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Abstract

The differentialλ-calculus was introduced to study the resource usage of programs.

This thesis marks a change in that belief system; our thesis can be summarized by

the analogy

λ-calculus : functions :: ∂ λ-calculus : smooth functions

To accomplish this, we will describe a precise categorical semantics for the dif-

ferential λ-calculus using categories with a differential operator. We will then

describe explicit models that are relevant to differential geometry, using categories

like Sikorski spaces and diffeological spaces.
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Preface

This thesis is the original work of the author.

This thesis represents my attempt to understand the differential λ-calculus,

its models and closed structures in differential geometry. I motivated to show that

the differential λ-calculus should have models in all the geometrically accepted

settings that combine differential calculus and function spaces.

To accomplish this, I got the opportunity to learn chunks of differential ge-

ometry. I became fascinated by the fact that differential geometers make use of

curves and (higher order) functionals everywhere, but use these spaces of func-

tions without working generally in a closed category. It is in a time like this, that

one can convince oneself, that differential geometers secretly wish that there is a

closed category of manifolds.

There are concrete problems that become impossible to solve without closed

structure. One of the first geometers to propose a generalization of manifolds was

Chen, who wanted to iterate a path space construction to formalize how iterated

integrals can be computed. These spaces, now called Chen spaces, and their

closely related counterparts, diffeological spaces and Sikorski spaces have many

properties that make them categorically more well behaved (they are Cartesian

closed categories with all limits and colimits). Yet, differential geometers do not

seem to have simply flocked to these generalized smooth spaces; the reason is that

they have badly behaved limits – that is, they admit non-transverse intersections.

Examples of badly behaved limits come from catastrophe theory: one has two

submanifolds M , N of some manifold Z , and in Z there is an intersection of M , N

where the tangent vectors at those intersections do not span Z . When taking the

pullback of M , N one obtains a space B with degenerate behaviour: there can be
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places where the dimension of B collapses leading to catastrophic behaviour.

I find it exciting that these sorts of issues come up when trying to construct

models of the differential λ-calculus. It seems perhaps important that a simple

coherence required to model the differential λ-calculus in settings for differential

geometry brings up the kind of issues with “bad” limits in differential geometry,

which is the subject of part of chapter 6.

Chapter 2 revisits the term logic developed in (Blute, Cockett, and Seely, 2009)

from the point of view of a representable multicategory. The view of representable

multicategory I took is based on conversations and an unpublished paper with

Robin Cockett on Monoidal Turing Categories. The separation of the product

from the rules of differentiation is new. The equivalence of categories between

the category of differential theories and the category of Cartesian differential

categories is new. The approach to type theories I take in regarding sytax as a

presentation of a Cartesian multicategory is heavily influenced and shaped by

the opportunity to serve as a teaching assistant for the AARMS summer school

“Higher category theory and categorical logic” which was taught by Mike Shulman

and Peter LeFanu Lumsdaine.

Chapter 3 is based on reading (Bucciarelli, Ehrhard, and Manzoneto, 2010). I

discussed a bit of their paper with the third named author, Giulio Manzonetto.

Their paper has no completeness theorem, and Robin Cockett suggested that the

chain rule might not hold for theories with function symbols. I wrote this chap-

ter to complete the story. (Bucciarelli, Ehrhard, and Manzoneto, 2010) showed

soundness for the differential λ-calculus in Cartesian closed categories for a free

theory with no function symbols. The soundness theorem for the differential

λ-calculus with function symbols and equations is new, and the completeness

theorem is new.

Chapter 4 is based on a review for a journal version of a paper Robin Cockett

and I wrote, and have submitted to MSCS on the untyped differential λ-calculus.

The reviewer wrote that it was not obvious that the type theory I used was related

to the differential λ-calculus. I constructed the interpretations to ensure that they

were indeed equivalent. However, this review prompted me to learn about some

of the more delicate aspects of constructing categorical models for intensional cal-

culi and untyped calculi. Reading papers by Scott, Koymans, Lambek, Barendregt,
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Meyers, and others leads to a much richer and nuanced history than one might

expect to find. In the end, I think the objection was based on a misunderstanding,

but I think this detour was important because it lead to a bit more discernment in

constructing models.

Chapter 5 is based on a talk I gave in the Peripatetic Seminar at the University

of Calgary, in which I proved that synthetic differential geometry gives a model of

the differential λ-calculus. Robin Cockett verbally suggested at the end of the talk,

that my proof did not involve the particulars of synthetic differential geometry,

and seemed to revolve around the strength. I then spent some time analyzing

the strength, and proved that indeed, a property of the strength is crucial for

modelling the differential λ-calculus.

Chapter 6 arose from trying to understand two seemingly separate things. First

was the work of Nishimura, and second was as to whether diffeological spaces

have any non-trivial tangent structure. I had never managed to adequately figure

out either, until I read Leung’s paper (Leung, 2017). Leung proved that tangent

structures on a categoryX are equivalent to monoidal functors from Weil algebras

(with tensor given by coproduct) into the functor category [X,X] (with tensor

given by functor composition). Nishimura had been asking for what he called

Weil prolongation, and I realized that Leung’s description of tangent structure

could be immediately reformulated as Weil prolongation using actegories which

give a categorically coherent version of Nishimura’s notion of prolongation. (Kock,

1986) also used Weil prolongation to obtain tangent structure under the name

semidirect product of categories instead of actegories. I met the notion of actegory

while working with an MSc student of Robin Cockett, named Masuka Yeasin,

on linear protocols for message passing types. Garner also used actegories in

characterizing tangent categories as enriched categories (Garner, 2018). In this

thesis, I try to attribute the theorems Garner proved, to Garner.

The intended audience for this thesis is people interested in the differential

λ-calculus and people interested in how to obtain closed categories for differential

geometry. I try to take little for granted at the level of theories, but at the level of

category theory, I do take some basic material for granted.
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Notation

In this thesis we will try to keep the notation as uncluttered as possible. We record

notational conventions and symbols here.

Categories

We use the diagrammatic notation for composition of morphisms. This means

that A
f
−−→ B

g
−→C is written as f g . In case this is hard to parse, we will use f ; g .

Generic categories will be named with the bb font, for example X. Generic

2-categories will be named with the scr font, for exampleA . For generic functors

we use capital letters, for example X F−−→Y. For generic natural transformations,

we will use greek letters, for example F
α−→G .

In some category theory texts, one sees lim−→F and lim←−F to denote the limit

and colimit of a functor. We will use limF and colimF . When limi X i is a limit, we

say a functor H preserves the limit when H (limi X i )' limi H (X i ), mutatis mutandis

for preserving a colimit. We often call a functor that preserves limits continuous,

and a functor that preserves colimits cocontinuous.

List of categories

Below is a list of categories used in this thesis.
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Name Meaning

Set Sets and set functions

CVS Convenient vector spaces and smooth maps

SMan Smooth manifolds and smooth maps

Fröl Frölicher spaces and smooth maps

Fré-S Fréchet spaces and smooth maps

Weil-S Weil spaces and smooth maps

Sik Sikorski spaces and smooth maps

C [T ] Classifying category of the theory T
Weil Weil algebras and augmented algebra maps

W1 An important subcategory of Weil

X[A] The simple slice

X/A The slice

D A display system

X[X] The total category of the simple fibration

XD The total category of the display fibration

Combinators and non-functor structures

One term that comes up often in categorical type theory is currying a map. This

does not mean making a map spicy; instead, it means using Cartesian closed

structure to obtain a map of type

A −→ [B , C ]

from a map of type

B ×A −→C

We sometimes refer to combinators. These were originally meant to be closed

formula, and through a loose connection we take them to mean operators on

homsets. Some common non-functorial combinators are listed below.
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Name Meaning

D [ f ] The derivative of f (in a C.D.C.)



,
�

The pairing of maps

ev Evaluation in a C.C.C.

• Application in a Turing category

λ( f ) The transpose of f in a C.C.C.

λ( f ) The canonical code of f

c f The code for f

A Ã B or A Ãs
r B A is a retract of B

En The algebra of smooth germs at 0

List of functors

We use S for a comonad, and M or T for a monad. We use L aR to denote that L

is a left adjoint to R .

Name Meaning

Y The yoneda embedding

T The tangent functor

⊗ A monoidal structure

⊗ A monoidal action

× The product functor

[ , ] The internal hom

C Classifying category

Th The theory of a category

f ∗ The reindexing functor (often pullback)

Σ f The left adjoint to f ∗
∏

f The right adjoint to f ∗

List of natural transformations

We use ε for the counit of a comonad or adjunction, η for the unit of a monad or

adjunction, δ for the comultiplication of a comonad, and µ for the multiplication

of a monad.
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In a monoidal category (or monoidal category like setting) we write all associ-

ators from left to right: (A⊗B )⊗C
a⊗−−→ A⊗ (B ⊗C ). We use right unitor to mean

that the unit is being cancelled on the right U ⊗ I
uR−−→U and mutatis mutandis

left unitor.

We “curry on the left.” That is in a monoidal closed category, we have

X(A⊗B , C )'X(B , [A, C ])

Currying the left argument tends to lead to fewer applications of c⊗.

Name Meaning

p The tangent bundle projection

+ Tangent vector addition

0 The zero section of the tangent bundle

c The canonical flip

l The vertical lift

c⊗ and c× The symmetry maps for ⊗ and ×
πi The i th projection out of a product

m⊗ The natural map F A⊗ F B −→ F (A⊗B ) (often the tensor is cartesian and we write m×)

m> I −→ F I

θ Strength A⊗T B −→ T (A⊗B )

ψ Exponential strength T [A, B ]−→ [A, T B ]

cur The internal curry [A×B , C ]−→ [B , [A, C ]]

∆ The copy map A
∆−−→ A×A

In general, we will try to use m⊗ to denote the monoidal map F A ⊗ F B −→
F (A ⊗ B ). However, sometimes there will be more than one monoidal functor

used in the same calculation, and when this occurs we will state more explicitly

the notation we are using.
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Logic and type theory

Name Meaning

T An equational theory
∂m
∂ x (a ) · v The differential of a term

m [a/x ] The substitution operation

m v Application in a combinatory or λ-algebra

λx .m λ abstraction

m : A m has type A

Γ `m : A The term m derived in context Γ

s,k,w,b, i combinators

λ∗x .m Derived abstraction

Σx : A, B The sigma type
∏

x : A, B The dependent product

t =A s or Eq(t , s ) Equality type

IdA(t , s ) or A(t , s ) Identity type
We write proofs as

H1 · · · Hk

C

This means that given the hypotheses H1, · · · , Hk , the conclusion C may be

deduced. It is recommended to read these from bottom to top: to establish or

construct C , we construct H1, . . . , Hk .

Algebra

The symbol + is used for addition in a monoid, for example in a homset in a

Cartesian left additive category. The symbol · is used for a multiplicative action;

for example multiplication in a rig or algebra, or the action of a scalar on a vector.
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Chapter 1

Introduction

This thesis is about understanding the theory of differentiation in settings that

contain spaces of smooth functions between spaces. Historically an analytic

approach was taken: various categories of topological vector spaces such as

Hilbert spaces, Banach spaces, and Fréchet spaces with smooth maps were all

proposed, as they do allow infinite dimensional spaces. Fréchet spaces also allow

the space of smooth functions between finite dimensional vector spaces. However

none of these categories has the property of being Cartesian closed which means

that they are not closed to creating arbitrary function spaces.

Many non-analytical approaches have been taken to obtain Cartesian closed-

ness in a category whose maps generalize smoothness in some way. For example,

(chen1967) used a generalization of smooth manifold based on having a subalge-

bra of C∞(M ,R) for a manifold M in order to iterate the path space construction.

Souriau proposed diffeological spaces as an alternative formulation of differentia-

tion (book:iz-diffeology), and these ideas have been used to study loop spaces,

quotients of manifolds, and moment maps in a setting of generalized smooth

maps. Sikorski spaces or differential spaces have been used to study orbifolds,

orientifolds and stratifolds (book:diff-alg-top). Convenient vector spaces have

also been used for spaces of diffeomorphisms, mapping spaces, and path spaces

(book:kriegl-frolicher; Kriegl and Michor, 1997). These approaches all have a

common feature: they make use of a notion of differentiation by analogy with

features of the category of smooth maps betweenRn to ensure that one has a
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good notion of differentiation for spaces of smooth functions.

In this thesis, we take a different approach using categorical logic and type the-

ory. We will make use of abstract axiomatizations of differentiation and smooth-

ness: Cartesian differential categories (Blute, Cockett, and Seely, 2009) and tan-

gent categories (Rosický, 1984; Cockett and Cruttwell, 2014b). Having an abstract

notion of differentiation allows us to add Cartesian closure as an axiom, thus

giving us an axiomatization of smooth Cartesian closed categories. Using our

axiomatic framework also allows us to phrase good notion of differentiation for

spaces of smooth functions as a coherence problem instead of making an analogy.

We split the thesis into two parts to separate two main aspects of the inves-

tigation. In the first part of the thesis we study the differential λ-calculus. The

ordinary λ-calculus is regarded as the theory of functions, and the differential

λ-calculus adds differentiation to the λ-calculus in a minimal way to ensure prop-

erties like the chain rule hold. Thus, we view the differential λ-calculus as being

the theory of smooth functions. To make this assertion precise, we make use of

tools from categorical logic that allow us to prove that the differential λ-calculus

is fully expressive of our axiomatic framework; that is, any equality in a Cartesian

closed differential category may be expressed as an equality in the differential

λ-calculus.

Our approach to the differential λ-calculus marks a departure from the tradi-

tional view. The differential λ-calculus was introduced in (Ehrhard and Regnier,

2003) to provide the syntax for an interpretation of the λ-calculus into Köthe

sequence spaces (Ehrhard, 2002), which is a setting that has a derivative. It was

noticed that the derivative could be used to determine the resource commitments

of functions (Pagani and Rocca, 2010). The first attempt to give a categorical

semantics for the differential λ-calculus was in (Bucciarelli, Ehrhard, and Man-

zoneto, 2010), and the models given were the coKleisli categories of the finite

multiset comonad on the category of relations, Köthe sequence spaces, and mod-

ules of finiteness space (Ehrhard, 2005). Thus, the models of the differential

λ-calculus focused on resource sensitivity. They are also not easy to obtain.

The main result in the first part of the thesis is a soundness and completeness

theorem which makes precise the sense in which the differential λ-calculus is the

same subject as Cartesian closed differential categories.
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In the second part of the thesis, we seek to understand models of the differ-

ential λ-calculus that are not focused on resource sensitivity, but instead have a

more differential geometric feel. We also provide constructions that show that

models of the differential λ-calculus are “everywhere.”

We develop Cartesian closed tangent categories and show that a coherence

allows extracting a Cartesian closed differential category, and hence a model

of the differential λ-calculus. The coherence is expressed in terms of strength,

and we are able to simplify the requirement needed for obtaining a Cartesian

closed differential category: the coherence in the first part is quantified over all

maps in the category, but the re-expression is phrased in terms of a single natural

transformation.

We spend considerable time investigating the consequences of the coherence

we require, as it leads to some interesting material on its own. The coherence

allows for a description of vector fields as an object. It also gives a concrete

description of closed tangent categories from an enriched point of view.

Finally, we investigate some general tools for constructing coherently closed

tangent categories, and provide examples. This extends the class of models of the

differential λ-calculus into the setting of differential geometry.

To summarize, the main contributions of this thesis are:

1. A sound and complete categorical semantics of the differential λ-calculus;

2. Simplification of the coherence required for models using strength and an

elaboration on the consequences of this coherence;

3. Models of the differential λ-calculus that come from differential geometry.
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Part I

The differential λ-calculus
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Chapter 2

The differential calculus

In this chapter we introduce the differential calculus as an equational theory.

Doing this separates out the equational theory of differentiation from the analytic

aspects. Our axiomatization has seven equations that express laws of differentia-

tion like the chain rule, the additivity of differentiation, and the independence of

partial derivatives. We introduce differential calculus as a formal type theory, but

the presentation given here should be familiar to classical calculus.

We also give a semantics for the differential calculus using an abstract frame-

work for differentiation called Cartesian differential categories (Blute, Cockett,

and Seely, 2009). We will prove that any equation that can be derived in differential

calculus is true in any Cartesian differential category, and vice versa.

We will formalize the connection between differential calculus and Cartesian

differential categories using categorical type theory. We introduce a notion of dif-

ferential theory on top of differential calculus, and show that differential theories

form a category. We then establish an adjoint equivalence between differential

theories and Cartesian differential categories.

2.1 The categorical setting

In this subsection, we introduce the abstract setting for defining differentiation

known as a Cartesian differential category. These categories generalize the cate-

gory of smooth maps between finite dimensionalR-vector spaces by requiring
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an operator that when applied to a map, yields its total derivative. Cartesian dif-

ferential categories require homsets to have an addition (although no enrichment

is required), so we first introduce Cartesian left additive categories.

By chosen product functor and terminal object, we mean chosen right adjoints

X X×X

∆

×

⊥ X 1.

!

1

⊥

The pairing of maps C
f
−−→ A and C

g
−→ B is the unique map C




f , g
�

−−−−→ A×B

induced by the universal property of the product.

Definition 2.1.1. LetX be a Cartesian category, that is a categoryX, with a chosen

terminal object, and chosen product functor × :X×X−→X. X is Cartesian left

additive when every hom-set is a commutative monoid with the property that for

all f , g , h

f (g +h ) = f g + f h and x 0= 0

and where projections πi are additive in the sense that for any f , g , ( f + g )πi =

f πi + gπi .

In a Cartesian left additive category, a map h such that for all f , g , we have

( f + g )h = f h + g h and 0h = 0 is called additive. Also, a map h : A × B −→ C

is additive in its second argument when for all x , y , z :



x , y + z
�

h =



x , y
�

h +

〈x , z 〉h and 〈x , 0〉h = 0. Likewise, a map h is additive in its first argument when



x + y , z
�

h = 〈x , z 〉h +



y , z
�

h and 〈0, z 〉h = 0.

Example 2.1.2. The categories of abelian monoids, abelian groups, and modules

with homomorphisms are individually Cartesian left additive categories. Every

map is additive.

Example 2.1.3. The categories of abelian monoids, abelian groups, and modules

with functions between the underlying sets are also individually Cartesian left

additive categories (these are just functions and need not preserve the addition).

Additition of morphisms is pointwise in the image ( f + g )(x ) = f (x )+ g (x ). The

additive maps are precisely homomorphisms of the additive monoid structure.
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In the following lemma, we use the term monoidal structure map. This is

meant to be maps like the associativity morphism, A× (B ×C )−→ (A×B )×C and

the commutativity morphism A×B −→ B ×A and the other maps involved in a

symmetric monoidal category. However, we take it just to mean composites and

pairings of projections.

Lemma 2.1.4. Let X be a Cartesian left additive category.

1. Additive maps are closed under composition.

2.



f , g
�

+ 〈h , k 〉=



f +h , g +k
�

and 0= 〈0, 0〉.

3. ( f × g ) + (h ×k ) = ( f +h )× (g +k ) and 0= 0×0.

4. The pairing of additive maps is additive.

5. The map∆ := 〈1, 1〉 : A −→ A×A is additive.

6. The product of additive maps is additive.

7. The monoidal structure maps are additive.

Proof.

1. Apply additivity twice.

2. Consider the post composition of



f , g
�

+ 〈h , k 〉with π0.

�


f , g
�

+ 〈h , k 〉
�

π0 =



f , g
�

π0+ 〈h , k 〉π0 = f +h

Similarly,
�


f , g
�

+ 〈h , k 〉
�

π1 = g +k . But,



f +h , g +k
�

is unique with this

property. Likewise, 0π0 = 0 and 0π1 = 0, and again 〈0, 0〉 is unique with this

property, giving the result.

3.

( f ×g )+(h×k ) =



π0 f ,π1g
�

+〈π0h ,π1k 〉=



π0( f +h ),π1(g +k )
�

= ( f +h )×(g+k )

Likewise, 0= 〈0, 0〉= 〈π00,π10〉= 0×0.
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4. Let f , g be additive. Then,

(x + y )



f , g
�

=



(x + y ) f , (x + y )g
�

=



x f + y f , x g + y g
�

=



x f , x g
�

+



y f , y g
�

= x



f , g
�

+ y



f , g
�

Also

0



f , g
�

=



0 f , 0g
�

= 〈0, 0〉= 0

5. The map 1 is additive, and∆= 〈1, 1〉.

6. Use that f , g are additive, and thatπ0,π1 are additive, and conclude thatπ0 f

and π1g are additive. Thus, with the above, f × g =



π0 f ,π1g
�

is additive.

7. A monoidal structure map is compositions and pairings of projections. The

proof is then that projections are additive, and additive maps are closed to

composition and pairing.

Definition 2.1.5. Let X be a Cartesian left additive category. It is a Cartesian

differential category (Blute, Cockett, and Seely, 2009) when there is a combinator
1:

A
f
−−→ B

A×A −−−−→
D [ f ]

B

that satisfies the following axioms:

[CD.1] D [ f + g ] =D [ f ] +D [g ] and D [0] = 0 (additivity of differentiation);

[CD.2] 〈a + b , c 〉D [ f ] = 〈a , c 〉D [ f ] + 〈b , c 〉D [ f ] and 〈0, c 〉D [ f ] = 0 (additivity in

the “direction”);

[CD.3] D [1] =π0 (linearity of the identity)

[CD.4] D [



f , g
�

] =



D [ f ], D [g ]
�

;

[CD.5] D [ f g ] =



D [ f ],π1 f
�

D [g ] (chain rule);

1For our current purposes, a combinator just means a function on homsets.
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[CD.6] 〈〈a , 0〉 , 〈b , c 〉〉D [D [ f ]] = 〈a , c 〉D [ f ] (linearity of the derivative in the “direc-

tion”);

[CD.7] 〈〈a , b 〉 , 〈c , d 〉〉D [D [ f ]] = 〈〈a , c 〉 , 〈b , d 〉〉D [D [ f ]] (interchange).

One thinks of A×A
D [ f ]
−−−−→ B as the total derivative derivative of f : the first A

gives the directional vector and the second A gives the point that the derivative

was taken at.

A map h is linear when D [h ] =π0h .

Example 2.1.6. The category of commutative monoids or R -modules for a commu-

tative Rig R with maps homomorphisms are both Cartesian differential category

in which every map is linear. The derivative is defined D [ f ] :=π0 f .

Example 2.1.7 (Polynomials).

Let R be a commutative rig. There is a Lawvere theoryP of polynomials:

Obj: Natural numbers

Arr: A map n −→ 1 is a polynomial in n variables over R . A map n −→m is an m

tuple of polynomials, each in n variables.

There is a partial derivative
∂ p (x1, . . . , xn )

∂ xi

that may be defined by induction on the structure of polynomials using the sum

rule and the product rule and the rule for differentiating constants.

∂ c

∂ x
= 0 c is a constant

∂ xi

∂ x j
=







0 xi 6= x j

1 xi = x j

∂ p +q

∂ x
=
∂ p

∂ x
+
∂ q

∂ x
∂ p ∗q

∂ x
= p ∗

∂ q

∂ x
+
∂ p

∂ x
∗q

14



The partial derivatives extend to a total derivative for maps n −→ 1:

D [p ](v, a ) :=
∑

i

∂ p (x1, . . . , xn )
∂ xi

(a ) ∗ vi

where v = (v1, . . . , vn ) and similarly a = (a1, . . . , an ). Then this extends to a deriva-

tive for the whole categoryP :

D [(p1, . . . , pm )] = (D [p1], . . . , D [pm ])

InP the linear maps are precisely the linear polynomials

p (x ) = a ∗ x

Example 2.1.8. The category of smooth maps between finite dimensional vec-

tor spaces is a Cartesian differential category. Here the derivative is given by the

Jacobian:

D [ f ](v, a ) := J f (a ) · v

where J f is is the Jacobian matrix of partial derivatives of f . The linear maps are

precisely the linear transformations of the underlying vector spaces.

Example 2.1.9 ((Bauer et al., 2018)). A Cartesian differential category may be

extracted from the category of all functors between abelian categories (denoted

AbCat)

There is a monad Ch on AbCat. The Kleisli category of this monad is a Cartesian

left additive category. Given a functorA F−−→B there is something like a finite

difference operator called a cross-effect; for example:

F (A⊕B )⊕ F (0)' F (A)⊕ F (B )⊕ cr2(F )(A, B )

There are also linear approximation operations D1 and D V
1 . D1 is a totalization

of the chain complex induced by iterating cross effects. This linearization may be

done in context, and D V
1 denotes linearizing with respect to just V . The derivative

is

D [F ](V , X ) :=D1F (V )⊕D V
1 cr2(F )(X , V )

The cross-effects can be linearized, giving, up to homotopy, the best linear approxi-

mation to a functor D [F ](A;V )which acts just like a directional derivative. And

15



the theorem is that the homotopy category of AbCatCh is a Cartesian differential

category with this derivative.

Example 2.1.10 ((Dubuc and Kock, 1984)). Let T be a unary typed algebraic theory

in which the single type R is a commutative rig, and satifies the following Fermat

property: For any map

Γ , x : R ,Γ ′ 7→ f (x ) : R

There is a unique map

Γ , a : R , b : R ,Γ ′ 7→
∆ f (x )
∆x

(a , b ) : R

Such that

f (a + b ) = f (a ) +
∆ f (x )
∆x

(a , b ) · b

With the Fermat property, every f has a partial derivative

∂ f (z )
∂ z

(a ) · v :=
∆ f (z )
∆z

(a , 0) · v

Then given a map x1, · · · , xn 7→ f (x1, . . . , xn ) : R n −→R its total derivative at a point

a in the direction v is

D [ f ](v1, . . . , vn ; a1, . . . , an ) :=
n
∑

i=1

∂ f (xi )[a j /x j ]i 6= j

∂ xi
(ai ) · vi

The total derivative of a map R n




f1, . . . , fn

�

−−−−−−−→R m is given by taking the total deriva-

tive of each of the m components.

Given a ring R with the Fermat property, (journal:dg-arb-ring) extend ex-

ample 2.1.10 to all R -modules with a Fermat property. They also extend this

by looking at models in topological spaces. This means that we can extend the

smooth maps between finite dimensions to the infinite dimensional case.

Example 2.1.11. The categories of smooth maps between Banach spaces and

smooth maps between Fréchet spaces are Cartesian differential categories. The

derivative is the Fréchet derivative: which gives both categories the structure re-

quired for Fermat modules. For Banach spaces when V
f
−−→W is smooth then there

is a unique map

D [ f ] : U −→ Lin(V , W )
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such that

f (x +h ) = f (x ) +D [ f ](x )(h ) +o ( f , x , h )

where

o ( f , x , h ) =
∆
∆ f (z )
∆z (x , w ) ·h
∆w

(0, h ) ·h

For Fréchet spaces Lin(V , W ) is not a Fréchet space, but there is still a unique map

D [ f ] : V ×U −→W that is linear in V , and satsifies

f (x +h ) = f (x ) +D [ f ](h , x ) +o ( f , x , h )

Another example is convenient vector spaces.

Example 2.1.12 (Convenient vector spaces).

To explain the category of convenient vector spaces, we must first explain

Frölicher spaces (book:kriegl-frolicher). In this example, letR denote the real

numbers. A Frölicher space is a triple (X , C , F )where

• X is a set;

• C ⊆ Set(R , X ) and F ⊆ Set(X ,R);

• c ∈C if and only if for all f ∈ F the compoisteR c−→ X
f
−−→R ; is a smooth

functionR −→R , and similarly f ∈ F iff for all c ∈C , c f is smooth.

A map of Frölicher spaces (X , CX , FX )
h−−→ (Y , CY , FY ) is a function X

h−−→ Y of the

underlying sets such that for every c ∈CX , c h ∈CY .

If V is a Fréchet space, then (V , C∞(R , V ), C∞(V ,R)) is a Frölicher space.

These examples capture the intuition of a Frölicher space: they are specified in

terms of sets of smooth curves and functionals. A Frölicher vector space is an

R-vector space V , where V has a Frölicher space structure, and where addition

and scalar multiplication are maps of Frölicher spaces.

A convenient vector space is a Frölicher vector space V such that the CV and

FV are generated from the linear maps Lin(V ,R), and is separated and complete.

The definition of a Frölicher space sets up a Galois connection between curves and

functionals, so it makes sense to talk about generation. A space is separated when
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for any two points, there are functionals that separate them. The completeness

condition is about convergence with respect to a structure called a Mackey-Cauchy

filter (see book:kriegl-frolicher section 2.6).

(Blute, Ehrhard, and Tasson, 2010) proved that there is a notion of derivative,

and importantly that the category of convenient vector spaces and Frölicher maps

form a Cartesian differential category. In 6.7.5, we give a direct description of this

differential structure.

The following basic result will be used throughout this chapter.

Lemma 2.1.13. Let X be a Cartesian differential category.

1. Linear maps are closed under composition.

2. Every linear map is additive.

3. The requirement of being Cartesian left additive is redundant in the sense

that if X is left additive, has products, and a differential combinator, then it

is Cartesian left additive.

4. If f is linear, then D [ f g ] = ( f × f )D [g ] and D [h f ] =D [h ] f .

5. CD.4 is equivalent to D [πi ] =π0πi . 2.

6. All the monoidal structure isomorphisms are linear.

Proof. Let X be a Cartesian differential category.

1. Let f , g be linear. D [ f g ] =



D [ f ],π1 f
�

D [g ] =



π0 f ,π1 f
�

π0g =π0 f g

2. Let h be linear.

(x + y )h =



x + y , 1
�

π0h =



x + y , 1
�

D [h ] = 〈x , 1〉+



y , 1
�

D [h ] = x h + y h

and similarly, 0h = 〈0, 1〉π0h = 〈0, 1〉D [h ] = 0.

3. Since D [πi ] = π0πi we have that projections are linear, and by the above,

they preserve addition. Hence X is a Cartesian left additive category.

2Linearity of projections was originally an axiom. J.S. Lemay pointed out that D



f , g
�

=



D f , D g
�

was redundant, but it is actually equivalent to linearity of projection.
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4. These follow directly from an application of [CD.5].

5. Suppose CD.4 holds. We will prove that projections are linear. We have

A×B
1= 〈π0,π1〉−−−−−−−→ A×B , and

D [1A×B ] =D [〈π0,π1〉] =π0 =π0 〈π0,π1〉= 〈π0π0,π0π1〉

on the other hand

D [〈π0,π1〉] = 〈D [π0], D [π1]〉

Thus by universality D [πi ] =π0πi .

Conversely, suppose that projections are linear. We will prove that CD.4

holds. The proof is by the universality for products. Consider that as πi

satisfies D [πi ] =π0πi , we have that for any k ,

D [k ]πi = 〈D [k ],π1k 〉π0πi = 〈D [k ],π1k 〉D [πi ] =D [kπi ]

Then

D [



f , g
�

]π0 =D [



f , g
�

π0] =D [ f ]

and similarly D [



f , g
�

]π1 =D [g ]. But



D [ f ], D [g ]
�

is unique with this prop-

erty, thus D [



f , g
�

] =



D [ f ], D [g ]
�

.

6. Projection is assumed to be linear. The identity is also assumed to be linear,

hence by the pairing of linear maps,∆ is linear. The associator and com-

mutator are formed by the pairing of composites of projections, and hence

are linear.

In a Cartesian differential category, there are notions of partial derivative.

Given A×B
f
−−→C :

DB [ f ] := A× (B ×B )
〈0×π0, 1×π1〉−−−−−−−−−→ (A×B )× (A×B )

D [ f ]
−−−−→C

DA[ f ] := (A×A)×B
〈π0 ×0,π1 ×1〉
−−−−−−−−−→ (A×B )× (A×B )

D [ f ]
−−−−→C

are the partial derivatives with respect to B and A respectively.
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A map A×B
f
−−→C is linear in its second argument when DB [ f ] = (1×π0) f ,

and linear in its first argument when DA[ f ] = (π0×1) f .

The proof of the following is straightforward:

Lemma 2.1.14. In any Cartesian differential category

1. A map A×B
f
−−→C is linear in its first argument if and only if sw f is linear

in its second where sw= 〈π1,π0〉.

2. For any f , D [ f ] is linear in its first argument. In fact, this is equivalent to

CD.6.

3. If h is linear in its second argument, then for any g , (g ×1)h is linear in its

second argument. Likewise if h is linear in its first argument, then for any g ,

(1× g )h is linear in its first argument.

4. If h is linear in an argument, then it is additive in that argument.

5. For A × B
f
−−→ C , DB [ f ] = swDA[sw f ], and D [ f ] = 〈π0×π0,π1π1〉DA[ f ] +

〈π1π0,π1×π1〉DB [ f ].

2.2 Differential type theory

In classical mathematics, one often works with expressions, or terms 3, like

sin2(x ) + x y . Expressions can be nested, for example sin(cos(x )) + x y . In type

theory, such expressions are taken to be pure syntax – that is, they have no mean-

ing on their own. The meaning of an expression is given by assigning an actual

function to an expression, and doing so gives the semantics of the expression.

In order to provide such semantics for expressions consistently, we need to min-

imally know the type of input and output that a function corresponding to a

particular expression will have. We annotate an expression to provide the kind of

information we need:

x :R , y :R ` sin2(x ) + x y :R
3In type theory, the word term is used instead of expression.
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says that any function which provides the semantics of the expression must at

least take in two real inputs, and produce a real output. This can be seen as

defining a function f (x , y ) := sin2(x ) + x y :R×R −→R .

