗ and ⊕ functors

are used to bundle the channels together and make a new channel that can be used for

plugging the processes. As a result, they ensure valid arrangements of the concurrent

processes to avoid any cycles.

A process with a sequential input of typ A, an input channel of type X, and an output

channel of type Y can be defined in CaMPL using the syntax represented in Figure 4.1, it

can be equivalently indicated as a circuit diagram, shown in 4.3 and the sequent calculus

shown in Figure 4.2. In the circuit diagram in Figure 4.3, the black dot at the lower end

of the input wire labeled a indicates that it is a sequential input used by the process.
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proc p :: A | X => Y =

a | x => y ->

...

Figure 4.1: Syntax for defining a process

A | X ⊩ Y

Figure 4.2: Sequent calculus

a : A x : X

P

y : Y

Figure 4.3: Circut diagram

Plug

Composition of two processes in the concurrent side of CaMPL is defined by the plug

command which is the cut rule in linear logic. When two processes that are running

in parallel are plugged to each other along a channel, they can communicate and pass

messages through that channel in both directions. Two processes can only be plugged to

each other along a channel, if they both have a channel of the same type but opposite

polarity. One channel can be used to connect exactly two processes. Figure 4.4 shows

an example of connecting two processes p and q is using programming syntax, circuit

diagram and sequent calculus.

proc r :: A, B | X => Z =

a, b | x => z ->

plug

p(a | x => y)

q(b | y => z)

A | X ⊩ Y B | Y ⊩ Z

A,B | X ⊩ Z
cut

a : A x : X

P

b : B

y : Y

Q

z : Z

Figure 4.4: Composing two processes using plug command
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Split and Fork

As mentioned earlier, two processes can be plugged to each other only by a single channel

to prevent any cycles. However, there are some cases we want to plug processes with more

than one channel. This is possible using ⊗ (tensor) and ⊕ (par) functors, that allow one

to bundle more than one channels together and create a new channel that can be used

for communication.

If a process has an output polarity channel of type A⊗ B then, it can fork into two

parallel processes with two distinct output channels of type A and B. Dually, the same

thing happens if a process has an input channel of type A ⊕ B. Examples of fork on

output and input channels are indicated in Figure 4.5 and 4.6 respectively.

proc p :: A, B | X1, X2 => Y1 (*) Y2 =

a, b | x1, x2 => y ->

fork y as

y1 -> p(a | x1 => y1)

y2 -> q(b | x2 => y2)

A | X1 ⊩ Y 1 B | X2 ⊩ Y 2

A,B | X1, X2 ⊩ Y 1⊗ Y 2
⊗R

A X1 X2

P

Y 1 Y 2

B

Q

⊗
Y 1⊗ Y 2

Figure 4.5: Forking an output channel

proc p :: A, B | X1 (+) X2 => Y1, Y2 =

a, b | x => y1, y2 ->

fork x as

x1 -> p1(a | x1 => y1)

x2 -> p2(b | x2 => y2)

A | X1 ⊩ Y 1 B | X2 ⊩ Y 2

A,B | X1⊕X2 ⊩ Y 1, Y 2
⊕L

X1⊕X2

⊕
A X1

P

Y1

BX2

Q

Y 2

Figure 4.6: Forking an input channel
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If a process has an input polarity channel of type A ⊗ B, it can split this channel

into to new channels of type A and B that can be used for further computations by the

process. Dually, the same thing happens when a channel has an output channel of type

A⊕B. Examples of splitting input and output polarity channels are indicated in Figure

4.7 and Figure 4.8 respectively.

proc q :: A | X1 (*) X2 => Y =

a | x => y -> do

split x into x1, x2

p(a | x1, x2 => y)

A | X1, X2 ⊩ Y

A | X1⊗X2 ⊩ Y
⊗L

X1⊕X2

⊗
A X1

P

Y

X2

Figure 4.7: Splitting an input channel

proc q :: A | X => Y1 (+) Y2 =

a | x => y -> do

split y into y1, y2

p(a | x => y1, y2)

