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Abstract

Differential categories are now a well-studied abstract setting for differentiation. However

not much attention has been given to the process which is inverse to differentiation: inte-

gration. This thesis presents an analogous study of integral categories. Integral categories

give an abstraction of integration by axiomatizing extra structure on a symmetric monoidal

categories with a coalgebra modality using the primary rules of integration. The axioms for

integrations include the analogues of integration by parts rule, also called the Rota-Baxter

rule, the idependence of the order of iterated integrals and that integral of any constant

map is linear. We expect consequences of the compatible interaction between integration

and differentiation to include the two fundamental theorems of calculus. A differential cat-

egory with integration which satisfies these two theorem in a suitable sense is what we call

a calculus category .
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Chapter 1

Introduction

Classical calculus, developed by Gottfried Leibniz and Isaac Newton, is one of the most im-

portant, successful and applicable developments of mathematics with applications through-

out all of science, economics and engineering. The two fundamental theorems of calculus

relate the two most important operations of calculus: differentiation and integration. The

first theorem states that the derivative of the integral of a function f : R→ R is the original

function f :

d(
∫ t
a
f(u) du)

dt
(x) = f(x) (FTC1)

while the second states that the integral of the derivative of a function f : R→ R on a closed

interval [a, b] is equal to the difference of f evaluated at the end points:

∫ b

a

df(t)

dt
(x) dx = f(b)− f(a). (FTC2)

They are called “fundamental” theorems because they are absolutely fundamental to the

development of classical calculus.

Since the turn of the 21st century, there has been significant progress in the abstract
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understanding of differentiation in category theory. In contrast, the abstract formulation of

integration has not received the same level of attention.

The purpose of this thesis is to provide an abstract formulation of integration and study

the fundamental theorems of calculus in this setting.

1.1 Background: Differential Categories

In the early 2000’s, T. Ehrhard and L. Regnier introduced the differential λ-calculus [15]

and differential proof nets [16], which formalized differentiation in linear logic [18], a form of

logic introduced by J-Y. Girard which is modelled by symmetric monoidal categories. A few

years later, R. Blute, R. Cockett and R. Seely introduced differential categories [7], which

were the appropriate categorical structure for modelling Ehrhard and Regnier’s differential

linear logic. Differential categories give an axiomatization of differentiation based on prop-

erties of the classical definition of the derivative of functions from calculus. These axioms

encode the fact that the derivative of a linear function is a constant, that the derivative of a

constant is zero, the product rule and the chain rule. Many results in differential calculus are

consequences of these basic axioms. For example the basic properties of partial derivatives,

the higher order product rule and the Faa di Bruno formula for the higher order chain rule

are consequences.

This abstract formalization of differentiation does not require the notion of limit. As

a consequence, this limit independent description allows us to study differential calculus

in a variety of non-standard settings. There are many examples of differential categories.

In particular, an important example is the category of vector spaces, where the differen-

tial structure coincides with the usual differentiation of multivariable polynomial functions.

More surprising examples of differential categories include the category of sets and relations,
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the category of sup-lattices and the category of modules over rigs (rings without negatives

[19]). This abstract differentiation has applications in differential geometry, algebraic geom-

etry, physics, quantum physics, linear logic, programming and game theory.

Differential categories now have a rich literature of their own [6, 8, 9, 10, 17, 26, 29]

and there are many examples which have been extensively studied. However, as mentioned

before, little attention has been given to abstracting the process of integration.

In 2014, T. Ehrhard observed that in certain ∗-autonomous categories [2] which had

the appropriate structure to be a differential category, it was possible with one additional

assumption to obtain antiderivatives [14]. The additional assumption was that a natural

transformation named J, which all differential categories have, was a natural isomorphism.

With this assumption, Ehrhard constructed an integral with an inverse behaviour to the dif-

ferential in the sense that he gave necessary and sufficient conditions for a map to satisfy the

first fundamental theorem of calculus. Ehrhard called this the Poincaré Lemma, analogous

to the result of the same name in cohomology [34] and differential topology which speci-

fies when certain forms are exact or have an antiderivative. Furthermore, when the deriving

transformation satisfied an extra condition, which he called the “Taylor Property”, one could

prove that every differentiable function satisfied the second fundamental theorem of calculus.

While much of the inspiration for our approach to integration derives from these obser-

vations, Ehrhard made no attempt to axiomatize integration separately from differentiation.

1.2 Objectives: Integral and Calculus Categories

The main objective of this thesis is to develop the theory of integral categories. In particular,

we introduce integral categories as a notion which stands on its own in the absence of differ-
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entiation. This will give an algebraic and measure independent formalization of integration

that allows the structure, properties and results of integral calculus to be easily transferred

from one field of mathematics to another. In particular, integral categories will give a better

understanding of integration in a variety of settings such as linear logic, tangent categories,

differential geometry, algebraic geometry, tropical geometry, and synthetic differential geom-

etry.

The inspiration for the axiomatization of integration (separate from differentiation) comes

from the much older notion of a Rota-Baxter algebra [4, 31, 20], the classical algebraic

abstraction of integration. Briefly, for a commutative ring R, a Rota-Baxter algebra of

weight λ is an R-algebra A with an R-linear morphism P : A → A which satisfies the

Rota-Baxter rule:

P (a)P (b) = P (aP (b)) + P (P (a)b) + λP (ab) ∀a, b ∈ A

where λ ∈ R. The map P is called a Rota-Baxter operator of weight λ. A particular example

of a Rota-Baxter algebra of weight zero is the R-algebra of real continuous functions Cont(R),

where the Rota-Baxter operator P : Cont(R) → Cont(R) is defined as the integral of the

function centred at zero:

P (f)(x) =

∫ x

0

f(t) dt

The Rota-Baxter rule for this example is the expression of the integration by parts rule

without the use of derivatives (see [20] for more details):

∫ x

0

f(t) dt ·
∫ x

0

g(t) dt =

∫ x

0

f(t) · (
∫ t

0

g(u) du) dt+

∫ x

0

(

∫ t

0

f(u) du) · g(t) dt

This example motivates the idea that the Rota-Baxter rule is one of the fundamental axioms

of integration. In particular, a formalization of the Rota-Baxter rule of weight zero will be
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one of the axioms of the integral category structure.

The interaction between the integral category and differential category structure is clearly

important. When differentiation and integration are compatibly combined into what we call

a calculus category , we demand that the two fundamental theorems of calculus hold. The

second fundamental theorem of calculus is assumed to hold verbatim, that is, every differ-

entiable map satisfies it. However, the first fundamental theorem, as Ehrhard observed, has

to be interpreted as being a property which only certain integrable maps satisfy. Under this

interpretation, the first fundamental theorem becomes the Poincaré condition which provides

necessary and sufficient conditions for a map to be the differential of its integral, that is, to

satisfy the first fundamental theorem. Calculus categories give a widely applicable form to

the techniques and results of calculus that can be, potentially, used in algebra, geometry,

logic, combinatorics, programming, game theory, and quantum physics.

As Ehrhard originally observed, integration can also be obtained from differentiation as a

notion of antiderivation. Furthermore, integration induced from differentiation in this man-

ner should satisfy the fundamental theorems of calculus, as is the case in classical calculus.

To obtain the notion of integration as an antiderivative, we have followed Ehrhard’s original

idea but have strengthened his approach. This is due to the fact that requiring J to be a

natural isomorphism is not enough to have an integral category or a calculus category. We

instead insist that a slightly different natural transformation, which we call K, should be

invertible in order to obtain integration. This more fundamental transformation not only

produces an integral, but also secures the first and second fundamental theorems of calculus,

thus giving a calculus category. The invertibility of K also ensures that Ehrhard’s natural

transformation J is invertible, but the converse is not true. However, in the presence of

the “Taylor Property”, which Ehrhard had suggested as being important, the invertibility

of J implies the invertibility of K. Furthermore, the antiderivative integral produced by the
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inverse of K is the same as the antiderivative produced by the inverse of J (when K is already

invertible). Significantly, the notion of a differential category with antiderivatives, given by

requiring that K is invertible, provides a plentiful supply of calculus categories, in particu-

lar the category of sets and relations and the category of vector fields over a fixed field of

characteristic zero.

1.3 Outline

We assume a knowledge of basic category theory including the definitions and properties

of categories, functors, natural transformation, duality and various kinds of maps (such as

isomorphism, epimorphisms, etc.). We refer the reader to the following excellent sources

[28, 11, 1, 3] if further details are needed. We also assume basic knowledge of algebra includ-

ing the definitions and properties of monoids, fields, vector spaces, tensor product of vector

spaces and linear transformations. The reader may consult [27] for more details on these

topics.

Chapter 2 introduces additive symmetric monoidal category with a coalgebra modality,

which is the basic setting for differential, integral and calculus categories. In Section 2.1 we

define and give examples of additive symmetric monoidal categories and in Section 2.2 we

do the same for coalgebra modalities. We end this chapter by giving a brief introduction

to the graphical calculus for additive symmetric monoidal category. The graphical calculus

is highly effective tool which allows one to construct proofs visually using string diagrams.

We will give a table of reference for all the symbols we will use in our graphical calculus

throughout this thesis, Table 2.3.

In Chapter 3 we develop a new concept which is part of the original work of this the-

sis. We introduce integral categories where we also explore certain properties and provides
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examples of them. We illustrate two equivalent ways of defining an integral category with

the integral combinator and the integral transformation. Section 3.1 introduces the integral

combinator, while Section 3.3 introduces the integral transformation. At the end of Section

3.3 we prove that the two concepts are equivalent. In Section 3.5 we give the polynomial

integration identity for integral category and how this implies non-negative rationals in an

integral category. Then we give other properties of integral categories in Section 3.6 and

finish with a discussion of Fubini’s theorem in Section 3.7.

Chapter 4 is a survey of differential categories. The material in this chapter was originally

developed in [7]. The structure of this chapter mirrors the structure of the previous chapter

on integral categories. We again illustrate two equivalent ways of defining differential with

the differential combinator and the deriving transformation, which we also prove are equiv-

alent to one another. We do not explore differential categories in detail, we instead refer the

interested reader to other sources.

Chapter 5 introduces the categorical formulation of the fundamental theorems of calculus

and introduces calculus categories, which is part of the original work of this thesis. In Section

5.1 we study the definition of the second fundamental theorem in terms of the deriving trans-

formation and integral transformation. Section 5.2 introduces an alternative and equivalent

way of stating the second fundamental theorem with the introduction of the Compatibility

and Taylor conditions. Section 5.3 explores the definition of the first fundamental theorem

of calculus and Section 5.4 introduces the Poincaré Condition. We finish this chapter by

providing examples of calculus categories.

In Chapter 6 we provide sufficient conditions for a differential category to be a calculus

category. Differential categories with these conditions are said to have antiderivatives. In

this chapter we introduce the coderiving transformation and also the W, L, K and J maps.
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In Section 6.3, we prove that the invertibility of K is equivalent to J being invertible and the

Taylor property. Finally in Section 6.4, we prove the main theorem of this thesis, Theorem

6.23, that a differential category with antiderivatives is a calculus category by constructing

an integral transformation using K−1.

In the final chapter, Chapter 7, we provide a summary of the main result of this thesis,

an overview of separating examples of the various structures and an indication of how these

ideas might be further developed.
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Chapter 2

Preliminaries

In this chapter, we establish the basic setting of integral and differential categories: additive

symmetric monoidal categories with a coalgebra modality. Before beginning, we should first

address conventions that we will be using in these notes. First, we will use diagrammatic

order for composition. Explicitly, this means that the composite map fg : A → C is the

map which first does f : A → B then g : B → C, which is illustrated in the following

commutative diagram.

B
g

''
A

f

77

fg
// C

Secondly, we will be working in strictly associative symmetric monoidal categories. This will

be discussed further after Definition 2.1.

2.1 Additive Symmetric Monoidal Categories

In this section, we recall the definition and examples of additive symmetric monoidal cat-

egories. We begin with the definition of a symmetric monoidal category, then we give the

definition of additive categories and additive symmetric monoidal categories. We finish this

section by describing our two main examples of additive symmetric monoidal categories: the
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category of sets and relations and the category of vector spaces, which will also be our main

examples of integral and differential categories.

The basic idea of a symmetric monoidal category is a category which is equipped with a

notion of a tensor product which behaves like the standard notion of the tensor product for

vector spaces. In fact, the category of vector spaces over a fixed field is one of the standard

examples of a symmetric monoidal category. The axiomatization of symmetric monoidal

categories can be given in various equivalent ways. While the main structure (the category,

the tensor product, the tensor unit and the natural isomorphisms) are always the same from

one definition to another, the coherence conditions a symmetric monoidal category must

satisfy are often expressed differently. While the different axiomatizations, such as [28] or

[25], are all equivalent [24], in this thesis we have chosen to express them as found in [3].

Definition 2.1. A symmetric monoidal category [3, 25, 28] is a septuple (X,⊗, K, α, λ, ρ, σ)

consisting of:

(i) A category X;

(ii) A bi-functor ⊗ : X× X→ X called the monoidal or tensor product;

(iii) An object K ∈ Ob(X) called the unit;

(iv) A natural isomorphism α, with components αA,B,C : A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C

for triples of objects A,B,C ∈ Ob(X) (that is α is natural in each of A, B and C

separately), called the associativity isomorphism;

(v) A natural isomorphism λ, with components λA : K ⊗ A ∼= A for objects A ∈ Ob(X),

called the left unit isomorphism;

(vi) A natural isomorphism ρ, with components ρA : A ⊗ K ∼= A for objects A ∈ Ob(X),

called the right unit isomorphism;
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(vii) A natural isomorphism σ, with components σA,B : A⊗B ∼= B ⊗A for pairs of objects

A,B ∈ Ob(X) (that is σ is natural in both A and B separately), called the symmetry

isomorphism.

The septuple (X,⊗, K, α, λ, ρ, σ) satisfies the following properties [3]:

[SMC.1] For all quadruples of objects A,B,C,D ∈ X, the following diagram, called the

associativity pentagon, commutes:

A⊗ (B ⊗ (C ⊗D))
αA,B,C⊗D //

1A⊗αB,C,D

��

(A⊗B)⊗ (C ⊗D)

αA⊗B,C,D

��

A⊗ ((B ⊗ C)⊗D)

αA,B⊗C,D

��
(A⊗ (B ⊗ C))⊗D

αA,B,C⊗1D
// ((A⊗B)⊗ C)⊗D

[SMC.2] For all pairs of objects A,B ∈ X, the following diagram, called the unit associa-

tivity triangle, commutes:

A⊗ (K ⊗B)
αA,K,B //

1A⊗λB ))

(A⊗K)⊗B

A⊗B
ρ−1
A ⊗1B

55

[SMC.3] For each pair of objects A,B ∈ X, the following diagram, called symmetry

inverse triangle, commutes:

A⊗B

σA,B ))

A⊗B

B ⊗ A
σB,A

55

[SMC.4] For each object A ∈ X, the following diagram, called the symmetry unit trian-
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gle commutes:

A⊗K
σA,K //

ρA
((

K ⊗ A

λA
vv

A

[SMC.5] For all objects A,B,C,D ∈ X, the following diagram, called the symmetry

associativity hexagon, commutes:

A⊗ (B ⊗ C)
αA,B,C //

1A⊗σB,C

��

(A⊗B)⊗ C
σA⊗B,C // C ⊗ (A⊗B)

αC,A,B

��
A⊗ (C ⊗B) αA,C,B

// (A⊗ C)⊗B
σA,C⊗1B

// (C ⊗ A)⊗B

As stated in the introduction of this chapter, we will assume that all symmetric mono-

mial categories in this thesis are strictly associative. Strictly associative implies that the

associativity isomorphism α is in fact the identity. Explicitly, this means that for each triple

of objects:

A⊗B ⊗ C = A⊗ (B ⊗ C) = (A⊗B)⊗ C

Therefore, we will supress α from the definition of symmetric monoidal categories. The no-

tation we will be using for a symmetric monoidal category is the sextuple (X,⊗, K, λ, ρ, σ)

where X is the category, ⊗ is the tensor product, K is the unit, λ and ρ are the left and

right unit isomorphisms respectively and σ is the symmetry isomorphism.

Examples of symmetric monoidal categories will be given after the definition of additive

symmetric monoidal categories. In particular, Examples 2.3 and 2.4 illustrate the symmet-

ric monoidal structure of the category sets and relations and the category of vector spaces,

respectively.

Next we recall the definition of an additive symmetric monoidal category and provide
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two main examples. It should be noted that our definition of an additive category is differ-

ent then that found in other sources (such [28]) because we will only require commutative

monoid enrichment instead of abelian group enrichment. In particular, this means we are

not assuming that the hom-sets have additives inverses, that is, negatives. This allows us to

study many additional examples such as the category of sets and relation [28] and the cate-

gory of modules over a rig (semiring) [19]. Another point of difference from other references

is that we do not require our additive categories to have biproducts (as with semi-additive

categories [28]).

Definition 2.2. An additive category [7] is a commutative monoid enriched category, i.e,

a category X such that:

(i) For each pair of objects A,B ∈ X, the hom-set X(A,B) is a commutative monoid with:

(a) Binary operation + : X(A,B)× X(A,B)→ X(A,B) called addition;

(b) Unit 0A,B : A → B called the zero map (where we often simply write 0 when

there is no confusion).

(ii) For all maps in X, composition preserves the additive structure, that is:

(a) k(f + g) = kf + kg;

(b) 0f = 0;

(c) (f + g)h = fh+ gh;

(d) f0 = 0.

An additive symmetric monoidal category [7] is commutative monoid enriched sym-

metric monoidal category, i.e, a symmetric monoidal category (X,⊗, K, λ, ρ, σ) where X is

an additive category and the monoidal product ⊗ preserves the additive structure, that is:

1. (f + g)⊗ h = f ⊗ h+ g ⊗ h;

2. 0⊗ h = 0;

3. k ⊗ (f + g) = k ⊗ f + k ⊗ g;

4. h⊗ 0 = 0.

13



In any additive category, we can define the notion of scalar multiplication. For any map

f : A→ B and any natural number n ∈ N, define the map n · f : A→ B as follows:

n · f :=


f + ...+ f︸ ︷︷ ︸

n-times

if n ≥ 1

0A,B if n = 0

Furthermore, for every object A ∈ X and for every natural number n ∈ N, define the map

nA : A→ A as follows:

nA = n · 1A

which also gives the following equality for every map f : A→ B:

nAf = n · f = fnB

Notice this implies that nA commutes (with respect to composition) with all endomorphism

f : A→ A.

Similarly, in an additive symmetric monoidal category, for every pair of maps f and g

and for any natural number n ∈ N, we have the following equality:

(n · f)⊗ g = n · (f ⊗ g) = f ⊗ (n · g)

In particular, this implies that the tensor product ⊗ for additive symmetric monoidal cate-

gories behaves as the standard product tensor product for vector spaces but where the scalars

are taken to be the natural numbers.

We will now give the two main examples of additive symmetric monoidal categories that

will be used throughout this thesis: the category of vector spaces and the category of sets
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and relation. We will illustrate these examples by listing in detail the additive symmetric

monoidal structure. However, we will not prove that these examples are in fact additive

symmetric monoidal categories as the proofs are routine but tedious.

Example 2.3. Recall that a relation R from a set X to a set Y is a subset of X × Y . Sets

as objects, and relations as maps form a category called the category of sets and relations,

REL (see [28, 3] for more details on this category). In this context, a relation R ⊆ X × Y is

expressed as the map R : X → Y . The category of sets and relations, REL, is an additive

symmetric monoidal category where:

(i) The symmetric monoidal structure (REL,×, {∗}, π0, π1, σ
×) is given by the standard

cartesian product of sets × where:

(a) The unit is a chosen singleton set {∗};

(b) The left unit π0 : {∗} ×X → X is the left projection relation:

π0 = {((∗, x), x)| x ∈ X} ⊆ ({∗} ×X)×X

(c) The right unit π1 : X × {∗} → X is the right projection relation:

π1 = {((x, ∗), x)| x ∈ X} ⊆ (X × {∗})×X

(d) The symmetry isomorphism is the symmetric relation:

σ×X,Y = {((x, y), (y, x))| x ∈ X, y ∈ Y } ⊆ (X × Y )× (Y ×X)

(ii) The additive structure is given by the standard union of sets ∪ where:

(a) The addition of a parallel pair of relations R, S : X ⇒ Y is their union:

R + S := R ∪ S ⊆ X × Y
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(b) The zero map 0X,Y : X → Y between two sets is the empty subset:

0X,Y := ∅ ⊂ X × Y

Example 2.4. The category of vector spaces over a field K, VECK (see [28, 11] for more

details on this category), is an additive symmetric monoidal category where:

(i) The symmetric monoidal structure (VECK,⊗K,K, λ, ρ, σ) is given by the standard ten-

sor product of vector spaces (see Chapter XVI in [27] for more details) where:

(a) The unit is the field K as a vector space over itself;

(b) The left unit λV : K⊗K V → V is the standard unique linear isomorphism;

(c) The right unit ρV : V ⊗K K→ V is the standard unique linear isomorphism;

(d) The symmetry isomorphism σV,W : V ⊗K W → W ⊗K V is the standard unique

symmetry isomorphism.

(ii) The additive structure is given by the standard addition operation in vector spaces:

(a) The addition of a parallel pair of linear maps T, S : V ⇒ W is the standard sum

of linear maps T + S : V → W ;

(b) The zero maps 0V,W : V → W between two vector spaces is the standard linear

map which maps every element of V to the zero element of W .