In categorical semantics, instead of providing a function that realizes a term,

we provide a map in a category whose type is consistent with the type of the term;

for example, map A×A −→ A as a potential model for our example above.

One then adds the ability to specify equations between terms, for example

sin(0) = 0. A type theory consists of rules for producing well formed terms with

well defined domains and codomains, rules that determine how to compose terms,

equations that relate terms, and rules that determine how to derive new equalities

from established equalities.

Differential type theory adds an additional operation to terms: a derivative.

Typically, terms are produced starting from a set of named, typed function symbols

called a signature. However, the derivative of an expression does not arise this

way. One takes the partial derivative of an expression with respect to a variable.

For example we write
∂ sin2(x ) + x y

∂ x
(a ) · v

to make it clear that the meaning of the derivative depends on the variable being

differentiated. The derivative of terms satisfies familiar laws like the chain rule

and symmetry of partial derivatives.

In the first subsection we will introduce simple differential type theories. These

theories have only simple types, that is we do not allow forming products of types.

In the second subsection we introduce Cartesian differential theories by building

on the differential theories subsection. Cartesian differential theories do allow

forming product types. These subsections will follow the same general pattern.

The final subsection provides the categorical semantics as an equivalence of

categories between differential theories and Cartesian differential categories.

2.2.1 Simple differential type theory

In this subsection, we develop simple differential type theory in three movements.

First, we introduce the terms of differential type theory, and the cut (or composi-

tion) relation. Second, we then introduce equations for the derivative of terms,
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and prove some basic results that these equations force. These equalities express

what it means to be a differential Cartesian multicategory, but it is still in a sense

free: the only equalities between terms are those dictating how the derivative

works. Third, we provide an interpretation of terms into a Cartesian differential

category. To give an interpretation of terms into a Cartesian differential cate-

gory, we provide a construction that produces from a term, a map in a Cartesian

differential category. We prove this interpretation is sound which means a few

related things. Most directly, it means that any equation between terms can be

realized by equality of the associated maps under interpretation. In addition,

soundness means that the equations for the derivative are reasonable in the sense

that they would always be true under interpretation even if they had not been

axiomatized. In the sequel, we will extend soundness, and show that it gives

an adjunction between the category of differential theories and the category of

Cartesian differential categories.

2.2.1.1 Syntax and free differential theories

In this subsubsection, we define a differential signature, terms over a signature,

and then provide equalities for composing and differentiating terms.

Definition 2.2.1. A differential signature Σ= (Σ0,Σ1) is a multigraph; that is, a

collection Σ0 of atomic types, and a collection of multiedges or function symbols

together with source and target functions. The source of f ∈Σ1 is a list of types, and

the target is a single type; we write f ∈Σ(A1, . . . , An ; B ) to denote its source list and

target. A type denotes a definable type, but for now, this just means that A ∈Σ0.

The terms,M (Σ) of a differential signature are found in table 2.1. In the Cut

rule, we produce a term t [s/x ]. A term in context Γ , x : X ,Γ ′ ` t : Z can be thought

of as a map, with a specified wire (namely the x wire) or domain, and cutting s

into t for x should be thought of as substitution. The Fun rule shows how to use

the named function symbols from our signature to produce new terms from old,

for example producing the term sin(x ) from the symbol sin and the variable x .

The Zero and Plus rules introduce the addition structure on terms. The Derivative

rule creates a term that represents the partial derivative of a term.

The set of free variables of a term is defined inductively:
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A type

Γ , x : A,Γ ′ ` x : A
Projection

Γ ,Γ ′ ` s : X Γ , x : X ,Γ ′ ` t : Z
Γ ,Γ ′ ` t [s/x ] : Z

Cut

{Γ ` ti : Ai }i f ∈Σ(A1, . . . , An ; B )
Γ ` f (t1, . . . , tm ) : B

Fun

Γ ` 0 : B
Zero

Γ ` t1 : B Γ ` t2 : B
Γ ` t1+ t2 : B

Plus

Γ , x : A,Γ ′ `m : B Γ ,Γ ′ ` a : A Γ ,Γ ′ ` v : A

Γ ,Γ ′ ` ∂m
∂ x (a ) · v : B

Derivative

Table 2.1: Term formation rules for differential type theory

fv(x ) = {x } fv(t [m/x ]) = (fv(t )−{x })∪ fv(m )

fv( f (t1, . . . , tn )) = fv(t1)∪ · · · ∪ fv(tn )

fv(0) = ; fv(m +n ) = fv(m )∪ fv(n )

fv( ∂m
∂ x (a ) · v ) = (fv(m )−{x })∪ fv(a )∪ fv(v )

Note that the differential binds the variable x which occurs in m . Also, note,

that we use explicit cuts, which is also a binding rule. We sometimes write an

equation in shorthand as m = n but really mean that m , n are terms that have the

same type, can be formed in the same context, so we really have Γ `m = n : B . The

requirement that both m , n be formed in the same context means that equations

cannot introduce variable captures.

The first group of equalities put on terms regards the cut:

Definition 2.2.2 (Composition/cut equalities).

[Cut.1] x [m/x ] =m y [m/x ] = y ;

[Cut.2] f (t1, . . . , tn )[m/x ] = f (t1[m/x ], . . . , tn [m/x ]);

[Cut.3] (s + t )[m/x ] = s [m/x ] + t [m/x ] 0[m/x ] = 0;

[Cut.4] ( ∂ t
∂ y (a ) · v )[m/x ] = ∂ t [m/x ]

∂ y (a [m/x ]) · v [m/x ]. Here, to be a well formed term,

y 6∈ fv(m ).
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The derivative is a binding operation. To ensure the name of the bound variable

is irrelevant, we require alpha-conversion as an additional equality:

D [α] :
∂m

∂ x
(a ) · v =

∂m [y /x ]
∂ y

(a ) · v

The following lemma states important properties of the cut relation that we

use throughout this chapter and the next.

Lemma 2.2.3. With Cut.1–4 and D [α]:

1. The equalities for cut, oriented from left to right form locally a confluent and

terminating (hence confluent) rewriting system modulo α-conversion, whose

normal forms are cut free.

2. If y 6∈ fv(a ), m [t /y ][a/x ] = m [a/x ][t [a/x ]/y ]. Thus if additionally x 6∈
fv(m ) then m [t /y ][a/x ] =m [t [a/x ]/y ]. On the other hand, if additionally

x 6∈ fv(t ) then m [t /y ][a/x ] =m [a/x ][t /y ].

Proof.

1. The bag ordering defined in (journal:Dershowitz:BagTermination) allows

a proof of termination. Termination may be seen simply: the cut equalities

oriented from left to right always move the [m/x ] into smaller terms. Lo-

cal confluence is proved by the Knuth-Bendix argument: all critical pairs

converge.

2. This is a straightforward proof by induction on the structure of m .

Remark 2.2.4. A multicategory or coloured operad is much like a category, ex-

cept that the domain of an arrow is a list of objects rather than a single object

(book:leinster-operads). In a multicategory, a list of maps Γi
fi−−→ Ai is composed

with a single map A1, . . . , An
g
−→ B , and this composition is associative for each of

the paths through a tree of compositions.

One way to interpret lemma 2.2.3.(2) is that the terms modulo the cut equalities

form a multicategory. That m [t /y ][a/x ] =m [a/x ][t /y ] as long as x 6∈ fv(t ) and
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y 6∈ fv(a ) says that parallel composition is unambiguous. That m [t /y ][a/x ] =

m [t [a/x ]/y ]when x 6∈ fv(m ) says that associativity holds.

A Cartesian multicategory also has weakening and contraction. Weakening in

type theory can be seen by subsituting a single variable for two different variables:

m [z/x ][z/y ]. Contraction can be seen because Γ ` x : A does not require Γ to be the

singleton x : A.

Thus the terms modulo the cut equalities form a Cartesian multicategory.

Next, we introduce the equations that the derivative must satisfy, and prove a

few consequences of these equations.

Definition 2.2.5 (Equalities of differentiation).

[Dt.1] m + (n + t ) = (m +n ) + t , m +n = n +m, and m +0=m.

[Dt.2] ∂m+n
∂ x (a ) · v =

∂m
∂ x (a ) · v +

∂ n
∂ x (a ) · v and ∂ 0

∂ x (a ) · v = 0.

[Dt.3] ∂m
∂ x (a ) · (v +w ) = ∂m

∂ x (a ) · v +
∂m
∂ x (a ) ·w and ∂m

∂ x (a ) ·0= 0.

[Dt.4] ∂ x
∂ x (a ) · v = v and when x 6∈ fv(m )we have ∂m

∂ x (a ) · v = 0.

[Dt.5] ∂ f [g /x ]
∂ y (a ) ·v = ∂ f [g [a/y ]/x ]

∂ y (a ) ·v + ∂ f [a/y ]
∂ x (g [a/y ]) · ( ∂ g

∂ y (a ) · v ). Here x 6∈ fv(a ).

[Dt.6]
∂ ∂m
∂ x (a )·y
∂ y (b ) · v = ∂m

∂ x (a ) · v . Here y 6∈ fv(m , a ).

[Dt.7]
∂ ∂m
∂ x (a )·v
∂ y (b ) ·w =

∂ ∂m
∂ y (b )·w
∂ x (a ) · v . Here y 6∈ fv(a , v ) and x 6∈ fv(b , w ).

These basic equalities may be extended to be a congruence on terms by the

following definition.

Definition 2.2.6. A theorem or derivable equality is an equation that can be

derived by closing the Cut and Dt equalities with respect to being an equivalence

relation

Γ `m : B
Γ `m =m : B

Γ `m = n : B
Γ ` n =m : B

Γ `m = n : B Γ ` n = t : B
Γ `m = t : B

and with respect to congruence
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Γ , x : A,Γ ′ `m =m ′ : B Γ ,Γ ′ ` a , v : A

Γ ,Γ ′ ` ∂m
∂ x (a ) · v =

∂m ′

∂ x (a ) · v
Γ ,Γ ′ `m =m ′ : A Γ , x : A,Γ ′ ` t = t ′ : B

Γ ,Γ ′ ` t [m/x ] = t ′[m ′/x ] : B

Lemma 2.2.7. In differential type theory:

1. When y 6∈ fv( f ),

∂ f [g /x ]
∂ y

(a ) · v =
∂ f

∂ x
(g [a/y ]) ·

�

∂ g

∂ y
(a ) · v

�

Note, this was the original form of the chain rule for the theory presented by

(Blute, Cockett, and Seely, 2009).

2. Differentialα-conversion is actually derivable from the chain rule: ∂m
∂ x (a )·v =

∂m [y /x ]
∂ y (a ) · v holds.

3. Derivable equality is a congruence on terms.

4. When yi 6∈ fv(g j ) for all i , j

∂ f [g i /yi ]ni=1

∂ x
(a )·v =

∂ f [g i [a/x ]/yi ]ni=1

∂ x
(a )·v+

n
∑

i=1

∂ f [g j /yj ]i 6= j [a/x ]

∂ yi
(g i [a/x ])·

∂ g i

∂ x
(a ) · v

In particular, when x 6∈ fv( f ) and yi 6∈ fv(g j ) for all i , j

∂ f [g i /yi ]ni=1

∂ x
(a ) · v =

n
∑

i=1

∂ f [g j /yj ] j 6=i [a/x ]

∂ yi
(g i [a/x ]) ·

�

∂ g i

∂ x
(a ) · v

�

5. When y 6∈ fv(b , w )

∂ ∂ t
∂ y (a ) · v
∂ x

(b ) ·w =
∂ ∂ t
∂ x (b ) ·w
∂ y

(a [b /x ]) · (v [b /x ])

+
∂ ∂ t [b /x ]

∂ y (z1) · (v [b /x ])

∂ z1
(a [b /x ]) ·

�

∂ a

∂ x
(b ) ·w

�

+
∂ t [b /x ]
∂ y

(a [b /x ]) ·
�

∂ v

∂ x
(b ) ·w

�

In particular, when x 6∈ fv(a ) and y 6∈ fv(b , w ) then

∂ ∂ t
∂ y (a ) · v
∂ x

(b ) ·w =
∂ ∂ t
∂ x (b ) ·w
∂ y

(a ) · (v [b /x ])+
∂ t [b /x ]
∂ y

(a ) ·
�

∂ v

∂ x
(b ) ·w

�
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Proof.

1. As y 6∈ fv( f ), then y 6∈ f [g [a/y ]/x ], so the derivative of this term vanishes

by Dt.4.2:

∂ f [g /x ]
∂ y

(a ) · v =
∂ f [g [a/y ]/x ]

∂ y
(a ) · v +

∂ f [a/y ]
∂ x

(g [a/y ]) · (
∂ g

∂ y
(a ) · v )

=
∂ f [a/y ]
∂ x

(g [a/y ]) · (
∂ g

∂ y
(a ) · v ) =

∂ f

∂ x
(g [a/y ]) · (

∂ g

∂ y
(a ) · v )

2.
∂m [y /x ]
∂ y

(a ) · v =
∂m

∂ x
(a ) ·

∂ y

∂ y
(a ) · v =

∂m

∂ x
(a ) · v

3. This proof is a straightforward proof by induction on the structure of terms,

and relies mostly on the equalities for cut to move equalities into and out of

subterms.

4. The proof is by induction on n . The base case is Dt.5. For the inductive

case:

∂ f [g i /yi ]
∂ x

(a ) · v =
∂ f [g1/y1][g i /yi ]ni=2

∂ x
(a ) · v

=
∂ f [g1[a/x ]/y1][g i [a/x ]/yi ]ni=2

∂ x
(a ) · v +

∂ f [g i /yi ]i 6=1

∂ y1
(g1[a/x ]) ·

∂ g1

∂ x
(a ) · v Dt.5

=
∂ f [g1[a/x ]/y1][g i [a/x ]/yi ]ni=2

∂ x
(a ) · v +

n
∑

i=2

∂ f [g j /yj ]
n≥2
i 6= j [a/x ]

∂ yi
(g i [a/x ]) ·

∂ g i

∂ x
(a ) · v

+
∂ f [g i /yi ]i 6=1

∂ y1
(g1[a/x ]) ·

∂ g1

∂ x
(a ) · v Ind. Hyp.

=
∂ f [g i [a/x ]/yi ]ni=1

∂ x
(a ) · v +

n
∑

i=1

∂ f [g j /yj ]i 6= j [a/x ]

∂ yi
(g i [a/x ]) ·

∂ g i

∂ x
(a ) · v

5. The claim follows from a couple of uses of Dt.5 followed by Dt.6. Consider:
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∂ ∂ t
∂ y (a ) · v
∂ x

(b ) ·w =
∂ ∂ t
∂ y (z1) · z2[a/z1, v /z2]

∂ x
(b ) ·w

=
∂ ∂ t
∂ y (z1) · (v [b /x ])[a/z1]

∂ x
(b ) ·w +

∂ t [b /x ]
∂ y

(a [b /x ]) ·
�

∂ v

∂ x
(b ) ·w

�

=
∂ ∂ t
∂ y (a [b /x ]) · (v [b /x ])

∂ x
(b ) ·w +

∂ ∂ t [b /x ]
∂ y (z1) · (v [b /x ])

∂ z1
(a [b /x ]) ·

�

∂ a

∂ x
(b ) ·w

�

+
∂ t [b /x ]
∂ y

(a [b /x ]) ·
�

∂ v

∂ x
(b ) ·w

�

=
∂ ∂ t
∂ x (b ) ·w
∂ y

(a [b /x ]) · (v [b /x ])+
∂ ∂ t [b /x ]

∂ y (z1) · (v [b /x ])

∂ z1
(a [b /x ]) ·

�

∂ a

∂ x
(b ) ·w

�

+
∂ t [b /x ]
∂ y

(a [b /x ]) ·
�

∂ v

∂ x
(b ) ·w

�

2.2.1.2 Interpretation of a differential theory

In this subsubsection, we show that the terms of a differential theory may be

interpreted as maps in Cartesian differential category in way that substitution is

interpreted by composition and the differentiation of terms is interpreted by the

differential operator of a Cartesian differential category.

The following definitions of specification and theory are extensions of defini-

tions 3.2.1 and 3.2.5 (resp.) given in (Jacobs, 1999). A differential specification is

T = (Σ0,Σ1, E )where E is a set of equations between terms ofM (Σ) of the same

type and formed in the same context; we write m =Γ n : A to denote an equation

in E . We then expand the notion of theorem to include the rule:

m =Γ n : B ∈ E
Γ `m = n : B

A differential theory is a differential specification that is closed to derivable

equality, in the sense that E contains every derivable equality from T . Every

specification generates a minimal theory.
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An interpretation for a differential specification T into a Cartesian differen-

tial category X consists of an assignment of types to objects of X, denoted JAK,

together with an assignment of f ∈Σ(A1, . . . , An ; B ) to a map

(· · · (JA1K× JA2K) · · · × JAnK
J f K
−−−→ JB K

We extend the interpretation to contexts:

JK := 1 Jx : AK := JAK JΓ , x : AK := JΓ K× JAK.

Finally, extend the interpretation to terms:

Proj: • Jx : A ` x : AK := 1JAK;

• JΓ , x : A ` x : AK := JΓ K× JAK
π1−−→ JAK;

• JΓ , y : B ` x : AK := JΓ K× JB K
π0−−→ JΓ K

JΓ ` x : AK
−−−−−−−→ JAK.

Cut: JΓ ` t [m/x ] : B K := JΓ K



1,JΓ `m : AK
�

−−−−−−−−−→ JΓ K× JAK
JΓ , x : A ` t : BK
−−−−−−−−−−→ JB K.

Fun: Let f ∈Σ(A1, . . . , An ; B ). Then

JΓ ` f (t1, . . . , tn ) : B K := JΓ K



JΓ ` ti : Ai K
�n

i=1−−−−−−−−−−→ (· · · (JA1K×JA2K) · · ·×JAnK
J f K
−−−→ JB K.

CMon: JΓ `m +n : B K := JΓ `m : B K+ JΓ ` n : B K and JΓ ` 0 : B K := 0.

Diff: The interpretation of the derivative,
r
Γ ` ∂m

∂ x (a ) · v
z

, is

JΓ K




0,JΓ ` v : AK
�

,



1,JΓ ` a : AK
��

−−−−−−−−−−−−−−−−−−−→ (JΓ K× JAK)× (JΓ K× JAK)
D [JΓ , x : A `m : BK]
−−−−−−−−−−−−→ JB K

Note that derivative of a term is interpreted into the partial derivative in X




0,Jv K
�

,



1,JaK
��

D [JΓ , x : Γ ×A `m : B K]

=




0,



Jv K,JaK
�

π0

�

,



1,



Jv K,JaK
�

π1

��

D [JΓ , x : Γ ×A `m : B K]

=



1,



Jv K,JaK
��

〈0×π0, 1×π1〉D [JΓ , x : Γ ×A `m : B K]

=



1,



Jv K,JaK
��

DJx :AK[JΓ , x : Γ ×A `m : B K]

In what follows, we will sometimes drop the types and the context when they

are not relevant to the calculation.
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Lemma 2.2.8. We have

• For any m if x 6∈ fv(m ) then JΓ , x `mK=π0JΓ `mK.

• For any Γ , x , y , m, JΓ , x , y `mK= c2JΓ , y , x `mK where c2 is the involution

(A×B )×C
〈〈π0π0,π1〉 ,π0π1〉−−−−−−−−−−−→ (A×C )×B .

The following theorem establishes the soundness of the interpretation.

Theorem 2.2.9. Let T = (Σ0,Σ1, E ) be any differential specification. If every equal-

ity t1 =Γ t2 : A ∈ E has JΓ ` t1 : AK= JΓ ` t2 : AK, then every theorem ofT holds under

interpretation.

Since every equality in E holds under interpretation by assumption, we must

show that all the derivable equalities hold under interpretation. This is equivalent

to proving that every equality in the theory generated by (Σ0,Σ1,;) holds under

interpretation.

To prove this, we must show that every generating equality gives an equation

in X, and that X is closed under the derivation of theorems.

Proof. We start with the cut equations: [Cut.1-3] are immediate. For example,

JΓ ` x [m/x ]K=



1,JΓ `mK
�

JΓ , x ` x K=



1,JΓ `mK
�

π1 = JΓ `mK

The proof for [Cut.4] is a bit longer, so we give its proof here:

Let w :=




0,JΓ ` v [m/x ]K
�

,



1,JΓ ` a [m/x ]K
��

. Then note that

w D [JΓ , y `mK] =w D [π0JΓ `mK] =w (π0×π0)D [JΓ `mK]

= 〈0, 1〉D [JΓ `mK] = 0

Also note that the natural isomorphism c2 : (A×B )×C −→ (A×C )×B used in

lemma 2.2.8 is linear and gives,

D [JΓ , y , x ` t K] =D [c2JΓ , x , y ` t K] = (c2× c2)D [JΓ , x , y ` t K]

Then,
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s
Γ `
∂ t [m/x ]
∂ y

(a [m/x ]) · v [m/x ]
{
=w D [




1,JΓ , y `mK
�

JΓ , y , x ` t K]

=w



D [



1,JΓ , y `mK
�

],π1




1,JΓ , y `mK
��

D [JΓ , y , x ` t K]

=w




π0, D [JΓ , y `mK]
�

,π1




1,JΓ , y `mK
��

D [JΓ , y , x ` t K]

=





0,JΓ ` v [m/x ]K
�

, 0
�

,




1,JΓ ` a [m/x ]K
�

,JΓ `mK
��

(c2× c2)D [JΓ , x , y ` t K]

=




〈0, 0〉 ,JΓ ` v [m/x ]K
�

,




1,JΓ `mK
�

,JΓ ` a [m/x ]K
��

D [JΓ , x , y ` t K]

=




0,Jv [m/x ]K
�

,




1,JΓ `mK
�

,JΓ ` a [m/x ]K
��

D [JΓ , x , y ` t K]

=



1,JΓ `mK
�



0,JΓ , x ` v K
�

,



1,JΓ , x ` aK
��

D [JΓ , x , y ` t K]

=



1,JΓ `mK
�

s
Γ , x `

∂ t

∂ y
(a ) · v

{

=
s
Γ `

�

∂ t

∂ y
(a ) · v

�

[m/x ]
{

Now for the differential identities:

[Dt.1] This is immediate.

[Dt.2] This is also immediate.

[Dt.3] Consider,

∂m

∂ x
(a ) · (v1+ v2) =





0,Jv1+ v2K
�

,



1,JaK
��

D [JmK]

=




0,Jv1K+ Jv2K
�

,



1,JaK
��

D [JmK] =




0,Jv1K
�

+



0,Jv2K
�

,



1,JaK
��

D [JmK]

=




0,Jv1K
�

,



1,JaK
��

D [JmK] +




0,Jv2K
�

,



1,JaK
��

D [JmK]

=
s
∂m

∂ x
(a ) · v1

{
+

s
∂m

∂ x
(a ) · v2

{
=

s
∂m

∂ x
(a ) · v1+

∂m

∂ x
(a ) · v2

{

The 0 case is similar.

[Dt.4] Consider,
s
Γ `
∂ x

∂ x
(a ) · v

{
=




0,JΓ ` v K
�

,



1,JaK
��

D [JΓ , x ` x K]

=




0,JΓ ` v K
�

,



1,JaK
��

π0π1 = JΓ ` v K
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And suppose x 6∈m , then

s
Γ `
∂m

∂ x
(a ) · v

{
= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉D [JΓ , x `mK]

= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉(π0×π0)D [JΓ `mK] = 〈0, 1〉D [JΓ `mK] = 0

[Dt.5] To make the calculation digestible, break it up into a few steps. Let w =




0,Jv K
�

,



1,JaK
��

, and let w2 = D [JΓ , y ` g [a/y ]K]. Now, we expand w2.

Note that y 6∈ fv(g [a/y ]).

w2 =D [JΓ , y ` g [a/y ]K] =D [π0JΓ ` g [a/y ]K] = (π0×π0)D [



1,JΓ ` aK
�

JΓ , y ` g K]

= (π0×π0)




p i0, D [JΓ ` aK]
�

,π1




1,JΓ ` aK
��

D [Jγ, y ` g K] CD.4

=




π0π0, (π0×π0)D [JΓ ` aK]
�

,π1π0




1,JΓ ` aK
��

D [JΓ , y ` g K]

Now, we expand w w2 using 0= 〈0, 0〉 followed by CD.2.

w w2 =




0, 〈0, 1〉D [JΓ ` aK]
�

wπ1π0




1,JΓ ` aK
��

D [JΓ , y ` g K]

=



0, wπ1π0




1,JΓ ` aK
��

D [JΓ , y ` g K] = 0

Thus,
s
∂ f [g [a/y ]/x ]

∂ y
(a ) · v

{
=w D [JΓ , y ` f [g [a/y ]/x ]K]

=w D [



1,JΓ , y ` g [a/y ]K
�

JΓ , y , x ` f K]

=w



〈π0, D [w2]〉 ,π1




1,π0JΓ ` g [a/y ]K
��

D [JΓ , y , x ` f K]

=





0,JΓ ` v K
�

, 0
�

,




1,JΓ ` aK
�

,JΓ ` g [a/y ]K
��

D [JΓ , y , x ` f K]

We call the equality established immediately above (1)

Next, we expand D [JΓ , x ` f [a/y ]K]:

D [JΓ , x ` f [a/y ]K] =D [



1,JΓ , x ` aK
�

JΓ , x , y ` f K]

=




π0, D [π0JΓ ` aK]
�

,π1




1,π0JΓ ` aK
��

D [JΓ , x , y ` f K]

=




π0, (π0×π0)D [JΓ ` aK]
�

,π1




1,π0JΓ ` aK
��

D [JΓ , x , y ` f K]
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Thus,

s
Γ `
∂ f [a/y ]
∂ x

(g [a/y ]) ·
�

∂ g

∂ y
(a ) · v

�

{

=

��

0,

s
Γ `
∂ g

∂ y
(a ) · v

{�
,



1,JΓ ` g [a/y ]K
�

�

D [JΓ , x ` f [a/y ]K]

=

���

0,

s
Γ `
∂ g

∂ y
(a ) · v

{�
, 〈0, 1〉D [JΓ ` aK]

�

,



1,JΓ ` g [a/y ]K
�


1,π0JΓ ` aK
�

�

D [JΓ , x , y ` f K]

=

���

0,

s
Γ `
∂ g

∂ y
(a ) · v

{�
, 0

�

,




1,JΓ ` g [a/y ]K
�

,JΓ ` aK
�

�

D [JΓ , x , y ` f K]

=

���

0,

s
Γ `
∂ g

∂ y
(a ) · v

{�
, 0

�

,




1,JΓ ` g [a/y ]K
�

,JΓ ` aK
�

�

(c2× c2)D [JΓ , y , x ` f K]

=

��

0,

s
Γ `
∂ g

∂ y
(a ) · v

{�
,




1,JΓ ` aK
�

,JΓ ` g [a/y ]K
�

�

D [JΓ , y , x ` f K]

We call the equality established immediately above (2).

Now, note that
D

0,
r
` ∂ g
∂ y (a ) · v

zE
+




0,JΓ ` v K
�

, 0
�

=
D




0,JΓ ` v K
�

,
r
Γ ` ∂ g

∂ y (a ) · v
zE

,

and use this with CD.2:
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s
Γ `
∂ f [a/y ]
∂ x

(g [a/y ]) ·
�

∂ g

∂ y
(a ) · v

�

+
∂ f [g [a/y ]/x ]

∂ y
(a ) · v

{

=
s
Γ `
∂ f [a/y ]
∂ x

(g [a/y ]) ·
�

∂ g

∂ y
(a ) · v

�

{
+

s
∂ f [g [a/y ]/x ]

∂ y
(a ) · v

{

=

��

0,

s
Γ `
∂ g

∂ y
(a ) · v

{�
,




1,JΓ ` aK
�

,JΓ ` g [a/y ]K
�

�

D [JΓ , y , x ` f K]

+





0,JΓ ` v K
�

, 0
�

,




1,JΓ ` aK
�

,JΓ ` g [a/y ]K
��

D [JΓ , y , x ` f K] (1, 2)

=

��




0,JΓ ` v K
�

,

s
Γ `
∂ g

∂ y
(a ) · v

{�
,




1,JΓ ` aK
�

,JΓ ` g [a/y ]K
�

�

D [JΓ , y , x ` f K]

= 〈〈〈0,JΓ ` v K〉, 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉D [JΓ , y ` g K]〉, 〈〈1,JΓ ` aK〉,JΓ ` g [a/y ]K〉〉D [JΓ , y , x ` f K]

= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉〈〈π0, D [JΓ , y ` g K]〉,π1〈1,JΓ , y ` g K〉〉D [JΓ , y , x ` f K]

= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉〈D [〈1,JΓ , y ` g K〉],π1〈1,JΓ , y ` g K〉〉D [JΓ , y , x ` f K]

= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉D [〈1,JΓ , y ` g K〉JΓ , y , x ` f K]

= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉D [JΓ , y ` f [g /x ]K]

=
s
Γ `
∂ f [g /x ]
∂ y

(a ) · v
{

[Dt.6] Again, break the computation down to make it simpler. To start consider,

D [
s
Γ , y `

∂m

∂ x
(a ) · y

{
] =D [





0,JΓ , y ` y K
�

,



1,JaK
��

D [JΓ , y , x `mK]]

=D [




0,JΓ , y ` y K
�

,



1,JaK
��

(c2× c2)D [JΓ , x , y `mK]]

=D [



〈〈0,π1〉 , 0〉 ,




π0,π0JΓ ` aK
�

,π1

��

(π0×π0)D [JΓ , x `mK]]

=D [



〈0,π1〉 ,



π0,π0JΓ ` aK
��

D [JΓ , x `mK]]

=



D [



〈0,π1〉 ,



π0,π0JΓ ` aK
��

],π(



〈0,π1〉 ,



π0,π0JΓ ` aK
��

)
�

D [D [JΓ , x `mK]]

=




〈0,π0,π1〉 ,



π0π0, (π0×π0)D [JΓ ` aK]
��

,π1




〈0,π1〉 ,



π0,π0JΓ ` aK
���

D [D [JΓ , x `mK]]

Then,
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t
∂ ∂m
∂ x (a ) · y
∂ y

(b ) · v

|

=




0,JΓ ,` v K
�

,



1,JΓ ` b K
��

D [
s
Γ , y `

∂m

∂ x
(a ) · y

{
]

=





0,JΓ ` v K
�

, 0
�

,




0,JΓ ` b K
�

,



1,JΓ ` aK
���

D [D [JΓ , x `mK]]

=




0,JΓ ` v K
�

,



1,JΓ ` aK
��

D [JΓ , x `mK]

=
s
Γ `
∂m

∂ x
(a ) · v

{

[Dt.7] First, note that

D [




0,JΓ , y ` v K
�

,



1,JΓ , y ` aK
��

] =




0, (π0×π0)D [JΓ ` v K]
�

,



π0, (π0×π0)D [JΓ ` aK]
��

Then





0,JΓ `w K
�

,



1,JΓ ` b K
��

D [




0,JΓ , y ` v K
�

,



1,JΓ , y ` aK
��

]

=




0, 〈0, 1〉D [JΓ ` v K]
�

,




0,JΓ `w K
�

, 〈0, 1〉D [JΓ ` aK]
��

=



〈0, 0〉 ,




0,JΓ `w K
�

, 0
��

Then





0,JΓ `w K
�

,



1,JΓ ` b K
��


D [




0,JΓ , y ` v K
�

,



1,JΓ , y ` aK
��

],π1





0,JΓ , y ` v K
�

,



1,JΓ , y ` aK
���

=




〈0, 0〉 ,




0,JΓ `w K
�

, 0
��

,




0,JΓ ` v K
�

,




1,JΓ ` b K
�

,JΓ ` aK
���

We use the equality immediately above in the third step of the following

35



calculuation.
t

Γ `
∂ ∂m
∂ x (a ) · v
∂ y

(b ) ·w

|

=




0,JΓ `w K
�

,



1,JΓ ` b K
��

D [




0,JΓ , y ` v K
�

,



1,JΓ , y ` aK
��

D [JΓ , y , x `mK]]

=




0,JΓ `w K
�

,



1,JΓ ` b K
��




D [




0,JΓ , y ` v K
�

,



1,JΓ , y ` aK
��

],π1





0,JΓ , y ` v K
�

,



1,JΓ , y ` aK
���

D [D [JΓ , y , x `mK]]

=




〈0, 0〉 ,




0,JΓ `w K
�

, 0
��

,




0,JΓ ` v K
�

,




1,JΓ ` b K
�

,JΓ ` aK
���

D [D [JΓ , y , x `mK]]

=




〈0, 0〉 ,




0,JΓ `w K
�

, 0
��

,




0,JΓ ` v K
�

,




1,JΓ ` b K
�

,JΓ ` aK
���

((c2× c2)× (c2× c2))D [D [JΓ , y , x `mK]]

=




〈0, 0〉 ,



0,JΓ `w K
��

,





0,JΓ ` v K
�

, 0
�

,




1,JΓ ` aK
�

,JΓ ` b K
���

D [D [JΓ , y , x `mK]] (as 0= 〈0, 0〉)

=




〈0, 0〉 ,




0,JΓ ` v K
�

, 0
��

,




0,JΓ `w K
�

,




1,JΓ ` aK
�

,JΓ ` b K
���

D [D [JΓ , y , x `mK]] CD.6

=

t

Γ `
∂ ∂m
∂ y (b ) ·w
∂ x

(a ) · v

|

Thus, all the generating equalities hold. To show that all derivable theorems

give equalities inX, we show that the interpretation is closed to derivable equality.