A | X ⊩ Y 1, Y 2

A | X ⊩ Y 1⊕ Y 2
⊕R

A X1

P

⊕
X1 X2

X1⊕X2

Figure 4.8: Splitting an output channel

4.1.3 Syntax and Semantics of Message Passing

The semantics of message passing in CaMPL is given by a linear actegory structure, in

which the sequential category acts on the concurrent category. The functor ◦ corresponds

to the Put operation, and the functor • corresponds to the Get operation in CaMPL. For
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example, a channel of type A ◦X indicates that a sequential message of type A can be

placed on a channel of type X, which results in the protocol Put(A | X) in the language.

A key point in CaMPL is that channels are polarized, they can have either input or

output polarity. However, this polarity does not restrict the direction of communication:

a process can both send and receive data on channels of either polarity. This flexibility

arises from the fact that the ◦ and • functors form an adjunction.

When two processes are connected via a channel, that channel must have input po-

larity for one process and output polarity for the other. Additionally, the type of the

channel must match on both ends. For instance, if one process has an output polarity

channel of type Put(A | X) and another process has an input polarity channel of the

same type, they can be connected and communicate through that channel. Crucially,

in this case, the process with the output-polarity side can send a value of type A, and

the process with the input-polarity side can receive it, even though the channel type is

Put(A|X).

Examples illustrating data transmission along Put and Get channels are shown in

Figures 4.9 through 4.12.

proc p' :: A, B | X => Put(A' | Y) =

a, b | x => y -> do

put f(a) on y

p( b | x => y)

A ⊢ A′ B | X ⊩ Y

A,B | X ⊩ A′ ◦ Y
◦R

BA X

f

A′

p

A′ ◦ Y

Y

Figure 4.9: Sending on output channel
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proc p' :: B | X => Get(A | Y) =

b | x => y -> do

get a on y

p( a, b | x => y)

A,B | X ⊩ Y

B | X ⊩ A • Y
•R

A

B X

p

A • Y

Figure 4.10: Receiving on output channel

proc p' :: A | Put(B | X) => Y =

a | x => y -> do

get b on x

p(a, b | x => y)

A,B | X ⊩ Y

A | B ◦X ⊩ Y
◦L

A B ◦X

B

p

Y

Figure 4.11: Receiving on input channel

proc p' :: A, B | Get(B' | X) => Y =

a, b | x => y -> do

put f(b) on x

p(a | x => y)

B ⊢ B′ A | X ⊩ Y

A,B | B′ •X ⊩ Y
•R

B

B′

A B′ •X

X

f

p

Y

Figure 4.12: Sending on input channel.
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4.2 Implementing Store and Use

The interpretation of a CaMPL program proceeds through several stages: lexing, pars-

ing, type inference/type checking, compilation of pattern-matching, lambda lifting, and

translation to abstract machine instructions. The resulting instructions are then executed

on the CaMPL’s abstract machine. These stages are illustrated in Figure 4.13.

In this section, we outline the stages of compilation and execution of a CaMPL pro-

gram. For each stage, we provide a brief overview and describe the modifications re-

quired to support higher-order processes through the introduction of the store and use

commands.

4.2.1 Parsing and α-Renaming

The grammar of CaMPL is extended to support a new expression, store, a new process

command, use, and a new sequential type, Store:

• store function stores a process as sequential data. This function accepts either a

process name or an inline (anonymous) process definition.

• use command unpacks a process so it can be run. The use command accepts any

expression that evaluates to a stored process.

• Store type encapsulates a process type, which consists of a sequential type (for the

sequential context) and two lists of concurrent types representing input and output

channel types.