2.2 Coalgebra Modality

In this section we recall the definition of a coalgebra modality. Coalgebra modalities usually

arise from categories which are models of linear logic [5, 30, 33], however these require much

more structure than what we require for integral and differential categories. Instead, we will

take the approach taken in [7, 33] which define coalgebra modalities on symmetric monoidal
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categories. While it is true that the dual of coalgebra modalities, algebra modalities, are

much more intuitive, we chose to work with coalgebra modalities as they were used originally

used in the introduction of differential categories [7]. We begin this section by recalling the

definition of a comonad and then give the definition of a coalgebra modality. We finish this

section by giving the two main examples of coalgebra modalities which in turn will be part

of our main examples of differential and integral categories.

Monads are possibly more familiar as they arise most commonly from the notion of

freeness (such as the free group or free monoid over a set [27, 28]). Comonads are simply the

dual notion. In particular, both arise from adjunctions [28] (which we will not discuss here).

Since we are interested in working with coalgebra modalities, we will give the definition of

a comonad below and direct the reader to the definition of a monad in another source such

as [28].

Definition 2.5. A comonad [28] on a category X is a triple (!, δ, ε) consisting of:

(i) An endofunctor ! : X→ X;

(ii) A natural transformation δ, with components δA : !A→ !!A;

(iii) A natural transformation ε, with components εA : !A→ A.

In addition, for every object A ∈ X the following diagrams commute:

!A
δA //

δA
��

!!A

ε!A
��

!A
δA //

δA
��

!!A

δ!A
��

!!A
!(εA)

// !A !!A
!(δA)

// !!!A

From a comonad (!, ε, δ) on category X, one can define a new category, called its coKleisli

category [28], whose objects are the same as X but whose maps are of the form f : !A→ B.

As discussed in the introduction of [7], the coKleisli category for a comonad (!, ε, δ) of a dif-

ferential category should be thought of as the category of differentiable (or smooth) functions
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of the base category. Maps of the base category should be thought of as linear maps, which

are of course also smooth functions. More explicitly, for a category with a comonad (!, ε, δ),

a smooth map from A to B is a map of the form f : !A → B (i.e. a map in the coKleisli

category), while standard maps g : A → B are linear maps, which can be interpreted as

the smooth maps εAg : !A → B. In the next chapter, we will use a similar intuition for

integration.

We will provide examples of comonads after giving the definition of coalgebra modalities

below. In particular, Examples 2.8 and 2.9 illustrate examples of comonads, which are also

coalgebra modlaities, on our two main examples of addtive symmetric monoidal category.

An important source of examples of comonads are monads for the opposite category. This

will be used in particular for the category of vector spaces, as seen in Example 2.9.

Coalgebra modalities are comonads which come equipped with a comultiplication and a

counit. Again, the comultiplication and counit are simply the dual notions of the multiplica-

tion and unit for a monoid or algebra. We give the definition of a coalgebra modality below

and give our two main examples afterwards.

Definition 2.6. A (cocommutative) coalgebra modality [7, 8] on a symmetric monoidal

category (X,⊗, K, λ, ρ, σ) is a quintuple (!, δ, ε,∆, e) consisting of:

(i) An endofunctor ! : X→ X;

(ii) A natural transformation δ, with components δA : !A→ !!A;

(iii) A natural transformation ε, with components εA : !A→ A;

(iv) A natural transformation ∆, with components ∆A : !A→ !A⊗ !A, called the comulti-

plication;

(v) A natural transformation e, with components eA : !A→ K, called the counit.
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In addition, the following must be satisfied:

1. (!, δ, ε) is a comonad;

2. For each object A ∈ Ob(X), (!A,∆A, eA) is a cocommutative comonoid, that is, the

following diagrams commute:

!A ∆ //

∆
��

!A⊗ !A

∆⊗1
��

!A

∆
��

ρ−1

''

λ−1

ww
!A⊗ !A

1⊗∆
// !A⊗ !A⊗ !A K ⊗ !A !A⊗ !A

e⊗1
oo

1⊗e
// !A⊗K

!A ∆ //

∆ ((

!A⊗ !A

σ
��

!A⊗ !A

3. For each object A ∈ Ob(X), δA preserves the comultiplication, that is, the following

diagram commutes:

!A
δA //

∆A

��

!!A

∆!A

��
!A⊗ !A

δA⊗δA
// !!A⊗ !!A

Requiring that ∆ and e be natural transformations is equivalent to asking that for each

map f : A→ B of X, !(f) : !A→ !B is a coalgebra morphism, that is, the following diagrams

commute:

!A ∆ //

!(f)
��

!A⊗ !A

!(f)⊗!(f)
��

!A
!(f) //

e
''

!B

e
��

!B
∆

// !B ⊗ !B K

Similarly, one can prove that for each object A, δA also preserves the counit and therefore is

in fact a coalgebra morphism.

Proposition 2.7. Let (X,⊗, K, λ, ρ, σ) be a symmetric monoidal category with a coalgebra

modality (!, δ, ε,∆, e). Then for each object A ∈ Ob(X), δA is a coalgebra morphism.
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Proof. By definition of being a coalgebra modality, for all objects A, δA preserves the comul-

tiplication. Therefore it remains to show that for each object A, δA also preserves the counit

eA. By the above remark, for every map f , !(f) is a coalgebra morphism. In particular,

!(f) preserves the counit e. Therefore, since !(εA) is a coalgebra morphism and (!, δ, ε) is a

comonad, we have the following equality:

δAe!A = δA!(εA)eA = eA

We will now give the two main examples of coalgebra modalities that will be used through-

out this thesis: the free symmetric algebra monad on the opposite category of vector spaces

and the finite bag comonad on the category of sets and relation. We will illustrate these

examples by listing in detail the coalgebra modality. However, we will not prove that these

examples are in fact coalgebra modalities as the proofs are routine but lengthy and appear

in [7].

Example 2.8. The category of sets and relations, REL, has a coalgebra modality (!, δ, ε,∆, e)

given by the finite bag comonad [7] where:

(i) The endofunctor ! : REL → REL maps a set X to the cofree comonoid over X, or

equivalently, the set of all finite bags of X (including the empty bag), that is, on

objects the functor ! is defined as follows:

!(X) = {Jx1, ..., xnK| xi ∈ X}

while for relation R : X → Y , !(R) : !X → !Y is the relation which relates a bag of X

to a bag of Y of the same size and such that the elements of the bags are related by R:

!(R) = {(Jx1, ..., xnK, Jy1, ..., ynK)| (xi, yi) ∈ R} ⊂ !(X)× !(Y )
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(ii) The comonad counit εX : !(X) → X is the relation which relates one element bags to

their element in X:

εX = {(JxK, x)| x ∈ X} ⊂ !(X)×X

(iii) The comonad comultiplication δX : !(X) → !(!(X)) is the relation which relates a bag

to the bag of all possible bag splittings of the original bag:

δX = {(B, JB1, ..., BnK)| B,Bi ∈ !(X), B1 ∪ ... ∪Bn = B} ⊆ !(X)× !(!(X))

(iv) The comultiplication ∆X : !(X) → !(X) × !(X) is the relation which relates a bag to

the pair of all possible two bag splittings of the original bag:

∆X = {(B, (B1, B2))| B,Bi ∈ !(X), B1 ∪B2 = B} ⊆ !(X)× (!(X)× !(X))

(v) The counit eX : !(X) → {∗} is the relation which relates the empty bag to the single

element ∗:

uX = {(∅, ∗)} ⊂ !(X)× {∗}

Example 2.9. The category of vector spaces over a fieldK, VECK, has an algebra modality

(that is, VECOpK has a coalgebra modality) (Sym, η, µ,∇, u) given by the free symmetric

algebra monad [28] where:

(i) The functor Sym : VECK → VECK maps a vector space V to the free commutative

algebra over V which is also known as the symmetric algebra over V (see Section 8,

Chapter XVI in [27] for more details):

Sym(V ) =
∞⊕
n=0

Symn(V ) = K⊕ V ⊕ Sym2(V )⊕ ...
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where Symn(V ) is simply the quotient of V ⊗
n

by the tensor symmetry equalities:

v1 ⊗ ...⊗ vi ⊗ ...⊗ vn = vσ(1) ⊗ ...⊗ vσ(i) ⊗ ...⊗ vσ(n)

For a linear transformation T : V → W , Sym(T ) : Sym(V ) → Sym(W ) is defined on

pure tensors by applying T to each component:

Sym(T )(v1 ⊗ ...⊗ vn) = T (v1)⊗ ...⊗ T (vn)

which we then extend by linearity.

(ii) The monad unit ηV : V → Sym(V ) is the injection map of V into Sym(V ):

ηV (v) = v

(iii) The monad multiplication µV : Sym(Sym(V )) → Sym(V ) on pure tensors simply re-

moves the brackets and concatenates words together:

µV ([a1,1 ⊗ ...⊗ a1,n]⊗ ...⊗ [ai,1 ⊗ ...⊗ an,m]) = a1,1 ⊗ ...⊗ a1,n ⊗ ...⊗ ai,1 ⊗ ...⊗ ai,m

which we then extend by linearity.

(iv) The multiplication ∇V : Sym(V )⊗ Sym(V )→ Sym(V ) is concatenation of words:

∇V (v1 ⊗ ...⊗ vn, w1 ⊗ ...⊗ wm) = v1 ⊗ ...⊗ vn ⊗ w1 ⊗ ...⊗ wm

which we then extend by linearity.

(v) The unit uV : K→ Sym(V ) is the injection map of K into Sym(V ):

uV (1) = 1
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which we then extend by linearity.

2.3 Graphical Calculus

Additive symmetric monoidal categories have a graphical calculus which allows us to express

algebraic equations as string diagrams. This graphical calculus is extremely useful when deal-

ing with proofs which would require lengthy and complicated algebraic calculations. The

main concept of the graphical calculus is that it is a form of representations of maps and

composition in a monoidal category using string diagrams. We can manipulate and concate-

nate string diagrams according to the axiom of additive symmetric monoidal categories and

the extra structure on them such as coalgebra modalities. For a simple example, consider

the following string diagram which represents the composite map fg which illustrates the

idea of first doing f then g:

g

f

In this thesis, string diagrams are to be read from top to bottom.

Proofs are much easier to understand and read if we use string diagrams. On top of this,

proofs done in the graphical calculus are equivalent to proofs done algebraically, as shown

in [23]. While we won’t give an introduction to the functionality of the graphical calculus,

we will instead give a table for all the symbols we will use in our graphical calculus, Table

2.3. We refer the reader to [32] for an introduction to the graphical calculus in monoidal

categories and its variations.
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For an example of how we use and read string diagrams, consider the expression of the

axioms of a coalgebra modality in the graphical calculus notation:

∆

∆

=
∆

∆ ∆

=

∆

[coalg.1] [coalg.2]

∆

e

= =

∆

e ∆

δ

=

δ

∆

δ

[coalg.3] [coalg.4]

Table 2.2: Coalgebra Modality Properties in String Diagrams

Where [coalg.1] represents the coassociativity of the comultiplication, [coalg.2] is the

cocommutativity of the comultiplication, [coalg.3] is the left and right counit laws and

[coalg.4] is that δ preserves the comultiplication.

25



Chapter 3

Integral Categories

In this chapter we introduce integral categories, give examples of integral categories, and

study the basic properties of integral categories. We begin by defining an integral combi-

nator, which is the key ingredient of an integral category. Afterwards, we provide a short

discussion on the naturality of the combinator. This discussion leads to introducing the

integral transformation. One then obtains an equivalent definition of an integral category

in terms of the integral transformation. We can then introduce the graphical calculus for

integral categories. While having two different ways of illustrating a concept is always im-

portant, there is a reason why we wish to have both. The combinator description of the

integral category structure is more intuitive while the transformation description is much

more practical (in particular for examples and calculations). For this reason, we give both

definitions and prove the equivalence between an integral combinator and an integral trans-

formation. This way of introducing integral categories mirrors precisely the way differential

categories were originally introduced in [7].

We then give our two main examples of integral categories: the category of vector spaces

and the category of sets and relations. Finally, in the last two sections of this chapter we

explore some of the basic and important properties of integration that one obtains in an
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integral category. We first study polynomial integration in an integral category and how

this implies non-negative rationals in an integral category. Then we study other interesting

properties of integration: two coming from classical calculus and one from the theory of

Rota-Baxter algebras and modules [20]. We finish this chapter with a brief discussion of the

interpretation of Fubini’s theorem in integral categories.

3.1 Integral Combinator

An integral category is an additive symmetric monoidal with a coalgebra modality and

an integral combinator. An integral combinator is an operator on certain maps, called

integrable, where the resulting map is the integral of the input map. After giving the

definition, we will give some intuition for the combinator and the axioms that it must satisfy.

We begin by giving the definition of a combinator:

Definition 3.1. Let X be a category and let F,G, F ′ and G′ be four endofunctors from X

to X. A combinator C of F,G, F ′ and G′ is a family of set functions indexed by pairs of

objects of X on the following hom-sets of X:

C = {CA,B : X(F (A), G(B))→ X(F ′(A), G′(B))| A,B ∈ Ob(X)}

We will often simply write C : X(F (A), G(B))→ X(F ′(A), G′(B)) when there is no confusion.

Application of the combinator will be written out as follows:

f : F (A)→ G(B)

C[f ] : F ′(A)→ G′(B)
C

Two simple examples of combinators are functors and natural transformations:

Example 3.2. Every endofunctor F : X → X induces a combinator of the identity functor

1X and F itself by applying the functor, that is, F is a combinator of the functors 1X, 1X, F
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and F :
f : A→ B

F (f) : F (A)→ G(B)
F

Example 3.3. Every natural transformation η : F → G between a pair of endofunctors

F,G : X→ X induces a combinator of the identity functor 1X, F and G by pre-composition,

that is, η is a combinator of the functors G, 1X, F and 1X:

f : G(A)→ B

ηAf : F (A)→ B
η

similarly η is a combinator of the functors 1X, F, 1X and G by post-composition.

It should be noted that not all combinators need to be functors, as seen with the integral

combinator below, or natural transformations, as seen with the differential combinator in a

cartesian differential category [9]. Now we introduce the definition of an integral combinator.

Definition 3.4. Let (X,⊗, K, λ, ρ, σ) be an additive symmetric monoidal category with a

coalgebra modality (!, δ, ε,∆, e). An integral combinator S on (!, δ, ε,∆, e) is a combinator

of the functors !( )⊗ , 1X, ! and 1X:

f : !A⊗ A→ B

S[f ] : !A→ B
S

such that S satisfies the following properties:

[S.A] Additivity: For any pair of parallel maps f, g : !A ⊗ A ⇒ B, the following equality

holds:

S[f + g] = S[f ] + S[g]

[S.N] Naturality/Linear Substitution: If the square on the left commutes, then the square
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on the right commutes:

!A⊗ A f //

!h⊗h
��

B

k
��

!C ⊗ C g
// D

⇒
!A

S[f ] //

!h
��

B

k
��

!C
S[g]

// D

[S.1] Integral of Constants Rule: For every object A, the following equality holds:

S[(eA ⊗ 1A)λA] = εA

[S.2] Rota-Baxter Rule: For any pair of maps f : !A ⊗ A → B and g : !A ⊗ A → C, the

following equality holds:

∆A(S[f ]⊗ S[g]) = S[(∆A ⊗ 1A)(S[f ]⊗ g)] + S[(∆A ⊗ 1A)(1!A ⊗ σ)(f ⊗ S[g])]

[S.3] Independence Rule: For every map f : !A→ B, the following equality holds:

S[S[f ⊗ 1A]⊗ 1A] = S[(S[f ⊗ 1A]⊗ 1A)(1B ⊗ σA,A)]

Definition 3.5. An integral category is an additive symmetric monoidal category with

a coalgebra modality and an integral combinator. In an integral category, we say a map

is integrable if it is of the form f : !A ⊗ A → B and that the integral of f is the map

S[f ] : !A→ B.

It might be useful for the reader to have some intuition regarding integral combinators,

integrable maps and the axioms. The integral of f : !A⊗ A → B, S[f ] : !A → B should be

thought of as the classical integral of f evaluated from zero to x as a function of x:

S[f ](x) :=

∫ x

0

f(t) dt
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To interpret this as S[f ] one must regard f as being a function of two variables: t, which

is the !A part of the domain, and dt, which is linear in dt which the A part of the domain.

Classically, f is regarded as a function of one (one dimensional) variable, t, and to obtain

our interpretation as a function of two arguments one simply multiplies by the variable dt.

This allows a simple interpretation of the integral notation for one dimensional functions: it

leaves open the interpretation for multidimensional functions – an issue to which we shall

return to later, in particular in the example of the category of vector spaces.

The first axiom [S.A] simply formalizes the fact that the integral of a sum of functions

is the sum of each integral:

S[f + g] =

∫ x

0

(f(t) + g(t)) dt =

∫ x

0

f(t) dt+

∫ x

0

g(t) dt = S[f ] + S[g] [S.A]

The second axiom [S.N] is a naturality condition with respect to linear maps which amounts

to saying that the integral preserves linear substitution. To preserve linear substitution

means that if h and k are linear functions and k(f(x)) dt = g(h(t)) d(h(t)) then:

!(h)S[g] =

∫ h(x)

0

g(t) dt = k(

∫ x

0

f(t) dt) = S[f ]k

This naturality condition may become clearer in the next section where we will split this

axiom into two smaller axioms. The next axiom [S.1] asks our integral combinator to satisfy

that the integral of the constant function 1, or simply dt, is the linear function x (which is

not the standard identity but rather the identity in the coKleisli category):

S[(e⊗ 1)λ] =

∫ x

0

1 dt =

∫ x

0

dt = x = ε [S.1]

The next axiom [S.2] is the so called Rota-Baxter rule, as discussed in our introduction.
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This is the fundamental axiom of our integral combinator.

∆(S[f ]⊗ S[g]) =

∫ x

0

f(t) dt ·
∫ x

0

g(t) dt

=

∫ x

0

(

∫ t

0

f(u) du) · g(t) dt+

∫ x

0

f(t) · (
∫ t

0

g(u) du) dt

= S[(∆⊗ 1)(S[f ]⊗ g)] + S[(∆⊗ 1)(1⊗ σ)(f ⊗ S[g])] [S.2]

Here the comultiplication ∆ is interpreted as multiplication, represented by ·, while the sym-

metry map σ in the second part of the sum is there to place the dt at the end of integral,

just as in classical calculus.

Finally the last axiom [S.3] gives the independence of the order of integration: the

interchange law, that is, integrating with respect to u then t is the same as integrating with

respect to t then u. This is closely related to Fubini’s theorem, but is not actually Fubini’s

theorem as we will discuss in Section 3.7. This is more of a one dimensional Fubini’s theorem.

This identity can be expressed in classical notation as:

S[S[f⊗1A]⊗1A] =

∫ x

0

(

∫ t

0

f(u) du dt) =

∫ x

0

(

∫ u

0

f(t) dt du) = S[(S[f⊗1A]⊗1A)(1B⊗σA,A)]

[S.3]

This may seem like a trivial change of variable but recall that we are now considering dt and

du as part of our function.

3.2 Naturality of the Integral Combinator

In this section, we explore the naturality axiom of our combinator [S.N] further. The

naturality [S.N] of the combinator S can be described in alternative way by splitting it into

two:

[S.N.a] Left Linear Substitution: For every pair of maps h : A→ C and g : !(C)⊗C → B,
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the following equality holds:

S[(!(h)⊗ h)g] = !(h)S[g]

[S.N.b] Right Linear substitution: For every pair of maps f : !A⊗A→ B and k : B → D,

the following equality holds:

S[fk] = S[f ]k

For intution using classical calculus, the first of the two [S.N.a] says that if h is a linear

function and if we let u = h(t) then:

S[(!(h)⊗ h)g] =

∫ x

0

g(h(t)) d(h(t)) =

∫ h(x)

0

g(u) du = !(h)S[g] [S.N.a]

The second [S.N.b] is similar and says that if k is a linear function then:

S[fk] =

∫ x

0

k(f(t)) dt = k(

∫ x

0

f(t) dt) = S[f ]k [S.N.b]

In the following proposition, we prove that these two axioms are indeed equivalent to the

naturality axiom.

Proposition 3.6. The following are equivalent:

(i) [S.N];

(ii) [S.N.a] and [S.N.b].

Proof. i)⇒ ii): For [S.N.a], notice that the square on the left commutes trivially and then

by [S.N], the square on the right commutes:

!A⊗ A (!h⊗h)g //

!h⊗h
��

D

!C ⊗ C g
// D

⇒
!A

S[(!(h)⊗h)g] //

!h
��

D

!C
S[g]

// D
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Similarly for [S.N.b], notice that the square on the left commutes trivially and then by

[S.N], the square on the right commutes:

!A⊗ A f // B

k
��

!A⊗ A
fk

// D

⇒
!A

S[f ] // B

k
��

!A
S[fk]

// D

ii) ⇒ i): Suppose that (!h ⊗ h)g = fk for the appropriate maps f , g, h and k. Then by

[S.N.a] and [S.N.b], we have the following equality:

(!h⊗ h)S[g] = S[(!h⊗ h)f ] = S[fk] = S[f ]k

Naturality of the integral combinator S also implies that the integral of zero is zero.

Proposition 3.7. In an integral category, the integral of zero is zero. Explicitly, let (X,⊗, K, λ, ρ, σ)

be an integral category with a coalgebra modality (!, δ, ε,∆, e) and an integral combinator S.

Then S satisfies the following:

[S.A.0] Integral of zero:

S[0!A⊗A,B] = 0!A,B

For every pair of objects A and B in X.