The equivalence relation requirements: reflexivity, symmetry, and transitivity

hold because equality in a category is an equivalence relation.

For congruence, suppose JΓ , x `mK= JΓ , x `m ′K. We must show that
r
∂m
∂ x (a ) · v

z
=

r
∂m ′

∂ x (a ) · v
z

for all a , v , yet this is immediate as D [JΓ , x `mK] = D [JΓ , x `m ′K].
Similarly, suppose that JΓ `mK = JΓ `m ′K and JΓ , x ` t K = JΓ , x ` t ′K. It is then

immediate that JΓ ` t [m/x ]K= JΓ ` t ′[m ′/x ]K.

This completes the proof.

2.2.2 Cartesian differential type theory

In the previous subsection we introduced differential theory, and in this sub-

section we add products to a differential theory. This involves both adding the

product of objects to our theory, and also adding the pairing of terms. We make
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the same moves, but we can move a bit faster since most of the interpretation was

defined in the previous section.

We use a standard notion of classifying category: we formally add rules to

the logic that allow for product formation and elimination. This allows replacing

a context x1 : A1, . . . , xn : An with a single product type z : A1 × · · · × An . The

terms that can be formed with a single type on the left of turnstile always form

a category, and the extension of the product rules, ensures that this category is

always a Cartesian category.

For a differential specification T , we denote the extension of it to a repre-

sentable Cartesian multicategory byM×(Σ).

We extend the notion of definable type, recall that atomic types A have A ty,

and now

1 ty and
A ty B ty

A×B ty

We then add the representation terms:

Γ ,Γ ′ `m : C
Γ , z : 1,Γ ′ ` z 2().m : C and

Γ , x : A, y : B ,Γ ′ `m : C

Γ , z : A×B ,Γ ′ ` z 2(x , y ).m : C

Above the line, we have two variables, x : A, y : B , and to form a map out of

the product A × B , we need a new variable z : A × B . The notation z 2(x , y ).m

really means that z is the variable representing (x , y ). We will show below that

z 2(x , y ).m =m [π0(z )/x ,π1(z )/y ].

We also have product formation rules:

Γ ` () : 1 and
Γ `m : A Γ ` n : B
Γ ` (m , n ) : A×B

And projection operations:

Γ `m : A×B
Γ `π0(m ) : A and

Γ `m : A×B
Γ `π1(m ) : B

Next, extend the notion of derivable equality to include projection compu-

tation, surjective pairing axioms, a congruence for equality, and the projection

linearity axiom:

Γ `π0(m , n ) =m
π0-elim

Γ `π1(m , n ) = n
π1-elim
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Γ `m : 1
Γ `m = () : 1

surj-pair Γ `m : A×B
Γ `m = (π0(m ),π1(n )))

surj-pair

Γ , x : A, y : B ,Γ ′ `m = n

Γ , z : A×B ,Γ ′ ` z 2(x , y ).m = z 2(x , y ).n : C
rep-cong

And the following equations that force projection to be linear.

π0-linear:
∂ z 2(x , y ).x

∂ z
(a )·v =π0(v ) π1-linear:

∂ z 2(x , y ).y

∂ z
(a )·v =π1(v )

Also we must extend the equalities for cut to the representation of ×:

[R-Cut.1] (z 2().m )[()/z ] =m and (z 2(x , y ).t )[m/z ] = t [π0(m )/x ][π1(m )/y ];

[R-Cut.2] ()[t /x ] = () and (m , n )[t /x ] = (m [t /x ], n [t /x ]).

Remark 2.2.10. We have added ability to form an explicit projection z : A×B `
z 2(x , y ).x : A. The linearity of projection does not seem to be provable, and hence

the linearity of projections must be assumed 4.

We call this system Cartesian differential type theory. A Cartesian differential

specification is just a differential specification but where the notion of theorem is

expanded as above; likewise a Cartesian differential theory is a Cartesian differen-

tial specification that is closed to provable equality.

We have the following structural lemma for these terms.

Lemma 2.2.11. In Cartesian differential type theory we have

1. z2(x , y ).m =m [π0(z )/x ,π1(z )/y ] and z2().m =m. Thus (t , s )2(x , y ).m =

m [t /x ][s/y ].

2. (x , y )2(x , y ).m =m and ()2().m =m.

3. z 2(x , y ).m [(x , y )/z ] =m and z 2().m [()/z ] =m.

4JS Lemay pointed out that for a Cartesian left additive category, D [ f ] := 0 satisfies all the
axioms except CDC.3. It could still however be the case that D [1] =π0 is enough to force the rest of
CDC.3, but neither a proof nor counter example is currently known. If all of CDC.3 follows from
D [1] =π0, then the requirement postulated here is redundant.
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4. π0(m ) = (z 2(x , y ).x )[m/z ] and π1(m ) = (z 2(x , y ).y )[m/z ].

5. The representation moves in and out of all term formations. That is:

• z 2(x , y ). f (t1, . . . , tn ) = f (z 2(x , y ).t1, . . . , z 2(x , y ).tn );

• z 2(x , y ).(m , n ) = (z 2(x , y ).m , z 2(x , y ).n ) and z 2(x , y ).() = ();

• z 2(x , y ).(m +n ) = (z 2(x , y ).m ) + (z 2(x , y ).n ) and z 2(x , y ).0= 0;

• z 2(x , y ). ∂m
∂ r (a ) · v =

∂ z2(x ,y ).m
∂ r (a ) · v whenever x , y 6∈ fv(a , v ).

6. Equality is a congruence on terms, and moreover, (m , n ) = (m ′, n ′) if and only

if m =m ′ and n = n ′.

7. If Γ , z : A×B ,Γ ′ `m : C then there is a term m ′ such that m = z 2(x , y ).m ′.

Proof.

1. z 2(x , y ).m = (z 2(x , y ).m )[z/z ] =m [π0(z )/x ][π1(z )/y ]. For z 2().m =m ,

note that the m on the right hand side is in the weakened context containing

z : 1.

2. We do the case for binary pairs, as the case for nullary pairs is similar. The

case for binary pairs follows immediately from the above:

(x , y )2(x , y ).m =m [x/x ][y /y ] =m

3. We do the case for binary products, as the case for nullary products is similar.

z 2(x , y ).m [(x , y )/z ]

=m [(x , y )/z ][π0(z )/x ,π1(z )/y ]

=m [(π0(z ),π1(z ))/z ] =m [z/z ] surj. pair

=m

4. (z 2(x , y ).x )[m/z ] = x [π0(m )/x ][π1(m )/y ] =π0(m ) and similarly for π1(m ).

5. This follows immediately from 1.
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6. For projection, suppose m =m ′:

π0(m ) = (z 2(x , y ).x )[m/z ] = (z 2(x , y ).x )[m ′/z ] =π0(m
′)

Similarly π1(m ) =π1(m ′).

For the empty tuple, there is nothing to do as m : 1 implies m = (). For a

nonempty tuple, suppose m =m ′ and n = n ′:

(m , n ) = (x , y )[m/x , n/y ] = (x , y )[m ′/x , n ′/y ] = (m ′, n ′)

Finally assume t = t ′ and m =m ′ then

t 2(x , y ).m = z 2(x , y ).m [t /z ] = z 2(x , y ).m ′[t ′/z ] = t ′2(x , y ).m ′

Moreover, if (m , n ) = (m ′, n ′) then m = π0(m , n ) = π0(m ′, n ′) = m ′ and

similarly n = n ′.

7. We sketch the proof. If Γ , z : A×B ,Γ ′ `m : C , then z ∈ fv(m ). In particular,

m cannot take the form ∂m ′

∂ z (a ) · v , w = (z , r ).m ′, nor n [m ′/z ]. Thus we can

apply part 3, to pull the z 2(x , y ). to the outside of the term, giving the term

m ′ as the leftover part of the term.

Corollary 2.2.12. There is an equivalence of proofs

Γ , x : A, y : B ,Γ ′ `m : C and Γ , z : A×B ,Γ ′ `m ′ : C

Proof. This is points 2 and 3 of lemma 2.2.11.

For the interested reader, the above corollary can be stated categorically by say-

ing thatM×(Σ) under the cut and representation equalities form a representable

multicategory in the sense of (journal:hermida-representable).

One might think that an immediate consequence of point 6 of lemma 2.2.11

is that the theorems of a Cartesian differential specification are completely gener-

ated by the tuple closure of the theorems of the underlying differential specifica-

tion; i.e. every theorem is of the form (t1, · · · , tn ) = (t ′1, · · · , t ′n )where each ti = t ′i is
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provable in the operadic differential theory. However, this may not be so, as the

equation for linearity of projection is believed to have no proof in the operadic

theory.

However, what is true is:

Remark 2.2.13. Any differential theory T generates a Cartesian differential theory,

by closing the theorems with respect to derivable equality.

We have added some new term formation rules and equalities, so we must

extend the interpretation and again show that soundness holds.

To extend the interpretation on types

J1K := 1 and JA×B K := JAK× JB K

and on contexts

JΓ , z : 1K := JΓ K×1 and JΓ , z : A×B K := JΓ K× (JAK× JB K)

and finally on terms:

Representation:

It is important to note that the isomorphisms used in the following defin-

tions are linear maps.

• JΓ , z : 1,Γ ′ ` z 2().m : C K := JΓ , z : 1,Γ ′K '−−→
i1

JΓ ,Γ ′K
JΓ ,Γ ′ `m : C K
−−−−−−−−−→ JC K

• JΓ , z : A×B ,Γ ′ ` z 2(x , y ).m : C K is

q
Γ , z : A×B ,Γ ′

y '−−→
i2

q
Γ , x : A, y : B ,Γ ′

y JΓ , x : A, y : B ,Γ ′ `m : C K
−−−−−−−−−−−−−−−→ JC K

Tuple:

JΓ ` () : 1K := JΓ K !−→ 1 JΓ ` (m , n ) : A×B K := JΓ K



JΓ `mK,JΓ ` nK
�

−−−−−−−−−−−→ JA×B K

Projection terms:

JΓ `π0(m )K := JΓ K
JmK
−−−→ JA×B K

π0−−→ JAK JΓ `π1(m )K := JΓ K
JmK
−−−→ JA×B K

π1−−→ JB K
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Theorem 2.2.14. Let T = (Σ0,Σ1, E ) be any Cartesian differential specification. If

every equality t1 =Γ t2 : A ∈ E has JΓ ` t1 : AK= JΓ ` t2 : AK, then every theorem of T
holds under interpretation. That is the interpretation is sound.

The proof follows the same pattern as 2.2.9: we prove that every equality

provable in (Σ0,Σ1,;) holds under interpretation.

Proof. The projection computation equalities, surjective pairing, R-Cut.1,2, and

the congruence that when JmK = JnK we have Jz 2(x , y ).mK = Jz 2(x , y ).nK are

standard. This leaves the linearity of the projections.

First, note that the isomorphism i2 : Jz : A×B K−→ Jx : A, y : B K is 1JA×BK.

D [JΓ , z : A×B ` z 2(x , y ).x K] =D [π1Jz : A×B ` z 2(x , y ).x K]

= (π1×π1)D [Jz : A×B ` z 2(x , y ).x K] = (π1×π1)D [Jx : A, y : B ` x K]

= (π1×π1)(π0×π0)D [Jx ` x K] = (π1×π1)(π0×π0)π0

A similar calculation shows D [JΓ , z : A×B ` z 2(x , y ).y K] = (π1×π1)(π0×π0)π1.

This implies

s
Γ `
∂ z 2(x , y ).x

∂ z
(a ) · v

{
= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉D [JΓ , z ` z 2(x , y ).x K]

= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉(π1×π1)(π0×π0)π0

= JΓ ` v : AKπ0 = JΓ `π0(v )K

And similarly, s
Γ `
∂ z 2(x , y ).y

∂ z
(a ) · v

{
= Jπ1(v )K

2.2.3 Differential categories-type correspondence

In the previous two subsections of section 2.2, we defined differential and Carte-

sian differential type theories, and showed that they admit a sound interpretation

into a Cartesian differential category. In this subsection, we define a category

of differential theories, and show it is equivalent to the category of Cartesian

differential categories.
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The left adjoint in the equivalence is the classifying category functor. The clas-

sifying category functor assigns to each theory a Cartesian differential category.

The right adjoint is the theory functor, and it assigns to a Cartesian differential

category, a differential theory. That the unit of the adjunction is an isomorphism

means that the theory of the classifying category is equivalent to the starting the-

ory, which means that one can prove a theorem by proving it in all models hence

the models are complete. That the counit of the adjunction is an isomophism

says that every Cartesian differential category arises as the classifying category of

some differential theory, hence the theories are fully expressive.

In (Blute, Cockett, and Seely, 2009), the type theory of a Cartesian differential

category was defined directly on top of the type theory for a Cartesian repre-

sentable multicategory. In this section we considered starting with a simpler

equational type theory with a differentiation, and defined the extension to repre-

sentable products. Lemma 2.2.7 gives their [Dt.5], and lemma 2.2.15 gives their

[Dt.3] and [Dt.4]; thus, the type theory presented here proves every theorem in the

type theory of (Blute, Cockett, and Seely, 2009). As the classifying category of their

differential theory is a Cartesian differential category, the soundness theorem

says that every theorem in a Cartesian differential theory as presented here holds

in their theory. This gives an equivalence between the two ways of presenting a

Cartesian differential category.

The classifying category C [T ] of a Cartesian differential theory T is defined

as:

Obj: Types of T

Arr: A map A
m−−→ B is an equivalence class of terms of the form p : A `m : B

under the equivalence relation given by provable equality, and p : A is a

singleton context.

Id: p : A ` p : A

Comp: (p `m : B )(q : B ` n : C ) := p ` n [m/q ] : C .

Diff:
p : A `m : B

D [m ] := v a : A×A ` v a 2(v, a ). ∂m
∂ p (a ) · v : B
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The following is what is needed to prove that the classifying category of a

Cartesian differential theory is a Cartesian differential category.

Lemma 2.2.15. In Cartesian differential type theory we have:

1. If Γ , z : 1,Γ ′ `m : B , then ∂m
∂ z (a ) · v = 0;

2. π0(
∂m
∂ r (a ) · v ) =

∂ π0(m )
∂ r (a ) · v and π1(

∂m
∂ r (a ) · v ) =

∂ π1(m )
∂ r (a ) · v ;

3. ∂ ()
∂ r (a ) · v = 0= () and ∂ (m ,n )

∂ r (a ) · v = ( ∂m
∂ r (a ) · v, ∂ n

∂ r (a ) · v );

4. Suppose Γ , z : A×B ,Γ ′ `m ′ : C . Then m ′ = z 2(x , y ).m. Then

∂m ′

∂ z
(a ) · v =

∂m [π1(a )/y ]
∂ x

(π0(a )) ·π0(v ) +
∂m [π0(a )/x ]

∂ y
(π1(a )) ·π1(v )

5. Suppose Γ , z : A×B ,Γ ′ `m ′ : C , so again m ′ = z 2(x , y ).m. Then

∂m ′

∂ z
(a , b )·(v, 0) =

∂m [b /y ]
∂ x

(a )·v and
∂m ′

∂ z
(a , b )·(0, w ) =

∂m [a/x ]
∂ y

(b )·w

Intuitively 1 says that the derivative of a term with respect to x that is constant

in x , is 0.

Proof.

1. By term formation rules, z 6∈ fv(m ) hence ∂m
∂ z (a ) · v = 0.

2. For π0(m ):

∂ π0(m )
∂ r

(a ) · v =
∂ (z 2(x , y ).x )[m/z ]

∂ r
(a ) · v

=
∂ z 2(x , y ).x )

∂ z
(m [a/r ]) ·

�

∂m

∂ r
(a ) · v

�

=π0

�

∂m

∂ r
(a ) · v

�

For π1(m ) is similar.
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3. By surjective pairing if m : 1 then m = (). Hence () = 0, and so

∂ ()
∂ r
(a ) · v =

∂ 0

∂ r
(a ) · v = 0

For the tuple case:

∂ (m , n )
∂ r

(a ) · v =
�

π0

�

∂ (m , n )
∂ r

(a ) · v
�

,π1

�

∂ (m , n )
∂ r

(a ) · v
��

=
�

∂ π0(m , n )
∂ r

(a ) · v,
∂ π1(m , n )
∂ r

(a ) · v
�

=
�

∂m

∂ r
(a ) · v,

∂ n

∂ r
(a ) · v

�

4. First note that

∂ π0(z )
∂ z

(a ) · v =π0

�

∂ z

∂ z
(a ) · v

�

=π0(v )

and similarly that ∂ π1(z )
∂ z (a ) · v =π1(v ). Then consider:

∂m ′

∂ z
(a ) · v =

∂ z 2(x , y ).m
∂ z

(a ) · v =
∂m [π0(z )/x ][π1(z )/y ]

∂ z
(a ) · v

=
∂m [π0(z )/x ][π1(z )[a/z ]/y ]

∂ z
(a ) · v +

∂m [π0(z )/x ][a/z ]
∂ y

(π1(a )) ·
�

∂ π1(z )
∂ z

(a ) · v
�

=
∂m [π1(a )/y ][π0(z )/x ]

∂ z
(a ) · v +

∂m [π0(a )/x ]
∂ y

(π1(a )) ·π1(v )

=
∂m [π1(a )/y ][π0(a )/x ]

∂ z
(a ) · v +

∂m [π1(a )/y ]
∂ x

(π0(a )) ·π0(v )

+
∂m [π0(a )/x ]

∂ y
(π1(a )) ·π1(v )

=
∂m [π1(a )/y ]

∂ x
(π0(a )) ·π0(v ) +

∂m [π0(a )/x ]
∂ y

(π1(a )) ·π1(v )

5. Immediate from the above.

From lemma 2.2.15.(5) we have also that when Γ , z : A×B ,Γ ′ `m ′ : C so that

m ′ = z 2(x , y ).m then

∂m ′

∂ z
(a , b ) · (v, w ) =

∂m [b /y ]
∂ x

(a ) · v +
∂m [a/x ]
∂ y

(b ) ·w
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Proposition 2.2.16. For any Cartesian differential theory T , C [T ] is a Cartesian

differential category.

A signature (Σ0,Σ1) such as above, is the same thing as a multigraph. The

adjunction between multigraphs and representable cartesian multicategories

puts a monad on the category of multigraphs, and the Kleisli category of this

monad is the category of signatures and signature morphisms (see Jacobs, 1999).

Thus a morphism of signaturesΣ−→Σ′ is an assignment of typesΣ0
F−−→Σ′0 and for

each function symbol f : A1, . . . , An −→ B of Σ1 a term x1 : F (A1), . . . , xn : F (An ) `
F ( f ) : F (B ). The interpretation J K of Σ into C [T ] yields an extension of signature

morphism to all terms, F̂ . A morphism of signaturesΣ−→Σ′ that underlie theories

T ,T ′ is a morphism of theories when for every theorem t1 = t2 of T , F̂ (t1) =

F̂ (t2) is a theorem of T ′. Now, since we are in a Kleisli category, composition

and identity are from the Kleisli structure, and give the correct notion of theory

equivalence: T is equivalent to T ′ when they are equivalent as representable

cartesian multicategories. Using the equivalence between representable cartesian

multicategories and categories with products, we get thatT andT ′ are equivalent

when C [T ]' C [T ′] as categories with products, and that this holds when they

prove the same theorems.

Thus the category Diff-Th whose objects are differential theories, and whose

morphisms are theory morphisms has the property that differential theoriesT ,T ′

are equivalent when C [T ]'C [T ′].
Let X be a Cartesian differential category with a chosen product functor. De-

fine Th(X) to be the specification with Σ0 the set of objects of X, and Σ1 to have a

function symbol f : A1, . . . , An −→ B for every map (· · · (A1×A2) · · · ×An )
f
−−→ B of

X. We have an interpretation of (Σ0,Σ1) in Xwhere J f K := f and JAK := A. Then

Th(X) has as its sets of equations E := {t1 = t2|t1, t2 ∈M (Th(X)),Jt1K= Jt2K}.
We immediately have that Th(X) is a differential specification – however it is

also a differential theory.

Proposition 2.2.17. For any Cartesian differential categoryX, Th(X) is a differen-

tial theory.

Proof. The proof actually follows from soundness: theorem 2.2.14. By definition
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we have that t1 = t2 ∈ E implies Jt1K= Jt2K. Then by corollary 2.2.14, every theorem

of Th(X) holds under interpretation. But this means that for every theorem m1 =

m2 of Th(X) we have Jm1K= Jm2K, but then by definition we have m1 =m2 ∈ E .

Thus, Th(X) is a differential theory.

Now, suppose T is any differential theory, and X is a Cartesian differential

category. Further suppose that there is a theory morphism T M−−→Th(X). This

means, that for each symbol of T there is a map of X. This then gives an inter-

pretation of T into X. Since M is a theory morphism, for each theorem t1 = t2

of T , we have M̂ (t1) = M̂ (t2), but by definition of M̂ this just means Jt1K = Jt2K.

Then by corollary 2.2.14, every theorem is satisfied by the interpretation. Now,

the interpretation J K restricted to the classifying category gives a functor

C [T ]
J K
−−→X

This is a functor by definition J(p : A `m : B )(q : B ` n : C )K= Jp : A ` n [m/q ] : C K=
JmKJnK. This is well defined by soundness: for each theorem t1 = t2 we have

Jt1K = Jt2K. We provide the calculation that the derivative is preserved on the

nose:

JD [p : A `m : B ]K

=
s
(v, a ) `

∂m

∂ p
(a ) · v : B

{

=




0,J(v, a ) ` v K
�

,



1,J(v, a ) ` aK
��

D [J((v, a ), p ) `mK]

=




0,π0Jv ` v K
�

,



1,π1Ja ` aK
��

D [π1Jp `mK]

=




0,π0Jv ` v K
�

,



1,π1Ja ` aK
��

(π1×π1)D [Jp `mK]

=



π0Jv ` v K,π1Ja ` aK
�

D [Jp `mK]

=D [Jp `mK]

Completeness says that if an equality is provable in all models, then it is

provable in the theory. C [T ] is a model whose theory Th(C [T ]) is equivalent to

T ; in other words a theorem is provable in T iff it holds under interpretation into

C [T ] – giving completeness. A direct proof of this is straightforward.
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Theorem 2.2.18.

1. Soundness: There is an adjunction:

Diff-Th CDC

C

Th

⊥

2. Completeness: The unit of the adjunction has T 'Th(C [T ]).

3. Expressivenes: The counit of the adjunction has C [Th(X)]'X.

Proof.

1. Use the characterization of adjunctions by the universal property of the

unit. We have object construction C and a functor Th for which

T Th(C [T ])

Th(X)

η

M Th(J K)

Supposing M is a theory morphism, we get the functor C [T ]
J K
−−→ X by

simply restricting the interpretation to sequents with one type on the left.

η is the map which assigns the symbol f : A1, . . . , An −→ B the term x1 :

A1, . . . , xn : An ` f (x1, . . . , xn ) : B . The triangle clearly commutes. Unique-

ness is immediate – the construction of J K is forced by the requirements for

functors to strictly preserve products, sums, and differentials.

2. To show that T 'Th(C [T ])we must show that C [T ]'C [Th(C [T ])]. When

we form Th(C [T ]), we obtain a new function symbol t for each formable

term t of T . If t was formed with variables x1, . . . , xn , then Th(C [T ]) will

come with an equation t (x1, . . . , xn ) = t . In particular, any equation of T
holds in Th(C [T ]) thus there is a fully-faithful functor C [T ]−→C [Th(C [T ])].

When we form C [T ]we explicitly form products of objects, and when we

take Th(C [T ])we now have named atomic product types in Σ0. We write

them as A×B . There are equations that express that this is the product of

48



A, B , so that A×B ' A×B , and hence the functor C [T ]−→C [Th(C [T ])] is

essentially surjective on objects.

3. The counit of the adjunction C [Th(X)] ε−→ X is just the restriction of the

the interpretation of Th(X) into X. But the interpretation of Th(X) into X
sends f to J f K= f and A to JAK= A. Thus it is full and faithful. Moreover, it

is actually an isomorphism on objects: Th(X) has a type for each object of

X, and this gives the equivalence C [Th(X)]'X.
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Chapter 3

higher-order differential calculus

In this chapter, we extend the results of chapter 2 to a higher-order setting; 1 i.e.,

a setting with function spaces, also called a Cartesian closed setting.

Classically, having differentiation in a setting where the domain of a function is

the vector space of smooth functions betweenR-vector spaces is both important

and non-trivial to obtain. Taking the derivative of functions whose type is for

exampleRR −→R is at the heart of the calculus of variations. However, neither

of the categories of smooth maps between Banach spaces nor Fréchet spaces is

Cartesian closed. The failure of a category of smooth functions between vector

spaces to be Cartesian closed led to the development of convenient vector spaces

(book:kriegl-frolicher; Kriegl and Michor, 1997) which are Cartesian closed, and

as we saw in chapter 2 are a Cartesian differential category.

In this chapter we extend our abstract framework for differentiation to handle

Cartesian closed categories of smooth maps. We also extend our differential

calculus with rules and equalities that allow for computing the derivative of higher-

order functions. To do this, we combine the differential calculus with the λ-

calculus which is the established theory of functions. We mirror the structure of

chapter 2, and we provide a categorical semantics similar to the equivalence of

chapter 2.

1Sometimes in differential geometry, the word ’higher-order’ is used to refer to differential
equations with higher-derivatives. At the present we are using higher-order in a computer science
sense, which means a function that can operate on and return functions.
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3.1 The categorical setting

In this section we describe the abstract setting for differentiation with function

spaces. There are actually two notions of “function space” in a category: inten-

sional and extensional function spaces. Extensional function spaces have the

additional property that functions that are equal on all inputs are equal func-

tions. Extensional function spaces are found in a Cartesian closed category, and

intensional function spaces are found in a λβ -category.

On the side of syntax, extensional theories are those that have theη-conversion

rule for the λ-calculus. For categorical models of the ordinary λ-calculus, we will

make use of a notion called a λβ -category. A slightly weaker structure than λβ -

categories was investigated in (Hayashi, 1985) (here the surjective pairing axiom

is also weakened, so that one does not have genuine products), and a setting very

similar to λβ categories was described in (Martini, 1992).

We first describe λβ -categories, and then we add addition and then differenti-

ation.

Definition 3.1.1. Let X have products and a terminal object. X is a λβ -category

when there is a semifunctor

Xop×X
[ , ]
−−→X

and maps

X(A×B , C )
λ−→X(A, [B , C ])

ψ
−−→X(A×B , C )

such that λψ= 1 (so that λ is a section withψ a retraction) and thatψ,λ are both

natural in A.

Naturality in A for ψmeans that (g × 1)ψ(h ) =ψ(g h ). Naturality in A for λ

means that gλ( f ) = λ((g × 1) f ). Forψ in particular we haveψ(g ) = (g × 1)ψ(1),

and if we define ev := ψ(1)we have

f =ψ(λ( f )) = (λ( f )×1)ψ(1) = (λ( f )×1)ev

Proposition 3.1.2. Let X have products.
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1. X is a λβ -category if and only if for each B , C there is an object [B , C ] and

an arrow [B , C ]×B
ev−−→ C such that for any A×B

f
−−→ C there is a map A

λ( f )
−−−→ [B , C ] such that (λ( f )×1)ev= f and gλ( f ) =λ((g ×1) f ).

2. In a λβ -category bothψ,λ are natural in C .

3. When X is a λβ -category, then the following are equivalent:

a) ψλ= 1;

b) X is cartesian closed;

c) [ , ] is a functor;

d) λ(ev) = 1.

Proof.

1. The forward direction of the proof was described preceding this lemma. For

the converse:

C
f
−−→C ′

[B , C ]×B
ev−−→C

f
−−→C ′

[B , C ]−−−−−−−−−−→
[B , f ] :=λ(ev f )

[B , C ′]

B ′
g
−→ B

[B , C ]×B ′
1× g
−−−−→ [B , C ]×B

ev−−→C
[B , C ]−−−−−−−−−−−−→

[g , C ] :=λ((1× g )ev)
[B ′, C ]

These both preserve composition, but the identity is sent to an idempotent.

The map λ( ) is provided by assumption, and the naturality in A is gλ( f ) =

λ((g ×1) f ). Defineψ(g ) := (g ×1)ev. Then naturality is just

(g ×1)ψ(h ) = (g ×1)(h ×1)ev=ψ(g h )

2. For the naturality of λ in C , we must prove λ(g h ) =λ(g )[B , h ]:

λ(g )λ(evh ) =λ((λ(g ) x 1)evh ) =λ(g h )

For the naturality ofψ in C , we must proveψ(g [B , h ]) =ψ(g )h :

ψ(g [B , h ]) = (gλ(evh )×1)ev= (g ×1)evh =ψ(g )h
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3. That a implies b and b implies c is immediate.

That c implies d: Assume [ , ] is a functor, so that it is a functor in both

arguments, and hence [B , 1] = 1. But [B , 1] :=λ(ev), giving the result.

That d implies a: Suppose λ(ev) = 1. Consider:

λ(ψ(g )) =λ((g ×1)ev) = gλ(ev) = g .

In contrast with a λβ -category, we will sometimes call a Cartesian closed

category a λ-category.

Definition 3.1.3. Let X be a Cartesian left additive category that is also a λβ -

category. It is called an additive λβ -category when ev is additive in its first argu-

ment and λ( f + g ) =λ( f ) +λ(g ) and λ(0) = 0. If X is additionally closed, then it is

called an additive λ-category or cartesian closed left additive category.

For the type theory correspondence, note that we will work up to chosen

product and internal hom semifunctors.

Lemma 3.1.4. In an additive λ-category the requirement that ev be additive in its

first argument is redundant.

Proof. In an additive λ-category, λ( ) has an inverse. Then consider the following

calculation:

〈m +n , t 〉ev= 〈λ(λ−1(m ))+λ(λ−1(n )), t 〉ev

= 〈1, t 〉(λ−1(m ) +λ−1(n )) = 〈m , t 〉ev+ 〈n , t 〉ev

The case for 0 is similar.

However, this condition seems to be required for additive λβ -categories.

Suppose X is Cartesian closed and Cartesian differential. Consider,
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A×B
f
−−→C

A
λ( f )
−−−→ [B , C ]

A×A
D [λ( f )]
−−−−−→ [B , C ]

(A×A)×B −−−−−−−−→
λ−1(D [λ( f )])

C

The resulting map λ−1(D [λ( f )]) seems like a candidate for partial derivative

DA[ f ]. In fact, we require that it is in the following definition.

Definition 3.1.5. Let X be a λβ -category that is also a Cartesian differential cat-

egory. X is a differential λβ -category when ev is linear in its first argument and

λ(DA[ f ]) = D [λ( f )] for any A × B
f
−−→ C . When X is additionally closed, it is a

differential λ-category or cartesian closed differential category.

To spell out these conditions in more detail we have:

〈π0×0,π1×1〉D [ev] = (π0×1)ev D [λ( f )] =λ(〈π0×0,π1×1〉D [ f ])

Example 3.1.6. The category of convenient vector spaces is an abstract coKleisli

category in the sense of (journal:BCS-Storage). For any convenient vector space

V , there is a free convenient vector space !V . In (Kriegl and Michor, 1997), the

following adjunction was provided (theorem 23.6):

Smooth(V , W )' Lin(!V , W )

The category of convenient vector spaces and linear maps has products, a tensor

product, is monoidal closed with respect to the tensor product, and the coKleisli

category of this comonad is the category of convenient vector spaces and smooth

maps. Thus the category of convenient vector spaces and smooth maps is Cartesian

closed. It is not hard to show that the required coherence holds, and we will give a

direct argument for this coherence in subsection 6.7.5.

Lemma 3.1.7. In a differential λ-category, the requirement that ev be linear in its

first argument is redundant.
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Γ , x : A,Γ ′ `m : B
Γ ,Γ ′ `λx .m : A −→ B

Abs Γ `m : A −→ B Γ ` n : A
Γ `m n : B

App

Table 3.1: Term formation rules for differential λ type theory

Proof. Recall that λ−1(1) = ev. Then,

(π0×1)ev= (D [1]×1)ev= (D [λ(ev)]×1)ev

= (λ(〈π0×0,π1×1〉D [ev])×1)ev= 〈π0×0,π1×1〉D [ev]

as required.

The extra coherence, however, still seems to be necessary for differential λβ -

categories.

3.2 higher-order differential type theory

In section 2.2, we introduced type theory for the differential calculus. In this

section, we extend this type theory with higher-order terms, also called λ-terms.

3.2.1 Simple higher-order differential type theory

A signature for a differential λ-theory is a pair Σ= (Σ0,Σ1). Σ0 is a collection of

atomic types, as before except that we have types:

type := A ∈Σ0 | ty−→ ty

The set of differential λ-terms is defined by the inference rules in table 2.1,

together with the two additional rules in table 3.1. The term λx .m is a function

term; it may be thought of as an unnamed function that uses the variable x . The

term m n is application. From the types, m : A −→ B and n : A, writing m n is

thought of as evaluation m (n ).