In a program, name clashes, arising from both local variables and local function

definitions, can lead to significant semantic issues, particularly when definitions are lifted

to the global scope. The initial step in program normalization is therefore to perform α-

renaming, ensuring that all variable and function identifiers are globally unique. During
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Lexing

Parsing

α-renaming

Type
Inferencing

Compilation
of Pattern
Matching

λ-Lifting

Translation to
Abstract Machine

Instructions

Executing on the
Abstract Machine

Syntax Error

Semantic Error

[Token]

AST

AST

Type-Checked AST

Pattern-Compiled AST

Core CaMPL

Abstract Machine Instructions

Front End

Back End

Figure 4.13: Interpretation Stages of a CaMPL Program
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this phase, additional static checks should be performed: the presence of any free variables

in the program should be reported as an error, and function definitions must be validated

to ensure they are consistently applied with the correct arity. After a CaMPL program

is parsed, it undergoes α-renaming. The introduction of store and use constructs does

not alter this process; it only requires that α-renaming be correctly applied to the terms

encapsulated within these commands.

4.2.2 Type Checking and Type Inference

Following α-renaming, the program undergoes type checking and type inference to detect

potential type errors. Type checking and type inference is done using a collection of rules

that form a type system. Typing rules are described using sequents of the form:

Φ ⊢ t :: T

Such a sequent relates a variable context Φ with a term t and its corresponding type T .

If this relation can be derived using the rules of the type system, it constitutes a type

judgment, indicating that there exists a proof assigning type T to term t under context

Φ. The context Φ is a finite list of distinct bound variables along with their associated

types. For example, Φ = x :: X, y :: Y denotes a context where variable x has type X

and y has type Y . CaMPL’s type system provides typing rules for both sequential and

concurrent constructs. Sequential typing follows the form above, while concurrent typing

judgments are expressed as

Φ | Γ ⊩ ∆

Here, Φ is the sequential context, Γ is a list of input channels, and ∆ is a list of output

channels annotated with their types. Complete type system of CaMPL can be found

in [25].
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p : Φ,Ψ | Γ ⊩ ∆

Φ ⊢ store(p) : Store(Ψ | Γ ⊩ ∆)
store

Φ ⊢ p : Store(Ψ | Γ ⊩ ∆)

use(p) : Φ,Ψ | Γ ⊩ ∆
use

Figure 4.14: Type Checking Rules for Store and Use

The typing rules introduced in CaMPL to support the store and use constructs are

presented in Figure 4.14. The first rule states that if a process p has sequential contexts

Φ and Ψ, input channels Γ, and output channels ∆, then the term store(p) has type

Store(Ψ|Γ ⊩ ∆). Note that the choice of Φ and Ψ in this case is arbitrary. When p is

defined inline, some parts of the sequential context can be treated as input arguments to

p, while the rest can remain in the context of the parent process.

The second rule allows a stored process of type Store(Ψ | Γ ⊩ ∆) to be invoked using

the use construct, yielding a process with type Φ,Ψ|Γ ⊩ ∆. This reflects the fact that

the context Ψ required by the stored process is supplied at the point of use and combined

with the current context Φ.

4.2.3 Compilation of Pattern Matching and Lambda Lifting

Once a CaMPL program has been type checked, the next step in its compilation is the

conversion of its AST to Core CaMPL. This process occurs in two main stages: Compi-

lation of Pattern Matching and Lambda Lifting. Compilation of pattern matching

stage translates the pattern-matching syntax into CaMPL code without patterns. It

marks the first step in converting the AST of CaMPL programs into Core CaMPL. In

a CaMPL program, one can write local function definitions, whereas Core CaMPL does
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not allow local definitions. The lambda lifting transformation eliminates local function

definitions by lifting them to the global scope.

When the store and use constructs are introduced in CaMPL, processes can be stored

using the store command. The process being stored can either be a globally declared

process (referred to by its identifier) or an inline-defined process specified directly within

the store command. In the latter case, the body of the inline-defined process may

reference the sequential context available in the surrounding scope of the definition.