Proof. By the additive symmetric monoidal structure, the square on the left commutes and

then by [S.N], the square on the right commutes:

!A⊗ A 0 // B

0
��

!A⊗ A
0

// B

⇒
!A

S[0] // B

0
��

!A
S[0]

// B

However, by the additive symmetric monoidal structure, !(0)⊗0 = 0, and we get the following
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equality:

S[0] = S[0]0 = 0

Naturality of the integral combinator also gives a general way of describing the integrals of

maps. Notice by naturality of the integral combinator, since the square on the left commutes

trivially for every integrable map then the square on the right commutes:

!A⊗ A
1!A⊗A

!(1A)⊗1A

!A⊗ A
f
��

!A⊗ A
f

// B

⇒
!A

S[1!A⊗A] //

!(1A)
��

!A⊗ A
f
��

!A
S[f ]

// B

Therefore, we get the following proposition:

Proposition 3.8. Let (X,⊗, K, λ, ρ, σ) be an integral category with a coalgebra modality

(!, δ, ε,∆, e) and an integral combinator S. Then for every integrable map f : !A⊗ A→ B:

S[f ] = S[1!A⊗A]f

If we define sA = S[1!A⊗A] : !A→ !A⊗ A, then by the above proposition:

S[f ] = sAf

for every integrable map f : !A⊗A→ B. In fact, the integral combinator S can be completely

re-expressed in terms of s, which we discuss in the next section.

3.3 Integral Transformation

In this section we introduce the integral transformation. We will then by able to integrate

maps by precomposing by the integral transformation. This is the analogue of the deriving
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transformation in differential categories [7] and is obtained in a similar fashion through

naturality of the combinator as discussed above, which will we see in Chapter 4.5. At the

same time as we present the definition, we introduce the graphical calculus for the integral

transformation and draw out the axioms in string diagram form. Afterwards in the following

section, we will show that this is indeed equivalent to having an integral combinator.

Definition 3.9. Let (X,⊗, K, λ, ρ, σ) be an additive symmetric monoidal category with a

coalgebra modality (!, δ, ε,∆, e). An integral transformation is a natural transformation

s with components sA : !A→ !A⊗ A

s :=
—–

Such that for each object A ∈ Ob(X), sA satisfies the following properties:

[s.1] Integral of Constants:

sA(eA ⊗ 1A)λA = εA

—–

e

= ε

[s.2] Rota-Baxter Rule:

∆A(sA ⊗ sA) = sA(∆A ⊗ 1A)(sA ⊗ 1!A ⊗ 1A) + sA(∆A ⊗ 1A)(1!A ⊗ σA,!A)(1!A ⊗ 1A ⊗ sA)
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—– —–

∆∆

=
∆

—–—–

—–
+

∆

—–

—–—–

[s.3] Independence Rule:

sA(sA ⊗ 1A) = sA(sA ⊗ 1A)(1!A ⊗ σA,A)

—–

—–

=
—–

—–

The axioms for the integral transformation are simple re-expressions of the axioms for

the integral combinator.

The integral transformation gives an equivalent (and extremely useful) definition of an

integral category, stated and proved in the following propositions. We begin by first proving

that every integral combinator induces an integral transformation, then we prove the con-

verse statement. Finally we end this section by proving that there is in fact a one to one

correspondence between integral combinators and integral transformations.

The equational proofs in the following proposition are short and straightforward. There-

fore, we will not use the graphical calculus here.

Proposition 3.10. Let (X,⊗, K, λ, ρ, σ) be an additive symmetric monoidal category with

a coalgebra modality (!, δ, ε,∆, e) and an integral combinator S. Then S induces an integral

transformation s whose components sA : !A→ !A⊗ A are defined as sA = S[1!A⊗A].
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Proof. Throughout this proof, we will make repeatedly use [S.N]. We first show naturality

of s. Notice that for every map f : A→ B, the square on the left commutes trivially and so

by [S.N], the square on the right commutes:

!A⊗ A
!f⊗f

��

!A⊗ A
!f⊗f
��

!B ⊗B !B ⊗B

⇒
!A

S[1!A⊗A]=sA //

!f
��

!A⊗ A
!f⊗f
��

!B ⊗B
S[1!A⊗A]=sA

// !B

The square on the right shows that s is a natural transformation.

Recall that we have also already shown that by [S.N], for every integrable map f :

!A⊗A→ B, S[f ] = S[1!A⊗A]f = sAf . With this identity, we can prove [s.1], [s.2] and [s.3].

[s.1] For the Integral of constants rule, we obtain the following equality by [S.1]:

sA(eA ⊗ 1A)λA = S[(eA ⊗ 1A)λA] = εA

[s.2] For the Rota-Baxter rule, we obtain the following equality by [S.2]:

∆A(sA ⊗ sA) = ∆A(S[1!A⊗A]⊗ S[1!A⊗A])

= S[(∆A ⊗ 1)(S[1!A⊗A]⊗ 1!A⊗A)] + S[(∆A ⊗ 1)(1⊗ σ)(1!A⊗A ⊗ S[1!A⊗A])]

= sA(∆A ⊗ 1)(sA ⊗ 1⊗ 1) + sA(∆A ⊗ 1)(1⊗ σ)(1⊗ 1⊗ sA)

[s.3] For the independence rule, we obtain the following equality by [S.3]:

sA(sA⊗1A) = S[S[1!A⊗1A]⊗1A] = S[(S[1!A⊗1A]⊗1A)(1!A⊗σA,A)] = sA(sA⊗1A)(1!A⊗σA,A)

Proposition 3.11. Let (X,⊗, K, λ, ρ, σ) be an additive symmetric monoidal category with a
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coalgebra modality (!, δ, ε,∆, e) and an integral transformation s. Then s induces an integral

combinator S defined as:

S[f ] = sAf

For every map f : !A⊗ A→ B.

Proof. We must prove [S.A], [S.N], [S.1], [S.2] and [S.3]:

[S.A] We obtain additivity of the combinator by the fact that composition preserves addi-

tion:

S[f + g] = sA(f + g) = sAf + sAg = S[f ] + S[g]

[S.N] For naturality, suppose that the following square commutes:

!A⊗ A f //

!h⊗h
��

B

k
��

!C ⊗ C g
// D

Since s is a natural transformation, we obtain the following equality:

S[f ]k = sAfk = sA(!h⊗ h)g =!hsCg =!hS[g]

[S.1] For the Integral of constants rule, we obtain the following equality by [s.1]:

S[(eA ⊗ 1A)λA] = sA(eA ⊗ 1A)λA = εA

[S.2] For the Rota-Baxter rule, we obtain the following equality by [s.2]:

∆A(S[f ]⊗ S[g]) = ∆A(sA ⊗ SA)(f ⊗ g)

= sA(∆A ⊗ 1A)(sA ⊗ 1!A ⊗ 1A)(f ⊗ g) + sA(∆A ⊗ 1A)(1!A ⊗ σA,!A)(1!A ⊗ 1A ⊗ sA)(f ⊗ g)

= S[(∆⊗ 1)(S[f ]⊗ g)] + S[(∆⊗ 1)(1⊗ σ)(f ⊗ S[g])]
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[S.3] For the independence rule, we obtain the following equality by [s.3]:

S[S[f ⊗ 1A]⊗ 1A] = sA(sA ⊗ 1A)(f ⊗ 1A ⊗ 1A)

= sA(sA ⊗ 1A)(1!A ⊗ σA,A)(f ⊗ 1A ⊗ 1A)

= sA(sA ⊗ 1A)(f ⊗ 1A ⊗ 1A)(1B ⊗ σA,A)

= S[(S[f ⊗ 1A]⊗ 1A)(1B ⊗ σ)]

Proposition 3.12. For an additive symmetric monoidal category (X,⊗, K, λ, ρ, σ) with a

coalgebra modality (!, δ, ε,∆, e), the set of integral combinators IntComb is isomorphic to the

set of integral transformations IntTran. The isomorphism is given by the following pair of

inverse functions:

ψ : IntComb −→ IntTran

S 7−→ ψ(S)A = S[1!A⊗A]

ψ−1(s)[f ] = sf ←− [ s

Therefore, the following are equivalent:

(i) An integral category;

(ii) An additive symmetric monoidal category with a coalgebra modality and a integral trans-

formation.

Proof. Proposition 3.10 and Propositon 3.11 show that ψ and ψ−1 are well defined. Therefore

it remains to that these are isomorphism, inverse of each other. For both directions, let

f : !A⊗ A→ B:

ψ−1(ψ(S))[f ] = ψ(S)f ψ(ψ−1(s)) = ψ−1(s)[1!A ⊗ 1A]
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= S[1!A⊗A]f = sA(1!A ⊗ 1A)

= S[f ] = sA

The equivalence follows directly.

3.4 Main Examples of Integral Categories

Before exploring properties of integral category, we introduce our two main examples of

integral categories. These two main examples will be used throughout these notes as in time

we will also see that these are not only differential categories but also calculus categories. We

will not prove that these examples are integral categories in this section; this will be done in

Chapter 6. In fact we will see that the integral transformation given in these examples are

induced by an anti-differential of the differential category structure. Thus, it makes more

sense to provide some of the details and proofs after we establish differentiation in Chapter

4.

Example 3.13. The category of sets and relations, REL, has an integral category structure

where:

(i) The additive symmetric monoidal structure (REL,×, {∗}, π0, π1, σ
×) is the structure

given in Example 2.3 from the Cartesian product of sets and union of sets;

(ii) The coalgebra modality (!, δ, ε,∆, e) is the finite bag comonad given in Example 2.8;

(iii) The integral transformation sX : !(X) → !(X) ×X is the relation which relates a bag

to the a new bag where we pulled out an element of the original bag:

sX = {(B, (B − {x}, x))| B ∈ !(X), x ∈ B} ⊆ !(X)× (!(X)×X)

Proposition 3.14. The category of sets and relations is an integral category with the struc-
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ture and integral transformation defined above.

Example 3.15. The category of vector spaces over a field K of characteristic zero, VECK,

has a co-integral category structure (that is, VECOp
K is an integral category) where:

(i) The additive symmetric monoidal structure (VECK,⊗K,K, λ, ρ, σ) is the structure given

in Example 2.4 from the standard tensor product of vector spaces and the standard

addivite structure of vector spaces;

(ii) The algebra modality (Sym, η, µ,∇, u) is given by the free symmetric algebra monad

given in Example 2.9;

(iii) The integral transformation sV : Sym(V )⊗ V → Sym(V ) on pure tensors is defined as

follows:

sV ((v1 ⊗ ...⊗ vn)⊗ v) =
1

n+ 1
v1 ⊗ ...⊗ vn ⊗ v

which we then extend by linearity.

An alternative approach of illustrating the integral category structure on VECK is to make

use of the isomorphism between the free symmetric algebra and the polynomial ring. Let

X = {x1, ...} be a basis of a vector space V . Then the free commutative algebra over V ,

Sym(V ) is K-algebra isomorphic to the polynomial ring over X, K[X] [27]. Then the integral

transformation can be described on the polynomial ring sV : K[X] ⊗ V → K[X] as follows

on monomials and base elements:

sV ((xr11 ...x
rn
n )⊗ xi) =

1

1 +
∑n

j=1 rj
xr11 ...x

ri+1
i ...xrn

At first glance this may seem a bit bizarre. One might expect the integral transformation

to integrate a monomial with respect to the variable xi and thus only multiply by 1
1+ri

.

However, this classical idea of integration fails the Rota-Baxter rule [s.2] for any vector

space of dimension greater then one. This version of integration is the appropriate notion
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of anti-differentiation on the differential structure associated to the free symmetric algebra

monad, which we will see in Example 4.11.

Proposition 3.16. The category of vector spaces over a fixed field of characteristic zero is

a co-integral category with the structure and integral transformation defined above.

3.5 Polynomial Integration and Rationals

In this section we examine polynomial integration in integral categories. Perhaps the first

formula learned in first year calculus is the integral of monomials:

∫ x

0

xndx =
1

n+ 1
xn+1

However, we must re-express this identity since in a general additive category there is the

notion of scalar multiplication by N (see Definition 2.2) but not necessarily an operation

corresponding to scalar multiplication by non-negative rationals Q≥0. That said, we will

later see that in an integral category scalar multiplication by Q≥0 is possible with Proposition

3.21 and Proposition 3.25. The integral of monomials identity is re-expressed as:

(n+ 1)

∫ x

0

xn dx = xn+1

This re-expression of the identity holds in any integral category as we will see in Propo-

sition 3.17. The proof of the polynomial integration formula is actually quite elegant and

demonstrates the utility of the graphical calculus. The beauty of the proof of the polynomial

integration formula is that it uses every axiom: integration of constants, the Rota-Baxter

rule and the Independence rule. In fact, polynomial integration in classical calculus also

uses all three axioms but the use of the independence rule goes unnoticed, since in the

classical calculus case, the independence rule is simply a change of variables. Furthermore,

an important consequences of polynomial integration will be Proposition 3.21 and Propo-
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sition 3.25 which state that the natural numbers are in fact invertible in an integral category!

To express the polynomial integration identity in integral categories, we will need the

n-fold comultiplication. For every natural number n ∈ N, define the n-fold comultiplication:

∆n,A : !A→ !A⊗ ...⊗ !A︸ ︷︷ ︸
n-times

by comultiplying !A into n copies of !A. Explicitly one can write ∆n,A as follows:

∆n = ∆(∆⊗ 1)(∆⊗ 1⊗ 1)...(∆⊗ 1⊗ ...⊗ 1︸ ︷︷ ︸
n−2-times

)

However by co-associativity, we could have comultiplied in any other order. For example,

we could have expressed ∆4 as follows:

∆4 = ∆(1⊗∆)(1⊗∆⊗ 1)

Note the following for the cases n = 0, 1 and 2:

(i) When n = 0, ∆0,A = eA (since zero copies of !A is the monoidal unit);

(ii) When n = 1, ∆1,A = 1!A;

(iii) When n = 2, ∆2,A = ∆A.

We often simply write ∆n when there is no confusion.

With this n-fold comultiplication, we can now properly express and prove a rule for

integration of monomials in integral categories which works properly.

Proposition 3.17. Let (X,⊗, K, λ, ρ, σ) be an integral category with coalgebra modality

(!, δ, ε,∆, e) and integral combinator S (or equivalently an integral transformation s). For

every natural number n ∈ N, n ≥ 1, the following equalities hold:
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[S. Poly] For every map f : A⊗ ...⊗ A︸ ︷︷ ︸
n+ 1-times

→ B, the integral combinator satisfies the follow-

ing:

(n+ 1) · S[(∆n ⊗ 1)(ε⊗ ...⊗ ε︸ ︷︷ ︸
n-times

⊗1)f ] = ∆n+1(ε⊗ ...⊗ ε︸ ︷︷ ︸
(n+1)-times

)f

Equivalently for the integral transformation:

[s. Poly] The integral transformation satisfies the following:

(n+ 1) · s(∆n ⊗ 1)(ε⊗ ...⊗ ε︸ ︷︷ ︸
n-times

⊗1) = ∆n+1(ε⊗ ...⊗ ε︸ ︷︷ ︸
(n+1)-times

)

(n+ 1) ·

ε ε

—–

∆n

—–

. . .
=

∆n+1

ε ε. . .

Remark 3.18. Notice that [S. Poly] and [s. Poly] also hold for n = 0 by the integration

of constants axiom.

Proof. We will prove [s. Poly] by induction on n. For the base case of n = 1 (recall that

∆1,A = 1!A and ∆2,A = ∆A), we have the following equality:

ε

∆

ε

=
[s.1]

—–

∆

e e

—– =
[s.2]

∆

—–

e

—–

—–

e

+ ∆

—–e

—–—–

e

=
counit

—–

—–

e

—–

+

e

—–

—–—–

=
Symm.

—–

—–

e

—–

+

—–

e

—–

—–
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=
[s.3]

—–

—–

e

—–

+

—–

—–

e

—–

=
[s.1]

ε

—–

+

ε

—–

So [s. Poly] holds for the base case of n = 1. Assume the induction hypothesis [s. Poly]

holds for n, we now show it for n + 1 (the abbreviation IH below stands for induction

hypothesis):

∆n+2

ε ε. . .
=

Comult.

ε

∆n+1 ε

ε

∆

. . .

=
IH+[s.1]

(n+ 1) ·

—– —–

e

∆

∆n

ε. . .ε

=
[s.2]

(n+ 1) ·

∆

—–

—–

—–

e

ε. . .

∆n

ε

+ (n+ 1) ·
—–

e

∆

—–—–

. . . ε

∆n

ε

=
counit

(n+ 1) ·

. . .

—–

∆n

ε

—–

ε

—–

+ (n+ 1) ·
—–

e

∆

—–—–

. . . ε

∆n

ε
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=
IH+[s.1]

ε ε

—–

∆n+1

—–

. . .

+ (n+ 1) ·

—–

. . .

∆n+1

ε

—–

ε

=
IH

ε ε

—–

∆n+1

—–

. . .

+ (n+ 1)2 ·

. . .

—–

∆n

ε

—–

ε

—–

=
[s.3]

ε ε

—–

∆n+1

—–

. . .

+ (n+ 1)2 ·

ε

—–

ε

—–

∆n

. . .

—–

=
IH

ε ε

—–

∆n+1

—–

. . .

+ (n+ 1) ·

ε ε

—–

∆n+1

—–

. . .

= (n+ 2) ·

ε ε

—–

∆n+1

—–

. . .

In classical calculus notation, the dt always appears at the end of the expression of the

integral. However, as we will see in Proposition 3.19, for integral categories the position of

the linear part dt is unimportant when integrating polynomials. Intuitively, Proposition 3.19
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can be expressed using classical calculus notation as follows:

∫ x

0

tn dt =

∫ x

0

tk dt tn−k

Since there are a total of n+ 1 places (since k goes from 0 to n) for the monomial tn where

we can place dt, then we also get the following equality:

n∑
k=0

∫ x

0

tk dt tn−k = (n+ 1) ·
∫ x

0

tn dt

To express these formulas in integral categories, we need to introduce notation for a specific

twist map.

In any symmetric monoidal category X, for each finite family of objects {A1, ..., An} and

for each k ≤ n, define the following permutation isomorphism:

ω(k n) : A1 ⊗ ...⊗ An → A1 ⊗ ...⊗ An ⊗ ...⊗ Ak

which swaps the last tensor factor and the k-th tensor factor. Notice that ω(n n) is the

identity and when k = 0, define ω(0 n) as follows:

ω(0 n) : A1 ⊗ ...⊗ An → An ⊗ A1 ⊗ ...⊗ An−1

For each finite family of objects of size n ≥ 1 there are n + 1 of these kinds of permutation

isomorphisms.

Proposition 3.19. Let (X,⊗, K, λ, ρ, σ) be an integral category with coalgebra modality

(!, δ, ε,∆, e) and integral combinator S (or equivalently an integral transformation s). For
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every natural number n ∈ N and every k ≤ n the following equality holds:

s(∆n ⊗ 1)(ε⊗ ...⊗ ε︸ ︷︷ ︸
n-times

⊗1)ω(k n) = s(∆n ⊗ 1)(ε⊗ ...⊗ ε︸ ︷︷ ︸
n-times

⊗1)

ε. . .ε

∆n

—–—–

. . .

=

ε ε

—–

∆n

—–

. . .

Proof. We prove this by induction on n using both the independence rule [s.3] and polyno-

mial integration rule [s.poly]. Notice that the case when n = 0 is the integral transformation

axiom [s.1] since ∆0,A = eA. For the base case n = 1, we only need to check the case k = 0.

There is nothing to check for k = 1, since ω(1 1) = 1. When k = 0, ω(0 1) = σ. So we have

the following equality (recall that ∆1,A = 1!A):

—–
ε =

[s.1]

—–

—–

e

=
[s.3]

—–

e

—–

=
[s.1]

—–

ε

So the equality holds for the base case of n = 1. Assume the induction hypothesis holds for

n, we now show it for n+ 1 and for any k ≤ n+ 1:

ε. . .ε

∆n+1

—–—–

. . .

=
[s.poly]

(n+ 1) · ∆n

—–

ε. . .

—–

. . .ε

—–
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=
[s.3]

(n+ 1) ·

ε

—–

ε . . .

—–

—–

. . .

∆n
=
IH

(n+ 1) ·

εε

—–

∆n

. . .

—–

—–

=
[s.poly]

ε ε

—–

∆n+1

—–

. . .

We now prove the fact that summing over all possible placement of the linear part dt is

equal to multiplying by n+ 1.

Proposition 3.20. Let (X,⊗, K, λ, ρ, σ) be an integral category with coalgebra modality

(!, δ, ε,∆, e) and integral combinator S (or equivalently an integral transformation s). For

every natural number n ∈ N, the following equality holds:

n∑
k=1

s(∆n ⊗ 1)(ε⊗ ...⊗ ε︸ ︷︷ ︸
n-times

⊗1)ω(k n) = ∆n+1(ε⊗ ...⊗ ε︸ ︷︷ ︸
(n+1)-times

)

Proof. For each n ≥ 1 there is a total of n + 1 of permutation isomorphisms of the form

ω(k n). Then we have the following equality:

n∑
k=0

s(∆n ⊗ 1)(ε⊗ ...⊗ ε︸ ︷︷ ︸
n-times

⊗1)ω(k n) =
n∑
k=0

s(∆n ⊗ 1)(ε⊗ ...⊗ ε︸ ︷︷ ︸
n-times

⊗1) (Prop. 3.19)

= (n+ 1) · s(∆n ⊗ 1)(ε⊗ ...⊗ ε︸ ︷︷ ︸
n-times

⊗1)

= ∆n+1(ε⊗ ...⊗ ε︸ ︷︷ ︸
(n+1)-times

)
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We now turn our attention to the main consequence of polynomial integration: non-

negative rationals in an integral category. Recall that in any additive category, for every

object A and natural number n ∈ N, one can define the map nA : A→ A as follows:

nA = n · 1A

We will now prove that in any integral category that for every object A and n ≥ 2, the map

n!A is invertible.

Proposition 3.21. Let (X,⊗, K, λ, ρ, σ) be an integral category with coalgebra modality

(!, δ, ε,∆, e) and integral transformation s. For every natural number n ∈ N, n ≥ 2, and

every object A ∈ X, the map n!A : !A→ !A is an isomorphism.