The cut identities are expanded to include the following.

Definition 3.2.1 (Cut/Composition Equalities).
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[CD-Sub.1] (λx .m )[n/y ] =λx .(m [n/y ]);

[CD-Sub.2] (m n )[t /x ] = (m [t /x ]) (n [t /x ]).

The term (λx .m ) represents an unnamed function that uses x , and (λx .m )n

is supposed to be thought of as evaluating that unnamed function at the argument

n . The β equality makes this precise, because it says that (λx .m )n is m [n/x ]

which is m with every x substituted by n . For example

(λx . sin2(x ) + x y )π=β sin2(π) +π · y

Definition 3.2.2 (λ-calculus identities). The λ-calculus equalities:

α: λx .m =λy .(m [y /x ]).

β : (λx .m )n =m [n/x ].

Definition 3.2.3 (Differentiation of higher-order functions). The following equal-

ities specify the interaction between differentiation and higher-order terms:

[CCDT.1] λy . ∂m
∂ x (a ) · v =

∂ λy .m
∂ x (a ) · v note that y 6∈ fv(a , v ).

[CCDT.2] ∂ y z
∂ y (a ) · v = v z when y 6= z .

The notion of theorem or derivable equality is expanded to include the ξ

rule:
Γ , x : A `m = n : B

Γ `λx .m =λx .n : A −→ B
ξ

We may choose to include or ignore the η-rule as a theorem:

Γ `m : A −→ B
Γ `m =λx .m x : A −→ B

η

We call a type theory with the η-rule extensional.

The structual lemma holds for this type theory.

Lemma 3.2.4. The equations for cut form a terminating and locally confluent

rewrite system whose normal forms are cut free.

sketch. The proof of this lemma is the same as lemma 2.2.3.

56



The equality congruence lemma also holds.

Lemma 3.2.5. Equality is a congruence on terms.

Proof. We prove that equality is closed under term formation. There are only two

rules. That m = n implies λx .m =λx .n is the ξ rule. For application

m n = (x y )[m/x , n/y ] = (x y )[m ′/x , n ′/y ] =m ′n ′

In (Ehrhard and Regnier, 2003) the chain rule was dropped, and instead the

D [App] equality was used:

D [App] :
∂m n

∂ x
(a )·v =

�

∂m

∂ x
(a ) · v

�

n [a/x ]+
∂ (m [a/x ])z

∂ z
(n [a/x ])·

�

∂ n

∂ x
(a ) · v

�

Note, that we are not assuming that D [App] holds; it is provable in this setting.

We also have the following lemma about derivable equality:

Lemma 3.2.6. In a differential type theory, the following equations always hold:

1. The η equality holds if and only if m x = n x implies m = n.

2. λx .( f + g ) = (λx . f ) + (λx .g ) and λx .0= 0.

3. When x 6∈ fv(m ), ∂ x m
∂ x (a ) · v = v m.

4. (m +n )t =m t +n t and 0 t = 0.

5. Consider closed differential type theory, but without [CCDT.2]. Then the

following are equivalent:

• λx .v x = ∂ λx .y x
∂ y (a ) · v ;

• [CCDT.2];

• For a fresh z , D [App]holds: ∂m n
∂ x (a )·v =

�

∂m
∂ x (a ) · v

�

n [a/x ]+ ∂ (m [a/x ])z
∂ z (n [a/x ])·

�

∂ n
∂ x (a ) · v

�

.

6. With the η-rule, [CCDT.2] is redundant.
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7. D [β ] holds: ∂ (λx .m )z
∂ z (a ) · v = ∂m

∂ x (a ) · v (where z 6∈ fv(m , a , v )).

Proof. Consider the following:

1. This is standard.

2.

λx .( f + g ) =λx .
�

∂ y

∂ y
(a ) · ( f + g )

�

=
∂ λx .y

∂ y
(a ) · ( f + g )

=
∂ λx .y

∂ y
(a ) · f +

∂ λx .y

∂ y
(a ) · g =λx .

∂ y

∂ y
(a ) · f +λx .

∂ y

∂ y
(a ) · g

=λx . f +λx .g

Similarly

λx .0=λx .
∂ y

∂ y
(a ) ·0=

∂ λx .y

∂ y
(a ) ·0= 0

3.
∂ y m

∂ y
(a ) · v =

�

∂ y z

∂ y
(a ) · v

�

[m/z ] = (v z )[m/z ] = v m

4.

(m +n )t =
∂ x t

∂ x
(a ) · (m +n ) =

∂ x t

∂ x
(a ) ·m +

∂ x t

∂ x
(a ) ·n =m t +n t

and

0 t =
∂ x t

∂ x
(a ) ·0= 0

5. That λz .v z = ∂ λz .y z
∂ y (a ) · v implies [CCDT.2]:

∂ λz .y z

∂ y
(a ) · v =λz .

∂ y z

∂ y
(a ) · v =λz .v z .

That [CCDT.2] implies D[App], the main step is lemma 2.2.7.4, followed by

[CCDT.2].

∂m n

∂ z
(a ) · v =

∂ (x y )[m/x , n/y ]
∂ z

(a ) · v

=
∂m [a/z ]y

∂ y
(n [a/z ]) ·

�

∂ n

∂ z
(a ) · v

�

+
∂ x (n [a/z ])

∂ x
(m [a/z ]) ·

�

∂m

∂ z
(a ) · v

�

=
∂m [a/z ]y

∂ y
(n [a/z ]) ·

�

∂ n

∂ z
(a ) · v

�

+
�

∂m

∂ z
(a ) · v

�

n [a/z ]
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Finally, that D[App] implies λz .v z = ∂ λz .y z
∂ y (a ) · v :

∂ λz .y z

∂ y
(a ) · v

=λz .
∂ y z

∂ y
(a ) · v [CCDT.1]

=λz .
��

∂ y

∂ y
(a ) · v

�

z +
∂ a z0

∂ z0
(z ) ·

�

∂ z

∂ y
(a ) · v

��

D [App]

=λz .
�

v z +
∂ a z0

∂ z0
(z ) ·0

�

[DT.4.2]

=λz .v z

6. Suppose η holds, but not [CCDT.2]. We show [CCDT.2] holds.

v z =
�

∂ y

∂ y
(a ) · v

�

z =
�

∂ λx .y x

∂ y
(a ) · v

�

z

=
�

λx .
∂ y x

∂ y
(a ) · v

�

z =
∂ y z

∂ y
(a ) · v

7. This is just the chain rule ([DT.5]):

∂ (λx .m )z
∂ z

(a ) · v =
∂m [z/x ]
∂ z

(a ) · v =
∂m

∂ x
(a ) ·

�

∂ z

∂ z
(a ) · v

�

=
∂m

∂ x
(a ) · v

More surprisingly as long as we have α-conversion for differentiation, the

chain rule follows from D[App]

Lemma 3.2.7. In differential λ type theory, the equation

∂m

∂ x
(a ) · v =

∂m [y /x ]
∂ y

(a ) · v

together with D [App] implies [DT.5] (see section 2.2) 2.

2 If the differential λ-calculus of (Ehrhard and Regnier, 2003) is augmented with function
symbols, an equality like α-conversion must be added to ensure the chain rule holds. It is not
strictly an α-equality because their derivative does not bind x .
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Proof. Consider,

∂ f [g /x ]
∂ y

(a ) · v =
∂ (λx . f )g
∂ y

(a ) · v

=
�

∂ λx . f

∂ y
(a ) · v

�

g [a/y ] +
∂ (λx .( f [a/y ]))z

∂ z
(g [a/y ]) ·

�

∂ g

∂ y
(a ) · v

�

=
�

λx .
∂ f

∂ y
(a ) · v

�

g [a/y ] +
∂ f [a/y ][z/x ]

∂ z
(g [a/y ]) ·

�

∂ g

∂ y
(a ) · v

�

=
∂ f [g [a/y ]/x ]

∂ y
(a ) · v +

∂ f [a/y ]
∂ x

(g [a/y ]) ·
�

∂ g

∂ y
(a ) · v

�

A differential λ-specification T = (Σ0,Σ1, E ) is given by a signature and a set

of equations E between differential λ-terms. As before, we extend the notion of

theorem of a theory to include

Γ `m = n : A
m =Γ n : A ∈ E

A differentialλ-theory is a differential λ-specificationT such that the equations

are closed to derivable equality. By extensional specification we mean that η-

equality is a theorem. A theory is then extensional when m =λx .m x is in E .

The notion of interpretation structure is similar to before, except now we

interpret into a differentialλβ -category. Given the assignment of atomic types, we

extend the interpretation to all types by JA −→ B K :=
�

JAK,JB K
�

. The interpretation

then specifies an assignment of function symbols that is consistent with the types.

The interpretation is extended to contexts in the same way as before. Finally,

to extend to all terms, we only need to say how to extend for the two new term

formation rules.

• JΓ `λx .m : A −→ B K :=λ(JΓ , x `m : B K) is the map that makes the following

commute.
�

JAK,JB K
�

× JAK B

JΓ K× JAK

ev

JΓ ,x :A`m :BKλ(JΓ ,x :A`m :BK)×1
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Note this map is guaranteed to exist because the interpretation is into a

differential λβ category. It is unique when the interpretation is into a differ-

ential λ-category (and hence models the η equality).

• JΓ `m n : B K := JΓ K



JΓ `m : A −→ BK,JΓ ` n : AK
�

−−−−−−−−−−−−−−−−−−→
�

JAK,JB K
�

× JAK ev−−→ JB K

Theorem 3.2.8. Let T = (Σ0,Σ1, E ) be any differential λ-specification. If every

equality t1 =Γ t2 : A ∈ E has JΓ ` t1 : AK = JΓ ` t2 : AK, then every theorem of T
holds under interpretation. If T is an extensional λ-specification, and X is a

differential λ-category, then every theorem of T holds under interpretation. That

is, the interpretation of differential λ-type theory into a differential λβ -category is

sound, and the interpretation of an extensional theory into a differentialλ-category

is sound.

To make the calculations take less space, we will omit types and contexts if

they are not relevant to the computation.

Proof. For [CDC-Sub.1] use lemma 2.2.8:

JΓ `λx .(m [n/y ])K=λ(JΓ , x `m [n/y ]K) =λ(〈1JΓ K×JAK,JΓ , x ` nK〉JΓ , x , y `mK)

=λ(〈1,JΓ , x ` nK〉c2JΓ , y , x `mK) =λ
��

〈1,JΓ ` nK〉×1
�

JΓ , y , x `mK
�

= 〈1,JΓ ` nK〉λ(JΓ , y `λx .mK) = JΓ ` (λx .m )[n/y ]K

[CDC-Sub.2] is immediate.

For [CCDT.1] First consider the LHS:

s
Γ `λy .

∂m

∂ x
(a ) · v

{
=λ

�s
Γ , y `

∂m

∂ x
(a ) · v

{�

=λ
�

〈〈0,JΓ , y ` v K〉, 〈1,JΓ , y ` aK〉〉D [JΓ , y , x `mK]
�

On the RHS:

s
Γ `
∂ λy .m

∂ x
(a ) · v

{
= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉D [JΓ , x `λy .mK]

=λ
��

〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉×1
�

〈π0×0,π1×1〉D [JΓ , x , y `mK]
�
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As λ( ) is a function, it suffices to compare what is under the λ. Then,

〈〈0,JΓ , y ` v K〉, 〈1,JΓ , y ` aK〉〉D [JΓ , y , x `mK]

= 〈〈0,π0JΓ ` v K〉, 〈1,π0JΓ ` aK〉〉(c2× c2)D [JΓ , x , y `mK]

= 〈〈〈0,π0JΓ ` v K〉,π1〉, 〈〈π0,π0JΓ ` aK〉,π1〉〉D [JΓ , x , y `mK]

=
�

〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉×1
�

〈π0×0,π1×1〉D [JΓ , x , y `mK]

as desired.

For [CCDT.2]: Note that JΓ ` z K is a projection when z is a variable, and hence

is linear, and preserves 0.

s
Γ `
∂ y z

∂ y
(a ) · v

{
= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉D [JΓ , y ` y z K]

= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉D [〈JΓ , y ` y K,JΓ , y ` z K〉ev]

= 〈〈0,JΓ ` v K〉, 〈1,JΓ ` aK〉〉(〈π1,π0JΓ ` z K〉× 〈π1,π0JΓ ` z K〉)D [ev]

= 〈〈JΓ ` v K, 0〉, 〈JΓ ` aK,JΓ ` z K〉〉D [ev]

= 〈〈JΓ ` v K,JΓ ` aK〉,JΓ ` z K〉〈π0×0,π1×1〉D [ev]

= 〈〈JΓ ` v K,JΓ ` aK〉,JΓ ` z K〉(π0×1)ev

= 〈JΓ ` v K,JΓ ` z K〉ev= JΓ ` v z K

That β and ξ hold are routine.

3.2.2 higher-order differential categories-type theory

correspondence

We do not need to develop the Cartesian differential λ-type theory because Carte-

sian differential λ-type theory is the union of the term and type formation rules

as well as equations of section 2.2.2 with simple higher-order differential type

theory.

For a Cartesian differential λ-theory T , the classifying category C [T ] is de-

fined in section 2.2.3. For a differential λ-theory, C [T ] is a λβ -category, and the

λβ -structure is:
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z : A×B ` f : C
x : A `λy . f [(x , y )/z ] : B −→C

λ( )
fx : (B −→C )×B ` fx 2( f , x ). f x : C

ev

Lemma 3.2.9. When T is a differential λ-theory, C [T ] is a λβ -category.

Proof. By proposition 3.1.2, it suffices to show that (λ( f )×1)ev= f and gλ( f ) =

λ((g ×1) f ).

Suppose we have z : A×B ` f : C . Then we haveλ( f ) := x : A `λy . f [(x , y )/z ] :

B −→C , andλ( f )×1 := z : A×B ` (λy . f [(π0(z ), y )/z ],π1(z )). Thus using surjective

pairing:

(λ( f )×1)ev= z : A×B ` (λy . f [(π0(z ), y )/z ])π1(z ) = f [(π0(z ),π1(z ))/z ] = f [z/z ] = f

Next, suppose t : D ` g : A and z : A×B ` f : C . Then consider the formation

of gλ( f ):

t : D ` g : A
z : A×B ` f : C

x : A `λy . f [(x , y )/z ] : B −→C
t : D `λy . f [(g , y )/z ] : B −→C

On the other hand consider the formation λ((g ×1) f ):

q : D ×B ` (g [π0(q )/t ],π1(q )) : A×B z : A×B ` f : C
q : D ×B ` f [(g [π0(q )/t ],π1(q ))/z ]

t : D `λy . f [(g [π0(q )/t ],π1(q ))/z ][(t , y )/q ]B −→C

Then

λy . f [(g [π0(q )/t ],π1(q ))/z ][(t , y )/q ]

=λy . f [(g [π0(t , y )/t ],π1(t , y ))/z ]

=λy . f [(g [t /t ], y )/z ]

=λy . f [(g , y )/z ]

Thus,λ((g ×1) f ) = gλ( f ). This completes the proof that C [T ] is aλβ -category.

Proposition 3.2.10. For any Cartesian differential theory T , C [T ] is a differential

λβ -category.
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In the following proof, we use the following notational convention: we write

for example v a 2(v, a ).m where v a is a separate, new variable that splits as (v, a ),

and we use v a as opposed to some arbitrary variable name like t to keep the

number of names easier to manage.

Proof. It suffices to show that ev is linear in its first argument and that D [λ( f )] =

λ(〈π0×0,π1×1〉D [ f ]). That ev is linear in its first argument follows from [CCDT.2].

For the other requirement, suppose z : A × B ` f ′ = z 2(x , y ). f : C , so that

λ( f ) = x : A `λy . f : B −→C , and D [λ( f )] = v −a 2(v, a ) ∂ λy . f
∂ x (a ) · v .

On the other hand, D [ f ] = v w x y2(v w , x y ). ∂ f ′

∂ z (x y )·v w and 〈π0×0,π1×1〉=
v a y ` v a y 2(v a , y ).v a 2(v, a ).((v, 0), (a , y )). Thus,

〈π0×0,π1×1〉D [ f ] = v a y ` v a y 2(v a , y ).v a 2(v, a ).
∂ z 2(x , y ). f

∂ z
(a , y ) · v, 0

= v a y ` v a y 2(v a , y ).v a 2(v, a ).
∂ f

∂ x
(a ) · v lemma 2.2.15.5

Thus,

λ(〈π0×0,π1×1〉D [ f ]) = v a ` v a 2(v, a ).λy .
∂ f

∂ x
(a ) · v

= v a ` v a 2(v, a ).
∂ λy . f

∂ x
(a ) · v [CCDT.1]

as required.

The notion of theory of a differentialλβ -category is the same as for a Cartesian

differential category. We have the following lemma

Lemma 3.2.11.

1. For any Cartesian differential theory T , C [T ] is a differential λ-category (i.e.

it is closed) if and only if T is an extensional theory.

2. The interpretation of an extensional theory T into a differential λ-category

is sound.

3. The theory of a differential λβ -category is always a Cartesian differential

λ-theory.
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4. The theory of a differential λ-category is always an extensional Cartesian

differential λ-theory.

Then for the same general reasons as before we get the categorical type theory

correspondence.

Theorem 3.2.12.

• There is an adjunction:

Diff-λ-Th Differential-λβ -cat

C

Th

⊥

• Completeness: The unit of the adjunction has T 'Th(C [T ]).

• Internal logic: The counit of the adjunction has C [Th(X)]'X.

Also we get as an immediate consequence:

Corollary 3.2.13. When X is a differential λβ -category then it is an additive λβ -

category.

Proof. Consider lemma 3.2.6 points 2 and 4. Under interpretation into X, they

give λ( f + g ) = λ( f ) +λ(g ) and λ(0) = 0 and the additivity of ev in the function

argument respectively. By soundness and completeness these equalities for all

maps in X, giving the coherence for being an additive λβ -category.

65



Chapter 4

An explicit equivalence between

syntaxes

We have shown that the type theory for higher order differential calculus has a

sound and complete semantics into differentialλβ -categories in chapter 3. In this

chapter, we show that if the differential λ-calculus of (Ehrhard and Regnier, 2003)

has the differential extensionality equation added, then the equational theory

of the differential λ-calculus is equivalent to the equational theory of the higher

order differential calculus of chapter 3 provided that Σ= ; and E = ;.
We present a simplified syntax of the original differentialλ-calculus of (Ehrhard

and Regnier, 2003) that was used in (Bucciarelli, Ehrhard, and Manzoneto, 2010):

Λd := 0 |Λs +Λd |Λs Λs := x |λx .Λs |Λs Λd |DΛs ·Λs

These terms are taken modulo the identities for a commutative monoid and

the permutation identity D (D m · u ) · v = D (D m · v ) · u . There are two main

equations:

(β ) : (λx .s )t = s [t /x ] (Dβ ) : D (λx .s ) · t =λx .
∂ s

∂ x
· t

where substitution denotes normal substitution and ∂ s
∂ x · t is the differential

substitution, which we define by induction on syntax:
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DSub.1 ∂ y
∂ x ·T =







T x = y

0 else
;

DSub.2 ∂ λy .s
∂ x ·T =λy . ∂ s

∂ x ·T ;

DSub.3 ∂ s u
∂ x · t = (

∂ s
∂ x · t )u + (D s · ( ∂ u

∂ x · t ))u ;

DSub.4 ∂ D s ·u
∂ x · t =D ( ∂ s

∂ x · t ) ·u +D s · ( ∂ u
∂ x · t );

DSub.5 ∂ s+u
∂ x · t =

∂ s
∂ x · t +

∂ u
∂ x · t and ∂ 0

∂ x · t = 0.

Note, ∂ s
∂ x · t is not a variable binding term formation rule, it is an operation on

terms, and x may generally be free in ∂ s
∂ x · t .

Thus the full equational theory of Λd is given by

• the equations for giving the syntactic +,0 the structure of a monoid on

terms;

• the permutation axiom D (D m · v ) ·u =D (D m ·u ) · v );

• the equations β and the equation Dβ ;

• (η∂ ): λz .(D m · v )z =D m · v (this is differential extensionality).

We now give explicit translations between these two syntaxes and show simu-

lation equivalence when η is not present. The case for when η is present follows

immediately.

We now denote the syntax for the differential λ-calculus proposed in this

thesis by ΛD to distinguish it from the Ehrhard-Regnier syntax Λd .

First, define Λd
J Kd

D−−−→ΛD by induction on terms

• J0Kd
D = 0

• Jm +nKd
D = JmKd

D + JnKd
D

• Jx Kd
D = x

• Jλx .mKd
D =λx .JmKd

D
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• Jm nKd
D = JmKd

D JnKd
D

• JD m · v Kd
D =λx .

∂ JmKd
D z

∂ z (x ) · Jv Kd
D

First we show that J Kd
D preserves the operations of substitution and differential

substitution. We will supress the super and subscripts in the following lemma.

Lemma 4.0.1 (Substitution lemma). The translation has the following properties

1. Jm [n/x ]K= JmK[JnK/x ]

2.
r
∂m
∂ x · v

z
= ∂ JmK

∂ x (x ) · Jv K

Proof.

1. The proof of 1 is by a straightforward induction on m .

2. The proof of 2 is by induction on m .

Consider the case when m =m n . Then ∂m n
∂ x ·v is ( ∂m

∂ x ·v )n+(D m ·( ∂ n
∂ x ·v ))n

by the definition of differential substitution. Then,

s
∂m n

∂ x
· v

{

=
s
(
∂m

∂ x
· v )n + (D m · (

∂ n

∂ x
· v ))n

{

=

�

∂ JmK
∂ x

(x ) · Jv K
�

JnK+
�

λy .
∂ JmKz

∂ z
(y ) ·

�

∂ JnK
∂ x

(x ) · Jv K
��

JnK

=

�

∂ JmK
∂ x

(x ) · Jv K
�

JnK+
�

∂ JmKz

∂ z
(JnK) ·

�

∂ JnK
∂ x

(x ) · Jv K
��

=
∂ JmKJnK
∂ x

(x ) · Jv K=
∂ JmnK
∂ x

(x ) · Jv K 3.2.6.5

Consider the case when m =D s ·u . In this case we have that by definition

of the differential substitution operation, ∂ D s ·u
∂ x ·t is D ( ∂ s

∂ x ·t )·u+D s ·( ∂ u
∂ x ·t ).

Then,
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∂ JD s ·uK
∂ x

(x ) · Jt K

=
∂ λy0.

�

∂ JsK y
∂ y (y0) · JuK

�

∂ x
(x ) · Jt K

=λy0.
∂
∂ JsK y
∂ y (y0) · JuK

∂ x
(x ) · Jt K [CCDT.1]

=λy0.
∂ ∂ z0 y

∂ y (y0) · z1[Js K,JuK/z0, z1]

∂ x
(x ) · Jt K

=λy0.
∂ ∂ z0 y

∂ y (y0) · JuK

∂ z0
(Js K) ·

�

∂ Js K
∂ x
(x ) · Jt K

�

+λy0.
∂
∂ JsK y
∂ y (y0) · z1

∂ z1
(JuK) ·

�

∂ JuK
∂ x

(x ) · Jt K
�

2.2.7.4

=λy0.
∂ ∂ z0 y
∂ z0
(JuK) ·

�

∂ JsK
∂ x (x ) · Jt K

�

∂ y
(y0) · JuK

+λy0.
∂ Js K y

∂ y
(y0) ·

�

∂ JuK
∂ x

(x ) · Jt K
�

DT.7 and DT.6

=λy0.
∂
�

∂ JsK
∂ x (x ) · Jt K

�

y

∂ y
(y0) · JuK

+λy0.
∂ Js K y

∂ y
(y0) ·

�

∂ JuK
∂ x

(x ) · Jt K
�

[CCDT.2]

=
s

D (
∂ s

∂ x
· t ) ·u

{
+

s
D s · (

∂ u

∂ x
· t )

{

=
s

D (
∂ s

∂ x
· t ) ·u +D s · (

∂ u

∂ x
· x )

{
=

s
∂ D s ·u
∂ x

· t
{

The base cases and other cases are straightforward.

As a corollary, observe that the above means that for each equation l = r of

DSub, we have Jl K= Jr K.

Before continuing, we need the following lemma:
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Lemma 4.0.2 (Manzonetto). In ΛD , suppose (p , q ) : Γ ×A ` f : B , p : Γ ` g : A, and

p : Γ ` h : A. Then,

∂ ∂ f (p ,q )
∂ q (q ) ·h (p )
∂ q

(q ) · g (p ) =
∂ ∂ f (p ,q )

∂ q (q ) · g (p )
∂ q

(q ) ·h (p )

where t (r ) denotes that r is free in t .

This lemma was stated by (Manzonetto, 2012) as lemma 4.6 using the ? op-

erator. There it was stated as ( f ? g ) ?h = ( f ?h ) ? g . However, a more direct and

general proof may be given:

Lemma 4.0.3. In any differential theory T , when z1 6∈ fv(m , v, a , w ),

∂ ∂m
∂ x (z1) · v
∂ z1

(a ) ·w =
∂ ∂m
∂ x (z1) ·w
∂ z1

(a ) · v

Proof. The proof is from (Cockett and Seely, 2011).

First, we prove that ∂m
∂ x (a ) · v =

∂m [a+y /x ]
∂ y (0) · v :

∂m [a + y /x ]
∂ y

(0) · v =
∂m

∂ x
((a + y )[0/y ]) ·

∂ a + y

∂ y
(0) · v

=
∂m

∂ x
(a ) ·

�

∂ a

∂ y
(0) · v +

∂ y

∂ y
(0) · v

�

=
∂m

∂ x
(a ) · v

Now,

∂ ∂m
∂ x (z1) · v
∂ z1

(a ) ·w =
∂ ∂m [z1+y /x ]

∂ y (0) · v
∂ z1

(a ) ·w =
∂ ∂m [z1+y /x ]

∂ y (0) · v [a + y2/z1]

∂ y2
(0) ·w

=
∂ ∂m [a+y2+y /x ]

∂ y (0) · v
∂ y2

(0) ·w =
∂ ∂m [a+y2+y /x ]

∂ y (0) ·w
∂ y2

(0) · v =
∂ ∂m
∂ x (z1) ·w
∂ z1

(a ) · v

Then,

Proposition 4.0.4. The interpretation J Kd
D is sound: if m = n in Λd , then JmKd

D =

JnKd
D in ΛD .
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Proof. The equations for commutative monoids are preserved under interpreta-

tion, and the calculations for this are straightforward. This leaves the permutation

identity, β , Dβ , and η∂ . We start with β . We will omit the scripts on the interpre-

tation brackets for this proof.

J(λx .m )nK

= Jλx .mKJnK

= (λx .JmK)JnK

= JmK[JnK/x ]

= Jm [n/x ]K lemma 4.0.1

Next Dβ :

s
λy .

∂ s

∂ y
· t

{

=λy .
∂ Js K
∂ y
(y ) · Jt K lemma 4.0.1

=λx .
∂ Js K
∂ y
(x ) · Jt K α

=λx .
∂ Js K
∂ y
(x ) ·

�

∂ z

∂ z
(x ) · Jt K

�

=λx .
∂ Js K[z/y ]
∂ z

(x ) · Jt K 2.2.7.1

=λx .
∂ Jλy .s Kz

∂ z
(x ) · Jt K

= JD (λy .s ) · t K

Next, the permutation identity:
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JD (D m · v ) ·uK

=λx .
∂
�

λy . ∂ JmKz0
∂ z0

(y ) · Jv K
�

z1

∂ z1
(x ) · JuK

=λx .
∂
�

∂ JmKz0
∂ z0

(z1) · Jv K
�

∂ z1
(x ) · JuK

=λx .
∂
�

∂ JmKz0
∂ z0

(z1) · JuK
�

∂ z1
(x ) · Jv K lemma 4.0.2

= JD (D m ·u ) · v )K

Finally, we show that η∂ holds:

Jλx .(D m · v )x K

=λx .JD m · v Kx

=λx .(λy .
∂ JmKz

∂ z
(y ) · Jv K)x

=λx .
∂ JmKz

∂ z
(x ) · Jv K

= JD m · v K

Define ΛD
J KD

d−−−→Λd by induction on terms:

• J0KD
d = 0

• Jm +nKD
d = JmKD

d + JnKD
d

• Jx KD
d = x

• Jλx .mKD
d =λx .JmKD

d

• Jm nKD
d = JmKD

d JnKD
d

•
r
∂m
∂ x (a ) · v

zD

d
=
�

λx .
∂ JmKD

d
∂ x · Jv KD

d

�

JaKD
d
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Lemma 4.0.5 (Substitution lemma). The translation has the substitution property

Jn [m/x ]KD
d = JnKD

d [JmKD
d /x ]

Proof. The proof of the substitution lemma is by induction on the structure of

n .

As before, we will drop the super and subscripts while working with only this

translation.

Also note the translation of differentials yields:

s
∂m

∂ x
(a ) · v

{

=

�

λx .
∂ JmK
∂ x

· Jv K
�

JaK

=

�

∂ JmK
∂ x

· Jv K
�

[JaK/x ]

We will need the following lemma from (Ehrhard and Regnier, 2003):

Lemma 4.0.6 (Ehrhard-Regnier). The following holds for Λd :

1. If x 6∈m then ∂m
∂ x · v = 0;

2.
∂m

∂ x
·
∑

j

v j =
∑

j

∂m

∂ x
· v j

3. If y 6∈ fv(u ), then

∂ ∂ t
∂ y · v
∂ x

·u =
∂ ∂ t
∂ x ·u
∂ y

· v +
∂ t

∂ y
·
�

∂ v

∂ x
·u
�

In particular, if additionally, x 6∈ fv(v ), then

∂ ∂ t
∂ y · v
∂ x

·u =
∂ ∂ t
∂ x ·u
∂ y

· v
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4. When x 6∈ fv(v ):
�

∂ t

∂ x
·u
�

[v /y ] =
∂ t [v /y ]
∂ x

·u [v /y ]

5. When x 6= y , y 6∈ fv(u , v ), then

∂ t [v /y ]
∂ x

·u =
�

∂ t

∂ x
·u
�

[v /y ] +
�

∂ t

∂ y
·
�

∂ v

∂ x
·u
��

[v /y ]

In particular, when x 6∈ fv(vi ) for i = 1 to n, the above inductively gives

∂ t [vi /yi ]
∂ x

·u =
�

∂ t

∂ x
·u
�

[vi /yi ]

6. When x 6∈ fv(m ) and yi 6∈ fv(v j ) for i , j = 1 to n, we have

∂m [vi /yi ]
∂ x

·u =

�

n
∑

i=1

∂m

∂ yi
·
�

∂ vi

∂ x
·u
�

�

[vi /yi ]

Proof. For proofs of the above see (Ehrhard and Regnier, 2003): 1, 2 are (Ehrhard

and Regnier, 2003) lemma 3, 3 is (Ehrhard and Regnier, 2003) lemma 4, 4 is

(Ehrhard and Regnier, 2003) lemma 6, and 5 is (Ehrhard and Regnier, 2003) lemma

5. This leaves only 6 for us; the proof of 6 is by induction on the structure of n .

The base case is trivial. Then,

∂m [vi /yi ]
∂ x

·u

=
∂m [vi /yi ][vn/yn ]

∂ x
·u

=
�

∂m [vi /yi ]i<n

∂ x
·u
�

[vn/yn ] +
∂m [vi /yi ]i<n

∂ yn
·
�

∂ vn

∂ x
·u
�

[vn/yn ] lemma 4.0.6.5

=
�

∂m [vi /yi ]i<n

∂ x
·u
�

[vn/yn ] +
∂m

∂ yn
·
�

∂ vn

∂ x
·u
�

[vi /yi ]
n
i=1 lemma 4.0.6.5

=

�

n−1
∑

i=1

∂m

∂ yi
·
�

∂ vi

∂ x
·u
�

�

[vi /yi ]i<n [vn/yn ] +
∂m

∂ yn
·
�

∂ vn

∂ x
·u
�

[vi /yi ]
n
i=1 ind hyp

=

�

n
∑

i=1

∂m

∂ yi
·
�

∂ vi

∂ x
·u
�

�

[vi /yi ]
n
i=1

as required.
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Proposition 4.0.7. The interpretation ΛD
J KD

d−−−→Λd is sound: if m = n in ΛD ,then

JmKD
d = JnKD

d in Λd .

Proof. The commutative monoid equations DT.1 are immediate. That β and α

hold is also immediate because the substitution lemma holds.

We now proceed to show that Dt.2–7 and CCDT.1–2 hold under translation.

[DT.2] This is obvious.

[DT.3] This is given by lemma 4.0.6.2

[DT.4] For the variable case:
s
∂ x

∂ x
(a ) · v

{

=
�

∂ x

∂ x
· Jv K

�

[JaK/x ]

= Jv K[JaK/x ] = Jv K

For the 0 case use 4.0.6.1.

[DT.5] This is given by 4.0.6.6 and a few routine manipulations.

[DT.6] By hypothesis we have y 6∈ fv(m ). Then,

t
∂ ∂ n
∂ x (a ) · y
∂ y

(b ) · v

|

=

�

∂
∂ JmK
∂ x · y
∂ y

· Jv K

�

[JaK/x ,Jb K/y ]

=

 

∂
∂ JmK
∂ y · Jv K

∂ x
· y +

∂ JmK
∂ x

·
∂ y

∂ y
· Jv K

!