As part of the lambda lifting transformation, any locally defined process is lifted to

the global scope. Since such processes may depend on local data, their required sequential

context must be explicitly passed as arguments. This is handled during the lambda lifting

phase.

Any process that invokes a stored process via the use command must have access to

the sequential data required by that stored process in order to invoke it properly. However,

a stored process—received as an input argument or message—has no information about

what sequential context is needed. To address this, we replace every stored process with

a tuple containing the required context and the name of the stored process. As a result,

any process that receives a stored process knows it is receiving a tuple, where the first

component of the tuple is the context and the second component is the process name.

This allows the calling process to invoke the stored process with the appropriate context.

Consequently, during λ-lifting, the code for handling the context must be generated to

support stored processes.

If the stored process is a global process with no context requirements, we still ensure

consistency by duplicating the process and adding an empty context tuple to it. The

reason for duplication is that the original global process may still be called directly

elsewhere in the program, and such direct calls must remain valid without requiring the

additional context tuple.
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The code generation process can be summarized as follows: First, we collect all global

processes in the program that are referenced in a store command. These are added to

a symbol table (implemented as a Map in Haskell), using the process name as the key.

We then traverse the function and process definitions again, performing the following

transformations:

• When encountering a store command:

– If the process is defined inline, we lift it to the global scope, assign it a fresh

name, and extend its parameter list with the context from the enclosing scope.

– If the process is referred to by name, we look it up in the symbol table. If

found, we duplicate it, assign it a fresh name, and extend it with an empty

context tuple.

In both cases, we replace the argument of the store command with a tuple: the

first component is the context, and the second is the unique name of the stored

process.

• When encountering a use command:

– We treat the expression passed to use as a tuple. We extract the process name

using π1 (the second projection) and use it as the process identifier to call.

– We pass π0 (the first projection), which contains the required context, as the

argument to the process invocation.

An example of code generation is shown in Figure 4.15 and 4.16.
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proc q =

p | => ch -> use(p)( | => ch)

proc r =

a1, a2 | => ch ->

q( store ( | => ch -> do

put a1 on ch

put a2 on ch

halt ch

) | => ch

)

Figure 4.15: Example of a program that written with store and use in CaMPL

proc q =

p | => ch -> use(proj_1(p))(proj_0(p) | => ch)

proc r =

a1, a2 | => ch ->

q((context(a1, a2), store(stored_proc_r)) | => ch)

fun context =

a, b -> (a, b)

proc stored_proc_r =

ctx | => ch -> do

put proj_0(ctx) on ch

put proj_1(ctx) on ch

halt ch

Figure 4.16: Translation of Figure 4.15

4.2.4 Abstract Machine

Abstract machines restructure program evaluation as a series of simple, low-level transi-

tions—each designed to execute in nearly constant time. Evaluation begins by initializ-
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ing the machine in a state that represents the input program, and proceeds step-by-step

through these transitions until a final state is reached, from which the result is obtained.

This systematic approach not only clarifies the operational semantics of the language but

also enables the compilation of high-level constructs into sequences of machine instruc-

tions.

CaMPL’s abstract machine, called AMPL, consists of two distinct components: one

that executes sequential instructions and another that runs concurrent actions. This

conceptual separation gives AMPL a modular design, allowing each component to be

modified independently without affecting the other. In the following sections we go

through these two components and explain how they work in detail.

Sequential AMPL

Sequential AMPL is based on the modern SECD machine [26], with several key extensions

to support the compilation of both data and codata types—features not explicitly han-

dled in the original SECD design. To enable this, the AMPL introduces specialized com-

mands: constructor and case for compiling data types, and record and destructor

for compiling codata types.

The core of CaMPL compilation involves translating high-level CaMPL programs

into an intermediate representation called Core CaMPL. The back end then compiles

this into a sequence of abstract machine instructions. Once the program is compiled to

a list of instructions, it is evaluated using two additional structures: the Stack and the

Environment. Both are Last-In-First-Out (LIFO) structures (implemented as Haskell

list in AMPL). So the sequential abstract machine state is a triple

(S, E, C)

which consists of:
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• S (Stack): Stores intermediate values and ultimately the final result of the com-

putation.