Remark 3.22. Notice that the case n = 1 is also true since the identity map is an isomor-

phism.

Proof. For every n ≥ 2 and every object A ∈ X, define n−1
!A : !A→ !A as follows:

n−1
!A = δAs!A(∆n−1,!A ⊗ 1!A)(ε!A ⊗ ...⊗ ε!A︸ ︷︷ ︸

n− 1-times

⊗1!A)(1!A ⊗ eA ⊗ ...⊗ eA︸ ︷︷ ︸
n− 1-times

)

In string diagrams, n−1
!A is written out as follows:

n−1
!A =

e

ε ε

e

δ

—–

∆n−1

—–

. . .ε

e
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Recall that by definition, we have the following equality:

n−1
!A n!A = n · n−1

!A = n!An
−1
!A

So it suffices to show that n·n−1
!A = 1!A. To prove this we use the additive structure, [s.Poly],

the comonad triangle identities, that δ is a comonoid morphism and the counit laws for the

comultiplication.

n · n−1
!A = n ·

e

ε ε

e

δ

—–

∆n−1

—–

. . .ε

e

=
[s.Poly]

e

ε ε

e

δ

∆n

. . .ε

e

ε

=
δ comonoid morph.

ε ε

δ δ

ε

∆n

. . .δ

ε

δ

eee

=
δε = 1

∆n

. . . eee

=
Counit

In certain integral categories, it is possible to obtain that for every object A and n ≥ 2,

nA is an isomorphism. For this we require that ε be a natural retraction, that is, there exists

a natural transformation η with components ηA : A → !A such that for each object A ∈ X,

εA is a retraction of ηA, i.e, ηAεA = 1A. We call η a natural section of ε. It is not uncommon

for ε to be a natural retraction, in fact it is closely related to differential category structure

[7, 14, 17] and both our main examples of comonads have this property.
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Example 3.23. The natural transformation ε for finite bag comonad (!, δ, ε) on REL, given

in Example 2.8, is a natural retraction. Explicitly, define ηX : X → !X as the relation which

relates elements of X to their corresponding singleton set:

ηX = {(x, JxK)| x ∈ X} ⊂ X × !(X)

Example 3.24. The natural transformation η for the free symmetric algebra monad (Sym, η, µ)

on VECK, given in Example 2.9, is a natural section. Explicitly, define εV : Sym(V )→ V on

pure tensors maps as follows:

εV (w) =


w if w ∈ Sym1(V ) = V

0 o.w.

which we then extend by linearity.

We now prove that when ε is a natural retraction, nA is an isomorphism for every object

A and n ≥ 2.

Proposition 3.25. Let (X,⊗, K, λ, ρ, σ) be an integral category with coalgebra modality

(!, δ, ε,∆, e) and integral transformation s such that ε is a natural retraction. For every

natural number n ∈ N, n ≥ 2, and every object A ∈ X, the map nA : A → A is an

isomorphism.

Proof. Let η be a natural section of ε. For every n ≥ 2 and every object A ∈ X, define

n−1
!A : !A→ !A as follows:

n−1
A = ηAn

−1
!A εA

where n−1
!A is defined as in the proof of Proposition 3.21. In string diagrams, n−1

!A is written
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out as follows:

n−1
A =

e

ε ε

e

δ

—–

∆n−1

—–

. . .ε

e

η

ε

Recall that by definition, we have the following equality:

n−1
A nA = n · n−1

A = nAn
−1
A

So it suffices to show that n ·n−1
A = 1A. Here we use the additive structure, that n ·n−1

!A = 1!A

(by Proposition 3.21) and that ηAεA = 1A.

n · n−1
A = n · (ηAn−1

!A εA) = ηA(n · n−1
!A )εA = ηA1!AεA = ηAεA = 1A

Proposition 3.25 implies that an integral category where ε is a natural retraction, is

enriched overQ≥0-modules, that is, every hom-set is aQ≥0-module. The scalar multiplication

of a map f : A→ B with a non-negative rational p
q
∈ Q≥0 is the map p

q
· f : A→ B defined

as follows:

p

q
· f = p · (q−1

A f)
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3.6 Other Integral Properties

We finish this chapter by examining other properties in integral categories. The first property

simply states that the integral evaluated at zero is zero.

Proposition 3.26. Let (X,⊗, K, λ, ρ, σ) be an integral category with coalgebra modality

(!, δ, ε,∆, e) and integral combinator S (or equivalently an integral transformation s). Then

for each integrable map f : !A⊗ A→ B, the following equality holds:

!(0A,A)S[f ] = 0!A,B

Proof. This is straightforward by naturality:

!(0)S[f ] = !(0)sAf = sA(!(0)⊗ 0)f = 0

The next property gives sufficient conditions for when two maps have the same integral.

Proposition 3.27. Let (X,⊗, K, λ, ρ, σ) be an integral category with coalgebra modality

(!, δ, ε,∆, e) and integral combinator S (or equivalently an integral transformation s). If

for any pair of integrable maps f, g : !A⊗ A→ B the following equality holds:

(1!A ⊗ εA)f = (1!A ⊗ εA)g

then S[f ] = S[g].

Proof. Suppose that (1!A ⊗ εA)f = (1!A ⊗ εA)g. Then notice the following equality:

!εAS[f ] =!εAsAf

= s!A(!εA ⊗ εA)f (Naturality of s)
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= s!A(!εA ⊗ 1A)(1!A ⊗ εA)f

= s!A(!εA ⊗ 1A)(1!A ⊗ εA)g

= s!A(!εA ⊗ εA)g

=!εAsAf

=!εAS[g]

Since (!, δ, ε) is a comonad, !ε is epic. And so since !εAS[f ] =!εAS[g], it follows that S[f ] =

S[g].

The last property we will provide is a property which derives from the theory of Rota-

Baxter algebras. In the theory of Rota-Baxter algebras, the Rota-Baxter operator induces a

new commutative semigroup structure on the algebra [20]. A similar result can be expressed

in an integral category, giving a cocommutative co-semigroup structure for !A⊗A (where a

co-semigroup is the dual notion of a semigroup).

Proposition 3.28. Let (X,⊗, K, λ, ρ, σ) be an integral category with coalgebra modality

(!, δ, ε,∆, e) and integral transformation s.

(i) For each object A, !A ⊗ A has a natural cocommutative co-semigroup structure where

the co-semigroup operation:

♦A : !A⊗ A→ !A⊗ A⊗ !A⊗ A

is defined as follows:

♦A = (∆A ⊗ 1)(sA ⊗ 1⊗ 1) + (∆A ⊗ 1)(1⊗ σ)(1⊗ 1⊗ sA)

♦ =

∆

—– +

∆

—–
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(ii) For each object A, the integral transformation sA : !A → !A ⊗ A is a co-semigroup

morphism, that is, the following equality holds:

sA♦A = ∆A(sA ⊗ sA)

—–

♦
=

—– —–

∆∆

Proof. We will first prove ii).

(ii) Notice that this is simply a reiteration of the Rota-Baxter axiom [s.2]:

sA♦A = sA((∆A ⊗ 1)(sA ⊗ 1⊗ 1) + (∆A ⊗ 1)(1⊗ σ)(1⊗ 1⊗ sA)) = ∆A(sA ⊗ sA)

—–

♦
=

∆

—–—–

—–
+

∆

—–

—–—–

=
—– —–

∆∆

(i) We first show coassociativity of ♦.

♦

♦

=

∆

—–

♦

+

∆

—–

♦
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=
(ii)

∆

—–

∆∆

—–

+

∆

—–

♦

=

∆

—–

∆∆

—–

+

∆

—–
∆

—–

+

∆

—–
∆

—–

=
Coass.

∆

—– —–

∆

+

∆

—– —–

∆

+

∆

—–

∆

—–

=
Nat.

∆

—– —–

∆

+

—–

∆

∆

—–

+

∆

—–

∆

—–

=
Coass.

∆

—– —–

∆

+

∆

—–

∆

—–

+

—–

∆

∆

—–
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=

♦

∆

—–
+

∆

—–

♦

=

♦

♦

Next we show cocommutativity of ♦:

♦♦

=

∆

—–

+

∆

—–

=
Nat.

∆

—–

+

—–

∆

=
Cocom.

∆

—– +

∆

—– = ♦

3.7 Fubini’s theorem

In this last section, we discuss briefly the interpretation of Fubini’s theorem in integral

categories. Briefly, Fubini’s theorem states that for a function f in two variables, say x and
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y, the following equality holds:

∫
Y

(

∫
X

f(x, y) dx) dy =

∫
X

(

∫
Y

f(x, y) dy) dx

that is, where X and Y are the domains of definition of x and y respectively, integrating f

with respect to x first then y is the same as integrating f with respect to y then x. Under our

intuition for integration for integral categories, this implies we are dealing with a function

in four variables x, y, dx and dy which is bilinear in dx and dy.

The reader may notice the similarities with the axiom [S.3], the independence rule, for

integral categories. However there are crucial differences. First, Fubini’s theorem concerns to

the double integral of integrating a function in two different variables while the axiom [S.3]

explains the process of integrating the same variable twice. Secondly, the double integral in

Fubini’s theorem is an iterated integral, where the function is integrated as a function of a

single variable by holding the other variable constant. On the other hand, [S.3] takes all

variables into consideration at once. This notion of making other variables constant does not

coincide with the integral transformation in Example 3.15 for the category of vector spaces.

Indeed, consider the simple integrable function f(x, y, dx, dy) = xydxdy. The double integral

of f under Fubini’s theorem produces the following function:

∫
Y

(

∫
X

f(x, y) dx) dy =

∫
Y

(

∫
X

xy dx) dy =

∫
Y

1

2
x2y dy =

1

4
x2y2

while the double integral of f under [S.3] produces:

S[S[f(x, y) dx] dy] = S[S[xy dx] dy] = S[
1

3
x2y dy] =

1

12
x2y2

This discrepancy is due to the fact the integral transformation takes the sum of the poly-

nomial degrees of each variable plus one when integrating, while the iterated integral only
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takes the degree plus one of the variable which is being integrated. Therefore, we will need

a different approach in the interpretation of Fubini’s theorem.

To interpret Fubini’s theorem in an integral category we will require that our category

have finite biproducts [28] and that our coalgebra modality has Seely isomorphisms [5, 7,

8]. We will not go into detail about the required theory, but we will quickly define the

Seely isomorphism. A coalgebra modality has a Seely isomorphism if there exists a natural

isomorphism χ with components χA,B : !A ⊗ !B → !(A × B), natural in A and B, which is

inverse to the natural isomorphism χ−1 with components ∆A×B(!(π0)⊗ !(π1)) : !(A×B)→

!A ⊗ !B where π0 and π1 are the projection maps. The Seely isomorphisms will allow

us to separate our variables and keep them constant when they are not being integrated.

Therefore, in the presence of biproducts and the Seely isomorphisms, the iterated integral

of a map f : !(A×B)⊗ A⊗B → C is obtained as follows:

!(A×B)
χ−1
A,B // !A⊗ !B

sA⊗sB // !A⊗ !A⊗ !B ⊗B 1⊗σ⊗1 //

!A⊗ !B ⊗ A⊗B
χA,B⊗1⊗1

// !(A×B)⊗ A⊗B f // C

By the bifunctoriality of the tensor product, Fubini’s theorem becomes trivial in this context.
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Chapter 4

Differential Categories

In this chapter we give a quick introduction to differential categories [7] by giving the defini-

tion and examples. We summarize the definitions given in [7]. We will not explore the extra

properties of differential categories (some which can be found in [6]). The structure of this

chapter mirrors precisely that of Chapter 3. This should come as no surprise since we expect

that integration and differentiation be in some sense dual concepts. In fact, integral cate-

gories were inspired and built by mirroring differential categories. In particular, a differential

category can be equivalently defined by a combinator, called a differential combinator, or by

a natural transformation, called the deriving transformation. We begin by giving the defini-

tion of an differential combinator and then we define a deriving transformation. Afterwards

we prove that a deriving transformation is indeed equivalent to a differential combinator. We

finish this chapter by giving the two main examples of differential categories: the category

of vector spaces and the category of sets and relations. Throughout this chapter, we will

often refer the reader to the original paper on differential categories [7] for more details.

4.1 Differential Combinator

Here we introduce the notion of a differential category by defining a differential combinator,

parallel to our introduction of integral categories with the integral combinator. Briefly, a
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differential category is an additive symmetric monoidal category with a coalgebra modality

and a differential combinator. Just as with the integral combinator, the differential combina-

tor can be thought of as an operator on certain maps, which are called differentiable, where

the resulting map is the derivative of the input map. After giving the definition below, we

will give some intuition for the combinator and the axioms that it must satisfy. Now we

introduce the definition of a differential combinator.

Definition 4.1. Let (X,⊗, K, λ, ρ, σ) be an additive symmetric monoidal category with

a coalgebra modality (!, δ, ε,∆, e). A differential combinator [7] D on (!, δ, ε,∆, e) is a

combinator of the functors ! , 1X, !( )⊗ and 1X:

f : !A→ B

D[f ] : !A⊗ A→ B
D

such that D satisfies the following properties:

[D.A] Additivity: For any pair of parallel maps f, g : !A⇒ B, the following equality holds:

D[f + g] = D[f ] + D[g]

[D.N] Naturality/Linear Substitution: If the square on the left commutes, then the square

on the right commutes:

!A
f //

!(h)
��

B

k
��

!C g
// D

⇒
!A⊗ A D[f ] //

!(h)⊗h
��

B

k
��

!C ⊗ C
D[g]

// D

[D.1] Derivative of Constants: For every object A, the following equality holds:

D[eA] = 0!A⊗A,K
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[D.2] Leibniz Rule/Product Rule: For any pair of maps f : !A → B and g : !A → C, the

following equality holds:

D[∆A(f ⊗ g)] = (∆A ⊗ 1A)(1!A ⊗ σ!A,A)(D[f ]⊗ g) + (∆A ⊗ 1A)(f ⊗ D[g])

[D.3] Derivative of Linear Maps: For every map f : A→ B, the following equality holds:

D[εAf ] = (eA ⊗ 1A)λAf

[D.4] Chain Rule: For every pair of maps f : !A → B and g : !B → C, the following

equality holds:

D[δA!(f)g] = (∆A ⊗ 1A)(δA ⊗ 1!A ⊗ 1A)(!(f)⊗ D[f ])D[g]

[D.5] Independence Rule: For every pair of maps f : !B → C and g : A→ B.

(1!A ⊗ σA,A)(D[!(g)]⊗ g)D[f ] = (D[!(g)]⊗ g)D[f ]

This leads us to the expected definition of a differential category.

Definition 4.2. A differential category [7] is an additive symmetric monoidal category

with a coalgebra modality and a differential combinator D. A map is differentiable if it is

of the form f : !A→ B and the differential of f is the map D[f ] : !A⊗ A→ B.

As in the integral category chapter, it might be useful for the reader to have some intuition

regarding the axioms of a differential combinator. We will not go into as much detail as we

did for the integral combinator. For more details on the intuition, we refer the reader to the

original paper [7]. The first axiom, [D.A], states that the derivative of a sum of functions

is the sum of their derivative. The second axiom, [D.N], is the linear substitution rule for

63



differentiation (more on this axiom in the following subsection). The next axiom, [D.1],

states that the derivative of a constant map is zero. The fourth axiom [D.2] is the Leibniz

rule for differentiation – also called the product rule. The fifth axiom [D.3] says that the

derivative of a linear map is a constant. The axiom [D.4] is the chain rule. And the last

axiom [D.5] is the independence of differentiation or the interchange law, which naively

states that differentiating with respect to x then y is the same as differentiation with respect

to y then x. It should be noted that [D.5] was not a requirement in [7] but was later added

to the definition [8, 9] to ensure that the coKleisli category of a differential category was a

Cartesian differential category.

4.2 Naturality of the Differential Combinator

In this section, we explore the naturality axiom of our combinator [D.N] a bit more. The

naturality [D.N] of the combinator D can be described in an alternative way by splitting it

into two:

[D.N.a] Left Linear Substitution: For every pair of maps h : A → C and g : !C → B, the

following equality holds:

D[!(h)g] = (!(h)⊗ h)D[g]

[D.N.b] Right Linear substitution: For every pair of maps f : !A→ B and k : B → D, the

following equality holds:

D[fk] = D[f ]k

In the following proposition, we prove that these smaller axioms are indeed equivalent to the

naturality axiom.

Proposition 4.3. The following are equivalent:
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(i) [D.N];

(ii) [D.N.a] and [D.N.b].

Proof. i)⇒ ii): For [D.N.a], notice that the following square on the left commutes trivially

and then by [D.N], the square on the right commutes:

!A
!(h)g //

!(h)
��

B

1D

!C g
// D

⇒
!A⊗ A D[!(h)g] //

!(h)⊗h
��

B

1D

!C ⊗ C
D[g]

// D

Similarly for [D.N.b], notice that the following square on the left commutes trivially and

then by [D.N], the square on the right commutes:

!A
f //

!(1A)

B

k
��

!C
fk

// D

⇒
!A⊗ A D[f ] //

!(1A)⊗1A

B

k
��

!C ⊗ A
D[fk]

// D

ii)⇒ i): Suppose that fk = !(h)g for the appropriate maps f , g, h and k. Then by [D.N.a]

and [D.N.b], we have the following equality:

(!(h)⊗ h)D[g] = D[!(h)g] = D[fk] = D[f ]k

These two axioms of naturality, [D.N.a] and [D.N.b], were not included in [7]. We have

added them here for completeness.

Naturality of the differential combinator also gives a general way of describing the differ-

ential of maps. Notice by naturality of the differential combinator, since the square on the
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left commutes trivially for every differentiable map, the square on the right commutes:

!A
1!A //

!(1A)

!A

f
��

!A
f

// B

⇒
!A⊗ A D[1!A] //

!(1A)⊗1A

!A

f
��

!A⊗ A
D[f ]

// B

Therefore, we get the following proposition:

Proposition 4.4. Let (X,⊗, K, λ, ρ, σ) be differential category with coalgebra modality (!, δ, ε,∆, e)

and differential combinator D. Then for every differentiable map f : !A→ B:

D[f ] = D[1!A]f

If we define dA = D[1!A] : !A⊗ A→ !A, then by the above proposition:

D[f ] = dAf

for every differentiable map f : !A → B. In fact, the differential combinator D can be

completely re-expressed in terms of d, which we discuss in the next section.

4.3 Deriving Transformation

In this section we introduce the deriving transformation. The deriving transformation will

allow us to differentiate maps by precomposition. We also introduce the graphical calculus

for the deriving transformation and draw out the axioms of the deriving transformation as

string diagrams.

Definition 4.5. Let (X,⊗, K, λ, ρ, σ) be an additive symmetric monoidal category with

a coalgebra modality (!, δ, ε,∆, e). A deriving transformation [7, 6, 10] is a natural
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transformation d with components dA : !A⊗ A→ !A

d = ===

such that for each object A ∈ Ob(X), dA satisfies the following properties:

[d.1] Derivative of constants:

dAeA = 0!A⊗A,K

e

===
= 0

[d.2] Leibniz Rule/Product Rule:

dA∆A = (∆A ⊗ 1A)(1!A ⊗ σA,!A)(dA ⊗ 1!A) + (∆A ⊗ 1A)(1!A ⊗ dA)

===

∆
=

===

∆
+

===

∆

[d.3] Derivative of Linear Maps:

dAεA = (eA ⊗ 1A)λA

ε

===

=
e
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[d.4] Chain Rule:

dAδA = (∆A ⊗ 1A)(δA ⊗ 1!A ⊗ 1A)(1!(!A) ⊗ dA)d!A

===

δ
= δ

∆

===

===

[d.5] Independence Rule:

(dA ⊗ 1A)dA = (1!A ⊗ σA,A)(dA ⊗ 1A)dA

===

===
=

===

===

The axioms for the deriving transformation are simple re-expressions of the axioms for

the differential combinator.

We now prove that a differential combinator is equivalent to a deriving transformation.

The equivalence was proven in [7], however we have chosen to reproduce the proof here in

more detail for completeness.

The equational proofs in the following proposition are short and straightforward. There-

fore, we will not use the graphical calculus here.

Proposition 4.6. [7] Let (X,⊗, K, λ, ρ, σ) be a differential category with a coalgebra modality

(!, δ, ε,∆, e) and differential combinator D. Then D induces a deriving transformation d

whose components dA : !A⊗ A→ !A are defined as dA = D[1!A].
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Proof. Throughout this proof, we will make repeatedly use [D.N]. We first show naturality

of d. Notice that for every map f : A→ B, the square on the left commutes trivially and so

by [D.N], the square on the right commutes:

!A
1!A

!(f)
��

!A

!(f)
��

!B
1!B

!B

⇒
!A⊗ A D[1!A] //

!(f)⊗f
��

!A

!(f)
��

!B ⊗B
D[1!B ]

// !B

The square on the right is precisely the naturality condition of d.

Recall that we have also already shown that by [D.N], for every differentiable map

f : !A→ B, D[f ] = D[1!A]f . With this identity, we can prove [d.1] to [d.5].