[JaK/x ,Jb K/y ] 4.0.6.3

=

�

∂ JmK
∂ x

· Jv K
�

[JaK/x ]

[DT.7] This is given essentially by the “in particular” part of 4.0.6.3.
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[CCDT.1] We have
s
∂ λy .m

∂ p
(a ) · v

{

=

�

∂ λy .JmK
∂ xi

· Jvi K
�

[
q

a j

y
/x j ]

=λy .

��

∂ λy .JmK
∂ xi

· Jvi K
�

[
q

a j

y
/x j ]

�

=
s
λy .
∂m

∂ p
(a ) · v

{

[CCDT.2] First note that in Λd :

∂ y z

∂ y
· v =

�

∂ y

∂ y
· v
�

z + (D y · (
∂ z

∂ y
(v ) · ))z =

�

∂ y

∂ y
· v
�

z = v z

As D x ·0= 0. Then

s
∂ λz .y z

∂ y
(a ) · v

{
=
�

∂ λz .y z

∂ y
· v
�

[a/y ] =λz .
�

∂ y z

∂ y
· v
�

[a/y ] =λz .v z

as required.

This completes the proof.

Therefore we have sound translations between Λd and ΛD . Finally, we show

that these translations are inverse.

Proposition 4.0.8. For all m ∈ΛD we have m =
r
JmKD

d

zd

D
.

Proof. The proof is by induction on the structure of m .

Variable
r
Jx KD

d

zd

D
= Jx Kd

D = x

Monoid For 0,
r
J0KD

d

zd

D
= J0Kd

D = 0. For sums

r
Jm +nKD

d

zd

D
=

r
JmKD

d

zd

D
+

r
JnKD

d

zd

D
=m +n

by the inductive hypothesis.
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Application Similarly,
r
Jm nKD

d

zd

D
=

r
JmKD

d

zd

D

r
JnKD

d

zd

D
=m n .

Abstraction Similarly,
r
Jλ.mKD

d

zd

D
=λx .

r
JmKD

d

zd

D
=λx .m .

Differential We have

ts
∂m

∂ x
(a ) · v

{D

d

|d

D

=

t
�

∂ JmKD
d

∂ x
· Jv KD

d

�

[JaKD
d ]

|d

D

=
∂

r
JmKD

d

zd

D

∂ x
(x ) ·

r
Jv KD

d

zd

D
[
r
JaKD

d

zd

D
]

=
∂m

∂ x
(a ) · v Ind. hyp.

This completes the proof.

Similarly, we have

Proposition 4.0.9. For all m ∈Λd we have m =
r
JmKd

D

zD

d
.

Proof. The proof is by induction on the structure of m . Similarly, to the above,

the cases for variable, sums of terms, application, and abstraction are easy. We

cover here case m =D m · v .
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r
JD m · v Kd

D

zD

d

=

t

λy .
∂

q
m d

D

y
z

∂ z
(y ) · Jv Kd

D

|D

d

=λy .







∂
r
JmKd

D

zD

d
z

∂ z
·
r
Jv Kd

D

zD

d






[y /z ]

=λy .
�

∂m z

∂ z
· v
�

[y /z ] Ind. Hyp.

=λy .
��

∂m

∂ z
· v
�

z + (D m · v )z
�

[y /z ]

=λy .(D m · v ) y

=D m · v differential extensionality η∂

Therefore we have:

Corollary 4.0.10. The theory Λd is equivalent to the theory ΛD .
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Part II

Differential Geometry
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In part I of the thesis, we investigated the categorical semantics for the differen-

tial λ-calculus; the main objective was to produce soundness, completeness and

expressiveness results for the differential λ-calculus. In doing this, we were able

to give an explicit equational theory for the differential λ-calculus, and show that

differential λβ -categories provide an expressive, sound, and complete semantics.

A particularly intriguing model of the differential λ-calculus was mentioned

3.1.6 in the previous section: convenient vector spaces (Blute, Ehrhard, and Tas-

son, 2010). Kock showed that the category of convenient vector spaces and smooth

maps embeds into the Cahiers topos (Kock, 1986). The Cahiers topos was intro-

duced by Dubuc in (Dubuc, 1979) and initiated the study of well adapted models

of synthetic differential geometry. The convenient vector spaces actually embed

into theR vector spaces and smooth maps, and so their inherited tangent bundle

trivializes T (V )'V ×V .

The above insight led to asking the question: do the Kock-Lawvere vector

spaces of a smooth topos (i.e. a model of SDG) always admit a sound interpre-

tation of the differential λ-calculus? The answer is a definite yes, but the way

we approached the answer, led to a better understanding of the models of the

differential λ-calculus and of Cartesian closed tangent categories.

Tangent categories, introduced by (Rosický, 1984) to understand abstractly

the tangent functor in synthetic differential geometry as well as the Lie algebra of

a tangent functor. Tangent categories were rediscovered in (Cockett and Cruttwell,

2014b) where the manifold completion of (Grandis, 1990) was applied to a differ-

ential restriction category (Cockett, Cruttwell, and Gallagher, 2011) to understand

the conditions that needed to hold of an abstract tangent functor. Remarkably,

(Rosický, 1984) and (Cockett and Cruttwell, 2014b) arrived at essentially the same

conditions. The main difference is that (Rosický, 1984) assumed that the addition

of tangent vectors had negatives, where (Cockett and Cruttwell, 2014b) does not

assume negatives. The lack of negatives in (Cockett and Cruttwell, 2014b) is cru-

cial for applications to the differential λ-calculus, as the differential λ-calculus

does not have negatives.

Synthetic differential geometry (SDG) yields a tangent category with finite

limits and where the tangent bundle is representable; T M ' [D , M ]. D is then

forced to have certain properties making it into an object of “disembodied tangent

80



vectors.” While SDG is a radical reformulation of differential geometry, Dubuc’s

paper (Dubuc, 1979) shows that it is possible to study classical differential geome-

try using the synthetic method. This is because the category of smooth manifolds

and smooth maps embeds into a well adapted model of SDG (for example the

Cahiers topos), and importantly the embedding preserves transverse limits.

In the proof that theR vector spaces of a model of SDG are always a model

of the differential λ-calculus, one finds that the proof does not deal with the

peculiarities of SDG and revolves around an isomorphism

T [A, B ]' [A, T B ]

It turns out that this isomorphism may be seen to arise from a strength A×T (B )
θ−−→ T (A×B ). We axiomatize a coherently closed tangent category to be a cartesian

closed tangent category in which the map T [A, B ]−→ [A, T B ], which arises from

the strength A × T B −→ T (A × B ), is an isomorphism. In any tangent category

there is a notion of differential object (see e.g. (Cockett and Cruttwell, 2014b)) that

plays the role of vector space. Indeed in SDG the differential objects are precisely

R vector spaces, and in SMan the differential objects are alsoR vector spaces.

We will see that in a coherently closed tangent category the differential objects

are always a model of the differential λ-calculus.

Recent work of Leung (Leung, 2017) makes it possible to view tangent cate-

gories by Weil prolongation – the tangent functor can be formally viewed as in-

finitesimally extending an object T M 'M ⊗R [x ]/(x 2). This result makes it possi-

ble to connect tangent categories to the work of Nishimura. Nishimura introduced

a concept he called axiomatic differential geometry in a series of notes (Nishimura,

2012a; Nishimura, 2012b; Nishimura, 2012c; Nishimura, 2013; Nishimura, 2012d;

Nishimura, 2012e; Nishimura, 2017a). In these notes, Nishimura essentially asked

for Weil prolongation – the difference between Nishimura’s setting and that of

tangent categories is that tangent categories require Weil prolongation to be co-

herent, whereas Nishimura missed the coherences required of an action. Similarly

Nishimura’s axiomatics asked for a (non-canonical) isomorphism

T [A, B ]' [A, T B ]
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Nishimura needed this isomorphism so that the object of vector fields can be

formulated as an object intrinsic to his axiomatics. Also interestingly, while not

Cartesian closed, the category of manifolds modelled on convenient vector spaces

does have some homs; in particular when M is compact and N has local addition,

there is a hom [M , N ] and T [M , N ]' [M , T N ] (Kriegl and Michor, 1997) chapter

IX, theorem 42.17. In Kriegl and Michor, the isomorphism is the canonical one

described here. Thus, there seems to be a mathematical role that our isomorphism

plays.

Nishimura’s axiomatic differential geometry was an abstraction of some of

his earlier work on Frölicher spaces (Nishimura, 2009; Nishimura, 2010). He

introduced an idea of Weil exponentiation. In this part of thesis we will make his

idea of Weil exponentation formal using coherently closed tangent categories and

prove that a coherently closed tangent category may be extracted from Frölicher

spaces as an exponential ideal that contains the convenient manifolds. This

gives a categorically presented alternative to Michor’s cartesian closed category

of smooth manifolds (Michor, 1984a; Michor, 1984b).

Strength and enrichment are intimately related. In (Garner, 2018), Leung’s

theorem relating tangent categories and Weil prolongation is extended; Garner

shows that tangent categories are categories enriched in a monoidally reflective

subcategory of Weil spaces. We will extend Garner’s result, and prove results

relating transverse limits and enriched limits, and coherently closed tangent

categories and enriched closed categories. We will then use the enrichment to

prove properties about closed tangent categories.
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Chapter 5

Coherently Closed Tangent

Categories

There have been many attempts to formalize “convenient” or monoidal closed cat-

egories that generalize the category of smooth manifolds in some suitable sense.

Fréchet manifolds and convenient manifolds have all internal homs of finite di-

mensional manifolds, but are not themselves Cartesian closed. Frölicher spaces,

Sikorski (also known as differential) spaces, diffeological spaces, and other smoothe-

ologies Stacey, 2011 define smoothness using curves into a space (e.g. functions

R −→ X ) or functionals out of a space (e.g. functions X −→ R) rather than by

topological methods. These categories are Cartesian closed, but it is not clear to

what extent these settings have tangent structure. Synthetic differential geome-

try provides differential geometry in a Cartesian closed category, and does have

tangent structure.

A tangent category is a category equipped with structure that abstracts es-

sential properties of the tangent bundle on smooth manifolds. We will provide a

definition in the sequel. In this chapter, we will address what it means to have

a tangent category that is cartesian closed and in which the closed structure is

coherent with the tangent bundle.

It turns out that strength, and a related notion we call exponential strength

play an important role. In this chapter we will first develop tangent categories as

strong, and prove that all the structural transformations are strong. Before doing
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this, we develop a few ideas about strength that we will need. We then develop

coherently closed tangent categories; these are tangent categories that are also

Cartesian closed, where a certain exponential strength is an isomorphism. We

prove that the differential objects of a coherently closed tangent category are

always a differential λ-category, thus simplifiying the coherence condition on

differential λ-categories. We then characterize when the coKleisli category of

a tangent category is a tangent category; to do so we characterize how tangent

structure lifts across a comonadic adjunction. This gives another view on the

strength; all the natural transformations lift precisely because they are strong. We

then show that for coherently closed tangent categories homs into the total space

of a differential bundle are a differential bundle. This property of differential

bundles has application to internalizing the object of vector fields. We finally

discuss locally closed tangent categories.

5.1 Tangent categories

In this section we introduce tangent categories which serve as our abstract setting

for differential geometry.

LetX be a category with products, and let E
q
−→M be any map. q provides

an additive bundle over M when there are finite pullbacks of q (so that there are

finite products of q inX/M ) and there are maps E2
+−−→ E and M

0−→ E such that

E2 E

E E

M

+

qq q

and
M E

M

0

q

provide the structure of a commutative monoid in the slice X/M .

Given bundles, (E
q
−→M ,+,0) and (E ′

q ′
−−→M ′,+,0) a pair of maps (E

f
−−→

E ′, M
g
−→M ′) is an additive bundle homomorphism when they commute with

the bundles, the addition, and the zero.

Definition 5.1.1. X is a tangent category Cockett and Cruttwell, 2014b when there

is an endofunctor X T−−→X together with natural transformations:
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Tangent bundle: T (M )
p
−−→M

Canononical flip: T 2(M )
c−→ T 2(M )

Vertical lift: T (M )
l−→ T 2(M )

Tangent additition: M
0−→ T (M ) and T2(M )

+−−→ T (M )

such that

1. All pullbacks of p along p exist and are preserved by T . Call the pullback of

a single p along p T2(M ).

2. For each M , T (M )
p
−−→M is an additive bundle with respect to 0 and +.

3. (l ,0) : (T M
p
−−→M ,+,0)−→ (T 2M

T p
−−−→ T M , T (+), T (0)) is an additive bun-

dle morphism.

4. (c ,1) : (T 2M
T p
−−−→ T M , T (+), T (0)) −→ (T 2M

p
−−→ T M ,+,0) is an additive

bundle morphism.

5. l and c are coherent:

T T 2

T 2 T 3

l

l T (l )

lT

T 3 T 3 T 3

T 3 T 3 T 3

T (c )

cT

cT

T (c )

T (c ) cT

T 2 T 3 T 3

T 2 T 3

lT

c

T (c )

cT

T (l )

6. The lift is universal: the following is an equalizer diagram, and the equalizer

is preserved by T k .

T2M T 2M T M
v :=〈π0l ,π10〉T (+) T (p )

p p 0

Lemma 5.1.2. (l , 0) : (p ,+, 0)−→ (pT ,+T , 0T ) is an additive bundle homomorphism.

Proof. See Cockett and Cruttwell, 2014b.

We have the following useful lemma that shows that l is itself an equalizer.
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Lemma 5.1.3 (Cockett and Cruttwell, 2014b). In any tangent category, the follow-

ing is a triple equalizer diagram.

T M T 2M T Ml
T (p )

p

p p 0

A category with finite products and a tangent structureX T−−→X is a cartesian

tangent category when T preserves products, and when the isomorphism T (A)×
T (B )

mT−−−→ T (A×B ) preserves all the tangent structure maps. For the full details,

see Cockett and Cruttwell, 2014b.

Definition 5.1.4. In a tangent category, we call a limit limi X i transverse when

T (limi X i )' limi T (X i ) .

Observation 5.1.5. In a tangent category, the pullback powers of p are transverse

limits as is the equalizer for the universality of the lift. In a Cartesian tangent

category, the product is transverse.

Example 5.1.6. The category of smooth manifolds is a tangent category with the

usual tangent bundle of smooth manifolds.

Example 5.1.7. Every Cartesian differential category is a Cartesian tangent cat-

egory. The tangent functor on objects is T (A) := A × A and on arrows A
f
−−→ B

is

A×A




D [ f ],π1 f
�

−−−−−−−−→ B ×B

and for example the lift is

A×A
〈1, 0, 0, 1〉
−−−−−−→ A×A×A×A

and the canonical flip is

A×A×A×A
〈π0,π2,π1,π3〉−−−−−−−−−→ A×A×A×A

A few additional examples are presented in sections 6.2 and 6.7.
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5.2 Strength and exponential strength

We express the coherence for closed tangent categories in terms of strength. For

endofunctors on a monoidal closed category strength encodes what it means for

a functor to be internalizable. However strength can be phrased independently of

closed monoidal structure, and on just monoidal structure. In this section, we

will introduce monoidal strength and a few related notions we will need.

Monoidal categories and symmetric monoidal categories were introduced by

journal:monoidal-original and their coherence was exposited by journal:kelly-maclane-coherence

Monoidal structure on a category is meant to generalize structure like the tensor

product of vector spaces, which is neither product nor coproduct. In partic-

ular there is a bifunctor X×X ⊗−−→ X and an object I with an natural associa-

tivity (A ⊗ B )⊗C
a⊗−−→ A ⊗ (B ⊗C ) and unit A ⊗ I

uR−−→ A, I ⊗ A
uL−−→ A isomor-

phisms that satisfy coherences (see journal:kelly-maclane-coherence). These

maps are often called the associator and unitors respectively. A monoidal functor

X F−−→Y is a functorX−→Y between monoidal categories together with natural

transformations F (A)⊗ F (B ) −→ F (A ⊗B ) and I −→ F (I ) that satisfy coherences

journal:kelly-doctrinal-adj A monoidal functor between symmetric monoidal

categories is called symmetric when the following commutes:

F (A)⊗ F (B ) F (A⊗B )

F (B )⊗ F (A) F (B ⊗A)

c F c

A natural transformation α : F −→G is a monoidal tranformation when

F (A)⊗ F (B ) G (A)⊗G (B )

F (A⊗B ) G (A⊗B )

α⊗α

α

a monoidal natural transformation between symmetric monoidal functors is

sometimes called a symmetric monoidal transformation – that is, there is no

additional coherence for a monoidal transformation to be symmetric provided

that it is between symmetric monoidal functors.
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Let V be a symmetric monoidal category. A monoidal closed category is a

generalization of cartesian closed categories that were introduced in 3.1: there is

an isomorphism V (A⊗B , C )'V (B , [A, C ]) that is natural in B .

Definition 5.2.1. A V -enriched category Kelly, 2005 or V -category X is given by

• A collection of objects X0;

• For each pair of X-objects A, B ∈X0, a V -object X(A, B );

• For each X-object A, a V -map I
Id−−→X(A, A);

• For any three X-objects A, B , C , a V -map X(A, B )⊗X(B , C )
c−→X(A, C ).

such that appropriate diagrams commute that make composition associative and

unital.

Definition 5.2.2. A V -functor from a V -cat X to a V -cat Y is given by:

• A function X0
F−−→Y0;

• For each pair of X-objects, a V -map, X(A, B )
FA,B−−−→Y(F A, F B );

such that c; FA,C = (FA,B ⊗ FB ,C );c and Id; F = Id.

Definition 5.2.3. A V -natural transformation α is a family of V -maps:

X(A, B )
α−→Y(F A,G B )

such that “α( f ; g ) =α( f );G (g ) = F ( f );α(g )”:

X(A, B )⊗X(B , C ) Y(F A,G B )⊗Y(G B ,G C )

Y(F A, F B )⊗Y(F B ,G C ) Y(F A,G B )

α⊗GB ,C

FA,B⊗α c

c

Note that the above diagram implies that c;α factors the square from the top

left to the bottom right.

To get the natural transformation in the form αA : F A −→G A take αA :=α(1A).
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Definition 5.2.4. Let V be a symmetric monoidal category, and let C be a V -

category. A power of X ∈C by V ∈V is an object V ô X together with a family of

V -natural isomorphisms

C (Y , V ô X )'V (V , C (Y , X ))

Likewise a copower is V ·X with V natural isomorphisms

C (V ·X , Y )'V (V , C (X , Y ))

Lemma 5.2.5. Let V be a symmetric monoidal closed category. Then

1. V is self-enriched. V (A, B ) := [A, B ]. The identity is λx .x and composition is

given by λ f g x .g ( f (x )).

2. V has powers. The power is [V , Y ]. The required isomorphism [Y , [V , X ]]'
[V , [Y , X ]] is the swap map: λ f v y . f (y )(v ).

3. V has copowers. The copower is V ⊗Y . The required isomorpism [A⊗B , C ]'
[A, [B , C ]] is the internal curry, which is the last map in the following sequence

of inferences:

B ⊗A⊗ [A⊗B , C ]
c⊗−−→ A⊗B ⊗ [A⊗B , C ]

ev−−→C

A⊗ [A⊗B , C ]
λ(c⊗;ev)
−−−−−−→ [B , C ]

[A⊗B , C ]
λ(λ(c⊗;ev))
−−−−−−−→ [A, [B , C ]]

Proof.

1. That the described gives a self-enrichment, we must show associativity and

the identity laws, which we prove using λ-notation. For associativity

( f g )h =λy .h (λx .g ( f (x ))y ) =λy .h (g ( f (y ))) =λy .(λz .h (g (z )))( f (y )) = f (g h )

The unit laws follow from similar calculuations.

2. As [Y , [V , X ]]' [V , [Y , X ]] as witnessed by the swap isomorphism, the proof

is done.
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3. The curry map in the theorem is easily shown to be an isomorphism.

In the above proof, points 2,3 depend on the symmetry explicitly.

5.2.1 Monoidal strength

Kock, 1972 demonstrated that an endofunctor V T−−→ V on a monoidal closed

category V gives rise to a V -enriched functor V −→ V precisely when it is a

monoidally strong functor.

LetXbe a monoidal category. A (right) monoidal strength for an endofunctor

X T−−→X is a natural transformation:

A⊗T B
θ−−→ T (A⊗B )

that is coherent with the associator and unitor:

(A⊗B )⊗T C

a⊗
��

θ // T ((A⊗B )⊗C )

Ta⊗
��

A⊗ (B ⊗T C )
1⊗θ
// A⊗T (B ⊗C )

θ
// T (A⊗ (B ⊗C ))

I ⊗T A

uL ##

θ // T (I ⊗A)

T uLzz
T A

There is a dual notion of left monoidal strength. This is a map

θL : T A⊗B −→ T (A⊗B )

that satisfies:

T A⊗ (B ⊗C )
θL //

a−1

��

T (A⊗ (B ⊗C ))

Ta−1

��
(T A⊗B )⊗C

θL⊗1
// T (A⊗B )⊗C

θL

// T ((A⊗B )⊗C )
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and

T A⊗ I

uR ##

θL // T (A⊗ I )

T uRzz
T A

A well known result is:

Proposition 5.2.6. In a symmetric monoidal category, to have a monoidal strength

is equivalent to having a left strength.

Lemma 5.2.7. When X T−−→X is a monoidal functor, and θ is a strength, then the

following commutes:

I
mI //

u−1
R
��

T I

I ⊗ I
1⊗mI

// I ⊗T I
θ
// T (I ⊗ I )

T uR

OO

When T is a symmetric monoidal functor, we may also ask a strength to satisfy

the following coherence which we call symmetric strength.

(A⊗T B )⊗ (C ⊗T D ) θ⊗θ //

ex
��

T (A⊗B )⊗T (C ⊗D )

mT

��
(A⊗C )⊗ (T B ⊗T D )

1⊗mT

��

T ((A⊗B )⊗ (C ⊗D ))

T ex
��

(A⊗C )⊗T (B ⊗D )
θ
// T ((A⊗C )⊗ (B ⊗D ))

The strength we deal with in this writeup arises canonically from a symmetric

monoidal transformation. The following gives an equivalence between symmetric

monoidal functors with a unit 1
η
−→ T and symmetrically strong functors.

Proposition 5.2.8. When X is a symmetric monoidal category and X T−−→ X is a

monoidal functor (T , mT , mI ) then

1. For any monoidal natural transformation: 1
η
−→ T ,

θ := A⊗T B
η⊗1
−−−→ T A⊗T B

mT−−−→ T (A⊗B )

is a strength.

91



2. When T is additionally a symmetric monoidal functor, the induced θ from

proposition 5.2.8.1 is a symmetric strength.

3. Conversely, when θ is a symmetric strength, then

η := B
u−1

R−−−→ B ⊗ I
1⊗mI−−−−→ B ⊗T I

θ−−→ T (B ⊗ I )
T uR−−−→ T B

is a monoidal natural transformation.

4. The constructions of proposition 5.2.8.2,3 are inverse to each other.

Proof. Suppose X T−−→X is a symmetric monoidal functor.

1. Let 1
η
−→ T be a monoidal natural transformation. Then consider the

following diagram.

(X ⊗Y )⊗T Z T (X ⊗Y )⊗T Z T ((X ⊗Y )⊗Z )

(T X ⊗Y )⊗T Z (T X ⊗T Y )⊗T Z

X ⊗ (Y ⊗T Z ) T X ⊗ (Y ⊗T Z )

X ⊗ (T Y ⊗T Z ) T X ⊗ (T Y ⊗T Z )

X ⊗T (Y ⊗Z ) T X ⊗T (Y ⊗Z ) T (X ⊗ (Y ⊗Z ))

η⊗1

(η⊗1)⊗1

a

mT

Ta

(1⊗η)⊗1

a

mT ⊗1

a

1⊗(η⊗1)

η⊗1

1⊗(η⊗1)

η⊗1

1⊗mT 1⊗mT

η⊗1 mT

For the unitor coherence, consider that I
η
−→ T I = I

mI−−→ T I . Then the

required coherence:

I ⊗T A

uL &&

η⊗1 // T I ⊗T A
mT // T (I ⊗A)

T uKxx
T A

is the fact that T is a monoidal functor.
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2. When η is a symmetric monoidal transformation:

A⊗T B
⊗

C⊗T D

T A⊗T B
⊗

T C⊗T D

T (A⊗B )
⊗

T (C⊗D )

A⊗C
⊗

T B⊗T D

T A⊗T C
⊗

T B⊗T D

A⊗C
⊗

T (B⊗D )

T (A⊗C )
⊗

T (B⊗D )
T
�

A⊗C
⊗

B⊗D

�

T
�

A⊗B
⊗

C⊗D

�

ex

η⊗1
⊗
η⊗1

ex

mT ⊗mT

mT

η⊗η
⊗
1

1⊗mT mT ⊗mT

η⊗1 mT T ex

The top left square is naturality. The bottom left square is thatη is monoidal.

The right square follows as T is a symmetric monoidal functor.

3. Suppose T is a symmetric monoidal functor. First, consider the following

diagram.

(B ⊗C )⊗ (I ⊗ I ) (B ⊗C )⊗ (T I ⊗T I ) (B ⊗C )⊗T (I ⊗ I )

(B ⊗C )⊗ (I ⊗T I )

(B ⊗C )⊗T (I ⊗ I ) T ((B ⊗C )⊗ (I ⊗ I ))

(B ⊗C )⊗T I T ((B ⊗C )⊗ I )

1⊗(mI⊗mI )

1⊗(1⊗mI )

1⊗mT

θ

1⊗T uL
1⊗θ

1⊗uL

1⊗T uL T (1⊗uL )

θ

The bottom left corner is an axiom of strength. The right square is naturality

of θ . The top left diagram follows as T is a monoidal functor.

Now, consider the following diagram
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B ⊗C (B ⊗ I )⊗ (C ⊗ I ) (B ⊗T I )⊗ (C ⊗T I ) T (B ⊗ I )⊗T (C ⊗ I ) T B ⊗T C

(B ⊗C )⊗ I (B ⊗C )⊗ (I ⊗ I ) (B ⊗C )⊗ (T I ⊗T I ) T ((B ⊗ I )⊗ (C ⊗ I ))

(B ⊗C )⊗ (I ⊗T I ) (B ⊗C )⊗T (I ⊗ I )

(B ⊗C )⊗T (I ⊗ I ) T ((B ⊗C )⊗ (I ⊗ I ))

B ⊗C (B ⊗C )⊗ I (B ⊗C )⊗T I T ((B ⊗C )⊗ I ) T (B ⊗C )

u−1
R ⊗u−1

R

u−1
R ex

1⊗mI
⊗

1⊗mI

ex

θ⊗θ

mT

T uR ⊗T uR

mT

uR

1⊗u−1
R

1⊗(1⊗mI )

1⊗(mI ⊗mI )

1⊗mT

T ex

1⊗θ
θ

1⊗T uR
T (1⊗uL )

u−1
R

1⊗mI

θ T uR

The top left square is a monoidal coherence. The next square along the

top is naturality. The next diagram along the top is the symmetry condition.

The right square commutes as T is a symmetric monoidal functor. That the

bottom left square commutes is lemma 5.2.7. The middle square is the first

diagram in this proof.

An exponential strength forX T−−→X, whenX is monoidal closed, is a natural

map

T [A, B ]
ψ
−−→ [A, T B ]

that satisfies:

T [A⊗B , C ]
ψ //

T cur
��

[A⊗B , T C ]

cur
��

T [B , [A, C ]]
ψ
// [B , T [A, C ]]

[B ,ψ]
// [B , [A, T C ]]

T A
curI

%%
T curI

��
T [I , A]

ψ
// [I , T A]

Kock proved the second point below.

Proposition 5.2.9 (Kock, 1972). For a monoidal closed category:

1. T has a strength precisely when T has an exponential strength;
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2. Kock, 1972. T has a left strength iff T induces an X-enriched functor T :X
−→X;

3. When X is a symmetric monoidal category, then having a functor with a

strength, an exponential strength, or anX-enriched functor are all equivalent.

In a non-symmetric monoidal closed category note that we curry a map as

A⊗ [A, C ] C

A⊗B

ev

λ( f )⊗1
f

For the first point then, given a right strength, we can form the following by

currying:

A⊗T [A, B ]
θ−−→ T (A⊗ [A, B ])

T ev−−−→ T B
T [A, B ]−→ [A, T B ]

Given a left strenght then, we can form the enriched functor by currying:

T (A)⊗ [A, B ]
θL−−→ T (A⊗ [A, B ])

T ev−−−→ T B
[A, B ]−→ [T A, T B ]

When one has the symmetry map, then a right strength can be expressed as a left

strength, and hence an enriched functor, and indeed, all three notions: strength,

exponential strength, and a self-enriched functor, become equivalent.

Proof. We give the proof of 1 here. The proof of 2 is similar, and moreover 2 can

also be found in Kock, 1972 theorem 1.3. For 3: in a symmetric monoidal category,

strengths and left strengths are equivalent, together with 2.

From a strength θ , define an exponential strengthψ as follows:

A⊗T [A, B ]
θ−−→ T (A⊗ [A, B ])

T ev−−−→ T B
T [A, B ]−−−−−−−−−→

ψ :=λ(θT (ev))
[A, T B ]

To see that this map is natural, use the naturality ofλ together with the natural-

ity of θ . To see that it satisfies the requirements of being an exponential strength,

first consider the curI law.

95



T curIψ

= T curIλ(θT (ev))

=λ((1⊗T curI )θT (ev)) naturality of λ

=λ(θT (1⊗ curI )T (ev)) naturality of θ

=λ(θT uL ) =λ(uL ) coherence of θ

= curI

Next, consider the curry law: we want to showψcur= T (cur)ψ[1,ψ]. We do

this by showing the universal property of maps into [B , [A, T C ]], so it suffices to

show that

(1⊗ (1⊗ψcur)ev)ev= (1⊗ (1⊗T (cur)ψ[1,ψ])ev)ev.

Then consider:

(1⊗ (1⊗ψcur)ev)ev

= (1⊗ (1⊗ψ))(1⊗λ(a−1))ev

= (1⊗ (1⊗ψ))a−1ev

= a−1(1⊗ψ)ev

= a−1θT (ev)

= (1⊗θ )θT (a−1)T (ev) θ is a strength

= (1⊗θ )θT ((1⊗λ(a−1ev))ev)

= (1⊗θ )(1⊗T (λ(a−1ev)))θT (ev)

= (1⊗θ )(1⊗T ((1⊗ cur)ev))θT (ev)

= (1⊗ (1⊗T (cur)))(1⊗θT (ev))θT (ev)

= (1⊗ (1⊗T (cur)))(1⊗ (1⊗ψ)ev)(1⊗ψ)ev

= (1⊗ (1⊗T (cur)ψ))(1⊗ evψ)ev

= (1⊗ (1⊗T (cur)ψ))(1⊗ (1⊗ [1,ψ])ev)ev

= (1⊗ (1⊗T (cur)ψ[1,ψ])ev)ev
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as required. Thus,ψ is an exponential strength.

Conversely, from an exponential strength ψ define a strength θ as follows.

First recall the unit of the adjunction of the monoidal closed structure.

A⊗B
1−→ A⊗B

B −−−−−−→
η :=λ(1)

[A, A⊗B ]

Next define θ :

T B
T (η)
−−−→ T [A, A⊗B ]

ψ
−−→ [A, T (A⊗B )]

A⊗T B −−−−−−−−−−→
θ :=λ−1(T (η)ψ)

T (A⊗B )

To see that this map is natural, use the naturality of λ−1 together with the

naturality ofψ. To see that this map is a monoidal strength consider first the unit

law which is proved by the following calculation:

θT (uL )

=λ−1(T (η)ψ)T (uL )

=λ−1(T (η)ψ[1, T uL ]) naturality of λ−1

=λ−1(T (η)T [1, uL ]ψ) naturality ofψ

=λ−1(T (λ(1)[1, uL ])ψ)

=λ−1(T (curI )ψ)

=λ−1(curI ) coherence ofψ

= uL

Next, we show the associativity law: θT (a⊗) = a×(1⊗θ )θ . However, before we

will show the following identity: λ(a )cur= λ(η). This is proved by the universal

97



property for maps into [X , Y ].

(1⊗λ(a )cur)ev

= (1⊗λ(a ))λ(a−1ev)

=λ(1⊗ (1⊗λ(a ))a−1ev)

=λ(a−1(1⊗λ(a ))ev)

=λ(a−1a ) =λ(1) =η

= (1⊗λ(η))ev

By uniqueness λ(a )cur=λ(η).