• E (Environment): Maintains the current variable bindings and reflects the scope

at each point in the program. It is a transient structure that evolves during evalu-

ation.

• C (Code): A list of instructions generated from the compiled CaMPL program.

Table 4.1 describes sequential instructions of AMPL and Table 4.2 describes the tran-

sition table for these sequential instructions. In the transition table, clos(c, e) denotes

closure of code c with environment e, e(n) is the nth-element of the environment and

proc(p) denotes the input and output channels along with the list of instructions of the

process p.
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Instruction Explanation

Store pushes the top stack element into the environment
Access(n) put nth value in the environment onto the stack.
Ret return the top stack value and jump to the continuation below
Call code jump to the code
StoreProc(p) stores the process p, including its input and output channels

and body’s code (as a list of instructions), onto the environment
(this instruction was added by the author)

Built in instructions:

ConstT (k) push the constant k of basic type T on the stack
Add Pop two arguments from the top of the stack and add them
Mul Pop two arguments from the top of the stack and add them
Leq Pop two arguments from the top of the stack and compare them

etc.

Data instructions:

Cons(i, n) push the ith constructor onto the stack with arguments
the top n elements of the stack, Cons(i, s1, ..., sn) .

Case[c1, ..., cn] when Cons(i, t1, ..., tn) is on the stack remove it and
push t1, ...., tn into the environment and evaluate ci.

Codata instructions:

Rec[c1, ..., cn] create a record on the stack with current environment,
rec([c1, ..., cn], e)

Dest(i, n) destruct a record: choose the ith function closure (ci, e)
and run ci in environment e supplemented with the first n values on the stack.

Table 4.1: AMPL’s sequential instructions
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Before After
Code Env Stack Code Env Stack
Store; c e v : s c v : e s
Access(n); c e s c e e(n) : s
Call(c) : c′ e s c e clos(c′, e) : s
Ret : c e v : clos(c′, e′) : s c′ e′ v : s
StoreProc(p) : c e s c e proc(p) : s

Cons(i, n) : c e v1 : ..., vn : s c e cons(i, [v1, .., vn]) : s
Case(c1, ..., cn) : c e Cons(i, [v1, ..., vn]) : s ci v1 : .. : vn : e clo(c, e) : s

Rec(c1, .., cn) : c e s c e rec([c1, ..., cn], e) : s
Dest(i, n) : c e rec([c1, .., cn], e

′) : vn : .. : v1 : s ci v1 : .. : vn : e′ clo(c, e) : s

ConstT (k) : c e s c e constT (k) : s
Add : c e n : m : s c e (n+m) : s
Mul : c e n : m : s c e (n ∗m) : s
Leq : c e n : m : s c e (n ≤ m) : s
...

Table 4.2: Transition table for sequential AMPL

Concurrent AMPL

The concurrent component of CaMPL’s abstract machine extends the sequential model

by incorporating a translation component which serves as a mapping from local channel

names to global channel names. A channel connecting two processes may be referred to

differently within each process, and the translation is used to resolve how these local

channel names correspond to their shared global channels.

Concurrent AMPL consists of two main components: the channel manager C and

the process manager P , both of which are treated abstractly as sets (i.e., unordered

collections).

The channel manager maintains a set of pairs consisting of a channel name and an

associated communication queue. We write this as C{(α, q′ | q)} to indicate that the

currently focused channel α has the communication queue q′ | q, where q′ is the output

queue and q is the input queue. Each channel associated with a process has either input or

output polarity. A process writes to the input queue of a channel if it is an input-polarity
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channel, and to the output queue if it is an output-polarity channel. We denote the

addition of a communication item x to the back of the input queue using the notation

q : x, and we also use this pattern to indicate that x is the last item in the queue.