[d.1] For the derivative of constants rule, we obtain the following equality by [D.1]:

dAeA = D[1!A]eA = D[eA] = 0

[d.2] For the Leibniz Rule, we obtain the following equality by [D.2]:

dA∆A = D[1!A]∆A

= D[∆A]

= (∆A ⊗ 1A)(1!A ⊗ σA,!A)(D[1!A]⊗ 1!A) + (∆A ⊗ 1A)(1!A ⊗ D[1!A])

= (∆A ⊗ 1A)(1!A ⊗ σA,!A)(dA ⊗ 1!A) + (∆A ⊗ 1A)(1!A ⊗ dA)

[d.3] For the derivative of linear maps rule, we obtain the following equality by [D.3]:

dAεA = D[1!A]εA = D[εA] = (eA ⊗ 1A)λA
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[d.4] For the derivative chain rule, we obtain the following equality by [D.4]:

dAδA = D[1!A]δA

= D[δA]

= (∆A ⊗ 1A)(δA ⊗ 1!A ⊗ 1A)(!(1!A)⊗ D[1!A])D[1!(!A)]

= (∆A ⊗ 1A)(δA ⊗ 1!A ⊗ 1A)(1!(!A) ⊗ dA)d!A

[d.5] For the independence rule, we obtain the following equality by [D.5]:

(dA ⊗ 1A)dA = (1!A ⊗ σA,A)(D[1!A]⊗ 1A)D[1!A]

= (1!A ⊗ σA,A)(D[!(1A)]⊗ 1A)D[1!A]

= (D[!(1A)]⊗ 1A)D[1!A]

= (D[1!A]⊗ 1A)D[1!A]

= (1!A ⊗ σA,A)(dA ⊗ 1A)dA

Proposition 4.7. [7] Let (X,⊗, K, λ, ρ, σ) be a differential category with a coalgebra modality

(!, δ, ε,∆, e) and deriving transformation d. Then d induces a differential combinator D

defined as:

D[f ] = dAf

For every map f : !A→ B.

Proof. We must prove [D.A], [D.N] and [D.1] to [D.5]:

[D.A] We obtain additivity of the combinator by the fact that composition preserves addi-

tion:

D[f + g] = dA(f + g) = dAf + dAg = D[f ] + D[g]
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[D.N] For naturality, suppose that the following square commutes:

!A
f //

!(h)
��

B

k
��

!C g
// D

Since d is a natural transformation, we obtain the following equality:

(!(h)⊗ h)D[g] = (!(h)⊗ h)dCg = dA!(h)g = dAfk = D[f ]k

[D.1] For the derivative of constants rule, we obtain the following equality by [d.1]:

D[eA] = dAeA = 0

[D.2] For the Rota-Baxter rule, we obtain the following equality by [d.2]:

D[∆A(f ⊗ g)] = dA∆A(f ⊗ g)

= (∆A ⊗ 1A)(1!A ⊗ σA,!A)(dA ⊗ 1!A)(f ⊗ g) + (∆A ⊗ 1A)(1!A ⊗ dA)(f ⊗ g)

= (∆A ⊗ 1A)(1!A ⊗ σA,!A)(D[f ]⊗ g) + (∆A ⊗ 1A)(f ⊗ D[g])

[D.3] For the derivative of linear maps rule, we obtain the following equality by [d.3]:

D[εAf ] = dAεAf = (eA ⊗ 1A)λAf

[D.4] For the derivative chain rule, we obtain the following equality by [d.4]:

D[δA!(f)g] = dAδA!(f)g

= (∆A ⊗ 1A)(δA ⊗ 1!A ⊗ 1A)(1!(!A) ⊗ dA)d!A!(f)g
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= (∆A ⊗ 1A)(δA ⊗ 1!A ⊗ 1A)(1!(!A) ⊗ dA)(!(f)⊗ f)dBg

= (∆A ⊗ 1A)(δA ⊗ 1!A ⊗ 1A)(!(f)⊗ D[f ])D[g]

[D.5] For the independence rule, we obtain the following equality by [d.5]:

(D[!(g)]⊗ g)D[f ] = ((dA!(g))⊗ g)dBf

= (dA ⊗ 1A)(!(g)⊗ g)dBf

= (dA ⊗ 1A)dA(!(g)⊗ g)

= (1!A ⊗ σA,A)(dA ⊗ 1A)dA(!(g)⊗ g)f

= (1!A ⊗ σA,A)(dA ⊗ 1A)(!(g)⊗ g)dBf

= (1!A ⊗ σA,A)(D[!(g)]⊗ g)D[f ]

Proposition 4.8. [7] For an additive symmetric monoidal category (X,⊗, K, λ, ρ, σ) with a

coalgebra modality (!, δ, ε,∆, e), the set of differential combinators DiffComb is isomorphic to

the set of deriving transformations DevTran. The isomorphism is given by the following pair

of inverse functions:

ψ : DiffComb −→ DevTran

D 7−→ ψ(D)A = D[1!A]

ψ−1(d)[f ] = df ←− [ d

Therefore, the following are equivalent:

(i) A differential category;

(ii) An additive symmetric monoidal category with an algebra modality and a deriving trans-

formation.
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Proof. Proposition 4.6 and Propositon 4.7 imply that ψ and ψ−1 are well defined. Therefore,

we need only show that these are inverses. For both directions, let f : !A→ B:

ψ−1(ψ(D))[f ] = ψ(D)f ψ(ψ−1(d)) = ψ−1(d)[1!A]

= D[1!A]f = dA1!A

= D[f ] = dA

The equivalence follows directly.

4.4 Main Examples of Differential Categories

We finish this chapter by introducing our two main examples of differential categories. In fact,

these two main examples are precisely our main examples of integral categories (Examples

3.13 and 3.15). This should come as no surprise, since we are working our way to showing

these two examples are in fact examples of calculus categories, as we will see in Chapter 5

and prove in Chapter 6. We will simply give in detail the deriving transformation and not

prove that these examples are in fact differential categories. Proofs can be found in [7].

Example 4.9. The category of sets and relations, REL, has a differential category strucutre

(see Section 2.5.1 in [7] for more details) where:

(i) The additive symmetric monoidal structure (REL,×, {∗}, π0, π1, σ
×) is the structure

given by the cartesian product of sets and union of sets given in Example 2.3;

(ii) The coalgebra modality (!, δ, ε,∆, e) is the finite bag comonad given in Example 2.8;

(iii) The deriving transformation dX : !(X)×X → !(X) is the relation which relates a bag

and an element to the a new bag obtained by adding the element to the original bag:

dX = {((Jx1, ..., xnK, x), Jx, x1, ..., xnK)| x ∈ X} , Jx, x1, ..., xnK ∈ !(X) ⊆ (!(X)×X)×!(X)
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Proposition 4.10. The category of sets and relations is a differential category [7] with the

structure and deriving transformation defined in Example 4.9.

Proof. See Proposition 2.7 in [7].

Example 4.11. The category of vector spaces over a field K, VECK, has a co-differential

category (that is, VECOpK is a differential category) structure where:

(i) The additive symmetric monoidal structure (VECK,⊗K,K, λ, ρ, σ) is the structure given

in Example 2.4 from the standard tensor product of vector spaces and the standard

addivite structure of vector spaces;

(ii) The algebra modality (Sym, η, µ,∇, u) is given by the free symmetric algebra monad

given in Example 2.9;

(iii) The deriving transformation dV : Sym(V ) → Sym(V ) ⊗ V on pure tensors is defined

as follows:

dV (v1 ⊗ ...⊗ vn) =
n∑
i=1

(v1 ⊗ ...⊗ vi−1 ⊗ vi+1 ⊗ ...⊗ vn)⊗ vi

which we then extend by linearity.

It is important to notice that this differential category structure on VECK can be defined for

any field K, unlike the integral category structure described in Example 3.15, which required

our field to have characteristic zero. In fact, the differential category structure for vector

spaces can further be generalized to the category of modules over a ring.

As with when we introduced the integral category structure, there is an alternative ap-

proach of illustrating the differential category structure on VECK. We again make use of the

isomorphism between the free symmetric algebra and the polynomial ring. Let X = {x1, ...}

be a basis of a vector space V , then the deriving transformation can be described on the
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polynomial ring dV : K[X]→ K[X]⊗ V as follows on monomials:

dV (xr11 ...x
rn
n ) =

n∑
i=1

ri · xr11 ...x
ri−1
i ...xrn ⊗ xi

which we then extend by linearity. Then the deriving transformation on a polynomial

p(x1, ..., xn) can be described as taking the sum of partial derivatives of the polynomial

in each of its variables. Which is explicitly given as follows:

dV (p(x1, ..., xn)) =
n∑
i=1

d p(x1, ..., xn)

dxi
⊗ xi

Proposition 4.12. The category of vector spaces over the same field is a differential category

[7] with the structure and deriving transformation defined in Example 4.11.

Proof. See Proposition 2.9 in [7].
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Chapter 5

Calculus Categories

One of the main goals of developing integral categories, apart from axiomatizing integra-

tion, was to obtain a categorical setting for calculus. Now that we have established integral

categories and differential categories, we will combine these two notions simultaneously into

a calculus category. However, a calculus category is not simply a category which is both

an integral category and a differential category: we require integration and differentiation

to be compatible which each other. In particular, we would like integration to be anti-

differentiation. In the classical calculus setting, the relationship between integration and

anti-differentiation is precisely expressed by the two fundamental theorems of calculus. The

fundamental theorems explain to what extent integration and differentiation are inverse pro-

cesses. Therefore, the extra axioms required for calculus categories will be to impose a similar

relation between the deriving transformation and integral transformations by axiomatizing

the two fundamental theorems.

The Second Fundamental Theorem of Calculus, which states that

∫ b

a

df(t)

dt
(t) dt = f(b)− f(a)

will be incorporated into calculus categories directly as an axiom, that is, will be expressed
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as requiring that the deriving transformation d and the integral transformation s satisfy for

each object A:

sAdA + !(0) = 1!A

where 0 : A → A is the zero map. This axiom is stated precisely in Definition 5.1, and

interpreted immediately following the definition. A consequence of this axiom is that every

differentiable map in a calculus category satisfies the Second Fundamental Theorem of Cal-

culus.

The First Fundamental Theorem of Calculus, which states that

d(
∫ t
a
f(x) dx)

dt
(x) = f(x)

will also be incorporated into one of the axioms of a calculus category. However, not every

integrable map will satisfy the First Fundamental Theorem. Instead, the First Fundamental

Theorem of Calculus is a property only certain integrable maps satisfy. In particular, in

our example of the category of vector spaces and the free symmetric algebra, polynomials

of more than one variable all satisfy the Second Fundamental Theorem but in general do

not satisfy the First Fundamental Theorem with the differential given in Example 4.11 and

integral given in Example 3.15. In fact, the same can be said about the category of sets and

relations and the finite bag comonad. In light of this, the First Fundamental Theorem axiom

for a calculus category is reinterpreted as the Poincaré condition which provides necessary

and sufficient conditions for when a map satisfies the First Fundamental Theorem. The First

Fundamental Theorem is explored in more details in Section 5.3 while the Poincaré condition

is defined in Definition 5.11.

We begin this chapter with a section on the Second Fundamental Theorem of Calculus.

The following section is dedicated to an alternative and equivalent description of the second
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fundamental theorem by introducing the compatibility and Taylor conditions. We then

move onto the first fundamental theorem and afterwards, we discuss the Poincaré condition.

Finally, the last section of this chapter is dedicated to giving the definition of calculus

category and returning to our two main examples of calculus categories, the category vector

spaces and the category of sets and relations.

5.1 Second Fundamental Theorem of Calculus

In this section we define what it means for a deriving transformation and integral trans-

formation to satisfy the Second Fundamental Theorem of Calculus. First, we will give the

definition and afterwards we will explain the intuition.

Definition 5.1. Let (X,⊗, K, λ, ρ, σ) be a differential category and integral category on

the same coalgebra modality (!, δ, ε,∆, e) with a differential combinator D (or equivalently a

deriving transformation d) and integral combinator S (or equivalently an integral transfor-

mation s). The differential combinator D and the integral combinator S are said to satisfy

the Second Fundamental Theorem of Calculus if for every map differentiable map

f : !A→ B:

S[D[f ]] + !(0)f = f

where 0 : A → A. Or equivalently the deriving transformation d and the integral trans-

formation s satisfy the Second Fundamental Theorem of Calculus if for each object

A ∈ Ob(X):

sAdA + !(0) = 1!A

—–

===
+ 0 =
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where 0 : A→ A.

It is important to note that in general, !(0A,B) : !A→ !B is not equal to 0!A,!B : !A→ !B.

In particular, this is the case for both our main examples of coalgebra modalities.

Example 5.2. Recall that the zero map 0X,Y : X → Y for the additive structure of REL

defined in Example 2.3 is the empty set 0X,Y = ∅. For the finite bag functor ! : REL→ REL,

defined in Example 2.8, !(∅) = !(X) → !(Y ) is the relation which relates the empty bag in

!(X) to the empty bag in !(Y ):

!(∅) = {(J K, J K)} ⊂ !(X)× !(Y )

and so !(∅) is not the empty set.

Example 5.3. For the free symmetric algebra functor Sym : VECK → VECK, defined in

Example 2.9, Sym(0) : Sym(V )→ Sym(W ) for pure tensors is defined as follows:

Sym(0)(w) =


w if w ∈ Sym0(V ) = K

0 o.w.

which we then extend by linearity. Therefore, Sym(0) is not equal to the zero map.

Since we are working in an additive category, we do not assume that we have negatives.

Therefore, we must re-express the statement of the second fundamental theorem as follows:

∫ b

a

df(t)

dt
(x) dt+ f(a) = f(b)

Recall also that our integral combinator is to be naively thought as the operator whose

output is the integral of function from zero to x. Therefore, we expect our lower bound in

the expression of the Second Fundamental Theorem of Calculus to be zero. This is recaptured

by precomposing with !0, that is, !0f should be thought of as the map f evaluated at zero.
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Then it terms of classical calculus, we obtain the following:

S[D[f ]](x) + !(0)f =

∫ x

0

df(t)

dt
(t) dt+ f(0) = f(x)

In the following section we will see how the Second Fundamental Theorem of Calculus is

equivalent to the deriving transformation and integral transformation satisfying two other

conditions.

5.2 Compatibility and Taylor

In this section, we introduce the Compatibility and Taylor conditions for integral transfor-

mations and deriving transformations. We begin by giving the definitions of these conditions

and then giving some intuition. Then we will prove that these two conditions are equivalent

to satisfying the Second Fundamental Theorem of Calculus. We begin by defining when a

integral transformation and deriving transformation are compatible.

Definition 5.4. Let (X,⊗, K, λ, ρ, σ) be differential category and integral category on the

same coalgebra modality (!, δ, ε,∆, e) with differential combinator D (or equivalently deriving

transformation d) and integral combinator S (or equivalently integral transformation s). The

differential combinator D and the integral combinator S are said to be compatible if for

every differentiable map f : !A→ B:

D[S[D[f ]]] = D[f ]

We also call this equality Compatibility of D and S. Equivalently, the deriving transfor-

mation d and the integral transformation s are said to be compatible if for each object

A ∈ Ob(X):

dAsAdA = dA
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—–

===

===

= ===

We also call this equality compatibility of d and s.

Simply put, compatibility is a weaker version of the Second Fundamental Theorem of

Calculus. In fact, if one differentiates the equation of the Second Fundamental Theorem of

Calculus, since the derivative of a constant is zero (as a map evaluated at zero is a constant),

one obtains the expression for compatibility.

We next define the Taylor condition, which unlike compatibility and the fundamental

theorems, is property of only the deriving transformation.

Definition 5.5. Let (X,⊗, K, λ, ρ, σ) be differential category with coalgebra modality (!, δ, ε,∆, e)

and differential combinator D (or equivalently deriving transformation d). The differential

combinator D is Taylor if for every parallel pair of differentiable maps f, g : !A ⇒ B with

D[f ] = D[g] then:

f + !(0)g = g + !(0)f

where 0 : A→ A. Equivalently, the deriving transformation d is Taylor if for every pair of

differentiable maps f, g : !A→ B, if dAf = dAg then:

f + !(0)g = g + !(0)f

where 0 : A→ A.

The Taylor property is analoguous to the statement that if the derivatives of two maps

are equal, then those two maps differ by constants. In this case, the constants are the maps

evaluated at zero. If one assumes that we can subtract maps, that is, if we have negatives,
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then the Taylor property is equivalent to the statement that if the derivative of a map is

zero then it is a constant. The Taylor condition was the extra condition Ehrhard required of

his differential transformation to obtain the Second Fundamental Theorem of Calculus with

his integral transformation [14].

In the following proposition, we will show that the Second Fundamental Theorem of

Calculus is equivalent to the compatibility and the Taylor conditions combined.

Proposition 5.6. For a differential combinator D and an integral combinator s (or equiva-

lently a deriving transformation d and an integral transformation s) on the same coalgebra

modality, the following are equivalent:

(i) D and S (or equivalently d and s) satisfy the Second Fundamental Theorem of Calculus;

(ii) D and S (or equivalently d and s) are Compatible and D (or equivalently d) is Taylor.

Proof. We will prove this proposition using the deriving transformation and the integral

transformation.

(i)⇒ (ii): Suppose d and s satisfy the Second Fundamental Theorem of Calculus. To prove

that d is taylor, suppose that dAf = dAg for parallel maps f, g : !A⇒ B. Then we have the

following equality:

f + !(0)g = (sAdA + !(0))f + !(0)g (2nd Fundamental Theorem)

= sAdAf + !(0)f + !(0)g (Additive Structure)

= sAdAg + !(0)f + !(0)g (dAf = dAg)

= (sAdA + !(0))g + !(0)f (Additive Structure)

= g + !(0)f
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Next we prove that d and s are compatible:

dA = dA(sAdA + !(0)) (2nd Fundamental Theorem)

= dAsAdA + dA!(0) (Additive Structure)

= dAsAdA + (!(0)⊗ 0)dA (Naturality of d)

= dAsAdA + 0 (Additive Structure)

= dAsAdA

(i)⇒ (ii): Suppose d and s are compatible and d is Taylor. Notice that by the definition of

compatibility we have that dAsAdA = dA and so by Taylor we have,

sAdA + !(0) = 1!A + !(0)sAdA

However by naturality of the integral transformation, we have the following equality:

sAdA + !(0) = 1!A + !(0)sAdA

= 1!A + sA(!(0)⊗ 0)dA (Naturality of s)

= 1!A + 0 (Additive Structure)

= 1!A

5.3 First Fundamental Theorem of Calculus

Recall that unlike the Second Fundamental Theorem of Calculus, the First Fundamental

Theorem of Calculus holds for only certain integrable maps. This situation is drastically

different than classical calculus. In particular, in the introduction we explained that for

the example of the category of vector spaces and the free symmetric algebra, polynomials
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of more than one variable often do not satisfy the First Fundamental Theorem of Calculus

(see Example 5.8 below). In this section we define what it means for certain integrable

maps to satisfy the First Fundamental Theorem of Calculus. We then give the definition

of calculus objects, which are objects with the property that the identity map satisfies the

First Fundamental Theorem of Calculus.

Definition 5.7. Let (X,⊗, K, λ, ρ, σ) be a differential category and an integral category

on the same coalgebra modality (!, δ, ε,∆, e), with a differential combinator D (or equiva-

lently a deriving transformation d) and an integral combinator S (or equivalently an integral

transformation s). An integrable map f : !A ⊗ A → B satisfies the First Fundamental

Theorem of Calculus if D[S[f ]] = f or equivalently dAsAf = f .

In string diagram notation, an integrable map f satisfying the First Fundamental Theo-

rem of Calculus is given by:

—–

===

f

= f

The combinator notation for satisfying the First Fundamental Theorem of Calculus should

make it clear that this is the correct interpretation of the concept. One does not have to

go looking very far in either of our two main examples, REL and VECK, to find examples of

integrable maps which do not satisfy the First Fundamental Theorem of Calculus.

Example 5.8. Let V be a vector space of dimension 2 over a field of characteristic zero K

with basis {x, y}. Consider the integrable map f : K → Sym(V ) ⊗ V which maps 1 to the

pure tensor x⊗ y ∈ Sym(V )⊗ V . Applying first the integral transformation s from example
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Example 3.15 and then the deriving transformation from Example 4.11, we obtain:

dV (sV (f(1)))dV (sV (x⊗ y)) = dV (
1

2
· x⊗ y) =

1

2
· x⊗ y +

1

2
· y ⊗ x 6= x⊗ y = f(1)

So f does not satisfy the First Fundamental Theorem of Calculus. If this example appears

backwards, recall that VECOp
K is the differential and integral category.

In the following proposition, we give a consequence of satisfying the First Fundamental

Theorem of Calculus, which will be important in the following section.

Proposition 5.9. Let (X,⊗, K, λ, ρ, σ) be a differential category and an integral category on

the same coalgebra modality (!, δ, ε,∆, e), with a differential combinator D (or equivalently a

deriving transformation d) and an integral combinator S (or equivalently an integral trans-

formation s). If an integrable map f : !A⊗A→ B satisfies the First Fundamental Theorem

of Calculus, then (1⊗ σA,A)(dA ⊗ 1A)f = (dA ⊗ 1A)f (written in string diagrams below).

===

f

=
===

f

Proof. Since dAsAf = f , then by [d.5] we have the following equality:

(1⊗ σA,A)(dA ⊗ 1A)f = (1⊗ σA,A)(dA ⊗ 1A)dAsAf = (dA ⊗ 1A)dAsAf = (dA ⊗ 1A)f

Now we give the definition of a calculus object. These are objects where the identity of

!A⊗A satisfies the First Fundamental Theorem of Calculus, which is another way of saying

that the deriving transformation and integral transformation satisfy it.
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Definition 5.10. Let (X,⊗, K, λ, ρ, σ) be a differential category and an integral category on

the same coalgebra modality (!, δ, ε,∆, e), with a differential combinator D (or equivalently

a deriving transformation d) and an integral combinator S (or equivalently an integral trans-

formation s). A calculus object is an object A such that the identity map 1!A⊗A satisfies

the First Fundamental Theorem of Calculus. Equivalently, a calculus object is an object

A such that the deriving transformation dA and the integral transformation sA satisfy the

First Fundamental Theorem of Calculus, that is:

[f.1] dAsA = 1!A⊗A.

This assures us that any integrable map with domain !A⊗A, where A is a calculus object,

will satisfy the First Fundamental Theorem of Calculus.