Next, we expand a⊗(1⊗θ )θ to obtain:

a⊗(1⊗θ )θ

= a⊗(1⊗θ )λ−1(T (η)ψ)

= a⊗λ
−1(θT (η)ψ)

= a⊗λ
−1(λ−1(T (η)ψ)T (η)ψ)

= a⊗λ
−1(λ−1(T (η)ψ[1, T (η)ψ]))

= a⊗λ
−1(λ−1(T (η)T [1,η]ψ[1,ψ])) naturality ofψ

= a⊗λ
−1(λ−1(T (λ(η))ψ[1,ψ]))

= a⊗(1⊗ (1⊗T (λ(η))))(1⊗ (1⊗ψ)evψ)ev

On the other hand, we expand θT (a⊗). First note that the cur is an isomor-

phism, and its inverse is cur−1 := λ(a⊗(1⊗ ev)ev). The curry coherence on expo-

nential strengths can be restated asψ = T (cur)ψ[1,ψ]cur−1. Now consider the

calculation:
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θT (a⊗)

=λ−1(T (η)ψ)T (a⊗)

=λ−1(T (η)ψ[1, T (a⊗)]) naturality of λ−1

=λ−1(T (η)T [1, a⊗]ψ) naturality ofψ

=λ−1(T (λ(a⊗))ψ)

= (1⊗T (λ(a⊗)))λ
−1(ψ) naturality of λ−1

= (1⊗T (λ(a⊗)))λ
−1(T (cur)ψ[1,ψ]cur−1) coherence forψ

= (1⊗T (λ(a⊗)))(1⊗T (cur))λ−1(ψ[1,ψ]cur−1)

Now, we separately consider, λ−1(ψ[1,ψ]cur−1):

λ−1(ψ[1,ψ]cur−1)

= (1⊗ψ[1,ψ])(1⊗ cur−1)ev naturality of λ−1

= (1⊗ψ[1,ψ])a⊗(1⊗ ev)ev

= (1⊗ψ)a⊗(1⊗ (1⊗ [1,ψ])ev)ev

= (1⊗ψ)a⊗(1⊗ evψ)ev

= a⊗(1⊗ (1⊗ψ)evψ)ev

Putting this calculation together with the calculation for θT (a⊗), followed

by the calculation for λ(η) =λ(a⊗)cur shows that, followed by the calculation for

a⊗(1⊗θ )θ shows that

θT (a⊗)

= (1⊗T (λ(a⊗)cur))a⊗(1⊗ (1⊗ψ)evψ)ev

= (1⊗T (λ(η)))a⊗(1⊗ (1⊗ψ)evψ)ev

= a⊗(1⊗ (1⊗T (λ(η))))(1⊗ (1⊗ψ)evψ)ev

= a⊗(1⊗θ )θ

as required. Thus, θ is a strength.

99



To see that these constructions are inverses of each other:

λ−1(T (η)λ(θT (ev)))

=λ−1(λ((1⊗T (η))θT (ev))) naturality λ

= (1⊗T (η))θT ev

= θT ((1⊗η)ev) naturalityφ

= θT (1) = θ

For the other way around:

λ(λ−1(T (η)ψ)T (ev))

=λ(λ−1(T (η)ψ[1, T ev])) naturalityλ−1

= T (η)ψ[1, T ev]

= T (η[1,ev])ψ naturalityψ

= T (λ(ev))ψ naturality λ

= T (1)ψ=ψ

5.2.2 Strong transformations

As strong endofunctors on a monoidally closed category may be internalized,

strong natural transformation express what it means for a natural transformations

to be internalizable.

Let S have a strength θS and let T have a cartesian strength θT . Let S
α
=⇒ T

be natural. α is a monoidal strong natural transformation when the following

commutes.

A⊗S B
1×α //

θS
��

A⊗T B

θT
��

S (A⊗B ) α
// T (A⊗B )
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When X is monoidal closed, S and T also have exponential strengths, and we

say thatα is an exponentially strong natural transformation when the following

commutes

S ([A, B ]) α //

ψS

��

T ([A, B ])

ψT

��
[A,S (B )]

[A,α]
// [A, T (B )]

In fact,

Proposition 5.2.10. When X is monoidal closed, (S ,θS ) and (T ,θT ) are strong

functors, and S
α
=⇒ T is natural, then α is monoidal strong if and only if it is

exponentially strong.

Proof. Suppose that α is monoidal strong. We show it is exponentially strong by

showing the following commutes

S ([A, B ]) α //

λ(θS (ev))
��

T ([A, B ])

λ(θT (ev))
��

[A,S (B )]
[1,α]
// [A, T (B )]

αλ(θT T (ev))

=λ((1⊗α)θT T (ev))

=λ(θSαT (ev)) α is strong

=λ(θS S (ev)α)

=λ(θS S (ev))[1,α] naturality of λ

Next, suppose that α is exponentially strong. We show that it is monoidal

strong by showing the following diagram commutes.

A⊗S B
1⊗α //

λ−1(T (η)ψ)
��

A⊗T B

λ−1(T (η)ψ)
��

S (A⊗B ) α
// T (A⊗B )
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(1⊗α)λ−1(T (η)ψ)

=λ−1(αT (η)ψ)

=λ−1(S (η)αψ)

=λ−1(S (η)ψ[1,α]) α is exponentially strong

=λ−1(S (η)ψ)α

Proposition 5.2.11 (Kock, 1972). When X is a closed monoidal category with left

strong functors T and S and a strong natural transformationα : T −→ S, then we get

an inducedX-enriched natural transformation between theX-enriched functors

T and S.

The above then states thatX-enriched natural transformations correspond to

strong natural transformations of left strong monoidal functors.

5.2.3 Cartesian Strength

One can say a bit more about strength when the monoidal structure is the product.

We call strengths with respect to × Cartesian strength.

When the monoidal structure on a category is the product, and a functor

T preserves the product, obtaining a strength reduces to obtaining a natural

transformation 1−→ T . Moreover the strength is symmetric.

First observe:

Observation 5.2.12. Suppose T preserves products. Then any natural transforma-

tion η : 1−→ T satisfies (η×η)mT =η

Proof. Note that mT is the inverse of 〈Tπ0, Tπ1〉. Then consider,

η 〈Tπ0, Tπ1〉

=



ηTπ0,ηTπ1

�

=



π0η,π1η
�

= (η×η) naturality

Then, multiplying both sides by mT gives the desired result.
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Also note that T (1) is a terminal object as T preserves products, hence, η : 1

−→ T (1) is the unique map. Thus when T preserves products, any natural trans-

formation is monoidal.

Proposition 5.2.13. When X has products, and X T−−→X preserves finite products,

then for any natural η : 1−→ T ,

A×T B
η×1
−−−→ T (A)×T (B )

mT−−−→ T (A×B )

is a symmetric strength.

Proof. This follows immediately from proposition 5.2.8 and the above observation

that η is monoidal.

5.3 Tangent categories are strong

In this section we exhibit a strength for tangent categories and show that all the

natural transformations of tangent structure are strong.

We specialize 5.2.13 to cartesian tangent categories.

Proposition 5.3.1. In any cartesian tangent category, the following:

θT := A×T B
0×1−−−→ T (A)×T (B )

mT−−−→ T (A×B )

is a strength.

Lemma 5.3.2. In any cartesian tangent category, θp = 1× p , and the map θ2

defined by the universal property in:

B ×T2(M ) T2(B ×M )

B ×T (M ) T (B ×M )

B ×T (M ) T (B ×M )

B ×M B ×M

θ2

1×p

θ

p

1×p

θ

p
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has θ2 = B ×T2(M )
〈0, 0〉×1
−−−−−→ T2B ×T2M

mT2−−−→ T2(B ×M ), and is a strength.

That θp = 1×p uses that mT is a morphism of tangent structure

(0×1)mT p = (0×1)(p ×p ) = 1×p

Proof. SinceX is a cartesian tangent category, T2 preserves products. The map B
〈0, 0〉
−−−→ T2(B ) is natural. Hence by proposition 5.2.13, the map (〈0, 0〉 ×1)mT2

is a

strength.

It remains to show that θ2 = (〈0, 0〉×1)mT2
. Consider the construction of mT2

:

T2(M )×T2(B ) T2(M ×B )

T (M )×T (B ) T (M ×B )

T (M )×T (B ) T (M ×B )

M ×B M ×B

mT2

π1×π1

π0×π0

p×p

mT

p

p×p

mT

p

Then

(〈0, 0〉×1)mT2
π1

= (〈0, 0〉×1)(π1×π1)mT

= (1×π1)(0×1)mT

= (1×π1)θ

Similarly, (〈0, 0〉×1)mT2
π0 = (1×π0)θ . Thus, by the universality of θ2 with respect

to this property, θ2 = (〈0, 0〉×1)mT2
.

Our goal is now to show that every one of the structural transformations for

tangent categories is strong.

Theorem 5.3.3. In any tangent category, p , l , c ,+,0 are all strong natural trans-

formations.
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Proof. Note that mT 〈T (π0), T (π1)〉= 1T (A)×T (B ) = 〈π0,π1〉. This implies that:

θT (π0) =π00 and θT (π1) =π1

The required diagram for p is

A×T B

θ
��

1×p // A×B

T (A×B ) p
// A×B

Which is done in lemma 5.3.2.

The required diagram for c is

A×T 2B
1×c //

θT (θ )
��

A×T 2B

θT (θ )
��

T 2(A×B ) c
// T 2(A×B )

As T preserves products, T 2(A×B ) is a product, and it then suffices to check

that the two maps are simultaneously equal when postcomposed with T 2(π0) and

T 2(π1).

Then,

(1× c )θT (θ )T 2(π0)

= (1× c )θT (π0)T (0)

= (1× c )π00T (0)

=π00T (0)

=π000 naturality 0

= θT (π0)0

= θT (π0)T (0)c c is a bundle morphism

= θT (θ )T 2(π0)c

= θT (θ )c T 2(π0)
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and

(1× c )θT (θ )T 2(π1)

= (1× c )θT (π1)

= (1× c )π1

=π1c

= θT (π1)c

= θT (θ )T 2(π1)c

= θT (θ )c T 2(π1)

Thus, c , is strong.

The required diagram for 0 is

A×B
1×0 // A×T B

θ
��

A×B
0
// T (A×B )

This is just observation 5.2.12, (1×0)θ = (0×0)mT = 0; thus 0 is strong.

The required diagram for + is the outer square in the following.

A×T2B
1×+ //

〈0,0〉×1
��

A×T B

0×1
��

T2(A)×T2(B )
+×+ //

mT2

��

T (A)×T (B )

mT

��
T2(A×B ) +

// T (A×B )

The top square commutes as

〈0, 0〉+=



0p 0, 0
�

+= 0



p 0, 1
�

+= 0

For the bottom square, first note that:
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+ 〈T (π0), T (π1)〉

= 〈+T (π0),+T (π1)〉

= 〈T2(π0)+, T2(π1)+〉

= 〈T2(π0), T2(π1)〉 (+×+)

Then precomposing both sides with mT2
and postcomposing both sides with mT

we get,

mT2
+= (+×+)mT

so that + is a strong transformation. Finally, consider the diagram for l .

A×T B
1×l //

θ
��

A×T 2B

θT (θ )
��

T (A×B )
l
// T 2(A×B )

We prove the diagram commutes by showing

θ l



T 2(π0), T 2(π1)
�

= (l ×1)θT (θ )



T 2(π0), T 2(π1)
�

so that postcomposing with the inverse, mT2
gives the desired result. Also note

that from lemma 5.1.2, we have 0l = 00. Now,

(1× l )θT (θ )



T 2π0, T 2π1

�

=



(1× l )θT (θ )T 2π0, (1× l )θT (θ )T 2π1

�

= 〈(1× l )θT (π0)T 0(1× l )θTπ1〉

= 〈(1× l )π00T 0, (1× l )π1〉

= 〈π000,π1l 〉

= 〈π00l ,π1l 〉

= 〈θT (π0)l ,θT (π1)l 〉

= θ l



T 2π0, T 2π1

�
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Thus l is a strong natural transformation. Hence all of the structural transfor-

mation of a tangent category are strong.

5.4 Cartesian closed tangent categories

In this section, we combine the theorems we’ve proved about strength with the

fact that the tangent functor of a Cartesian tangent category is strong and that

all the structural natural transformations are strong transformations. This im-

plies that when a Cartesian tangent category is Cartesian closed, the tangent

functor is exponentially strong, and all the structural natural transformations are

exponentially strong. We will state explicitly what this means.

Corollary 5.4.1. LetX be a Cartesian tangent category and also a Cartesian closed

category. Then every structural transformation is exponentially strong.

We elaborate on the above, and write out explicitly what the exponential

strength means for each of the transformations.

For p we have

T ([A, B ])
p //

ψ
��

[A, B ]

[A, T (B )]
[A,p ]

// [A, B ]

For l we have

T ([A, B ]) l //

ψ

��

T 2([A, B ])

T (ψ)
��

T ([A, T (B )])

ψ
��

[A, T (B )]
[A,l ]

// [A, T 2(B )]
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For c we have

T 2([A, B ]) c //

T (ψ)ψ
��

T 2([A, B ])

T (ψ)ψ
��

[A, T 2(B )]
[A,c ]

// [A, T 2(B )]

For +we have

T2([A, B ]) + //

ψ2

��

T ([A, B ])

ψ

��
[A, T2(B )] [A,+]

// [A, T2(B )]

For 0 we have

[A, B ] 0 // T ([A, B ])

ψ
��

[A, B ]
[A,0]
// [A, T (B )]

In a cartesian closed tangent category consider the partial tangent:

A×B
f
−−→C

B
λ( f )
−−−→ [A, C ]

T B
T (λ( f ))
−−−−−→ T [A, C ]

ψ
−−→ [A, T C ]

A×T B −−−−−−−−−→
λ−1(T (λ( f ))ψ)

T C

Lemma 5.4.2. In a cartesian closed tangent category,

λ−1(T (λ( f ))ψ) = θT ( f )

Proof. Consider the following calculation:
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λ−1(T (λ( f ))ψ)

=λ−1(T (λ( f ))λ(θT (ev)))

=λ−1(λ((1×T (λ( f )))θT (ev)))

= (1×T (λ( f )))θT (ev)

= θT ((1×λ( f ))ev)

= θT ( f )

In the sequel, we will sometimes refer to θT ( f ) as above by TB ( f ).

5.5 Differential objects and coherent closure

The notion of differential object of a tangent category was introduced by Cockett

and Cruttwell, 2014b to play the role thatR vector spaces play in SMan. In this

section we show that if a cartesian closed tangent category satisfies a coherence,

then its differential objects form a differential λ-category.

Definition 5.5.1. A differential object in a cartesian tangent category is a com-

mutative monoid (A,σ,ζ) and a map T A
p̂
−−→ A such that A

p̂
←−− T A

p
−−→ A is a

product diagram, and where the tangent addition and monoid structure on A are

compatible in the following sense:

• The following diagrams commute:

T 1 1

T A A

!

T ζ ζ

p̂

T (A×A) T A×T A A×A

T A A

Tσ

〈Tπ0,Tπ1〉 p̂×p̂

σ

p̂
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• The following diagrams commute:

A 1

T A A

!

0 ζ

p̂

T2A A×A

T A A

〈π0p̂ ,π1p̂〉

+ σ

p̂

• The lift and p̂ are coherent:

T A T 2A

A T A

l

p̂ T p̂

p̂

The following theorem summarizes the role that differential objects in a Carte-

sian tangent category play.

Theorem 5.5.2 (Cockett and Cruttwell, 2014b theorem 4.11). The differential

objects of a tangent category have the structure of a Cartesian differential category

whose differential combinator is

A
f
−−→ B

A×A −−−−−−→
〈π0,π1〉T

T A −−−→
T f

T B −−→̂
p

B

Recall, that in any cartesian differential category the partial derivative of A×B
f
−−→C with respect to B is defined:

DB [ f ] := A× (B ×B )
〈0×π0, 1×π1〉−−−−−−−−−→ (A×B )× (A×B )

D [ f ]
−−−−→C

Which for the differential objects of a tangent category comes out to

A× (B ×B )
〈!AζA ×π0, 1×π1〉−−−−−−−−−−−→ (A×B )2

〈π0,π1〉T−−−−−−→ T (A×B )
T ( f )
−−−→ T (C )

p̂
−−→C

For the above, recall that the zero section 0 of p for differential objects is !AζA

Cockett and Cruttwell, 2014b.

Lemma 5.5.3. When A, B , C are differential objects then for each A×B
f
−−→C we

have

DB [ f ] = A× (B ×B )
1×〈π0,π1〉T−−−−−−−−→ A×T (B )

TB ( f )−−−−→ T (C )
p̂
−−→C
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Proof. Consider:

A× (B ×B )

〈!ζ,1〉×1
00

1×〈π0,π1〉T // A×T B

〈0p̂ ,0p〉×〈p̂ ,p〉
((

0×1 // T A×T B

〈p̂ ,p〉×〈p̂ ,p〉
��

mT // T (A×B )
T ( f ) // T C

p̂
��

(A×A)× (B ×B ) ex
// (A×B )× (A×B )

〈π0,π1〉T

OO

D [ f ]
// C

The right and middle squares are definition. The middle triangle is obvious.

The left triangle follows as 〈π0,π1〉T



p̂ , p
�

= 1A×A together with the fact that 0p = 1

from tangent structure, and finally 0p̂ =!ζ as B is a differential object. Finally,

note that

(〈!ζ, 1〉×1)ex= 〈!ζ×π0, 1×π1〉

so that around the bottom is DB [ f ], and hence DB [ f ] =D ′B [ f ].

Lemma 5.5.4. Let X be a cartesian closed tangent category, and V a differential

object. Then

[M , V ]
[M , p̂ ]
←−−−− [M , T V ]

ψ
←−− T [M , V ]

p
−−→ [M , V ]

is a product diagram if and only ifψ is an isomorphism.

Proof. Supposeψ is an isomorphism. From corollary 5.4.1, p =ψ[M , p ]. Since

[M , ] preserves products:

T [M , V ]

[M , V ] [M , T V ] [M , V ]

ψ'
[M ,p̂ ] [M ,p ]

is a product diagram.

Suppose that

[M , V ]
[M , p̂ ]
←−−−− [M , T V ]

ψ
←−− T [M , V ]

p
−−→ [M , V ]

is a product diagram. Then there is a uniqueψ−1 that makes the following diagram

commute.

[M , T V ]

[M , V ] [M , T V ] T [M , V ] [M , T V ] [M , V ]

∃!.ψ−1
[M ,p ][M ,p̂ ]

[M ,p̂ ] ψ ψ [M ,p ]
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But as [M , T V ] is also a product diagram,ψ−1 is the unique map that makes

[M , T V ]

T [M , V ]

[M , V ] [M , T V ] [M , V ]

[M ,p̂ ] [M ,p ]
ψ−1

ψ

[M ,p̂ ] [M ,p ]

Thusψ−1ψ= 1. A similar proof shows thatψψ−1 = 1; thus,ψ is an isomorphism.

Definition 5.5.5. A tangent category is coherently closed when for each N , and

any object M , T [M , N ]
ψ
−−→ [M , T N ] is an isomorphism.

Proposition 5.5.6. Representable tangent categories are coherently closed.

Proof. The canonical isomorphism

T ([M , V ]) = [D , [M , V ]]
sw−−→ [M , [D , V ]] = [M , T (V )]

isψ=λ(θT (ev)). Consider θT (ev) in the internal logic:

A× [D , [A, B ]] [D , A]× [D , [A, B ]] [D , A× [A, B ]] [D , B ]

(x ,λd a .t d a ) (λd .x ,λd a .t d a ) λd .(x ,λa .t d a )) λd .t d x

[!,A]×1 ' [D ,ev]

If we curry the x in the above composite:

λd a .t d a 7→λa d .t d a

which is precisely [D , [A, B ]]
sw−−→ [A, [D , B ]] as required.

Thus every model of SDG is a coherently closed tangent category.

Proposition 5.5.7. A differential λ-category is coherently closed as a tangent cate-

gory.
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Proof. Consider the map

A× ([A, B ]× [A, B ])
〈0, 1〉×1
−−−−−→ A2× [A, B ]2

ex−−→ (A× [A, B ])2
〈Dev,π1ev〉−−−−−−−−→ B ×B

We have

(〈0, 1〉×1)ex 〈D [ev],π1ev〉

= 〈0×π0, 1×π1〉 〈D [ev],π1ev〉

= 〈〈0×π0, 1×π1〉D [ev], (1×π1)ev〉

=



λ−1(D [λ(ev)]), (1×π1)ev
�

=



λ−1(D [1]), (1×π1)ev
�

=



λ−1(π0), (1×π1)ev
�

= 〈(1×π0)ev, (1×π1)ev〉

is the map that sends

(x , f , g ) 7→ ( f x , g x )

Currying the x

( f , g ) 7→λx .( f x , g x )

This is the canonical isomorphism

[M , V ]× [M , V ]
m×−−−→
'
[M , V ×V ]

Proposition 5.5.8. Let X be a coherently closed tangent category, and V be a dif-

ferential object. For every M , [M , V ]may be given the structure of a differential

object. That is, the differential objects are an exponential ideal of X.

Proof. Equip [M , V ]with structure of a monoid by

[M , V ]× [M , V ]
m×−−−→ [M , V ×V ]

[M ,σ]
−−−−→ [M , V ]

and zero given by λx .0.

From 5.5.4, we have a product diagram:
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[M , V ]
[M , p̂ ]
←−−−− [M , T V ]

ψ
←−− T [M , V ]

p
−−→ [M , V ]

It remains to show the coherences. First, we show that the commutative

monoid structure on [M , V ] compatible with the bundle 0. Note the following

diagram:

[M , V ]

!

!!

[M ,0] ((
[M ,!]

��

0 // T ([M , V ])

ψ
��

p̂

��

[M , T (V )]

[M ,p̂ ]
��

[M , 1]
[M ,ζ]

// [M , V ]

1

m1

OO

ζ

66

The side bits commute by definition. The top triangle commutes from corol-

lary 5.4.1. The main square commutes by the assumption that V is a differential

object. The bottom triangle is the definition of ζ.

Next, we show the compatibility of the commutative monoid structure with

the bundle addition.

First, note that [M , T2(V )] is a pullback, and consider the commutativity of the

following diagram:

T2([M , V ])
ψ2 //

〈π0,π1〉
��

[M , T2(V )]

[M ,〈π0,π1〉]

��

〈π0,π1〉

xx

T ([M , V ])×T ([M , V ])

ψ×ψ
��

[M , T (V )]× [M , T (V )] m×
// [M , T (V )×T (V )]

For the top square,ψ2 is the unique map for whichψ2π0 =π0ψ andψ2π1 =

π1ψ; the bottom square is definitional. The above square is the upper left corner

in the following diagram, which proves the compatibility of the commutative

monoid structure with the bundle addition.
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T2[M , V ]

〈π0,π1〉
��

+ //

ψ2

++

T [M , V ]

ψ

��

p̂

~~

T [M , V ]×T [M , V ]

p̂×p̂

��

ψ×ψ
��

[M , T2V ]

[M ,〈π0,π1〉]
��

[M ,+] // [M , T V ]

[M ,p̂ ]

��

[M , T V ]× [M , T V ] m×
//

[M ,p̂ ]×[M ,p̂ ]
��

[M , T V ×T V ]

[M ,p̂×p̂ ]
��

[M , V ]× [M , V ] m×
//

σ

44[M , V ×V ]
[M ,σ]

// [M , V ]

For the remaining parts of the diagram: the upper right square follows from

corollary 5.4.1; the bottom right square is the assumption; the bottom left square

is naturality; the edge pieces are just the definitions of p̂ andσ.

Next, we show the linearity ofσ. Consider the following diagram:

T ([M , V ]× [M , V ])
〈T (π0),T (π1)〉//

T (m×)

��

T ([M , V ])×T ([M , V ])
ψ×ψ // [M , T (V )]× [M , T (V )]

[M ,p̂ ]×[M ,p̂ ] //

m×

��

[M , V ]× [M , V ]

m×

��
T ([M , V ×V ])

ψ //

T ([M ,σ])

��

[M , T (V ×V )]
[M ,〈T (π0),T (π1)〉] //

[M ,T (σ)]

��

[M , T (V )×T (V )]
[M ,p̂×p̂ ] // [M , V ×V ]

[M ,σ]

��
T ([M , V ])

ψ
// [M , T (V )]

[M ,p̂ ]
// [M , V ]

The top right and bottom left squares commute by naturality. The bottom

right square commutes by the assumption that V is a differential object. The top

left square also commutes, and we will give the calculation for it below.

Before beginning, note that

θ× := A× (B ×C )
∆×1−−−−→ (A×A)× (B ×C )

ex−−→ (A×B )× (A×C )

is a strength for A× . Note the naturality:
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A× (B ×C )
θ× //

f ×(g×h )
��

(A×B )× (A×C )

( f ×g )×( f ×h )
��

A′× (B ′×C ′)
θ×
// (A′ x B ′)× (A′×C ′)

And finally note that

• (1A ×∆B )θ× =∆A×B ;

• θ×π0 = 1×π0;

• θ×π1 = 1×π1.

Also note that this strength allows us to re-express the map m× : [M , V ]×[M , V ]

−→ [M , V ×V ].

M × ([M , v ]× [M , V ])
θ×−−→ (M × [M , V ])× (M × [M , V ])

ev×ev−−−−−→V ×V
[M , V ]× [M , V ]−−−−−−−−−−−−−→

m× :=λ(θ×(ev×ev))
[M , V ×V ]

T (m -1
× )ψ[M , 〈T (π0), T (π1)〉] = 〈T (π0), T (π1)〉 (ψ×ψ)m -1

× using the universal

property of maps into [M , T (V )×T (V )].

117



(1×T (m×)ψ[M , 〈Tπ0, Tπ1〉])ev

= (1×T (m×)ψ)ev 〈Tπ0, Tπ1〉

= (1×T (m×))θT T (ev) 〈Tπ0, Tπ1〉

= θT T (θ×)T (ev× ev) 〈Tπ0, Tπ1〉

= θT T (θ×)T (ev× ev) 〈Tπ0, Tπ1〉

= θT T (θ×) 〈T (π0ev), T (π1ev)〉

= θT 〈T (θ×π0ev), T (θ×π1ev)〉

= θT 〈T ((1×π0)ev), T ((1×π1)ev)〉

=∆(θT T ((1×π0)ev)×θT T ((1×π1)ev))

= (1×∆)θ×((1×Tπ0)× (1×Tπ1))(θT T (ev)×θT T (ev))

= (1×∆)(1× (Tπ0×Tπ1))θ×(θT T (ev)×θT T (ev))

= (1×〈Tπ0, Tπ1〉)θ×(θT T (ev)θT T (ev))

= (1×〈Tπ0, Tπ1〉)θ×((1×ψ)ev× (1×ψ)ev)

= (1×〈Tπ0, Tπ1〉)(1× (ψ×ψ))θ×(ev× ev)

= (1×〈Tπ0, Tπ1〉 (ψ×ψ)mx )ev

as required. Finally, for the coherence with l we have

T ([M , V ])

ψ

��

l // T 2([M , V ])

T (ψ)
��

T (p̂ )

��

[M , T (V )]
[M ,l ] //

[M ,p̂ ]
��

[M , T 2(V )]

[M ,T (p̂ )]
��

T ([M , T (V )])

T ([M ,p̂ ])
��

ψoo

[M , V ] [M , T (V )]
[M ,p̂ ]

oo T ([M , V ])
ψ

oo

p̂

gg

The top rectangle follows from corollary 5.4.1. The bottom right square is

naturality. The bottom left square is assumption that V is a differential object.

This completes the proof that [M , V ] is a differential object.
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The above holds for coherently closed tangent categories.

Corollary 5.5.9. Let X be a coherently closed tangent category. Then

[ , ] :Xop×Diff(X)−→Diff(X)

The above corollary says that differential objects are closed to taking powers

by arbitrary objects in X.

Theorem 5.5.10. For a coherently closed tangent category, the differential objects

are a differential λ-category.

Proof. We need to show that the differential structure put on differential objects

always satisfies the coherence required for differential λ-categories; namely, for

A×B
f
−−→C

DB [ f ] =λ
−1D [λ( f )].

Consider,

λ−1(D [λ( f )])

=λ−1(〈π0,π1〉T T (λ( f ))ψ[M , p̂ ])

=λ−1(〈π0,π1〉T λ(TB ( f ))[M , p̂ ]) lemma 5.4.2

=λ−1(〈π0,π1〉T λ(TB ( f )p̂ ))

=λ−1(λ((1×〈π0,π1〉T )TB ( f )p̂ ))

= (1×〈π0,π1〉)TB ( f )p̂

=DB [ f ] lemma 5.5.3

To tie into chapter 3 we have the following corollary.

Corollary 5.5.11.

1. The differentialλ-calculus admits a sound interpretation into the differential

objects of a coherently closed tangent category.
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2. The classifying category of a differential λ-theory is a coherently closed tan-

gent category.

Proof.

1. From 5.5.10, the differential objects are a differential λ-category. From 3.2.8,

any differential λ-category is a model of the differential λ-calculus.

2. The classifying category of the differential λ-calculus is a differential λ-

category 3.2.10, and proposition 5.5.7 says that this is a coherently closed

tangent category.

5.6 CoKleisli categories and the simple slice

When X is a category with products, the simple slice of X by an object A ∈ X,

denoted X[A], is the category with the same objects as X and for which arrows

B −→ C in X[A] correspond to A × B −→ C in X. It is also the coKleisli category

of the comonad A × : X −→ X. X[A] is thought of as having A in context. In a

cartesian closed category, the A can be curried, by the monad [A, ]. The simple

slice category is equivalent to the Kleisli category of this monad.

In this section, we will prove that the simple slice of a Cartesian tangent

category is always a Cartesian tangent category. In fact, we characterize precisely

when the coKleisli category of a comonad on a tangent category is again a tangent

category. This can be potentially useful for obtaining new tangent categories.

Let X F−−→Y be a functor, let X have a monad T , and Y have a monad T ′. F

lifts to the Kleisli category when there is a FT such that:

X I //

F
��

XT

FT

��
Y

I
// YT ′

Functor liftings were investigated by Applegate, 1965, Johnstone, 1975, and

Mulry, 1993. We recall some of the basic ideas for an endofunctor X K−−→X and

for coKleisli categories of comonads.
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For a comonad (S ,δ,ε), a functor K :X−→X lifts to the coKleisli category XS

when the following square commutes:

X J //

K
��

XS

KS

��
X

J
// XS

where J is the identity on objects, and sends f to S ( f )ε. There is a map

S A
1S A−−−→ S A X

A −→
η

S A XS

that is natural in XS . Then by whiskering, we get another natural map in XS

K (A)
λ
−→ K (S A) XS

S (K A)−−−−→
KS (η)

K (S A) X

As J is a right adjoint, it has a left adjoint, L that sends A to S (A) and sends A
f
−−→ B in XS to S A

δ−→ S 2A
S f
−−→ S B in X. We then use the left adjoint to lower λ

to a natural map in X:

L (K A
λ
−→ K S A) = S (K A)

δ−→ S 2(K A)
S (λ)
−−−→ S (K (S A))

λ := S (K A)−−−→
L (λ)

S (K (S A))−→
ε

K (S A)

It is relatively straightforward to show that for the map λ, the following two

diagrams commute:

S (K A)

ε %%

λ // K (S A)

K (ε)
��

K A

and S (K A)

δ
��

λ // K (S A)

K δ
��

S 2(K A)
S (λ)
// S (K (S A))

λ
// K (S 2A)

The commutativity of the diagram for lifting gives on objects KS (A) = K (A). In

fact, any natural λ : K S −→ S K that satisfies the two diagrams above, determines

a functor KS ( f ) := S (K A)
λ−→ K (S A)

K ( f )
−−−−→ K B , that gives KS A

KS ( f )−−−−→ KS B in XS .

Such a λ is called a lifting law.
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Proposition 5.6.1. LetX be a category with a comonad (S ,δ,ε) and an endofunctor

K . K lifts to the coKleisli category if and only if there is a lifting law λ : K S −→ S K .

For a full proof of proposition 5.6.1, see Borceaux, 2008 lemma 4.5.1.

We also have:

Proposition 5.6.2. Suppose that X has a comonad (S ,δ,ε), and K , K ′ are end-

ofunctors that have lifting laws λK ,λK ′ repsectively. A natural transformation

α : K −→ K ′ lifts to the coKleisli category if and only if α;S ;λK ′ = λK ;S ;α1 or in

components:

S (K B ) S (K ′B )

K (S B ) K ′(S B )

S (αB )

λK λK ′

αS B

Proof. If a natural transformation lifts, then the diagram commutes.

Suppose the diagram commutes, we show that αS := J (α), which on compo-

nents is S (K B )
S (αB )−−−−→ S (K ′B )

ε−→ K ′B , is natural KS B −→ K ′S B inXS . Recall that

we must show composites in a coKleisli category are equal; the desired equality is:

S (αB );εK ′B ;λK ′

B ′ ; K ′( f ) =λK
B ; K ( f );S (αB ′ );εK ′B ′

The proof is

1We use semicolons to separate long, hard-to-parse strings of symbols.
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S K B S 2K B S 2K ′B

S K B S K ′B

S 2K B K S B K S B K ′S B

S K S B K S 2B

K S B

K B ′ K B ′

S K B S K ′B ′ K ′B ′

δ

λK
B

δ

Sε

S 2αB

SεK ′B

λK
B

SαB

λK ′
B

SλK
B K δ

K f

αS B

K ′ f

S K f

λK
S B

ε K ε

K f

αB ′ε

SαB ε

The shapes inside the diagram consist of naturality, defining properties of λ,

the commuting diagram from the assumption, and comonad laws.

Of interest to us is whenX is a tangent category so that the endofunctor is T .

Lemma 5.6.3. SupposeX is a tangent category, and (S ,δ,ε) is a comonad where T

and p lift. Then Tn lifts, and more generally, all the T m
n lift.