Conversely, to add x to the front of the output queue, we write x : q. An empty queue is

denoted by ϵ.

The process manager P is a set of processes. We write P{(S, t, E, C)} to indicate

the currently selected process that is to take an execution step. In theory, the Process

Manager selects a process to execute non-deterministically. In practice, however, it may

be more efficient to allow the selected process to run for multiple steps, or continue

execution until it reaches a concurrent action before interrupting it.

The channel manager not only holds the state of the communication queues but also

manages execution effects arising from communication actions. For example, when a

process attempts to get a value from a channel, it is suspended until another process

performs a corresponding put. The order of these operations does not matter. Once a

put has occurred (or if a value is already present), the suspended process can resume:

the communication step “revives” the process and returns it to the process manager with

the value it was waiting for.

Likewise, if a process needs to fork a channel, it requires a matching split action

by the communicating process. The forking process is suspended and placed in the

appropriate queue. Once a corresponding split action occurs, the communication step

generates two new processes, each communicating on a new channel, and adds them to

the process manager.

All communication actions occur in pairs—put/get, split/fork, hput/hcase,

close/halt, etc.—reflecting the duality of protocol components in concurrent typing.

Each action must occur in a specific polarity: either input or output. A protocol is

negative if it results in suspension (i.e., waiting for a communication), and positive if
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it initiates communication (i.e., deposits a datum). This polarity distinction becomes

especially relevant in the context of races: only channels with negative types (i.e., those

expecting input) may participate in races.

Concurrent Instructions

To understand how CAMPL operates, we begin by examining its commands. Table

4.3 presents the concurrent commands along with brief descriptions. The execution of

CAMPL commands is governed by the Process Manager, which operates in coordination

with the Channel Manager. The actions of the process manager and the channel manager

are detailed in the following sections respectively.

get α; C get a value on channel α (in the π-calculus α?[ ])
put α; C put a value on channel α (in the π-calculus α![ ])
split α into (α1, α2);C split channel α into two (new) channels
fork α as

α1 with Γ1 → C1

α2 with Γ2 → C2

forking on a channel into two distinct processes

plug [α1, ..., αn]
Γ1 → C1

Γ2 → C2

two processes to communicate on n channels

hput α n;C put a “handle” on channel α
hcase{C1, .., Cn} the cases on receiving a “handle”
run t process runs a process with local channel to caller channel translation t
close α;C closing a channel
halt α halting process attached to a single channel
id α = β identifying channels
race

α1 → C1

α2 → C2

racing channels α and β

use t process uses a stored process and runs it with local channel
to caller channel translation

Table 4.3: Basic concurrent commands
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Process Manager Actions

The actions managed by the process manager are described as follows:

Get/Put: These are the fundamental communication operations. The command put

sends a value along a channel, while get receives a value from a channel. Executing a put

places a value onto the input queue of the specified channel. Conversely, executing a get

causes the process to suspend while waiting for a value to appear on the channel. Once

a value is available, the channel manager transfers the value and resumes the suspended

process. Typically, a get α is immediately followed by a load x to bind the received

value in the sequential environment. Similarly, a put α is usually preceded by sequential

code that computes the value to be sent.

Split: The split instruction directs the machine to divide a channel α into two new

channels, α1 and α2. This is achieved by appending a notification to the communi-

cation queue indicating the two newly generated global channels, say β1 and β2, that

replace α1 and α2. The local-to-global name mapping is updated with the translation

t[β1/α1, β2/α2], after which execution continues normally.

Fork: The dual of split, the fork instruction creates two concurrent processes that

are expected to communicate via the channels generated by a prior split. However,

since the split may not yet have occurred, the fork suspends the current process and

attaches it to the relevant channel awaiting splitting. Once the corresponding split

action is completed by the channel manager, the necessary translations are applied, and

the two new processes are added to the process manager.

Plug: The plug command enables two processes to be connected via specified channels.