5.4 Poincaré Condition

In this section we introduce the Poincaré Condition. The Poincaré Condition states that

if an integrable map satisfies a certain hypothesis, then it satisfies the First Fundamental

Theorem of Calculus. The name of the condition comes from the Poincaré Lemma from co-

homology [34] and differential topology, which states an analoguous result of giving criteria

for a map to be an antiderivative.

We begin with the definition of the Poincaré Condition. We then give consequences the

Poincaré Condition including that the deriving transformation and integral transformation

are compatible and the fact that the monoidal unit is a calculus object.

Definition 5.11. An integrable map f : !A⊗A→ B satisfies the Poincaré pre-condition

if the following equality holds:

(1⊗ σA,A)(dA ⊗ 1A)f = (dA ⊗ 1A)f
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===

f

=
===

f

The deriving transformation d and the integral transformation s are said to satisfy the

Poincaré condition if for each integrable map f : !A⊗A→ B which satisfies the Poincaré

pre-condition, then f satisfies the First Fundamental Theorem of Calculus, that is, dAsAf =

f .

Notice that Proposition 5.9 states that if an integrable map satisfies the First Funda-

mental Theorem of Calculus, then it satisfies the Poincaré pre-condition. Therefore when a

deriving transformation and integral transformation satisfy the Poincaré condition, we ob-

tain necessary and sufficient condition for an integrable map to satisfy the First Fundamental

Theorem of Calculus.

We now prove that the Poincaré Condition implies that the deriving transformation and

integral transformation are compatible. Therefore, as a consequence, the Poincaré Condition

and that the deriving transformation is Taylor imply the Second Fundamental Theorem of

Calculus.

Proposition 5.12. A deriving transformation d and an integral transformation s which

satisfy the Poincaré condition are Compatible.

Proof. By [d.5], for each object A, the deriving transformation dA satisfies the Poincaré

pre-condition that (1 ⊗ σA,A)(dA ⊗ 1A)dA = (dA ⊗ 1A)dA. Therefore, dA satisfies the First

fundamental theorem of Calculus, which is simply the statement of Compatibility:

dAsAdA = dA
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Corollary 5.13. A deriving transformation d and an integral transformation s which satisfy

the Poincaré condition such that d is Taylor, satisfies the Second Fundamental Theorem of

Calculus.

Proof. The Poincaré condition implies Compatibility. The Second Fundamental Theorem of

Calculus follows since it is equivalent to Compatibility and Taylor by Proposition 5.6.

Next we prove the relation of the Poincaré Condition to calculus objects. We first give

necessary conditions for being a calculus object in the presence of the Poincaré Condition,

which in particular shows that the monoidal unit is always a calculus object.

Proposition 5.14. Let (X,⊗, K, λ, ρ, σ) be a differential category and integral category on

the same coalgebra modality (!, δ, ε,∆, e) with deriving transformation d and integral trans-

formation s which satisfy the Poincaré condition. If A is an object such that σA,A = 1A⊗A,

then A is a calculus object.

Proof. Since σA,A = 1A⊗A, the Poincaré pre-condition is true trivially for the identity 1!A⊗A.

Therefore, dAsA = 1!A⊗A.

Corollary 5.15. If the Poincaré condition is satisfied, then the monoidal unit K is a calculus

object.

Proof. By coherence of symmetric monoidal categories [28, 25], σK,K = 1K⊗K . Therefore, K

is a calculus object.

We now show that if for some object A, εA is a retraction, then in fact Proposition 5.14

gives necessary and sufficient conditions for the object A to be a calculus object.

Proposition 5.16. Let (X,⊗, K, λ, ρ, σ) be a differential category and integral category on

the same coalgebra modality (!, δ, ε,∆, e) with deriving transformation d and integral trans-

formation s which satisfy the Poincaré condition. If for an object A ∈ X, εA is a retraction,

then the following are equivalent:
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(i) σA,A = 1A⊗A;

(ii) A is a calculus object.

Proof. By Proposition 5.14, i)⇒ ii) is always true in the presence of the Poincaré Condition.

For the other direction ii) ⇒ i), let ηA be a section of εA and suppose that A is a calculus

object, that is, dAsA = 1!A⊗A. To show that σA,A = 1A⊗A we will need to use the case n = 1

of Proposition 3.19 (recall that ω(0 1) = σ):

1A⊗A = (ηA ⊗ 1A)(εA ⊗ 1A)

= (ηA ⊗ 1A)dAsA(εA ⊗ 1A) (A is a calculus object)

= (ηA ⊗ 1A)dAsA(εA ⊗ 1A)σA,A (Prop. 3.19)

= (ηA ⊗ 1A)(εA ⊗ 1A)σA,A

= σA,A

5.5 Calculus Category

In this section, we finally give the definition of a calculus category. After giving the definition,

we will also demonstrate our two main examples as calculus categories. We will not prove

that these examples are in fact calculus categories in this section, we will do so in Chapter 6.

In fact we will see in Chapter 6 that the calculus category structure given in these examples

are induced by an antiderivative. Categories with antiderivatives are a special case of a

calculus category. In Table 5.5 we collect the important identities for a calculus category

and their classical calculus analogues. We now give the definition of a calculus category.

Definition 5.17. A calculus category is a differential category and an integral category

on the same coalgebra modality such that the deriving transformation and the integral trans-

formation satisfy the Second Fundamental Theorem of Calculus and the Poincaré condition.
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Name Equation Calculus Analogue

Second Fundamental Theorem sd + !(0) = 1

∫ b

0

df(t)

dt
(x) dx+ f(0) = f(b)

Compatibility dsd = d

∫ y
0

df(t)
dt

(u) du

dy
(x) =

df(t)

dt
(x)

Taylor df = dg
df(t)

dt
=

dg(t)

dt
⇒ f + !(0)g = g + !(0)f ⇒ f + C = g

First Fundamental Theorem dsf = f
d(
∫ t

0
f(u) du)

dt
(x) = f(x)

Poincaré Condition (1⊗ σ)(d⊗ 1)f = (d⊗ 1)f f ′ dydz = f ′ dzdy

⇔ dsf = f ⇔
d(
∫ t

0
f(u) du)

dt
(x) = f(x)

Table 5.1: Properties for Calculus Categories
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It is important to note that by Corollary 5.13, an equivalent definition of a calculus

category would simply require the Poincaré Condition and that the deriving transformation

is Taylor. Now we give our two main examples of calculus categories, which are also are two

main examples of integral and differential categories.

Example 5.18. The category of sets and relations, REL, with the integral structure defined

in Example 3.13 and the differential structure defined in Example 4.9 is a calculus category.

Furthermore, the only calculus objects of this calculus category structure for REL are one

element sets, in particular the chosen singleton set {∗} and the empty set.

Proposition 5.19. The category of sets and relations with the structure, deriving transfor-

mation and integral transformation defined above is a calculus category.

Example 5.20. The category of vector spaces over a field of characteristic zero K, VECK,

with the integral structure defined in Example 3.15 and the differential structure defined in

Example 4.11 is a calculus category. Furthermore, the only calculus objects of this calculus

category structure for VECK are one dimensional vector spaces, in particular the field K, and

the zero vector space.

Proposition 5.21. The category of vector spaces over the same field of characteristic zero

is a calculus category with the structure, deriving transformation and integral transformation

defined above is a calculus category.
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Chapter 6

From a Differential Category to a

Calculus Category

In this chapter, we will explore when a differential category is also a calculus category. The

particular conditions which we will study are in fact quite simple to state. There are two

natural transformations called J and K which all differential categories have. When J and K

are in fact natural isomorphisms, then the differential category is a calculus category. The

main goal of this chapter is to prove this statement. We say that a differential category has

antiderivatives if K is a natural isomorphism.

As discussed in the introduction of this thesis, observations and ideas of T. Ehrhard [14]

inspired this approach. Recall that T. Ehrhard observed that in certain ∗-autonomous cate-

gories which are in fact differential categories, it is possible with one additional assumption

to compute antiderivatives [14]. The additional assumption is that the natural transfor-

mation J, constructed from the deriving transformation, is a natural isomorphism. With

this assumption, Ehrhard constructed an integral transformation using J−1 and was able to

prove that this integral transformation satisfied the Poincaré Condition. When the deriving

transformation is Taylor, the deriving transformation and the integral transformation also
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satisfy the Second Fundamental Theorem of Calculus. However, Ehrhard’s construction of

an integral transformation without the Taylor property does not satisfy our requirements

(see Definition 3.9), as it fails both the Rota-Baxter rule and the independence rule. To ob-

tain our notion of an integral transformation, we must strengthen Ehrhard’s approach. We

start by insisting that a slightly different natural transformation, which we call K, should be

invertible in order to obtain an integral transformation. This more fundamental transforma-

tion not only produces an integral transformation, but also secures the Second Fundamental

Theorem of Calculus and the Poincaré’s condition. It also ensures that Ehrhard’s transfor-

mation J is invertible. The converse is not true: if J is thenK need not be invertible. However,

in the presence of the Taylor Property, the invertibility of J implies the invertibility of K.

Furthermore, it is important to observe that the integral transformation produced by the

inverse of K is the same as that produced by the inverse of J (when K is already invertible).

With this observation, Ehrhard’s form of antiderivative remains very useful in the proof of

the Poincaré’s condition. Then a differential category with anti-derivatives, given by requir-

ing K to be invertible, gives a calculus category.

The sections in this chapter are grouped into two formats: sections on certain natu-

ral transformations and sections where we prove certain property of the calculus category

structure. The sections on natural transformations all follow the same format: we define

the natural transformation and then provide various properties it satisfies. This chapter is

organized in the following manner. We begin by introducing the coderiving transformation.

This is an important natural transformation throughout this chapter and to the theory of

antiderivatives, as every other natural transformation we will construct in this chapter (W,

L, K and J) will be constructed from it. We then define the W, whose main importance is

for simplifying calculations throughout the remaining chapter. Then we introduce L, K and

J and thee inverses K−1 and J−1. Next we prove that K is invertible if and only if J is invert-

ible and the deriving transformation is Taylor. Finally, we end this chapter by proving that
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differential categories where J and K are natural isomorphisms are in fact calculus categories.

Throughout this chapter, we will make heavy use of the graphical calculus: almost all

proofs will be done using string diagrams. Hopefully, this chapter will further convince the

reader the of full power and beauty of the graphical calculus.

6.1 The Coderiving Transformation and the W Map

In this section we introduce the coderiving transformation and the W Map, natural trans-

formations all differential categories have. The coderiving transformation is probably one’s

first attempt at constructing an integral transformation using only the structure of a dif-

ferential category, as it has the same domain and codomain as the integral transformation.

However, in Proposition 6.4 we will see that the coderiving transformation actually fails the

Rota-Baxter Rule [s.2]. The coderiving transformation will be essential throughout this

chapter and to building an integral transformation. The W-Map is constructed using the

deriving and coderiving transformations. The main purpose of the W-Map will be to simplify

proofs and in particular prove that the integral transformation we will construct satisfies the

Poincaré condition.

We begin with the definition of the coderiving transformation and give the string dia-

gram notation. We then give examples of the coderiving transformation in both of our main

examples of calculus categories. We then provide many properties of the coderiving trans-

formation in Proposition 6.4, which we will often uses throughout the rest of the chapter.

Afterwards, we give the definition and the string diagram notation for the W-Map. We finish

this section with Proposition 6.6, which we will use often in the rest of the chapter.

Definition 6.1. Let (X,⊗, K, λ, ρ, σ) be an additive symmetric monoidal category with a

coalgebra modality (!, δ, ε,∆, e). The coderiving transformation is the natural transfor-
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mation d◦ with components d◦A : !A→ !A⊗ A defined as:

d◦A = ∆A(1!A ⊗ εA)

The string diagram notation for the coderiving transformation is given by flipping the

deriving transformation horizontally:

d◦ :=
===

=
∆

ε

Before giving some properties of the coderiving transformation, we give explicit descrip-

tions of the coderiving transformations in our main examples of additive symmetric monoidal

categories with a coalgebra modality.

Example 6.2. In REL for the finite bag coalgebra modality (see Example 2.8), the coderiving

transformation of a set X is the relation which relates a bag to the a new bag where we

pulled out a element of the original bag:

d◦X = {(B, (B − {x}, x))| B ∈ !(X), x ∈ B} ⊆ !(X)× (!(X)×X)

Notice that in REL the coderiving transformation is equal to the integral transformation!

Example 6.3. In VECK for the free symmetric algebra modality (see Example 2.9), the

coderiving transformation for a vector space V is simply the concatenation of a letter (an

element of V ) and a word (a pure tensor of Sym(V )). On pure tensors, the coderiving

transformation is given explicitly as follows:

d◦V ((v1 ⊗ ...⊗ vn)⊗ v) = v1 ⊗ ...⊗ vn ⊗ v

which we extend by linearity. If this example appears backwards, recall that VECOp
K is the dif-
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ferential category. Notice that in VECK, the coderivative is NOT the integral transformation

since it is missing a factor of 1
n+1

.

These examples show that the coderiving transformation appears to be very close to being

an integral transformation. In fact, the properties which the coderiving transformation

satisfy are extremely closely related to the axioms of an integral transformation. In the

following proposition, we give some of these properties.

Proposition 6.4. The coderivative d◦ satisfies the following properties (see Table 6.1 for

string diagrams) for each object A ∈ Ob(X):

[cd.1] d◦A(eA ⊗ 1A)λA = εA

[cd.2] d◦A(εA ⊗ 1A) = ∆A(εA ⊗ εA)

[cd.3] d◦A(∆A ⊗ 1A) = ∆A(1!A ⊗ d◦A)

[cd.4] d◦A(∆A ⊗ 1A)(1!A ⊗ σA,A) = ∆A(d◦A ⊗ 1!A)

[cd.5] 2 ·∆A(d◦A⊗ d◦A) = d◦A(∆A⊗ 1A)(d◦A⊗ 1!A⊗ 1A) + d◦A(∆A⊗ 1A)(1!A⊗ σA,!A)(1!A⊗ 1A⊗ d◦A)

[cd.6] d◦A(δA ⊗ 1A) = δAd◦A(1!(!A) ⊗ ε!A)

[cd.7] d◦A(d◦A ⊗ 1A) = d◦A(d◦A ⊗ 1A)(1!A ⊗ σA,A)

Proof. Most of these properties follow from the coalgebra modality structure:

[cd.1]: Here we use the counit of the comultiplication:

===

e

=
ε

∆

e

= ε
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===

e

= ε

ε

===

=

ε

∆

ε

[cd.1] [cd.2]

∆

===

=

∆

=== ===

∆

=
∆

===

[cd.3] [cd.4]

2 ·
=== ===

∆∆

= ∆

======

===
+ ∆

===

======

[cd.5]

δ

===

=

ε

===

δ

===

===

=
===

===

[cd.6] [cd.7]

Table 6.1: Properties of the coderiving transformation
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[cd.2]: By definiton of the coderiving transformation:

ε

===

=

ε

∆

ε

[cd.3]: Here we use the coassociativity of the comultiplication:

∆

===

= ε

∆

∆
=

ε

∆

∆ =

∆

===

[cd.4]: Here we use the cocommutativity of the comultiplication:

===

∆

=

ε

∆

∆ =

ε

∆

∆ =

ε

∆

∆

=

ε

∆

∆ =
∆

===

[cd.5]: Here we use [cd.3] for the first one on the left and [cd.4] for the second one on the

left:

=== ===

∆∆

+
=== ===

∆∆

=
∆

======

===

+
∆

===

======
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[cd.6]: Here we use the comonad triangle identity and that δ is a coalgebra map:

δ

===

=
ε

∆

δ
=

ε

∆

δ

δ

ε
=

ε

∆

δ

ε

=

ε

===

δ

[cd.7]: Here we use [cd.4]:

===

===

=

===

∆

ε

=
===

∆

ε

=
===

===

Note the similarities between the three coderiving transformation properties [cd.1],

[cd.5] and [cd.7] and the integral transformation axioms. The first property [cd.1] and

the last property [cd.7] mirror precisely the integral of a constant axiom and independence

of integration axiom respectively. However [cd.5] and the Rota-Baxter rule axiom differ by

a factor of 2. There is an easy fix to this problem: one can simply ask that the hom-sets

of our category be idempotent commutative monoids [19], that is, categories which satisfy

1 + 1 = 1 (the last example of Section 7.2 briefly discusses this). In fact, one of our main

examples, REL, is an example of this phenomenon.

In the following sections, we will construct an integral transformation using the coderiving

transformation. Next we move on to studying the W map.

Definition 6.5. Let (X,⊗, K, λ, ρ, σ) be a differential category with coalgebra modality

(!, δ, ε,∆, e) and deriving transformation d. The W map is the natural transformation W

99



with components WA : !A⊗ A→ !A⊗ A defined as:

WA = (d◦A ⊗ 1A)(1!A ⊗ σ)(dA ⊗ 1A)

In string diagram notation, the W-map is written out as follows:

===

===

The main application of the W-map will be in the proof that the integral transformation

that we will construct in Definition 6.19 satisfies the Poincaré condition. We will also use

the W-map in certain other proofs in the following section, due in large part to the following

property of the W-map.

Proposition 6.6. The following equality holds for each object A ∈ Ob(X):

dAd◦A = WA + 1!A⊗A

===

===
=

===

===

+

Proof. Here we use the Leibniz rule [d.2], that the derivative of a linear map is a constant
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[d.3] and the counit of the comultiplication:

===

ε

∆ =

===

∆

ε

+
===

ε

∆

=
===

===

+

∆

e =
===

===

+

6.2 The L, K and J Maps

In this section we introduce the L, K and J Maps, which are natural transformation occurring

in differential categories which are constructed using the deriving and coderiving transfor-

mations. The main purpose of the L Map will be to simplify proofs of the properties for the

K and J maps. The properties of the K and J maps will often follow from the properties

of the L map. In fact, some of the properties of the K and J maps are almost identical to

those of the L map. We begin with the definition and give the string diagram notation, then

give examples of the L, K and J maps in both of our main examples of calculus categories.

We then provide many properties of these maps in Proposition 6.10, Proposition 6.11 and

Proposition 6.12 respectively. The properties of the K and J maps will be used to establish

properties of K−1 and J−1.

Definition 6.7. Let (X,⊗, K, λ, ρ, σ) be a differential category with coalgebra modality

(!, δ, ε,∆, e) and deriving transformation d.

(i) The L Map is the natural transformation L with components LA : !A→ !A defined as:

LA = d◦AdA

(ii) The K Map is the natural transformation K with components KA : !A → !A defined
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as:

KA = LA + !0 = d◦AdA + !0

where 0 : A→ A.

(iii) The J Map is the natural transformation J with components JA : !A→ !A defined as:

JA = LA + 1!A = d◦AdA + 1!A

In string diagram notation, L, K and J are written out as follows:

L =

===

===

K = L + 0 =

===

===
+ 0

J = L + =

===

===
+

Before giving some properties of L, K and J, we give explicit descriptions of them in our

main examples of differential categories.

Example 6.8. In REL for the differential structure on the finite bag coalgebra modality (see

Example 4.9), the L map is almost the identity in the sense that it is the identity everywhere
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but for the empty bag. Explicitly, L relates non-empty bags to themselves but does not

relate the empty bag to anything:

LX = {(B,B)| B ∈ !(X)− {∅}} ⊆ !(X)× !(X))

The K and J maps are equal to each other and equal to the identity! To see this, recall that

our additive structure is given by the union of sets and the empty set (see Example 2.3).

For K, recall that !(∅) = !(X)→ !(X) is the singleton of the empty bag pair {(J K, J K)} (see

Example 5.2), then we get the following equality:

KX = LX ∪ {(J K, J K)} = {(B,B)| B ∈ !(X)} = 1!(X)

For J, notice that LX ( 1!(X) and so we get the following equality:

JX = LX ∪ 1!(X) = 1!(X)

Example 6.9. In VECK for the differential strucutre on the free symmetric algebra modality

(see Example 4.11), the L map gives the degree of each homogenous elements. On pure

tensors, it is the scalar multiplication of a word by its length:

LV (v1 ⊗ ...⊗ vn) = n · (v1 ⊗ ...⊗ vn)

If this seems backwards, recall that VECOp
K is the differential and integral category. The K

map is equal to the L map except on constants (elements of K). The L map on constants is

zero while the K map on constants is the identity since recall !(0) is zero everywhere but for
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constants (see Example 5.3):

KV (w) =


w if w ∈ Sym0(V ) = K

L(w) o.w.

The J map gives the degree plus one of each homogenous elements. Explicitly on pure

tensors, it is the scalar multiplication of a word by its length plus one:

JV (v1 ⊗ ...⊗ vn) = (n+ 1) · (v1 ⊗ ...⊗ vn)

Notice that in this case, unlike the previous example, the J map is not equal to the K map!

We now give properties of the L map, which we will use to prove properties of the K and

J maps.