Proof. We have

STn A TnS A

ST A T S A

ST A T S A

S A S A

∃!.λ

λ

Sp

p

· · ·

Sp

λ

p

· · ·

The bottom two faces commute because p lifts. The coherences follow from

the universal property.
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A similar argument shows that T k
n lifts to XS .

Thus when p lifts, it always makes sense to ask + to lift, because T2 lifts.

The functorX J−→XS defined at the beginning of the section is a right adjoint,

hence preserve limits. We can use the continuity 2 of J to show that diagrams in

XS are indeed limits.

Proposition 5.6.4. Suppose X is a tangent category, and (S ,δ,ε) is a comonad

where T lifts, and all the structural transformations lift. Then XS is a tangent

category.

Proof. The right adjoint J preserves products strictly. The projections in XS are

J (πi ), and the pairing of f , g is J (



f , g
�

). All the equations between the natural

transformations required for tangent structure in XS may be put in the form

J (e1) = J (e2)which holds because e1 = e2 in X and functors preserve equations.

It remains to show that the required limits exist. As J is continuous the pull-

back power of p S = J (p ) exists and is J (Tn (M )). The square for the universality of

the lift may be put into the form J (〈π0l ,π0〉T (+)T p ) = J (π0p 0); which commutes

as J is a functor, but as J is continuous, the square is a pullback in XS .

The simple slice category X[A] is the coKleisli category of the comonad A× .

It has the same objects as X and maps B −→C in X[A] are maps A×B −→C in X.

The identity is A×B
π1−−→ B and the composite of B

f
−−→C and C

g
−→D is

A×B
∆×1−−−−→ A×A×B

A× f
−−−−→ A×C

g
−→D

Corollary 5.6.5. Let X be a cartesian tangent category, and A be an object of X.

The simple slice category X[A] is a tangent category.

Proof. The lifting law A×T (B )
λ−→ T (A×B ) is the strength A×T B

θ−−→ T (A×B ).

Thus the tangent functor lifts: on arrows: TA× ( f ) := A×T B
θ−−→ T (A×B )

T f
−−−→ T C .

That all the structural transformations lift comes from theorem 5.3.3: all the

structural transformations are strong, hence they all lift. Then proposition 5.6.4

shows that X[A] has tangent structure.

2We often call a limit preserving functor continuous; similarly colimit preserving functors are
called cocontinuous.
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Observation 5.6.6. Let X be a cartesian tangent category and A any object. Then

the differential objects of X are the same as the differential objects of X[A]. Moreover

Diff(X[A]) is a cartesian differential category.

Corollary 5.6.7. Let X be a cartesian category and A any object in X. The category

Diff[A](X) whose objects are differential objects of X and whose maps V −→ W

correspond to maps A×V −→W in X is a cartesian differential category with

A×V
f
−−→W

D [ f ] := A×V ×V −→ A×T V −−→
θ

T (A×V )−−−→
T f

T W −−→̂
p

W

This is the coKleisli category of the comonad A× on the category Diff(X).

The simple slice category has a counter part. In a cartesian closed categoryX,

for any object A, the functor [A, ] :X−→X is a monad. The unit and multiplication

for the monad, are presented by

m 7→λx .m f 7→λx . f x x

respectively (these are k and w from combinatory logic book:lambda-calc-combinators).

That the unit monad laws hold is the η-rule, or the universal property of the inter-

nal hom: λy .m y =m and the associativity is trivial. The Kleisli category of this

monad is denoted XA .

Observation 5.6.8. The categories X[A] and XA are equivalent.

Proof. The functorX[A] λ−→XA sends B to B , and given a map B
f
−−→C , which in

X is a map A×B −→C , λ( f ) : B −→ [A, C ]. The functor going in the other direction

is given by uncurrying.

IfX is a tangent category, thenXA is too. Let f : B −→ [A, C ]; T ( f ) := T B
T f
−−−→

T [A, C ]
ψ
−−→ [A, T C ]. Provided how coherence works for Cartesian differential

categories, the following may seem surprising as we do not requireψ to be an

isomorphism.

Observation 5.6.9. Let X be a cartesian closed tangent category. The functor λ :

X[A]−→XA sends tangent structure to tangent structure. Similarly for λ-1. That is

λ is an equivalence of tangent categories.
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Proof. Suppose A×B
f
−−→C is a map in X[A]. Then

λ(TA× ( f ))

=λ(θT ( f )) =λ(θT (1×λ( f ))T ev)

=λ((1×T λ( f ))θT ev) = T λ( f )λ(θT ev)

= T λ( f )ψ= T⇒(λ( f ))

X[A] XA

X[A] XA

λ

TA× T⇒

λ

Similarly, λ sends the structural transformations to the structural transformations.

See 5.4.1 for the proof. That λ-1 is a morphism of tangent structure is similar.

λ-1(T⇒( f )) = (1×T ( f )ψ)ev= (1×T f )θT ev

= θT (1× f )T ev= θT λ-1( f ) = TA× (λ
-1( f ))

We should point out that generally Kleisli categories of monads on tangent

categories will not have tangent structure that lifts: the left adjointX F−−→XT does

not preserve limits.

A sense in whichψ being an isomorphism is a coherence is:

Corollary 5.6.10. When X is a coherently closed tangent category, the map

λ : Diff[A](X)−→Diff(X)A

is an equivalence of cartesian differential categories.

In the next chapter, we will see that requiring the exponential strength of a

tangent category, ψ : T [A, B ] −→ [A, T B ], to be an isomorphism allows one to

extract cartesian closed tangent categories from cartesian tangent categories.
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5.7 Homs into differential bundles

Differential objects are generalized by differential bundles. In this section, we

show that differential bundles are also closed to powers in a coherently closed

tangent category.

Definition 5.7.1. A differential bundle (E , q , B ,λ,σ,ζ) is a commutative monoid

(q ,σ,ζ) in X/B ; together with a lift E
λ−→ T E such that

1. All pullback powers of q are preserved by Tn and T m ;

2. (λ, 0) : (E , q )−→ (T E , T q ) is an additive map of bundles;

3. (λ,ζ) : (E , q )−→ (T E , p ) is an additive map of bundles;

4. The following diagram is a pullback and is preserved by T n for all n:

E2 T (E2) T E

B T B

π0q=π1q

λ×0

ù

Tσ

T q

0

A generalization of 5.5.8 is the following:

Proposition 5.7.2. LetX be a coherently closed tangent category, (E , q ,λ, B ) be a

differential bundle, and A be any object. Then [A, E ]may be given the structure of

a differential bundle over [A, B ]. That is differential bundles are closed to powers.

Proof. The projection is

[A, E ]

[A, B ]

[A,q ]

And the lift is

[A, E ]
[A,λ]
−−−−→ [A, T E ]

ψ-1

−−−→ T [A, E ]

Note the use ofψ-1.

As [A, ] is continuous, [A, E2] is the pullback of [A, q ]with itself.
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The sum and zero are

[A, E2]
[A,σ]
−−−−→ [A, E ] [A, B ]

[A,ζ]
−−−−→ [A, E ]

That this is a commutative monoid over [A, B ] is immediate as functors preserve

equations.

That all pullback powers of [A, q ] are preserved by Tn and T m comes from

coherence:

T m
n [A, q ]' [A, T m

n q ]

and then use that T m
n preserves pullbacks of q , and that [A, ] is continuous.

That (λ, 0) : q −→ T q :

[A, E ] [A, T E ] T [A, E ]

[A, B ] [A, T B ] T [A, B ]

[A,λ]

[A,q ]

ψ-1

[A,T q ] T [A,q ]

[A,0] ψ-1

The left square commutes because q is a differential bundle and the right square

is naturality. Note that by 5.4.1, [A,0]ψ-1 = 0, and definitionally, [A,λ]ψ-1 giving

the coherence as required.

That this is an additive map:

[A, E2] [A, E ]

[A, T E2] [A, T E ]

T [A, E2] T [A, E ]

[Aλ×λ]

[A,σ]

[A,λ]

ψ-1

[A,Tσ]

ψ-1

T [A,σ]

The top square commutes because λ is a differential bundle and the bottom is

naturality. Thus, (λ, 0) : q −→ T q is an additive map.

That (λ,ζ) : q −→ p :

[A, E ] [A, T E ] T [A, E ]

[A, B ] [A, E ]

[A,q ]

[A,λ] ψ-1

[A,p ]
p

[A,ζ]
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The left shape is that q is a differential bundle. The right triangle is 5.4.1.

Finally we show the universality of the lift. First we exhibit the commutativity

of the square.

[A, E2] [A, T E2] T [A, E2] T [A, E ]

[A, T E ]

[A, B ] [A, T B ] T [A, B ]

[A,π0q ]

[A,λ×0]

[A,Tσ]

ψ-1 T [A,σ]

T [A,q ]
ψ-1

[A,T q ]

[A,0] ψ-1

The left square is that q is a differential bundle, and functoriality of [A, ]. The

squares on the right are both naturality; thus, the outer square commutes.

Note that the left square is a pullback as [A, ] is continuous. The right square

can be put into the form

(ψ-1,ψ-1) : [A, T (σq )]−→ T [A,σq ]

as an isomorphism in the arrow category, and hence we extend a pullback square

by an isomorphism square, and the outer square is a pullback.

Thus [A, E ] is a differential bundle over [B , E ].

5.8 Vector Fields

The section on differential bundles in a coherently closed tangent category allows

formulating an object of vector fields of a differential bundle as an object in the

category. In this section, we show how to construct the vector fields of a bundle.

First, we make use of the following lemma:

Lemma 5.8.1 (Cockett and Cruttwell, 2016 Corollary 3.5). Let X be a tangent

category, and E
q
−→ B a differential bundle. For any point 1

b−−→ B , if the following
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pullback is transverse

Eb E

1 B

ù q

b

then Eb is a differential object.

We have a corollary of proposition 5.7.2 and lemma 5.8.1.

Corollary 5.8.2. Let X be a coherently closed tangent category. Let E
q
−→ B be a

differential bundle. If the following pullback is transverse,

Γ (q ) [B , E ]

1 [B , B ]

[B ,q ]

IdB

then Γ (q ) is a differential object.

Proof. From proposition 5.7.2, [B , q ] is a differential bundle. The identity IdB is

always an element 1−→ [B , B ]which is given by currying B
1B−−→ B , and under the

assumption that the limit exists and is transverse, then this follows immediately

from 5.8.1.

Observation 5.8.3. The object Γ (q ) of 5.8.2 can be formulated as the equalizer

Γ (q ) [B , E ] [B , B ]
[B ,q ]

λs .IdB≡λ(π0)

A section of a differential bundle (E , q , B ) is a map B
s−→ E such that

B E

B

s

q

Proposition 5.8.4. LetX be coherently closed and E
q
−→ B be a differential bundle.

Then

X(1,Γ (q ))' {s : B −→ E | s q = 1B }

That is, elements of Γ (q ) are sections of q .
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Proof. Suppose es : 1−→ Γ (q ). Then we may uncurry es to obtain

s := B
〈B ,es 〉
−−−−→ B × Γ (q )� B × [B , E ]

ev−−→ E

Note that es [B , q ] = esλ(π0), and this means that λ((1× es )evq ) =λ(1× esπ0), and as

λ is an isomorphism we have (1× es )evq = (1× es )π0 which implies that

s q = 〈1B ,es 〉evq

= 〈1B , 1B 〉 (1× es )evq

= 〈1B , 1B 〉 (1× es )π0

= 1B

as required.

Conversely, if s q = 1B , then curry s to obtain a map 1
λ(s )
−−−→ [B , E ]. By assump-

tion λ(s )[B , q ] = λ(s )λ(π0) and by the univerality of the equalizer, we induce a

map

1
es−→ Γ (q )

as required.

The sections of the tangent bundle are of particular interest. Sections of T M
p
−−→M are called vector fields, and Γ (p ) is denotedX (M ).

In the construction ofX (M )we take the pullback of [M , p ] and IdM . However,

for the tangent bundle [M , p ] is related to p by a natural isomorphism. In other

words,X (M ) is the pullback:

X (M ) T [M , M ]

[M , T M ]

1 [M , M ]

ù
ψ-1

p

[M ,p ]

IdM

The pullback of the tangent bundle along a point of the base is called the

tangent space. Generally this is denoted Tx M .

Observation 5.8.5.

X (M )' TIdM
[M , M ]
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A differential bundle with negatives is a differential bundle, that is also a

group in the slice category; in particular there is a negation map −( ) : q −→ q in

the slice.

Observation 5.8.6. When E
q
−→ B is a differential bundle where addition has

inverses, then Γ (q ) is a group (under addition). The inverse of a section is given by

B E E

B

s

q

−

q

Hence when T M
p
−−→M is a group bundle, the objectX (M ) is a group, so

that TIdM
[M , M ] is a group.

5.9 Locally coherently closed tangent categories

Often, one wants to describe spaces of functions between vector bundles; for

example, we have already seen that Γ (p ), the space of sections of the tangent

bundle T M
p
−−→M , can be viewed as an equalizer of the internal hom [M , T M ].

However, it can also be viewed as [1M , p ] in the slice categoryX/M . To make use

of this structure, we need the slice category of a tangent category to be Cartesian

closed: that is, we require a locally cartesian closed tangent category.

We also require the differential bundles to form a sub-closed tangent category.

For this, we need to formulate how to have a locally Cartesian closed subcategory,

and to do this we introduce the notion of a display system.

A display systemD for a categoryX is a class of maps such that for any d ∈D
and any map f in Xwhose codomain is the same as d , the pullback of f along d

exists and is inD (see book:taylor-practical-foundations chapter 8).

Given a display system, there is an associated fibration, called the display

fibration. The total category of this fibration, is denoted XD , and is described:

Obj: Maps A
d−−→ B ∈D;
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Arr: Commuting squares

A A′

B B ′

d

f

d ′

g

The projection of the fibration XD cod−−−→X sends a square to its bottom edge:

A B

C D

C D

d

f

d ′

g

g

In this section, we will describe conditions on when the fibers of this fibration

are tangent categories. We will see that displayed differential bundles (vector

bundles) in X become differential objects in X/M . Thus if X/M is a coherently

closed tangent category, then the differential λ-calculus becomes the internal

logic, not only of the differential objects, but also of the differential bundles of a

tangent category.

5.9.1 Transversally displayed tangent categories

If X is an arbitrary tangent category, it is not the case that X/M is a tangent

category in a canonical way. The problem is more generally with display systems

in a tangent category: when we form the pullback of a map it may not have good

geometric properties – in particular the pullback might not be preserved by the

tangent functors T n , Tn .

In the category of smooth manifolds and smooth maps, a pullback that is

transverse is preserved by all the tangent functors. We recall the classical defi-

nition of transverse limit. Suppose we have two curves, regarded as manifolds,

embedded inR2. For example,
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In the first picture, the intersections of the manifolds are transverse, the tan-

gent vectors at the intersection spanR2. In the second picture, the manifolds

intersect along a line, and their intersection spans onlyR . This means that their

intersection will be degenerate. In physical systems, this kind of degeneracy

can lead to catastrophe journal:thom-original Zeeman showed, that even for

some simple physical systems there are configuration spaces with catastrophic

behaviour; a small movement of one aspect of the system will cause erratic motion

in other parts of the system that have for example become restricted in dimension,

and can lead to a chaotic phase space journal:zeeman-early

However, when intersections are of ‘full rank’, the geometric behaviour is

good, and indeed the tangent bundle preserves these pullbacks. Indeed the Thom

transversality theorem implies the following theorem.
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For R-vector spaces, if V , W embed into a vector space E , they are called

transverse when V and W span E . For smooth manifolds, submanifolds M , N of

L are transverse when for every x : M ∩N , Tx M , Tx N span Tx L .

Theorem 5.9.1 (journal:thom-trans). If M , N are transverse submanifolds of E ,

then M∩N is isomorphic to the pullback of the embeddings into E , and the pullback

is a smooth manifold. Moreover, this pullback is preserved by the tangent functors

T k .

Thus, for our display system, we should ask that the pullback along a display

map, not just exist, but we should ask that it is a transverse pullback, and transverse

pullbacks should have the property that they are preserved by tangent functors.

Cockett and Cruttwell, 2016 considered the notion of a transverse display

system for a tangent category. In the paper, the authors setup a transverse system

as a collection of pullbacks together with closure properties; this was necessary

as they were working not just with a display system, but a more general fibration.

We have already introduced the notion of a transverse limit as one that is pre-

served by all the T k 5.1.4. A transverse displayed tangent category is a tangent

categoryX together with a display systemD such that pullbacks of maps alongD
are transverse.

Example 5.9.2. In SMan submersions, that is smooth functions M
f
−−→N for which

Tx M
Tx f
−−−→ Tf x N is surjective, form a transverse display system.

Observation 5.9.3. The tangent bundle T M
p
−−→M need not be inD. In smooth

manifolds it is, but it need not be in SMan/M .

Example 5.9.4. In synthetic differential geometry, as every pullback is transverse,

and all limits exists,D may be taken to be all maps.

When X has a tangent transverse display system, then define bunD (X) :=XD .

Proposition 5.9.5 (Cockett and Cruttwell, 2016). WhenX is a transverse displayed

tangent category, and each tangent bundle T M
p
−−→M is displayed, then bunD (X)

is always a tangent category.
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We will sometimes refer to the fiber of the display fibration as a relative slice, or

sometimes just slice, and we abuse notation in referring to it asX/M . Of particular

interest is the following:

Proposition 5.9.6 (Cockett-Cruttwell). WhenX is a transverse displayed tangent

category, then each fiber X/M , with respect to bunD (X), is a (cartesian) tangent

category.

For a full proof see Cockett and Cruttwell, 2016.

sketch. The tangent structure is given by pullback. Let M be an object of X, and

let q : E −→ M ∈ D. As T q ∈ D we can pullback along it; this is TM (q ) : TM (E )

−→M :
TM (E ) T E

M T M

TM (q )
ù T q

0

Suppose h : q1 −→ q2 is a map in the slice:

X Y

M
q1

h

q2

Then we define TM (h ) by universal property:

TM (X ) T M

M T M

TM (Y ) T Y

∃!.TM h

ù T q1

T h0

ñ T q2

Define pM : TM (q )−→ q as the following map in X/M :
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TM E T E

E

M T M

M

ù
T q

p

q0

p

The lift is uniquely determined by the following diagram

T E

TM E T M T 2E

M TM TM E T TM E T 2M

M T M

l
T q

TM q

ù

l
T 2q

0

∃!.lM

T 2
M q

ù
T TM q

ù

0

T 0

The other transformations are defined similarly. Various coherences, like 0M lm =

0M T (0M ) are hold by universality of pullback.

5.9.2 Transversally displayed differential bundles

This subsection establishes that differential bundles are differential objects in the

slice tangent category of a Cartesian tangent category.

Differential bundles are objects in a tangent category that behave like vector

bundles in SMan.

A transversally displayed differential bundle in a transversally displayed

tangent category X, is an additive bundle (E , B , q ,σ,ζ) together with a lift E
λ−→ T E where
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1. E
q
−→ B is a display map, and also an additive bundle;

2. The pullback powers of q are transverse;

3. (λ, 0) : (E , q )−→ (T E , T q ) is an additive map;

4. (λ,ζ) : (E , q )−→ (T E , p ) is an additive map;

5. The following diagram is a transverse pullback

E2 T (E2) T E

B T B

ù
λ×0

π0q=π1q

Tσ

T q

0

Lemma 5.9.7 (Cockett and Cruttwell, 2016). Suppose (E , q ,λ, B ) is a differential

bundle, and C
f
−−→ B is a map. If the pullback of q along f exists, then it is a

differential bundle.

Lemma 5.9.8 (Cockett and Cruttwell, 2016). Suppose (E , q1,λ1, B ), (E2, q2,λ2, B )

are differential bundles over the same base. Their pullback is a differential bundle,

and is the product in the category of differential bundles over B .

The lift is induced by the universal property of the pullback given by applying

T to the pullback of q1 and q2. This bundle is called the Whitney sum, and is the

chosen product functor on the category of differential bundles over B .

The pullback of a differential bundle is indeed a differential bundle, but it

need not be displayed. We say the differential bundles are displayed when this is

the case. As a corollary of proposition 5.9.6, we then get:

Proposition 5.9.9. If X is a transversally displayed tangent category in which the

differential bundles are displayed, then the class of differential bundles forms a

display system, and hence the fibers of the display fibration are tangent categories.

One should point out that we need the differential bundles to be a transverse

display system, but this is guaranteed as each differential bundle is displayed

in D. Thus, the pullbacks are inQ, and henceQ is a transverse system for the
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differential bundles. The relative slice of differential bundles over B is denoted

DBun(X)[B ].
This brings us to the main theorem of differential bundles:

Theorem 5.9.10 (Cockett and Cruttwell, 2016 theorems 5.12,14). LetXbe a transver-

sally displayed tangent category. Then the following are equivalent:

1. A differential bundle in X over B ;

2. A differential bundle over 1B in the relative slice X/B with respect to the

display fibration;

3. A differential object in the relative slice X/B with respect to the display fibra-

tion.

Moreover, DBun(X)[B ] is always a cartesian differential category.

5.9.3 Locally cartesian closed categories

We introduce locally coherently closed categories to allow constructions in a

tangent category beyond spaces of sections of differential bundles. We describe a

bit of machinery for working with locally cartesian closed categories that allows

expressing the coherence for locally closed tangent categories.

One way to describe locally cartesian closed categories is by pullback exten-

sions. These were investigated in Weber, 2015 under the name pullback around,

and the right adjoint to pullback was called distributivity pullback.

Let f , g be composable arrows in a category X.

C

A B

g

f
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A pullback extension is a pullback of the form:

X Y

A

B C

ù
k

e

h

f

g

A morphism of pullback extensions consists of two maps α,β as in the fol-

lowing diagram:

· ·

· ·

·

· ·

k ′

e ′
h ′

k

e

α
β

h

f

g

e =αe ′, h =βh ′ and αk ′ = kβ . Note that as the square αk ′ = kβ commutes,

by the pullback pasting lemma, the square is in fact a pullback.

Pullback extensions of f along g form a category Pull( f , g ).

When Pull( f , g )has a terminal object, we say that f has an exponential along

g , and we denote the object,

g ∗(Πg ( f ))

ε

��

// Πg ( f )

Πg ( f )

��

A

f
��

B g
// C
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We say that a map g is exponentiable when for each f , Pull( f , g ) has a termi-

nal object.

In a category with pullbacks, one typically thinks of a map B
g
−→ C as a

dependent type. Given x : C , we have B (x ) which one thinks of as B (x ) := {y ∈
B |g (y ) = x }. Given a pair of composable arrows A

f
−−→ B

g
−→C then one views f

as a dependent type, that depends on g .

x : C ` x : C
x : C ` B (x ) ty

x : C , a : B (x ) ` A(a ) ty

We then think of Πg ( f ) as the implication for dependent types – this is called the

dependent product:
t

x : C `
∏

a :B (x )

A(a )

|

:=Πg ( f ) :Πg ( f )−→C

We make this a bit more precise in what follows, in that we recall how locally carte-

sian closed categories are characterized by pullback extensions. The application

to type theory may be found in Seely, 1984.

Lemma 5.9.11 (Weber, 2015). Let X be a category. Let E be the class of exponen-

tiable maps. Then E is closed to isomorphism, compositition, and pullback.

Thus, the exponentiable maps form a display system. In Seely, 1984, Seely

defined a category to be locally cartesian closed when it has a terminal object and

every map is exponentiable. More generally, we call a category locally cartesian

closed when it has a display systemD for which every map is exponentiable, and

all the Πg ( f ) ∈D.

When X has a terminal object 1, the product A × B is the pullback of the

projections of A, B into 1. The following lemma says that an internal hom can be

characterized, in the presence of a terminal object, by pullback extensions.

Lemma 5.9.12. When X has a final object, [A, B ] exists iff A × B
π0−−→ A has an

exponential along A
!−→ 1.

Proof. The pullback over the terminal object is always a product, thus the pullback

extension of the above, named suggestively, is
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A× [A, B ]

π0

&&

π1 //

〈π0,ev〉
��

[A, B ]

!

��

A×B

π0

��
A

!
// 1

Let A×C
f
−−→ B . Note, we can package this up as a pullback extension:

A×C
π1 //

〈π0, f 〉
��

C

!

��

A×B

π0

��
A

!
// 1

Hence there is a unique morphism such that the following diagram commutes.

A× [A, B ] [A, B ]

A×C C

A×B

A 1

π1

〈π0,ev〉
!

π1

〈π0, f 〉

1×λ( f )

λ( f )

!

π0

!

The right triangle does not say much but the left says (1×λ( f ))ev= f .

Conversely, if [A, B ] exists, then the first diagram is a pullback extension. That

it is terminal follows from the universal property of [A, B ].

Corollary 5.9.13. When X has a final object, each !A is exponentiable iff X is

Cartesian closed.
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Lemma 5.9.14. When g sits over A,X/A has g exponentiable iff X has g exponen-

tiable.

Proof. Note that once g sits over A, the pullback

· //

��

·

��

·
f

��
· g

//

p0 ��

·

p1��
·

is both a pullback in X and X/A. It is the terminal extension in X iff it is

terminal in X/A.

Combining lemma 5.9.14 with corollary 5.9.13, we obtain:

Corollary 5.9.15. If X has a final object and each g is exponentiable then each

X/A is cartesian closed.

Proof. In X/A the terminal object is A
1A−−→ A; the map from X

g
−→ A to 1A is g .

By lemma 5.9.14, it suffices then to show that X
g
−→ A is exponentiable in X/A,

and by corollary 5.9.13, it suffices to show that g is exponentiable in X; however,

this is our assumption. Thus, we have shown that X/A is cartesian closed.

We unpack this a bit. Let f , g be objects inX/A. The internal hom [ f , g ] can

be constructed by first considering the pullback extension:

f × g Z1

f × g

Z2 X

π1

g

π0= f ∗(g )

f

And taking the terminal object in Pull( f ∗(g ), f ). That is, [ f , g ] :=Π f ( f ∗(g ))
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We can also show the converse:

Lemma 5.9.16. A map A
g
−→ B is exponentiable iff X/B

g ∗
−−→ X/A has a right

adjoint.

Proof. Consider the pullback extension diagram:

g ∗(Πg ( f ))

ε

��

// Πg ( f )

Πg ( f )

��

A

f
��

B g
// C

Then since the square is a pullback, we have that ε f = g ∗(πg ( f )). But consider

this in the slice X/B :

g ∗(Πg ( f ))

ε
$$

ε //

g ∗(Πg ( f )) 11

A

f

��

A

f ��
B

Which is precisely the counit of the adjunction g ∗(Πg ( f ))
ε−→ f . The universal

property required for this to be an adjunction is precisely the terminality of the

pullback extension.

Corollary 5.9.17. If X has a final object and each X/B is cartesian closed, then

every g : A −→ B is exponentiable.

Corollary 5.9.18. The Beck-Chevalley condition holds. Given a commuting square

(up to iso) of pullback functors

· ·

· ·

f ∗

g ∗ k ∗

h∗
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then the map:

Π f ; g ∗
1;ηh−−−→Π f ; g ∗; h∗;Πh 'Π f ; f ∗; k ∗;Πh

ε f ; 1
−−−→ k ∗;Πh

is an isomorphism

Putting everything together,

Proposition 5.9.19. Let X be a category, and E be the class of exponentiable maps

in X. Then XE cod−−−→X is a fibered Cartesian closed category. In particular, each

cod−1(A) is Cartesian closed.

5.9.4 Locally coherently closed tangent categories

LetX be a tangent category. Let E be a transverse display system where every map

is exponentiable and the exponents are displayed. Denote the fiber cod−1(M ) by

X/M . Denote the internal hom in the sliceX/M by [ , ]M , and the tangent functor

by TM .

Definition 5.9.20. X is locally coherently closed when TM [ f , g ]M
ψM−−−→ [ f , TM g ]M

is an isomorphism.

Proposition 5.9.21. WhenX is a locally coherently closed tangent category then

the differential objects of X/M are a differential λ-category.

Corollary 5.9.22. If the map into the terminal object M
!−→ 1 is in E for every M ,

then X/1'X, and X is coherently closed.

The differential λ-calculus admits an interpretation into the differential ob-

jects of each slice of a relatively locally coherently closed tangent category. But,

as the differential objects are precisely differential bundles by 5.5.10 we have:

Corollary 5.9.23. In a locally coherently closed tangent category, the differential

λ-calculus admits an interpretation into the smooth maps between differential

bundles over a fixed base.

What is also interesting is that immediately from proposition 5.5.8
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Proposition 5.9.24. Let f be a differential bundle, and g any map. Then in the

terminal pullback extension:

g ∗(Πg ( f )) Πg ( f )

A

B C

ε ù

Πg ( f )

f

g

Πg ( f ) is a differential bundle.

Nishimura introduced a setting, called axiomatic differential geometry Nishimura,

2012a, containing axioms on a category for doing differential geometry. In Nishimura,

2012c, he “refurbishes” his axioms, and the end result is a locally cartesian closed

category, where each slice admits an action by Weil algebras. If we strengthen his

notion of action of Weil algebras, and drop the exactness criterion, we obtain ex-

actly a locally coherently closed tangent category. It is interesting that Nishimura

obtained the coherence from a completely different point of view: our perspective

was to provide models for the differential λ-calculus, and his was for extracting

good subcategories of Frölicher spaces. Thus, the settings investigated in this

thesis, using the internal logic of differential bundles, could potentially make

a reworking and formalization of Nishimura’s ideas, using tangent categories,

straightforward.
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Chapter 6

Weil algebras, closed tangent

categories, and constructing

models

In this section, we make use of a technique employed first in synthetic differential

geometry of extracting microlinear spaces (Reyes and Wraith, 1978a). In a smooth

topos, or model of SDG, not all of the objects have the property that T M (which

is [D , M ]) behave locally like an R-vector space. The microlinear spaces are

essentially the ones that do behave locally like anR-vector space.

(Kock, 1986) introduced the Weil prolongation of a convenient vector space,

to show that they embed into the R-vector spaces of the Cahiers topos. The

Weil prolongation introduced by Kock is an instance of a structure known as an

actegory 1, as introduced in (Janelidze and Kelly, 2001). An actegory is a monoidal

category acting coherently on another category. (Kolar, Michor, and J., 1993) and

(Kriegl and Michor, 1997) use Weil prolongations on arbitrary dimension smooth

manifolds to characterize product preserving functors.

In this chapter, we will establish a connection between Weil prolongations

and tangent categories by using the characterization of tangent categories in

(Leung, 2017). We will then revisit the notion of coherently closed tangent category

1Kock’s paper predates the Janelidze-Kelly paper on actegories. In (Kock, 1986), he calls acte-
gories semidirect product of categories, and his concept of Weil prolongation is an actegory.
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from an enriched viewpoint on tangent categories due to (Garner, 2018). Garner

proved that a tangent category is precisely a category enriched in what we will call

microlinear Weil spaces. The category of microlinear Weil spaces is precisely the

category of models of the finite limit theory of Weil algebras in Set. We will then

characterize transverse limits and coherent closure in terms of enrichment. We

will then show how to extract microlinear spaces from an action by Weil algebras

to form a tangent category, and then we will show how to extract a coherently

closed tangent category from a Cartesian closed category. We end with a few

examples of coherently closed tangent categories.

6.1 Tangent structure from Weil actions

Tangent structure allows forming objects by pullback of the bundle projection,

forming e.g. Tn (M )which is the bundle of n tangent vectors at the same point in M ,

and then iterating this construction forming objects like Tnk
(· · ·Tn1

(M ) · · · ). Leung

argued that in a presentation of tangent categories, one may view the iterated

tangent constructions using graphs. Tn is viewed as a clique with n nodes, and the

iterated tangent functors should be viewed as disjoint union of graphs. To make

this formal, these graphs express relations between generators in a Weil algebra.

The idea, explored in (Leung, 2017), is that each node corresponds to a generator

of a Weil algebra and edges correspond to a relation given by multiplying these

generators together; the graphs are all reflexive. The single clique with 3 nodes

for example corresponds toR[x , y , z ]/(x 2, x y , y 2, x z , y z , z 2). This Weil algebra

then correponds to T3. In fact, these kinds of relations express a subcategory of

Weil algebras, and all the natural maps that arise from tangent structure arise as

Weil algebra homomorphisms (Leung, 2017).

6.1.1 Weil Algebras

Intuitively, a Weil algebra is a finite dimensional algebra that captures an infinites-

simal extension of R . In other words, Weil algebras have a presentation as a +d

where d is so small that d k = 0. We work over a commutative rig, instead of a

commutative ring – these are like rings, but without subtraction.
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Definition 6.1.1. Let R be a commutative rig. A Weil algebra (Dubuc and Kock,

1984; Lavendhomme, 1996) W over R is a commutative, unital R algebra such that

• The underlying R -module is R n+1;

• The unit uW is (1, 0, · · · , 0);

• The image of the embedding R n �R n+1 given by (a1, . . . , an ) 7→ (0, a1, . . . , an )

is a nilpotent ideal I in R n+1.

A Weil algebra is canonically augmented: this means there is a unital R -algebra

homomorphism W
ε−→ R . The augmentation on the underlying R -modules is

defined ε(a1, . . . , an+1) := a1. The augmentation is a retract of the unit map η : R

−→W where η(a ) = (a ,0, . . . ,0). Also note that the nilpotent ideal I which is the

image of the embedding R n −→R n+1 is the kernel of ε.