The invoking process contains channels designated for external communication. These

channels are divided between the two processes being connected. New global channels

are then assigned to facilitate communication. After this setup, both processes are added
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to the process manager.

Handle: The hput command sends a handle—a protocol constructor—which is matched

by an hcase instruction in the receiving process. This mechanism resembles a put/get

pair, but instead of simply passing a value, the receiver chooses the continuation based

on the handle received.

Call: The call instruction invokes a predefined process. The key step here is setting up

the mapping from the predefined process’s local channels to global channel names before

transferring control to its code.

Use: It expects a stored process (containing its input/output channels and instruction

body) to be present on the top of the stack. It retrieves the stored process, creates

mappings between its input/output channels and those expected by the calling context,

establishes the necessary channel translations, and then jumps to the stored code (this

instruction was added by the author).

Close/Halt: Executing close α removes the channel α from the system. The corre-

sponding halt command terminates a process, but only after all other channels associated

with the process have been closed. Thus, a halt α is valid only when α is the last open

channel.

Id α = β: This command sets up an identity mapping between channels α and β by

informing the channel manager to treat their global translations as identical. This is

commonly used for implementing wiring transformations, such as simulating negation in

linear logic or defining identity processes.

Race: This command initiates a race condition between two or more channels. The sys-

tem waits for input on any of these channels and triggers the corresponding continuation

for the first one to receive data. The continuations for the losing channels are discarded.
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C{(t(α), q′ | q)} P{(s, t, e, get α; c)} C{(t(α), q′ | q:g(s, t, e, c))} P{}
C{(t(α), q′ | q)} P{(v:s, t, e, put α; c)} C{(t(α), q′ | q:v)} P{(s, t, e, c)}

C{(t(α), q′ | q)} P{([], t, e, split α into
(α1, α2); c

)} C


(
t(α),
q′ | q:β1, β2

)
(β1, ε)
(β2, ε)

 P{([], t
[
β1/α1

β2/α2

]
, e, c)}

C{(t(α), q′ | q)} P{(s, t, e, close α; c)} C{t(α), q′ | q:close)} P{(s, t\α, e)}

C{(t(α), q′ | q)} P{([], t, e,
fork α as
α1 with Γ1.c1
α2 with Γ2.c2

, [])} C{

t(α),

q′ | q:
[
t, e,

α1/Γ1.c1
α2/Γ2.c2

]} P{}

C{(t(α), q′ | q)} P{([], t, e, id α = γ, [])} C{(t(α), q′ | q:Id t(α) = t(β))} P {}

C{} P{([], t, e,
plug[α1, ..., αn]

Γ1 → c1
Γ2 → c2

, [])} C{(γi, ε | ε)i=1...n} P
{
([], t[γi/αi]Γ1 , e, c1),
([], t[γi/βi]Γ2

, e, c2)

}
C{(t(α), q′ | q)} P{([], t, e, halt α)} C{t(α), q′ | q:halt)} P{}
C{} P{(s, t, e, run t′ c)} C{} P{(s, t; t′, e′, c)}
C{(t(α), q′ | q)} P{(s, t, e, hput α n; c)} C{(t(α), q′ | q:h(n))} P{(s, t, e, c)}
C{(t(β), q′ |q)} P{(s, t, e, hcase β {ci})} C{(t(β), q′ | q:(s, t, e, hc{ci}))} P{}

C
{

t(α), q′ | q),
t(β), r′ | r)

}
P

{
(s, t, e, race

α → c1
β → c2

}
) C

{
(t(α), q′ | r([β],s,t,e, c1) :q),
(t(β), r′ | r([α],s,t,e, c2) :r)

}
P{}

C{} P{((proc(p) : s, t, e, use t′)} C{} P{s, t; t′, e′, p)}

Table 4.4: Process execution steps (α with input polarity)

Channel Manager Actions

The channel manager is responsible for ensuring that communications are actually ex-

ecuted. When a process performs a communication action (such as sending a value),

that action is first stored in the corresponding channel’s queue, managed by the chan-

nel manager. Communication is completed only when a complementary action appears

on the same channel. In each such pair of complementary actions, one typically causes

the initiating process to suspend until the matching action becomes available (or resume

immediately if it is already present).