Proposition 6.10. The L−map satisfies the following properties (see Table 6.2 for string

diagrams) for each object A ∈ Ob(X):

[L.1] LA!(0) = 0 = !(0)LA (where 0 : A→ A);

[L.2] LAeA = 0;

[L.3] LAεA = εA;

[L.4] LA∆A = ∆A(LA ⊗ 1!A) + ∆A(1!A ⊗ LA);

[L.5] LAδA = δAd◦A(1!A ⊗ LA)dA;

[L.6] dALA = (LA ⊗ 1A)dA + dA;

[L.7] LAd◦A = d◦A(LA ⊗ 1A) + d◦A;

[L.8] (d◦A ⊗ 1A)(LA ⊗ 1A)dA = (1A ⊗ σA,A)(d◦A ⊗ 1A)(LA ⊗ 1A)dA;

[L.9] d◦A(LA ⊗ 1A)(d◦A ⊗ 1A) = d◦A(LA ⊗ 1A)(d◦A ⊗ 1A)(1A ⊗ σA,A);
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[L.10] (LA ⊗ 1A)WA = WA(LA ⊗ 1A);

[L.11] (LA ⊗ 1A)dAd◦A = dAd◦A(LA ⊗ 1A)

Proof. These are mostly straightforward calculations:

[L.1]: Here we use the naturality of the deriving transformation and coderiving transforma-

tion:

0

L

=

===

===

0

=

===

===

0 0 = 0 =

===

===

0 0 =

===

===

0

=

L

0

[L.2]: Here we use that the derivative of a constant is zero [d.1]:

L

e

=

e

===

===

= 0

[L.3] Here we use that the derivative of a linear map is a constant [d.3] and [cd.1]:

L

ε
= ===

===

ε

=

===

e

= ε

[L.4]: Here we use the Leibniz rule [d.2], [cd.3], [cd.4] and the cocommutativity of the
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0

L

= 0 =

L

0
L

e

= 0

ε

L

= ε

[L.1] [L.2] [L.3]

∆

L

=
L

∆

+

∆

L
δ

L

=

δ

L

===

===

[L.4] [L.5]

L

===

=

L

===
+ ===

L

===
=

L

===

+
===

[L.6] [L.7]

===

===

L = L

===

===
===

===

L = L

===

===

[L.8] [L.9]

===

===

L

=

L

===

=== ===

===

L

=

===

===

L

[L.10] [L.11]

Table 6.2: Properties of L
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comultiplication:

∆

L

= ===

===

∆

=

===

∆

===

+ ∆

===

===

=

∆

===

=== +

∆

===

===

[L.5]: Here we use the chain rule [d.4], [cd.3], the comonad triangle identity and that δ is

a coalgebra map:

δ

L

= ===

===

δ

=

δ
===

∆

===

===

=
δ

===

∆

===

===
= δ

===

∆

L

δ

ε =

===

∆

L

ε

δ

=

δ

L

===

===

[L.6]: Here we use Proposition 6.6 and [d.5]:

L

===

= ===

===

===

= ===

===

===

+ === =

===

===

===

+ ===

[L.7]: Here we use Proposition 6.6 and [cd.7]:

L

===
=

===

===

===

=
===

===

===

+
===

=

===

===

=== +
===
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[L.8]: Here we use [L.6] and [cd.7]:

L

===

===

=

L

===

===

+

===

===

=

===

===

L

+

===

===

=

===

===

L

[L.9]: Here we use [L.7] and [d.5]:

L

===

===

=

===

===

L

+
===

===

=

L

===

===
+

===

===

=

===

===

L

[L.10] Here we use [L.8] and [L.9]:

===

===

L

=
===

===

L +
===

===

=

L

===

===

[L.11] Here we use [L.10]:

===

===

L

=

===

===

L

+ L =

L

===

===

+ L =

===

===

L

We now give properties of the K map, which we will use when constructing our integral

transformation in a later section. Notice that most of the following properties of the K map
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are extremely similar, sometimes identical, to the analogue properties for the L map.

Proposition 6.11. The K map satisfies the following properties (see Table 6.2 for string

diagrams) for each object A ∈ Ob(X):

[K.1] KA!(0) = !(0) = !(0)KA (where 0 : A→ A);

[K.2] KAeA = eA;

[K.3] KAεA = εA;

[K.4] KA∆A = ∆A(LA ⊗ 1!A) + ∆A(1!A ⊗ LA) + ∆A(!(0)⊗ !(0));

[K.5] KAδA = δAd◦oc(A)(1!(!A) ⊗ L!A)dA + δA!(!(0));

[K.6] dAKA = dALA;

[K.7] KAd◦A = LAd◦A;

[K.8] (d◦A ⊗ 1A)(KA ⊗ 1A)dA = (1A ⊗ σA,A)(d◦A ⊗ 1A)(KA ⊗ 1A)dA;

[K.9] d◦A(KA ⊗ 1A)(d◦A ⊗ 1A) = d◦A(KA ⊗ 1A)(d◦A ⊗ 1A)(1A ⊗ σA,A);

[K.10] (KA ⊗ 1A)WA = WA(KA ⊗ 1A);

[K.11] (KA ⊗ 1A)dAd◦A = dAd◦A(KA ⊗ 1A).

Proof. These are mostly straightforward calculations using the properties of L:

[K.1]: Here we use [L.1] and that !(0)!(0) = !(0):

0

K

=

0

L

︸ ︷︷ ︸
= 0

+
0

0

= 0 =

L

0

︸ ︷︷ ︸
= 0

+
0

0

=

K

0
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0

K

= 0 =

K

0
K

e

=

e ε

K

= ε

[K.1] [K.2] [K.3]

∆

K

=
L

∆

+

∆

L
+

0

∆

0 δ

K

=

δ

L

===

===

+

!0

δ

[K.4] [K.5]

K

===

=
L

=== K

===
=

L

===

[K.6] [K.7]

===

===

K = K

===

===
===

===

K = K

===

===

[K.8] [K.9]

===

===

K

=

K

===

=== ===

===

K

=

===

===

K

[K.10] [K.11]

Table 6.3: Properties of K
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[K.2]: Here we use [L.2] and the naturality of e:

e

K
=

e

L
+

e

0
= 0 +

e

=
e

[K.3]: Here we use [L.3] and the naturality of ε:

ε

K

=

ε

L

+
ε

0

= ε +
ε

0

︸ ︷︷ ︸
= 0

= ε

[K.4]: Here we use [L.4] and the naturality of ∆:

∆

K

=
∆

L

+
∆

0

=
L

∆

+

∆

L
+

0

∆

0

[K.5]: Here we use [L.5] and the naturality of δ:

δ

K

=

δ

L

+
δ

0

=

δ

L

===

===

+
!(0)

δ
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[K.6] Here we use the naturality of the differential transformation:

===

K
=

===

L
+

===

0
=

===

L
+ ===

0 0

︸ ︷︷ ︸
= 0

=

===

L

[K.7] Here we use the naturality of the coderivative:

===

K

=
===

L

+
===

0

=
===

L

+
===

0 0

︸ ︷︷ ︸
= 0

=
===

L

[K.8]: Here we use [K.6] and [L.8]:

K

===

===

=
L

===

===

=

===

===

L
=

===

===

K

[K.9]: Here we use [K.7] and [L.9]:

K

===

===

= L

===

===

=

===

===

L =

===

===

K
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[K.10]: Here we use [K.6], [K.7] and [L.10]:

===

===

K

=

===

===

L

=

L

===

===

=

K

===

===

[K.11]: Here we use [K.10]:

===

===

K

=

===

===

K

+ K =

K

===

===

+ K =

===

===

K

We now give properties of the J-map, which we will use when constructing our integral

transformation in a later section. Similar to the K-map, most of the properties of the J-map

are closely related to the properties of the L-map.

Proposition 6.12. The J−map satisfies the following properties (see Table 6.2 and Table

6.2 for string diagrams) for each object A ∈ Ob(X):

[J.1] JA!(0) = !(0) = !(0)JA;

[J.2] JAeA = eA;

[J.3] JAεA = 2 · εA;

[J.4] JA∆A = ∆A(JA ⊗ 1!A) + ∆A(1!A ⊗ LA) = ∆A(LA ⊗ 1!A) + ∆A(1!A ⊗ JA) ;

[J.5] JAδA = δAd◦!A(1!(!A) ⊗ L!A)d!A + δA;

[J.6] (JA ⊗ 1A)dA = dALA = dAKA;
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[J.7] d◦A(JA ⊗ 1) = LAd◦A = KAd◦A;

[J.8] dJ = (J⊗ 1)d + d;

[J.9] Jd◦ = d◦(J⊗ 1) + d◦;

[J.10] (d◦ ⊗ 1)(J⊗ 1)d = (1⊗ σ)(d◦ ⊗ 1)(J⊗ 1)d;

[J.11] d◦(J⊗ 1)(d◦ ⊗ 1) = d◦(J⊗ 1)(d◦ ⊗ 1)(1⊗ σ);

[J.12] (JA ⊗ 1A)WA = WA(JA ⊗ 1A);

[J.13] (JA ⊗ 1A)dAd◦A = dAd◦A(JA ⊗ 1A).

0

J

= 0 =

J

0
J

e

=

e ε

J

= 2 · ε

[J.1] [J.2] [J.3]

∆

J

=
J

∆

+

∆

L
δ

J

=

δ

L

===

===

+ δ

[J.4] [J.5]

J

===
=

K

===

J

===

=

K

===

[J.6] [J.7]

Table 6.4: Properties of J, Part 1
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J

===

=

J

===
+ ===

J

===
=

J

===

+
===

[J.8] [J.9]

===

===

J = J

===

===
===

===

J = J

===

===

[J.10] [J.11]

===

===

J

=

J

===

=== ===

===

J

=

===

===

J

[J.12] [J.13]

Table 6.5: Properties of J, Part 2
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Proof. These are mostly straightforward calculations using the properties of L:

[J.1]: Here we use [L.1]:

0

J

=

0

L

︸ ︷︷ ︸
= 0

+ 0 = 0 =

L

0

︸ ︷︷ ︸
= 0

+ 0 =

J

0

[J.2]: Here we use [L.2]:

e

J
=

e

L
+

e
= 0 +

e

=
e

[J.3]: Here we use [L.3]:

ε

J

=

ε

L

+ ε = ε + ε = 2 · ε

[J.4]: Here we use [L.4] and the naturality of ∆:

∆

J

=
∆

L

+
∆

=
L

∆

+

∆

L
+

∆
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=
J

∆

+

∆

L
=

L

∆

+

∆

J

[J.5]: Here we use [L.5]:

δ

J

=

δ

L

+ δ =

δ

L

===

===

+ δ

[J.6]: Here we use [L.6]:

J

===
=

L

===
+ === =

L

===

=
K

===

[J.7]: Here we use [L.7]:

J

===

=
L

===

+
===

=

L

===
=

K

===

[J.8]: Here we use [L.6]:

J

===

=
L

===

+ === =

L

===
+ 2 · === =

J

===
+ ===
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[J.9]: Here we use [L.7]:

J

===
=

L

===
+

===
=

L

===

+ 2 ·
===

=
J

===

+
===

[J.10]: Here we use [J.6] and [d.5]:

J

===

===

=

===

===

L

= ===

===

L

=

===

===

J

[J.11]: Here we use [J.7] and [cd.7]:

J

===

===

=

L

===

===
=

===

===

L

=

===

===

J

[J.12]: Here we use [L.10]:

===

===

J

=

===

===

L

+
===

===

=

L

===

===

+
===

===

=

J

===

===
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[J.13]: Here we use [J.12]:

===

===

J

=

===

===

J

+ J =

J

===

===

+ J =

===

===

J

6.3 Antiderivatives: the K−1 and J−1 Maps

In this section we explain what it means for a differential category to have antiderivatives.

This simply means that the K-map is a natural isomorphism. However in Proposition 6.13,

we will see that K being invertible is equivalent to J being invertible and the Taylor Property.

We begin this section by proving this equivalence then provide properties of K−1 and J−1

in Proposition 6.17 and Proposition 6.17 respectively. We will use these properties when

proving the integral transformation axioms, the Second Fundamental Theorem of Calculus

and the Poincaré Condition.

To say that the K-map is a natural isomorphism means that there exists a natural trans-

formation K−1 with components K−1
A : !A → !A such that for each object A ∈ Ob(X):

KAK−1
A = 1!A = K−1

A KA. A similar statement can be said for the J-map to be a natural

isomorphism. In string diagram notation, the isomorphism property of the K and J maps

are written out in the following obvious way:

K−1

K

= =

K

K−1

J−1

J

= =

J

J−1
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In the following proposition we show that K being a natural isomorphism is equivalent to J

being a natural isomorphism with an added assumption.

Proposition 6.13. In a differential category, the following are equivalent:

(i) K is a natural isomorphism;

(ii) J is a natural isomorphism and the deriving transformation is Taylor (see Definition

5.5).

Proof. (i) ⇒ (ii): Suppose that K is a natural isomorphism. Define the components of J−1

as follows:

J−1
A = δAK−1

!A d◦!A(!(εA)⊗ eA)ρ!A

In string diagrams, J−1 is written out as follows:

J−1
=

e

K−1

===

ε

δ

We need to prove that JJ−1 = 1, J−1J = 1 and that the deriving transformation is Taylor.

We begin by proving that J−1J = 1. Here we use naturality of J, [J.7], that δ is a comonoid

morphism and the counit laws for the comultiplication.

J

J−1

=

K−1

ε

===

e

δ

J

=

K−1

J

===

e

δ

ε

=

K−1

ε

===

e

δ

K
=

ε

===

e

δ
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=

δ

e

ε

∆

ε
=

e

δ

∆

δ

ε
ε

=

∆

e

=

Next we show that JJ−1 = 1. Here we use [J.5], [J.6], [J.7], naturality of the coderiving and

deriving transformations, [cd.7], [L.2], [L.3], Proposition 6.6 and that we already proven

J−1J = 1.

J−1

J

= K−1

ε

===

e

δ

J

=
[J.5]

===

e

K−1

ε

δ

===

L

===
+

e

K−1

===

ε

δ

=
K iso.

===

e

K−1

ε

δ

===

L

===

K−1

K

+

e

K−1

===

ε

δ

=
[J.7]

===

e

K−1

ε

δ

===

L

===

K−1

J

+

e

K−1

===

ε

δ

=
[J.6]

===

e

K−1

ε

δ

===

L

===

K−1

K

+

e

K−1

===

ε

δ

=
K iso.

===

eε

K−1

===

L

===

δ

+

e

K−1

===

ε

δ
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=
Prop. 6.6

e
ε

K−1

===

L

δ

===

===
+

ε

e

L

===

K−1

δ

︸ ︷︷ ︸
= 0 by [L.2]

+

e

K−1

===

ε

δ

=
Nat.

e

K−1

===

L

δ

===

===

ε ε

+

e

K−1

===

ε

δ

=
[L.3]

e

K−1

===

δ

===

===

ε ε

+

e

K−1

===

ε

δ

=
[cd.7] e

K−1

===

δ

===

===

ε ε

+

e

K−1

===

ε

δ

=
Nat. e

δ

===

===

===

ε

K−1

+

e

K−1

===

ε

δ

=

K−1

ε

===

e

δ

L

+

e

K−1

===

ε

δ

=

K−1

ε

===

e

δ

J

=

J

J−1

=

Finally, we need to show that the deriving transformation is Taylor. We will delay the proof

to the following section in Proposition 6.21. Indeed, we will prove a stronger statement!

When K is a natural isomorphism we can construct an integral transformation which will

satisfy the Second Fundamental Theorem of Calculus when paired with the deriving trans-

formation. By Proposition 5.6, the deriving transformation is then Taylor.
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(ii) ⇒ (i): Suppose that J is a natural isomorphism and the deriving transformation is

Taylor. Define K−1 component wise as follows:

K−1
A = d◦A(J−1

A ⊗ 1A)(J−1
A ⊗ 1A)dA + !0

where 0 : A→ A. In string diagrams, K−1 is written out as follows:

K−1
=

===

J−1

===

J−1

+ 0

We need to prove that KK−1 = 1 and K−1K = 1. First we have the following equality by

[K.1], [J.6] and [J.7]:

K

K−1

=

===

===

J−1

J−1

K

+

K

0

=

===

===

J−1

J−1

J

+ 0 =

===

J−1

===

+ 0

=

===

===

J−1

J−1

J

+

0

K

=

===

===

J−1

J−1

K

+

0

K

=

K−1

K
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Therefore, KK−1 = K−1K = d◦(J−1 ⊗ 1)d) + !0. Consider now the derivative of d◦(J−1 ⊗ 1)d:

===

J−1

===

===

=
===

J−1

===

===

J−1

J

=

===

J−1

===

===

J−1

J
= ===

===

===

J−1

= ===

J−1

L

= ===

J−1

K

=

===

J−1

J =
===

Then dd◦(J−1⊗ 1)d) = d. Since the deriving transformation is Taylor, we have the following

equality:

d◦(J−1 ⊗ 1)d) + !0 = 1 + !0d◦(J−1 ⊗ 1)d)

However by naturality we have that !0d◦(J−1⊗ 1)d) = d◦(!0⊗ 0)(J−1⊗ 1)d) = 0. Finally, we

conclude:

KK−1 = K−1K = d◦(J−1 ⊗ 1)d) + !0 = 1

Definition 6.14. A differential category is said to have antiderivatives if the K-map

is a natural isomorphism (or equivalently, if J is a natural isomorphism and the deriving

transformation is Taylor).

Before giving some properties of the K−1 and J−1 maps, we give examples give explicit

descriptions of K−1 and J−1 in our main examples.
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Example 6.15. In REL with the differential structure on the finite bag coalgebra modality

(see Example 4.9 for structure), since the K and J maps are the identity, they are trivially

isomorphisms. Explicitly, REL has antiderivatives where the K−1 and J−1 maps are equal to

the identity.

Example 6.16. In VECK with the differential structure on the free symmetric algebra modal-

ity (see Example 4.11 for structure), both K and J are natural isomorphisms. Explicitly,

VECK has antiderivatives where the K−1-map on pure tensors is given by the following scalar

multiplication:

K−1
V (w) =


w if w ∈ Sym0(V ) = K

1
n
· (v1 ⊗ ...⊗ vn) if w = v1 ⊗ ...⊗ vn ∈ Symn(V )

The J−1 map on pure tensors is given as follows:

J−1
V (v1 ⊗ ...⊗ vn) =

1

n+ 1
· (v1 ⊗ ...⊗ vn)

We now give properties of the K−1-map, which we will use to show that integral trans-

formation that we will construct satisfies the integral axioms and the Second Fundamental

Theorem of Calculus.

Proposition 6.17. The K−1−map satisfies the following properties (see Table 6.3 for string

diagrams) for each object A ∈ Ob(X):

[K−1.1] K−1
A !(0) = !(0) = !(0)K−1

A ;

[K−1.2] K−1
A eA = eA;

[K−1.3] K−1
A εA = εA;

[K−1.4] ∆A(K−1
A ⊗ K−1

A ) + ∆A(K−1
A ⊗ !(0)) + ∆A(!(0)⊗ K−1

A )

= K−1
A ∆A(K−1

A ⊗ 1!A) + K−1
A ∆A(1!A ⊗ K−1

A ) + ∆A(!(0)⊗ !(0))
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[K−1.5] (K−1
A ⊗ 1A)WA = WA(K−1

A ⊗ 1A);

[K−1.6] (K−1
A ⊗ 1A)dAd◦A = dAd◦A(K−1

A ⊗ 1A);

[K−1.7] (dA ⊗ 1A)(K−1
A ⊗ 1A)dA = (1A ⊗ σA,A)(dA ⊗ 1A)(K−1

A ⊗ 1A)dA;

[K−1.8] d◦A(K−1
A ⊗ 1A)(d◦A ⊗ 1A) = d◦A(K−1

A ⊗ 1A)(d◦A ⊗ 1A)(1A ⊗ σA,A).

Proof. These are mostly straightforward calculations by using the properties of K and that

K is an isomorphism:

[K−1.1]: Here we use [K.1]:

0

K−1

=

0

K

K−1

= 0 =

K−1

K

0

=

K−1

0

[K−1.2]: Here we use [K.2]:

e

K−1

=

e

K

K−1

=

e

[K−1.3]: Here we use [K.3]:

ε

K−1

=

ε

K

K−1

= ε
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0

K−1

= 0 =

K−1

0
K−1

e

=

e ε

K−1

= ε

[K−1.1] [K−1.2] [K−1.3]

K−1

∆

K−1

+

K−1

∆

0

+

0

∆

K−1

=

K−1

∆

K−1

+

K−1

∆

K−1

+

0

∆

0

[K−1.4]

===

===

K−1

=

K−1

===

===
===

===

K−1

=
===

===

K−1

[K−1.5] [K−1.6]

===

===

K−1
= K−1

===

===

===

===

K−1 = K−1

===

===

[K−1.7] [K−1.8]

Table 6.6: Properties of K−1
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[K−1.4]: Here we use [K.4], [K−1.1] and naturality of ∆ to first obtain the following equality:

∆

K

+
0

∆

+

∆

0

=
L

∆

+

∆

L
+

0

∆

0

+
0

∆

+

∆

0

=
K

∆

+

∆

K
+

0

∆

0

=
K

∆

+

∆

K
+

∆

0

Then we obtain the following equality:

K−1

∆

K−1

+

K−1

∆

0

+

0

∆

K−1

=

K−1

∆

K−1

K

K−1

+

K−1

∆

0

K

K−1

+

0

∆

K−1

K

K−1

=

K

∆

K−1

K−1

K−1

+
∆

K

K−1

K−1

K−1

+

∆

0

K−1

=

K−1

∆

K−1

+

K−1

∆

K−1

+
∆

0
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=

K−1

∆

K−1

+

K−1

∆

K−1

+

0

∆

0

[K−1.5]: Here we use [K.10]:

===

===

K−1

=

K

===

===

K−1

K−1

=

K

===

===

K−1

K−1

=

K−1

===

===

[K−1.6]: Here we use [K−1.5]:

===

===

K−1

=

===

===

K−1

+ K−1
=

K−1

===

===

+ K−1
=

===

===

K−1
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[K−1.7]: Here we use [K.6], [K−1.5] and [d.5]:

===

===

K−1
=

===

===

K−1

K−1

K

=

===

===

K−1

K−1

L

=

===

===

K−1

K−1

===

=== =

===

===

===

===

K−1

K−1 =

===

===

===

===

K−1

K−1

=

===

===

K−1

K−1

===

=== =

===

===

K−1

K−1

L

=

===

===

K−1

K−1

K

=

===

===

K−1

[K−1.8]: Here we use [K.7], [K−1.6] and [cd.7]:

===

===

K−1 =

===

===

K−1

K−1

K

=

===

===

K−1

K−1

L

=

===

===

K−1

K−1

===

===
=

===

===

===

===

K−1

K−1

=

===

===

===

===

K−1

K−1
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=

===

===

K−1

K−1

===

===
=

===

===

K−1

K−1

L

=

===

===

K−1

K−1

K

=

===

===

K−1

We will now give properties that the J−1-map satisfies. Notice that the first seven hold

without the assumption that the K map is also an isomorphism. However the last four

requires the K−1 map. In particular, the last four will be important for the following section

when we discuss the integral transformation.

Proposition 6.18. The J−1−map satisfies the following properties (see Table 6.3 for string

diagrams) for each object A ∈ Ob(X):

[J−1.1] J−1
A !(0) = !(0) = !(0)J−1

A ;

[J−1.2] J−1
A eA = eA;

[J−1.3] 2 · J−1
A εA = εA;

[J−1.4] (J−1
A ⊗ 1A)dA = dAJ−1

A + (J−1
A ⊗ 1A)dAJ−1

A ;

[J−1.5] d◦A(J−1
A ⊗ 1A) = J−1

A d◦A + J−1
A d◦A(J−1

A ⊗ 1A);

[J−1.6] (J−1
A ⊗ 1A)WA = WA(J−1

A ⊗ 1A);

[J−1.7] (J−1
A ⊗ 1A)dAd◦A = dAd◦A(J−1

A ⊗ 1A);

[J−1.8] (J−1
A ⊗ 1A)dA = dAK−1

A ;

[J−1.9] d◦A(J−1
A ⊗ 1A) = K−1

A d◦A;
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[J−1.10] (dA ⊗ 1A)(J−1
A ⊗ 1A)dA = (1A ⊗ σA,A)(dA ⊗ 1A)(J−1

A ⊗ 1A)dA;

[J−1.11] d◦A(J−1
A ⊗ 1A)(d◦A ⊗ 1A) = d◦A(J−1

A ⊗ 1A)(d◦A ⊗ 1A)(1A ⊗ σA,A).

Proof. These are mostly straightforward calculations by using the properties of J:

[J−1.1]: Here we use the property of J:

0

J−1

=

0

J

J−1

= 0 =

J−1

J

0

=

J−1

0

[J−1.2]: Here we use [J.2]:

e

J−1

=

e

J

J−1

=

e

[J−1.3]: Here we use [J.3]:

2 ·

ε

J−1

=

ε

J

J−1

= ε
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0

J−1

= 0 =

J−1

0
J−1

e

=

e

2 ·
ε

J−1

= ε

[J−1.1] [J−1.2] [J−1.3]

J−1

===
=

J−1

===

+ ===

J−1

J−1 J−1

===

=
J−1

===
+

J−1

===

J−1

[J−1.4] [J−1.5]

===

===

J−1

=

J−1

===

===
===

===

J−1

=
===

===

J−1

[J−1.6] [J−1.7]

J−1

===
=

K−1

===

J−1

===

=
K−1

===

[J−1.8] [J−1.9]

===

===

J−1
= J−1

===

===

===

===

J−1 = J−1

===

===

[J−1.10] [J−1.11]

Table 6.7: Properties of J−1
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[J−1.4] Here we use [J.8]:

J−1

===
=

J−1

===

J

J−1

=

J

===

J−1

J−1

+

J−1

===

J−1

=

J−1

===

+ ===

J−1

J−1

[J−1.5] Here we use [J.9]:

J−1

===

=

J−1

===

J

J−1

=
J

===

J−1

J−1

+

J−1

===

J−1

=

J−1

===
+

J−1

===

J−1

[J−1.6]: Here we use [J.12]:

===

===

J−1

=

J

===

===

J−1

J−1

=

J

===

===

J−1

J−1

=

J−1

===

===
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[J−1.7]: Here we use [J−1.6]:

===

===

J−1

=

===

===

J−1

+ J−1
=

J−1

===

===

+ J−1
=

===

===

J−1

[J−1.8]: Here we use [J.6]:

J−1

===
=

J−1

===

K

K−1

=

J

===

K−1

J−1

=

K−1

===

[J−1.9]: Here we use [J.7]:

K−1

===
=

J

===

K−1

J−1

=

J−1

===

K

K−1

=

J−1

===
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[J−1.10]: Here we use [J−1.8] and [d.5]:

J−1

===

===

=

===

===

K−1

=

===

===

K−1

=

===

===

J−1

[J−1.11]: Here we use [J−1.9] and [cd.7]:

J−1

===

===

=

===

===

K−1

=

===

===

K−1

=

===

===

J−1

6.4 From Antiderivatives to Calculus Categories

In this section we prove that a differential category with antiderivative is a calculus category.

This is the culmination of our work so far, thus it is the main result of this thesis. We begin

by giving the definition of the antiderivative integral transformation which we then prove is

an integral transformation and satisfies both the Second Fundamental Theorem of Calculus

and the Poincaré Condition.

Definition 6.19. Let (X,⊗, K, λ, ρ, σ) be a differential category with coalgebra modality

(!, δ, ε,∆, e), deriving transformation d and antiderivatives. The antiderivative integral
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combinator P is a combinator of the functors !( )⊗ , 1X, ! and 1X:

f : !A⊗ A→ B

P[f ] : !A→ B

with P[f ] = K−1
A d◦Af = d◦A(J−1

A ⊗ 1A)f . Equivalently, the antiderivative integral trans-

formation is the natural transformation p with components pA : !A → !A ⊗ A defined

as:

pA = K−1
A d◦A = d◦A(J−1

A ⊗ 1A)

Notice that the equality K−1
A d◦A = d◦A(J−1

A ⊗1A) is [J−1.9] from Proposition 6.18. In string

diagram notation, the antiderivative integral transformation is expressed as follows:

p =:=
—–

:=

K−1

===
=

J−1

===

Now we will prove that the antiderivative integral transformation is indeed an integral

transformation, which also satisfies the Second Fundamental Theorem of Calculus and the

Poincaré condition. To prove the integral transformation axioms in Proposition 6.20 and the

Second Fundamental Theorem of Calculus in Proposition 6.21 we use the K−1 form of the

integral transformation. While to prove the Poincaré condition in Proposition 6.22 we use

Ehrhard’s J−1.

Proposition 6.20. A differential category which has antiderivatives is an integral category

with respect to the antiderivative integral transformation, that is, the antiderivative integral

transformation is an integral transformation.

Proof. Since the antiderivative integral transformation is a composition of natural transfor-

mations, it is itself a natural transformation. We first show that the antiderivative integral
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transformation satisfies [s.1] to [s.3].

[s.1]: Here we use [cd.1] and [K−1.2]:

—–

e

= ===

e

K−1

=

ε

K−1

= ε

[s.2]: Here we use [K−1.4], [cd.3], [cd.4] and naturality of the coderiving transformation:

—– —–

∆∆

= K−1

=== ===

K−1

∆

= K−1

=== ===

K−1

∆

+ K−1

=== ===

0

∆

︸ ︷︷ ︸
= 0

+ 0

=== ===

K−1

∆

︸ ︷︷ ︸
= 0

=

=== ===

∆

K−1

K−1

+

∆

K−1

=== ===

K−1

+ 0

=== ===

0

∆

︸ ︷︷ ︸
= 0
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=

===

K−1

===

K−1

∆ +

K−1

===

===

K−1

∆ =
∆

—–—–

—–

+
∆

—–

—–—–

[s.3]: Here we use [K−1.8]:

—–

—–

=
===

===

K−1

K−1

=
===

===

K−1

K−1

=
—–

—–

Proposition 6.21. In a differential category which has antiderivative, the deriving trans-

formation and the antiderivative integral transformation satisfies the Second Fundamental

Theorem of Calculus.

Proof. We show that antiderivative integral transformation and the deriving transformation

satisfy the Second Fundamental Theorem of Calculus. Here we use that the K-map is an

isomorphism and [K−1.1]:

—–

===
+ 0 = ===

===

K−1

+ 0 = ===

===

K−1

+

0

K−1

=

K

K−1

=

This also completes the proof of Proposition 6.13 that if K is a natural isomorphism, then the
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deriving transformation is Taylor (since the Second Fundamental Theorem implies Taylor

by Proposition 5.6).

Proposition 6.22. In a differential category which has antiderivative, the deriving trans-

formation and the antiderivative integral transformation satisfies the Poincaré Condition.

Proof. We show that antiderivative integral transformation and the deriving transformation

satisfy the Poincaré Condition. Let f : !A⊗ A→ B be a integrable map which satisfies the

Poincaré pre-condition, that is, (1⊗ σA,A)(dA ⊗ 1A)f = (dA ⊗ 1A)f . In string diagrams, the

pre-condition is written as:

===

f

=
===

f

We must show that f satisfies the First Fundamental Theorem of Calculus. Notice first that

f satisfies the following identity by using Proposition 6.6 and that f satisfies the Poincaré

pre-condition:

===

===

f

= ===

===

f

+ f =

===

===

f

+ f =

J

f
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Then we have the following equality using [J−1.7], [J−1.9] and the preceding identity:

—–

===

f

=
===

===

f

K−1

=
===

===

f

J−1

=
===

===

f

J−1

= J

f

J−1

= f

Theorem 6.23. A differential category with antiderivatives is a calculus category.

Proof. Proposition 6.20 gives the integral category structure while Proposition 6.21 and

Proposition 6.22 give the calculus category structure by proving the Second Fundamental

Theorem of Calculus and the Poincaré Condition respectively.

For both of our main examples of calculus categories, REL and VECK, the calculus cate-

gory structure is induced from having antiderivatives.

Example 6.24. REL with the finite bag coalgebra modality (see Examples 3.13 and 4.9 for

structure), is a calculus category.

Example 6.25. VECK with the free symmetric algebra modality (see Examples 3.15 and

4.11 for structure), is a calculus category.
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Chapter 7

Conclusion and Future Work

To conclude this thesis, this chapter provides a brief summary of the original contributions

that have been presented in this thesis, as well as an overview of various separating examples

and a discussion of possible future research stemming from the present work.

7.1 Original Contributions

This thesis introduced integral categories, calculus categories, and differential categories with

antiderivatives. The following recapitulates these contributions.

1. Integral Categories

Chapter 3, introduces integral categories. Two equivalent definitions of integral cat-

egories were presented: one using integral combinators (Definition 3.4) and the other

using integral transformations (Definition 3.9), where the equivalence was proven in

Proposition 3.12. Section 3.5 discussed and proved the polynomial integration formula

for integral categories (Propositions 3.17, 3.19, and 3.20) and also how it implies non-

negative rationals in an integral category (Propositions 3.21 and 3.25). Two examples

of integral categories were provided with Example 3.15, the category of vector spaces

over a fixed field of characteristic zero, and Example 3.13, the category of sets and
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relations.

2. Calculus Categories

Chapter 5 introduces calculus categories. This chapter discusses how the Second Fun-

damental Theorem of Calculus (Definition 5.1) holds for every object in a calculus

category while the First Fundamental Theorem of Calculus has to be reinterpreted

as the Poincaré Condition (Definition 5.11). Proposition 5.6 proves that the Com-

patibility condition and the Taylor condition combined are equivalent to the Second

Fundamental Theorem of Calculus. Conversly, Corollary 5.13 proves that the Poincaré

Condition and Taylor condition imply the Second Fundamental Theorem of Calculus.

3. Antiderivatives

Chapter 6 introduces the definition of a differential category with antiderivatives. Sec-

tion 6.2 introduced the L and K maps and showed how they relate to Ehrhard’s J map.

Proposition 6.13 states that K is invertible exactly when J is invertible and the deriving

transformation is Taylor. Long lists of many properties of L, K, J, K−1 and J−1 were

also provided (Propositions 6.10, 6.11, 6.12, 6.17 and 6.18). Two examples of differen-

tial categories with antiderivatives were provided with Example 6.16, the category of

vector spaces over a fixed field of characteristic zero, and Example 6.15, the category

of sets and relations. Section 6.4 proved the main result of this thesis, namely that

every differential category with antiderivatives is a calculus category (Theorem 6.23).

7.2 Overview of Examples

Here we present an overview of separating examples between the various structures de-

fined throughout this thesis, in particular, coalgebra modalities, differential categories, in-

tegral categories, calculus categories and differential categories with antiderivatives. We

also include monoidal coalgebra modalities, which for the purpose of this thesis can be

defined as coalgebra modalities with Seely isomorphisms (as discussed in Section 3.7), so
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!(A × B) ∼= !A ⊗ !B and !(0) ∼= K. We refer the reader to [5, 8] for the full definition and

details of monoidal coalgebra modalities.

To help us give our separating examples, we present a Venn diagram with numbered

regions, and a numerated list of example whose number is associated to the region in the Venn

diagram. For example, the sixth item in the list below will be an example of a differential

category which is not an integral category and whose coalgebra modality is not monoidal.

We will not go into full details or prove anything for these examples, but will refer the reader

the various excellent sources.

1

2

56

34

8

7

10

9

Coalgebra Modality

Monoidal Coalgbera Modality

Antiderivatives

Differential Category Integral Category
Calculus Category

1.

2. Interestingly, one of the algebraic notions of differentiation does not give a differential
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category but does give a monoidal coalgebra modality and in certain cases also gives

an integral category. Let R be a commutative ring. A (commutative) differential

algebra (of weight 0) [21] over R is a pair (A,D) consisting of a commutative R-

algebra A and an R-linear map D : A→ A such that D satisfies the Leibniz rule, that

is, the following equality holds:

D(ab) = D(a)b+ aD(b) ∀a, b ∈ A

Modifying slightly the construction given in [21] of the free differential algebra over a

set to instead obtain a free differential algebra over an R-module, we obtain that the

forgetful functor between the category of modules over R, MODR, and the category of

differential algebras over R, CDAR, has a left adjoint:

MODR

DIFF //
CDAR⊥

U
oo

Briefly, DIFF : MODR → CDAR is defined on objects as DIFF(M) = Sym(
⊕

n∈NM) and

we refer the reader to [21] for the remainder of the construction (as it is similar). The

induced monad of this adjunction is an algebra modality. This algebra modality has the

Seely isomorphisms since the free symmetric algebra does and the infinite coproduct

behaves well with the finite biporduct [27]:

DIFF(M ×N) = Sym(
⊕
n∈N

(M ×N))

∼= Sym(
⊕
n∈N

M ×
⊕
n∈N

N)

∼= Sym(
⊕
n∈N

M)⊗ Sym(
⊕
n∈N

N)

= DIFF(M)⊗ DIFF(N)
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However this algebra modality does not have a deriving transformation, since the chain

rule [d.4] will not be satisfied, and if R does not contain the rationals then it also will

not have an integral transformation (see example of region 4 for explination). But as

we will see in the example of region 3, when R does contain the rationals then the free

differential algebra gives an integral category!

3. Continuing the example of region 2, letting R now be a field of characteristic zero (or a

ring containing the rationals), we define an integral transformation for DIFF(V ) (where

V is a vector space over R) component wise as follows:

Sym(
⊕

n∈N V )⊗M 1⊗ι0 // Sym(
⊕

n∈N V )⊗
⊕

n∈N V
s⊕

n∈N V
// Sym(

⊕
n∈N V )

where ι0 : V →
⊕

n∈N V is the injection map into the coproduct and s⊕
n∈N V

is the in-

tegral transformation of the free symmetric algebra. Therefore, VECR with the free dif-

ferential algebra monad is an integral category whose algebra modality is comonoidal.

4. As seen with Propositions 3.21 and 3.25, integral categories always have non-negatives

rationals. Therefore, we do not need to look very far for a differential category which

is not an integral category. As shown in Example 4.11, the category of vector spaces

for any fixed field with the free symmetric algebra is a differential category. Then for a

field with non-zero characteristic, such as Z2, this is not an integral category. However,

this algebra modality is comonoidal since the free symmetric algebra for any ring R

has the Seely isomorphisms: Sym(M ×N) ∼= Sym(M)⊗Sym(N) and Sym(0) ∼= R [27].

5.

6. Similar to the example of region 3, one of the algebraic abstractions of integration can

give a differential category but not an integral category. That said, it is also possible

to obtain a calculus category from the following example. Let R be a commutative

ring. A (commutative) Rota-Baxter algebra (of weight 0) [20] over R is a pair

146



(A,P) consisting of a commutative R-algebra A and an R-linear map P : A→ A such

that P satisfies the Rota-Baxter equation, that is, the following equality holds:

P(a)P(b) = P(aP(b)) + P(P(a)b) ∀a, b ∈ A

The map P is called a Rota-Baxter operator (we refer the reader to [20] for more

details on Rota-Baxter algebras). It turns out that there is a left adjoint to the forgetful

functor between the category of Rota-Baxter algebras, CRBAR, and the category of

commutative algebras over R, CALGR (for more details on this adjunction and the

induced monad see [22]).

CALGR

RB //
CRBAR⊥

U
oo

Briefly, on objects the left adjoint RB : CALGR → CRBAR is given by RB(A) =

Sh(A) ⊗ A where Sh(A) is the shuffle algebra [20]. To obtain an algebra modality

on the category of modules over R, MODR, we compose the free Rota-Baxter algebra

adjunction and the free symmetric algebra adjunction:

MODR

Sym //
CALGR⊥

U
oo

RB //
CRBAR⊥

U
oo

and take the induced monad of this adjunction. This algebra modality, RB(Sym(M)),

is not comonoidal as it does not have the Seely isomorphisms, explicitly, using that Sh

is not a strong monoidal functor (Sh(A⊗B) � Sh(A)⊗ Sh(B)) we have:

RB(Sym(M ×N)) ∼= RB(Sym(M)⊗ Sym(N))

= Sh(Sym(M)⊗ Sym(N))⊗ Sym(M)⊗ Sym(N)

� Sh(Sym(M))⊗ Sh(Sym(N))⊗ Sym(M)⊗ Sym(N)

∼= Sh(Sym(M))⊗ Sym(M)⊗ Sh(Sym(N))⊗ Sym(N)

= RB(Sym(M))⊗ RB(Sym(N))
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However, it does give a differential category. The components of the deriving transfor-

mation are defined as:

Sh(Sym(M))⊗ Sym(M)
1⊗dM // Sh(Sym(M))⊗ Sym(M)⊗M

where d is the deriving transformation for the free symmetric algebra. Similarly to

the examples of region 4, if R does not contain the rationals Q, such as when the

characteristic of R is non-zero, then this is not an integral category. But if R does

contain Q, such as when R is a field of characteristic zero, then this is a differential

category with antiderivatives! And so would belong in region 10.

7. We currently do not have an example of a calculus category whose coalgebra modality

is monoidal which is not a differential category with antiderivatives. See next item for

further explanation.

8. We currently do not have an example of a calculus category which is a not a differential

category with antiderivatives. It has been quite difficult to come across, since we can

show that most calculus category structures on the category of vector spaces over a

fixed field of characteristic zero are given by antiderivatives. However, we believe that

such a separating example exists as a one exists for the cartesian analogue (see Section

7.3 for a brief discussion about cartesian integral categories).

9. The coalgebra modalities of the two main examples of differential category with an-

tiderivatives given in this thesis, the category of vector spaces over a fixed field of

characteristic zero with the free symmetric algebra monad (Example 6.16), and the

category of sets and relations with the finite bag comonad (Example 6.15), are both

monoidal coalgebra modalities.

10. We have already given an example for this region, with the free Rota-Baxter algebra (as

explained above), but we present another two other example: a trivial one and a non-
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trivial one. Starting with the trivial example, let R be a non-zero commutative ring.

The zero R-module, 0, induces a coalgebra modality on the category of modules over

R where the functor maps all objects to 0 and all maps to zero maps. This coalgebra

modality is not monoidal since !(0) = 0 � R. It is however a differential category with

antideriviatives since every map in sight would be zero and the necessary equalities hold

trivially. This example can be generalized to any additive symmetric monoidal category

with a zero object. For a non-trivial example, we turn our attention to algebras which

are additively idempotent, that is, when 1 + 1 = 1. Similar to the construction of the

free symmetric algebra for the category of vector spaces over a field, one can construct

the free additively idempotent commutative algebra in the category of modules over a

rig [19], which gives an algebra modality. The deriving transformation is the same as

the free symmetric algebra, and since our algebra is additively idempotent: K and J are

the identity! Therefore, this is a differential category with antiderivatives. However, if

the rig R is not additively idempotent (such as N), this is not a comonoidal algebra

modality since !(0) � R. When R is additively idempotent, then the algebra modlity

does have the Seely isomorphisms and this example would belong to region 9.

7.3 Future Work

A reasonable strategy for developing the theory of integral categories is to follow the same

path as differential categories. The theory of differential categories was developed in four

stages with each stage formalizing a different aspect of the theory of differentiation: (tensor)

differential categories [7] formalize basic differentiation, cartesian differential categories ax-

iomatize directional derivatives [9], restriction differential categories [12] formalize the theory

of differentiation on open subsets, and tangent categories [13] formalize tangent structure

and the theory of smooth manifolds. Each stage relates to the next in interesting ways:

the coKleisli category of a differential category is a cartesian differential category, while a
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cartesian differential category is a special case of a restriction differential category. Restric-

tion differential categories, in turn, have an associated manifold completion which is itself a

tangent category.

As shown in this thesis, integral categories are closely related to differential categories.

Therefore, it seems worthwhile to develop a parallel approach for integral categories in four

corresponding stages. In this thesis, we have developed the first step with (tensor) integral

categories. The next obvious step is to develop cartesian integral categories and cartesian

calculus categories, and in particular, to show that the coKleisli category of an integral

category is a cartesian integral category. Afterwards, we will develop restriction integral

categories, which should formalize the theory of integration on open subsets, and finally

study integration in tangent categories, where hopefully the two stages should be related

through a manifold completion. We hope to obtain abstract formalizations and explanations

of classical results of integration such as partial integration, Gauss’ theorem and Stoke’s

theorem.
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