An exception to this pattern is the Id action, which serves as the final instruction of

a process. Rather than involving suspension, it merges two channels so that subsequent

communication occurs directly on the unified channel.

Communication of Values or Handles: When a value or handle is waiting in a

channel’s queue, and a complementary process is suspended awaiting it, the value is

transmitted and the waiting process is reactivated.

Split/Fork Communication: If a suspended process is waiting to perform a fork
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and a corresponding split has already occurred on the same channel, then the newly

introduced channels are assigned global names. The forked processes are then enabled,

and their channel translations are updated accordingly.

Close/Halt Communication: A channel can be fully removed from the channel man-

ager only when a close command on one side is matched with a halt command on the

other.

Id α = β: When the channel manager encounters an Id command at the head of a

queue (which must always be the final command of the process), it merges channel α into

channel β (or vice versa). This operation can proceed only if the complementary queue of

the target channel is empty. To support this mechanism, the channel manager maintains

a secondary translation structure to track global channel identifications and ensure they

are applied correctly.

Race: A race is resolved when one of the competing channels receives an input—this

channel is the winner. At that point, the race commands are removed from all par-

ticipating channels, and the continuation code associated with the winning channel is

executed.

C{(β, q:v | g(s, t, e, c))} P C{(β, q | ε)} P{(v:s, t, e, c)}
C{(t(β), q:h(i) | (s, t, e, hc {cj}))} P C{(β, q | ε)} P{(s, t, e, ci)}

C{(β, β1, β2 |
[
t, e,

α1/Γ1.c1
α2/Γ2.c2

]
} P C{} P

{
([], tΓ1

[β1/α1], e, c1, []),
([], tΓ2

[β2/α2], e, c2, [])

}
C{(β, close | halt)} P C{} P
C{(β, q | id β = α), (α, ε | q′)} P C{(α, q | q′}} P{}

C
{

(t(α), q′ :a | r([β],s,t,e, c) :q),
t(β), r′ | r([α],s,t,e, c′) : r)

}
P{} C

{
(t(α), q′ :a | q),
(t(β), r′ | r)

}
P{(s, t, e, c}

Table 4.5: Channel manager actions
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Chapter 5

Conclusion and Future Work

In this thesis, we explored higher-order concurrency within the Categorical Message Pass-

ing Language (CaMPL) and proposed a method for its integration. Our approach began

with a theoretical investigation into the foundations of higher-order processes, followed

by an in-depth discussion of their implementation.

We began by reviewing essential categorical notions such as enrichment and acte-

gories. We then introduced a definition of copowers in a setting that is neither closed nor

symmetric. A key result we established is that giving a right actegory with hom-objects is

equivalent to giving a right enriched category with copowers. We subsequently examined

the dual theorem, which provides a definition of powers, and proved that a category is

both powered and copowered if and only if the copower functor admits a left adjoint.

On the implementation side, we presented the syntax and semantics of CaMPL and

detailed the modifications necessary to incorporate the store and use constructs. These

modifications spanned all major components of the compiler pipeline, including parsing,

α-renaming, type checking and inference, pattern matching compilation, λ-lifting, and

the abstract machine.

A key application of higher-order processes, as discussed in this thesis, is in the im-
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plementation of concurrent type classes. Type classes offer a principled mechanism for

ad-hoc polymorphism in functional programming languages such as Haskell [29]. To im-

plement type classes, one typically passes the appropriate method implementation (e.g.,

the == function in the Eq class) as an argument to the function that uses it [18]. This

naturally requires higher-order functions. Analogously, in a concurrent setting, imple-

menting type classes would require higher-order processes, underscoring the relevance of

the theory and implementation developed in this work.
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