A morphism of Weil algebras is a morphism of augmented algebras.

Now, let W be any augmented algebra. As ε : W −→R is a unital algebra map,

ε(uW ) = 1 ∈ R . Then the map η : R −→ W defined by r 7→ r uW has ε(η(r )) =

ε(r uW ) = r ε(uW ) = r , witnessing η as a section of ε; in particular η is injective.

Thus, for any augmented algebra W , R ·uW := {r uW | r ∈R } is isomorphic to R

as an R algebra.

When R is a ring, an augmented algebra A has an important property: el-

ements of A really can be thought of as elements of R extended in some way.

Given an element a ∈ A, we may decompose it into ε(a )uR +a −ε(a )uR because

a − ε(a )uR ∈ kerε. The map a 7→ (ε(a )uA , a − ε(a )uA) defines an isomorphism

A 'R ·uA ⊕kerε.

When R is just a commutative rig, we have a weaker result:

Observation 6.1.2. If R is a commutative rig, and A is an augmented algebra

over R with cancellative addition, then R · uA ⊕ kerε� A is an inclusion of the

underlying R modules.

Proof. Define R · uA ⊕ kerε
f
−−→ A by f (r uA , v ) 7→ r uA + v . This is easily seen to

be injective: suppose r uA + v = s uA +w .

r = ε(r uA + v ) = ε(s uA +w ) = s

149



And hence r = s , and r uA = s uA . Then r uA + v = r uA +w implies v = w as

addition is cancellative. Thus the map is injective.

Observation 6.1.3. When R is a commutative ring, and A is an augmented algebra,

then the map of 6.1.2 is an isomorphism of R -modules.

Proof. Any element a ∈ A can be separated as ε(a )uA + a − ε(a )uA , and note

that a − ε(a )uA ∈ kerε. Then the map of 6.1.2 is inverted by a 7→ (ε(a )uA , a −
ε(a )uA).

Thus for augmented algebras A over a commutative ring R , the underlying

R -module of A is isomorphic to R · uA ⊕ kerε. For augmented algebras over

commutative rigs, we prefer to restrict to augmented algebras that split that is

augmented algebras whose underlying R -modules are of the form:

A 'R ·uA ⊕kerε

R
ε

π0

Observation 6.1.4. For a split augmented algebra over a commutative rig, the

multiplicative unit of A is (uR , 0).

Proof. The inclusion R � R ⊕ kerε given by r 7→ (r,0) is an algebra homomor-

phism; in particular uR 7→ uA .

Observation 6.1.5. If W is a commutative, unital, split augmented algebra whose

augmentation ideal is nilpotent, and whose underlying R -module is finitely gen-

erated and free, then under the identification W 'R ·uW ⊕kerε, any element of

the form (0, v ) is nilpotent. Thus W is precisely a Weil algebra as defined at the

beginning of the section.

For the next result, we recall that commutative algebras over commutative

rigs have quotients by kernels. Any ideal I of a commutative rig A gives rise to

the Bourne identification (Golan, 1999) a ∼I b if there exist x , y ∈ I such that

a + x = b + y . It is routine to show that this is a rig congruence. Further if the

rig structure on A arises as an R -algebra structure, then the congruence ∼I is

additionally an R -algebra congruence. Thus one can form A/I := {[a ] |a ∈ A}
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where [a ] denotes the equivalence class generated by ∼I containing a . When

A
f
−−→ B is a rig (or algebra) homomorphism then ker f is an ideal of A, and

a ∼ker f b if and only f (a ) = f (b ). It is not hard to show that the map π : x 7→ [x ] is
the coequalizer of the kernel pair.

Thus

A f × f A A A/ker f

B

π0

π1

f

π

The map π is guaranteed to be epic; one can also show that the map A/ker f −→ B

is monic.

Lemma 6.1.6. A (split) Weil algebra over a commutative rig R has a presentation

as R [x1, . . . , xn ]/I where I is a nilpotent ideal, and the augmentation sends a +

p (x1, . . . , xn ) 7→ a .

Proof. Let W be a Weil algebra whose underlying R module is R n+1, and whose

basis is the standard basis e0, . . . , en . By 6.1.4, we choose e0 to be the multiplicative

unit of W . Define a map from the free commutative algebra on n generators to

W

R [x1, . . . , xn ]
τ−→W

by τ(xi ) := ei . τ is surjective and hence R [x1, . . . , xn ]/kerτ'W .

Observation 6.1.7. Given Weil algebras U , V presented by R [x1, . . . , xn ]/IU and

R [y1, . . . , ym ]/IV the product is:

U ×V :=R [x1, . . . , xn , y1, . . . , ym ]/(IU ∪ IV ∪{xi yj })

and the coproduct is:

U ⊗V :=R [x1, . . . , xn , y1, . . . , ym ]/(IU ∪ IV )

Note that the coproduct has projections given by the augmentations U ⊗V
U ⊗εV−−−−−→U ⊗R 'U . Also R is a zero object.
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6.1.2 Real Weil algebras

For certain applications, it is useful to have a different view on Weil algebras over

R . These are used in (Kolar, Michor, and J., 1993) and (Kriegl and Michor, 1997)

to study product preserving functors and their natural transformations, on the

category of manifolds.

Define the Lawvere theory T∞ whose objects are powers of R , and whose

generating mapsRn −→R are smooth maps in the sense that f is smooth if it is

continuously differentiable and its derivative is smooth.

Observation 6.1.8. For each n, T∞(n , 1) is anR algebra by pointwise multiplica-

tion.

Two smooth functions f , g ∈ T∞(n ,1) have the same germ at x when there

is a neighborhood U ⊂ Rn containing x and such that for all v ∈ U we have

f (v ) = g (v ). We write f ∼x g to denote that f and g have the same germ at x .

We write En or sometimes C∞0 (n , 1) to denote T∞(n , 1)/∼0
.

Observation 6.1.9. En is anR-algebra by [ f ][g ] = [ f g ]

The following proposition is from (Kolar, Michor, and J., 1993), theorem 35.5.

We illustrate the idea with an example. LetR
f
−−→R be smooth, and apply Taylor’s

theorem around 0 to obtain the k th degree Taylor polynomial and remainder:

f (x ) =
k
∑

m=0

1

m !

∂ m f (t )
∂ t m

(0) · x m +R ( f , 0, k ) · x k+1

If we work with germs of functions around 0, then for every element g ∈
[ f ], applying Taylors theorem results in the same Taylor polynomial of degree

k . More generally, one can define the Taylor expansion of a germ at 0: as the

Taylor expansion at 0 for any g , f with g ∼0 f is the same, we can apply the Taylor

expansion to any representative of a germ, and this is a well defined construction

of a formal power series.

It then makes sense to talk about the quotient of the space of germs by a (set of)

polynomials. Take for example x 2 and define an equivalence relation [ f ]∼x 2 [g ]

if f −g ∈



x 2
�

. Note that h ∈



x 2
�

if and only if its Taylor polynomial of any degree
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k has no constant part and no degree 1 part. Then f − g ∈



x 2
�

iff f − g has no

constant or degree 1 part. This is true iff the Taylor expansion of f and g agree at

the first two terms, meaning that f (0) = g (0) and that they have the same derivative

at 0. Since the relation is determined by Taylor expansion ∼x 2 is well defined in

the sense that it is independent of representative elements of germs. Then if we

take E1/



x 2
�

to mean E1/∼x 2 it is clear that the following (2 dimensional) algebras

are the same: E1/



x 2
�

, R [x1, . . . , xn ]/



x 2
�

, and R [[x1, . . . , xn ]]/



x 2
�

where the last

is the quotient of the algebra of formal power series. More generally,

Proposition 6.1.10 (Kolar, Michor, and J., 1993). Let W be an R algebra. The

following are equivalent:

1. W is a Weil algebra;

2. W 'R[[x1, . . . , xn ]]/I for some n and I and has a finite dimensional under-

lying vector space;

3. W 'En/I for some n and has a finite dimensional underlying vector space.

The hard part is showing that if En/I if finite dimensional, then I can be

generated by a finite set of polynomials containing x ki
i for each i and some ki .

6.1.3 Tangent structure on Weil algebras

Leung shows that Weil algebras are a tangent category (Leung, 2017). The idea

is that T A := A⊗R [x ]/(x 2). Moreover, Leung shows that Weil algebras overN are

primordial: every tangent category arises from this tangent structure. Actually,

the whole category of Weil algebras is not needed, and Leung uses a subcategory

of Weil algebras calledW1.

Consider the Weil algebras of the form

W n :=R [x1, . . . , xn ]/(xi x j )1≤i≤ j≤n

For example W 1 =R [x ]/(x 2), W 1⊗W 1 =R [x , y ]/(x 2, y 2), and W 2 =R [x , y ]/(x 2, x y , y 2).

Note that W 2 =W 1×W 1. Not all Weil algebras are of this form; missing for exam-

ple are objects of the form Wn :=R [x ]/(x n ).

153



TakeW1 to be the category whose objects are of the form W n1 ⊗· · ·⊗W nk , and

whose maps are augmented algebra homomorphisms.

Proposition 6.1.11 (Leung). If R is a ring, then for any Weil algebra W , the functor

⊗W : Weil−→Weil preserves finite limits. Moreover, if R is a ring or the rig N, and

W is inW1, the functor ⊗W :W1 −→W1 preserves finite limits.

sketch. This holds more generally for finitely presented R -algebras.

This fact is used for two reasons: the first is to show the existence of certain

limits, and the second is that it proves that tangent functors preserve these limits.

Corollary 6.1.12. In Weil algebras over a ring R , andW1 over a ring or N, for any

product B ×C , and any A the diagram below is a pullback

A⊗ (B ×C ) A⊗C

A⊗B A

A⊗π1

A⊗π0 1⊗εC

1⊗εB

Weil has all products, but products inW1 are only of the form W n . Leung calls

pullbacks that arise from 6.1.12 foundational pullbacks.

We have already seen the map W 1 ε−→R ; explicitly it sends a + b x 7→ a . We

also have R
η
−→W 1 which sends a 7→ a +0. There is the exchange map W 1⊗W 1

c⊗−−→ W 1 ⊗W 1 which sends a + b x + c y + d x y 7→ a + c x + b y + d x y . There

is the map W 1 ×W 1 σ−−→W 1 which sends a + b x + c y 7→ a + (b + c )x . There

is the map W 1 λ−→W 1 ⊗W 1 which sends the generator x to x y and so sends

a + b x 7→ a +0+0+ b x y .

Proposition 6.1.13. [Leung]When R is a ring or N, the map

W 2




π0λ,π1η
�

−−−−−−−→ (W 1×W 1)⊗W 1 σ⊗W 1

−−−−−→W 1⊗W 1

is the equalizer of

W 1⊗W 1 R W 1
ε⊗W 1

ε⊗ε η

inW1.
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Proof. Considering a presentation of W 2 as R [x , y ]/(x 2, x y , y 2) and (W 1×W 1)⊗
W 1 by R [x , y , z ]/(x 2, y 2, z 2, x y ) then π0λ sends a +b x + c y 7→ a +b x z and π1η

sends a +b x + c y 7→ a + c y . Thus



π0λ,π1η
�

sends a +b x + c y 7→ a + c y +b x z .

Then considering the last W 1 ⊗W 1 as R [x , z ]/(x 2, z 2) the map σ ⊗W 1 sends

a + c y + b x z 7→ a + c x +0y + b x z .

The map ε⊗ 1 : R [x , z ]/(x 2, z 2) −→ R [z ]/z 2 sends the generator x to 0, and

hence sends a+b x+c z+d x z 7→ a+c z . Similarly, ε⊗ε sends x , z 7→ 0, and sends

a +b x +c y +d x z 7→ a , and hence (ε⊗ε)η sends a +b x +c z +d x z 7→ a +0. Thus

both (ε⊗ε)η and ε⊗1 sends a + c x + b x z 7→ a +0. Therefore



π0λ,π1η
�

(σ⊗1)

weakly equalizes the map.

When addition is cancellative: a + b = a + c implies b = c then, we may show

this universal. Let U be any other object and h : U −→W 1⊗W 1 =R [x , z ]/(x 2, z 2)

be another weak equalizer. Note h may be written in the form

h (u ) = u0+u1 x +u2z +u3 x z

Note that

(ε⊗1)(h (u )) = (ε⊗1)(u0+u1 x +u2z +u3 x z ) = u0+u2z

and

η((ε⊗ε)(u0+u1 x +u2z +u3 x z )) = u0

and by cancellativity of addition together with the assumption that h equalizes

ε⊗1 and (ε⊗ε)η implies that u2 = 0. But this means that

h (u ) = u0+u1 x +0z +u3 x z

hence ĥ (u ) := u0+u1 x+u3 y is a well defined map ĥ : U −→W 1×W 1 =R [x , y ]/(x 2, x y , y 2).

It is immediate that ĥ



π0λ,π1η
�

(σ ⊗ 1) = h as the second two maps in the

composite simply put the 0z back in. Using cancellativity of addition again,

if v



π0λ,π1η
�

(σ⊗1) = h , it is immediate that v = ĥ

Definition 6.1.14. In Weil andW1, a transverse limit is defined inductively by

• A product A×B is a transverse limit;
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• The equalizer of 6.1.13 is a transverse limit;

• If L is a transverse limit, and A is an object, then A⊗ L is a transverse limit.

We now describe the tangent structure on Weil andW1.

T A := A⊗W 1 T A
p
−−→ A := A⊗W 1 A⊗εW 1

−−−−−→ A

A
0−→ T A := A

A⊗η
−−−−→ A⊗W 1

Note that T2A should rise as the pullback of p by p : this is a foundational

pullback. T2A := A⊗ (W 1×W 1) = A⊗R [x , y ]/(x 2, x y , y 2) = A⊗W 2 and hence is

inW1 if A is.

T2A
+−−→ T A := A⊗W 2 A⊗σ−−−−→ A⊗W 1

It is not hard to see that +, 0 form a commutative monoid in the slice.

T 2A := (A⊗W 1)⊗W 1 ' A⊗ (W 1⊗W 1)' A⊗R [x , y ]/(x 2, y 2). The lift is

T A
l−→ T 2A := A⊗W 1 A⊗λ−−−−→ A⊗ (W 1⊗W 1)

Finally

T 2A
c−→ T 2A := A⊗ (W 1⊗W 1)

1⊗ c⊗−−−−→ A⊗ (W 1⊗W 1)

Proposition 6.1.15 (Leung, 2017). The category R -Weil is a tangent category when

R is a ring, and R -W1 is a tangent category when R is a ring or N.

The required data has been defined above. The proof that pullback powers

exist is 6.1.12, and the proof that the universality of the vertical lift holds comes

from 6.1.13 combined with 6.1.11. The rest of the equality may be checked easily.

And Leung’s main result is

Theorem 6.1.16. [Leung, 2017] To have a tangent structure on a category X is

precisely to have a monoidal functor

(N-W1,⊗,N)−→ (Fun(X,X),◦, id)

that sends transverse limits to pointwise limits.
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One direction of the proof is easy: if one has such a monoidal functor that

sends transverse limits to pointwise limits, then it is immediate to see that this

creates tangent structure onX. Going the other direction Leung shows that every

map in N-W1 can be constructed from tangent category maps; hence proving

initiality.

6.2 Weil prolongation: tangent categories as actegories

In this section we will make use of theorem 6.1.16 to generate new tangent cate-

gories from old, and to generate tangent categories from things that should be,

but aren’t quite. The idea comes from formalizing the notion of microlinearity

(Kock, 1978; Reyes and Wraith, 1978a) as a general phenomenon for categories

that admit an action byW1.

We first weaken theorem 6.1.16, and “uncurry” it. Throughout this section,

we will use R to denote a ring, or the rig N.

Corollary 6.2.1. If there is a bifunctor (action)

X×R -W1
⊗∞−−−→X

such that

• The action is isomonoidal; that is A⊗∞ R ' A and (A⊗∞U )⊗∞ V ' A⊗∞
(U ⊗V );

• The action satisfies the actegory pentagon and triangle identities (Janelidze

and Kelly, 2001):

A⊗∞ ((U ⊗V )⊗W ) (A⊗∞ (U ⊗V ))⊗∞W

A⊗∞ (U ⊗ (V ⊗W )) (A⊗∞U )⊗∞ (V ⊗W ) ((A⊗∞U )⊗∞ V )⊗∞W

and

A⊗∞ (R ⊗U ) (A⊗∞ R )⊗∞U

A⊗U

A⊗∞ (U ⊗R ) (A⊗∞U )⊗∞ R

A⊗∞U
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• For each transverse limit L in R -W1, and each object A ∈X, A⊗∞ L is a limit

in X;

Then X is a tangent category 2.

We call the structure giving rise to a tangent category expressed by 6.2.1 trans-

verse Weil prolongation. Thanks to Leung’s theorem, we know that every tangent

structure arises from a transverse Weil prolongation. Of course for any ring R ,

we need not have restricted to R -W1: if there is a transverse prolongation by the

whole of Weil, then one gets a tangent category (and with some additional features

as well).

The moral here is that every tangent functor is of the form T M ' M ⊗∞
R [x ]/(x 2).

We recast a few examples of tangent structure

• Every category is a tangent category where ⊗∞U = id. A square of identity

arrows is a pullback.

• If X is a cartesian differential category then M ⊗∞W 1 :=M ×M and

M ⊗∞W 1 f ⊗∞W 1 :=



D [ f ],π1 f
�

−−−−−−−−−−−−−−−→N ⊗∞W 1

• The transverse Weil prolongation of a smooth manifold M by W 1 is de-

fined to be C∞(R , M )/∼ where c1 ∼ c2 if c1(0) = c2(0) and for every smooth

function M
f
−−→R , (c1 f )′(0) = (c2 f )′(0). Given a smooth M

g
−→N

M ⊗∞W 1 g ⊗∞W 1

−−−−−−→N ⊗∞W 1

is the smooth function which sends an equivalence class [c ] to [c g ].

• Functors in:

SupposeY is a tangent category, and obtain its transverse Weil prolongation,

Y×R -W1
⊗∞−−−→Y. Let X be any category. We get a bifunctor

[X,Y]×R -W1 [X,Y]
⊗∞

2The first two points say that the bifunctor ⊗∞ forms an instance of an actegory.
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For any U in R -W1, and any functor X F−−→Y, then F ⊗∞U is the functor

which sends X ∈X to F (X )⊗∞U in Y. This is clearly a monoidal action,

as the action in Y is. Also, if L is a limit in R -W1, then for each X ∈ X,

(F ⊗∞ L )(X ) = F (X )⊗∞ L is a limit in Y, and hence a F ⊗∞ L is a limit in

[X,Y]. Thus, we have a transverse Weil prolongation on [X,Y].

Next, we consider two important examples that should be tangent categories

but are not quite.

• In SDG, the tangent functor is T M := [D , M ]. In general, for each Weil

algebra

V ≡W n1
1 ⊗ · · ·W nk

1 ∈W1

The object D (V ) :=D (n1)×· · ·D (nk ) represents it in the sense that the action

is M ⊗∞V := [D (V ), M ]where D (n ) := {(d1, . . . , dn ) ∈D n |di d j = 0}We give

more details in the sequel; for now, the spaces that perceive certain diagrams

as colimits are called microlinear, and the microlinear spaces of SDG always

form a tangent category (Rosický, 1984; Cockett and Cruttwell, 2014b).

• Functors out:

Let X be a tangent category, and obtain its transverse Weil prolongation

X×R -W1
⊗∞−−−→X. Let Y be any category. We obtain an action

[X,Y]×R -W1
⊗∞−−−→ [X,Y]

for any U ∈R -W1 and any functor X F−−→Y, defined as

(F ⊗∞U )(X ) := F (X ⊗∞U )

This is clearly bifunctorial, and is a monoidal action; however, as F need

not preserve limits, F (X ⊗∞ L ) need not be a limit for every limit L in R -W1.

Note also that if X has products, the requirement to be a cartesian tangent

category is:

Observation 6.2.2. A tangent category with products is a cartesian tangent cate-

gory iff for eachW1 algebra V , the functor ⊗∞ V :X−→X preserves products.
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However, we should spell out what it means for an action to preserve products.

First, this means that for each V ∈W1 there are isomorphisms

(A⊗∞ V )× (B ⊗∞ V )
m×−−−→ (A×B )⊗∞ V 1

m>−−−→ 1⊗∞ V

Moreover, this must be coherent:

(A⊗∞ (U ⊗V ))× (B ⊗∞ (U ⊗V )) (A×B )⊗ (U ⊗V )

((A⊗∞U )⊗∞ V )× ((B ⊗∞U )⊗∞ V )

((A⊗∞U )× (B ⊗∞U ))⊗∞ V ((A×B )⊗∞U )⊗∞ V

m×

α×α

α

m×

m×⊗∞V

and

1 1⊗∞ (U ⊗V )

1⊗∞ V (1⊗∞U )⊗∞ V

m>

m> α

m>⊗∞V

6.3 An enriched view on coherent closure

In this section we indicate the meaning of coherently closed from an enriched

point of view: the coherence gives enriched cartesian closure.

Let V be a (small) symmetric monoidal category. There is a monoidal-closed

structure on [V ,Set], which is called the convolution monoidal structure and is

defined:

Unit: Y (I ) =V (I , );

Tensor: (F ⊗G )(X ) :=
∫M ,N ∈V V (M ⊗N , X )× F M ×G N ;

Hom: [F,G ](X ) :=
∫

M∈V [F M ,G (X ⊗M )].

The category [V ,Set] equipped with the above monoidal structure is denoted

P (V ).

Theorem 6.3.1 ((Wood, 1978)).
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1. Let V be a (small) symmetric monoidal category. To have aP (V ) enriched

category C is to have

• A set of objects C 0;

• For each x , y ∈C 0, a presheaf C (x , y ) :V −→ Set;

• For each x ∈C 0, an identity Idx ∈C (x , x )(I );

• For each x , y , z ∈C 0, a family of compositions

C (x , y )(M )×C (y , z )(N )−→C (x , z )(M ⊗N )

that is natural in M , N .

2. There is a correspondence, up to isomorphism, of V -actegories andP (V )-
enriched categories that admit powers by representable functors. This corre-

spondence extends to a 2-equivalence.

Proof. See (Wood, 1978).

Given aP (V ) category, the action of the corresponding actegory is the power

by a representable:

M ⊗∞ V ≡Y (V ) ôM

Then combining this with the enriched Yoneda lemma followed by the fact

that aP (V ) category admits powers by representables we have that the hom in

P (V ) enriched category as a functor C (A, B ) : M −→ Set yields

C (A, B )(U )' [V ,Set](Y (U ), C (A, B ))'C 0(A,Y (U ) ô B )'C 0(A, B ⊗∞U )

where C 0(A, B ) :=C (A, B )(I ). Thus:

C (A, B )'λU .C 0(A, B ⊗∞U ) :W1 −→ Set

(Garner, 2018) shows that as the monoidal structure onW1 is coproduct, then

for the convolution monoidal structure on functors W1 −→ Set, every functor

is a cocommutative comonoid, and hence the tensor is the product. It follows

immediately that the hom is the internal hom for the cartesian closed structure

on [W1,Set].
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To characterize tangent categories as enriched categories it is not quite suf-

ficient to regard them asP (W1)-enriched categories. Doing so will get theW1-

actegory aspect, but will miss out the preservation of transverse limits fromW1.

Garner notes that to characterize tangent categories, one must take a reflective

subcategory of [W1,Set]. Denote by Microl(W1,Set) the category of functors ofW1

−→ Set that preserve all transverse limits. In particular, for a tangent category C ,

the hom is continuous in the second variable, so for V = limi Vi :

C 0(A, B ⊗∞ limi Vi )' limi C 0(A, B ⊗∞ Vi )

hence the enrichment is indeed into Microl(W1,Set).

Theorem 6.3.2 ((Garner, 2018)). The category of tangent categories is 2-equivalent

to the category of Microl(W1,Set) enriched categories that admit powers by repre-

sentables.

Garner proves that moreover, Microl(W1,Set)-presheaves on a tangent cate-

gory are always a representable tangent category.

Proposition 6.3.3 ((Garner, 2018) proposition 24). LetX be any tangent category.

The tangent category Tan(Xop,Microl(W1,Set)) is a coherently closed tangent cate-

gory where the tangent functor is representable; i.e. T M = [D , M ] for some object

D .

We may now use this theorem to characterize cartesian tangent categories

and coherently closed tangent categories.

A limit limi Mi in a tangent categoryX is called transverse when (limi Mi )⊗∞
U ' limi (Mi ⊗∞U ) for every U ∈ W1. This is the same definition of transverse

limit given earlier.

Proposition 6.3.4. When X is a tangent category, then the enriched Yoneda em-

bedding X−→Tan(Xop,Microl(W1,Set)) preserves every transverse limit.

Proof. Let limi Mi be a transverse limit in X. The enriched Yoneda embedding

sends

limi Mi 7→λAU .X(A, limi Mi )(U )
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But

X(A, limi Mi )(U ) =X(A, limi Mi ⊗∞U )

= limiX(A, Mi ⊗∞U )

which completes the proof as limits are computed pointwise.

AsW1 is a finite limit theory the category Microl(W1,Set) is equivalent to the

category of models of the theoryW1 in Set. This means that Microl(W1,Set) is

a locally finitely presented category (adamek-rosicky). Thus Microl(W1,Set) is

complete and cocomplete. This also means that Microl(W1,Set) has copowers

with set given by coproduct. This proposition allows forming enriched diagram

categories from ordinary diagrams.

Limits for enriched categories are treated in depth in (Kelly, 2005). We only

need the notion of conical limit. Transverse limits in a tangent category are an

instance of the special case of enriched (weighted) limits called conical limits, as

we now show.

Proposition 6.3.5. In a tangent category a transverse limit is a Microl(W1,Set)

enriched (conical) limit.

Proof. Let limi Ai be a transverse limit, and let X be any object. Then for every

U ∈W1 we have

W1(X , limi Ai )(U )'W1(X , limi Ai ⊗∞U )

'W1(X , limi (Ai ⊗∞U ))' limiW1(X , (Ai ⊗∞U ))

' limiW1(X , Ai )(U )

Thus W1(X , limi Ai )( ) is a (pointwise) limit in Microl(W1,Set). This is then an

instance of a conical limit in the sense of [(Kelly, 2005) 3.8].

The preservation of products gives rise to enriched products.

Proposition 6.3.6. Let X be a cartesian tangent category.

1. Xhas Microl(W1,Set) enriched products. Conversely, enriched products make

X a cartesian tangent category.
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2. The Yoneda embedding X−→Tan(Xop,Microl(W1,Set)) preserves products.

Proof. Let X be a cartesian tangent category.

1. We compute

X(A, B ×C )(U )'X(A, (B ×C )⊗∞U )'X(A, B )(U )×X(A, C )(U )

and hence we have enriched products. Likewise if we have enriched prod-

ucts, then

X(A, (B ×C )⊗∞U )'X(A, B ×C )(U )'X(A, B )(U )×X(A, C )(U )

'X(A, B ⊗∞U )×X(A, C ⊗∞U )'X(A, B ⊗∞U ×C ⊗∞U )

Hence by faithfulness of the Yoneda embedding, (B ×C )⊗∞U ' (B ⊗∞
U )× (C ⊗∞U ).

2. This is immediate.

Coherent closure is then enriched closure:

Proposition 6.3.7. Let X be a coherently closed tangent category.

1. X is a cartesian closed Microl(W1,Set) enriched category. homs.

Proof. Let X be a coherently closed tangent category.

1. For every U ∈W1, we have

X(A, [B , C ])(U )'X(A, [B , C ]⊗∞U )

'X(A, [B , C ⊗∞U ])'X(B ×A, C ⊗∞U )

'X(B ×A, C )(U )

Thus as functors

X(B ×A, C )( )'X(A, [B , C ])( ) : Microl(W1,Set)
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2. We recall a technique used by Scott in (Scott, 1980b), although the technique

was known before this.

Recall the Yoneda lemma: F (A)'Nat(X( , A), F ) tells us what the internal

hom of presheaves must be:

[F,G ](X )'Nat(X( , X ), [F,G ])'Nat(X( , X )× F,G )

Also, applying the Yoneda lemma to a representable functors gives:

Nat(X( , A),X( , B ))'X(A, B )

Finally compute the following sequence of isomorphisms that are natural

in X .

[X( , A),X( , B )](X )

'Nat(X( , X )×X( , A),X( , B ))

'Nat(X( , X ×A),X( , B ))

'X(X ×A, B )

'X(X , [A, B ])

Thus

X( , [A, B ])' [X( , A),X( , B )]

so the Yoneda embedding preserves the internal hom of a cartesian closed

category. For a Microl(W1,Set) enriched category, replacing Nat in the above

calculation, with Tan(Xop,Microl(W1,Set)),we can make the same moves

until X(X ×A, B ) as they are all enriched moves. That is

[X( , A),X( , B )](X )'X(X ×A, B )

by the enriched Yoneda lemma. For the last move, we use the enrichment

of the homs

X(X ×A, B )( )'X(X , [A, B ])( ) : Microl(W1,Set)

proved in the first part of this lemma.
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Thus for coherently closed tangent categories, the Yoneda embedding is a

Cartesian closed functor.

6.4 Vector Fields Revisited

Previously we introduced vector fields as objects internal to a coherently closed

tangent category. When our tangent category has negatives we showed thatX (M )
is a group under addition. In this section we extend this observation and show that

X (M ) ' TIdM
(Aut(M )), and thus that the object of vector fields is the canonical

Lie algebra associated to the Lie group Aut(M ). This fact is important in studying

infinite dimensional Lie groups. For convenient manifolds this is exactly theorem

43.1 of (Kriegl and Michor, 1997).

We will say a tangent category has negatives when all tangent bundles T M
p
−−→M form not just monoids, but rather groups in the slice category. This means

also that differential objects are groups.

In a tangent category, let G be a differential object that is a group under the

addition. G is a Lie algebra whenever there is a multiplication [ , ] : G ×G −→G

such that

• The multiplication is bilinear:

T (G ×G ) T G

G ×G G

T [ , ]

λ×0

[ , ]

λ and
T (G ×G ) T G

G ×G G

T [ , ]

0×λ

[ , ]

λ

• The multiplication is antisymmetric:

G ×G
〈π1,π0〉−−−−−→G ×G

[ , ]
−−→G =G ×G

[ , ]
−−→G

−−−→G

• The multiplication satisfies the Jacobi identity: on generalized elements

this is expressed as:

[x , [y , z ]] + [z , [x , y ]] + [y , [z , x ]] = 0
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In a coherently closed tangent category, we can formulate the space of sections

internally, and can use the embedding into a representable tangent category to

produce a much shorter proof of the Jacobi identity. It turns out that along the way,

we can characterizeX (M ) in any coherently closed tangent category mirroring

(Kriegl and Michor, 1997) theorem 43.1: X (M )' TIdM
(Aut(M ))

In this section we sketch how a proof of how the following proposition can be

obtained using the embedding theorem.

Proposition 6.4.1. Let X be a coherently closed tangent category, let T M
p
−−→M

be a group bundle, and suppose the pullback of p : T [M , M ]−→ [M , M ] along Id : 1

−→ [M , M ] exists. ThenX (M ) is a Lie algebra in X.

We have already seen that when X is a coherently closed tangent category,

T M
p
−−→M is a group bundle, and the pullback of T [M , M ]

p
−−→M along 1

IdM−−−→
[M , M ] exists, that the differential objectX (M )' TIdM

([M , M ]).

So far, we have been working mostly with monoid-bundle tangent categories.

Group-bundle tangent categories are Z-Weil algebra actegories (Leung, 2017).

The above section’s embedding and enrichment theorems work exactly the same.

Cockett-Cruttwell give the definition for representable monoid-bundle tan-

gent categories (Cockett and Cruttwell, 2014b) definition 5.6. Rosický gives the

definition of representable group-bundle categories, and for the full definition

see (Rosický, 1984) section 4. In particular, we have an object D with maps

1
0−→D D

δ−→D ?D D
−−−→D

along with the unique map D
!−→ 1. Additionally there are maps

D 2 c−→D 2 D 2 ·−→D

that witness D as a commutative semigroup. D ?D is defined to be the object in

the following pushout

1 D

D D ?D

0

0 i1

i2
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Note that as the above is a pushout, the identity of D on the right side and

bottom also make the square commute which forces a unique map

D

1 D ?D D

D

i1
10

0

+

1
i2

such that i1;+= 1D and i2;+= 1D . The defining property of D
−−−→D is d +−(d ) =

0.

As the internal hom sends pushouts in the first argument to pullbacks, D ?D

represenents T2M

Otherwise the maps correspond as

Representable Represents

1
0−→D T M

p
−−→M

D
σ−−→D ?D T2M

+−−→ T M

D
!−→ 1 M

0−→ T M

D
−−−→D T M

−−−→ T M

D 2 c−→D 2 T 2M
c−→ T 2M

D 2 ·−→D T M
l−→ T 2M

For example that 0 is a section of p :

M
[!, M ]
−−−−→ [D , M ]

[0, M ]
−−−−→M =M

[0!, M ]
−−−−→M =M

1−→M

because 1
0−→M

!−→ 1 is 1
11−−→ 1.

Lemma 6.4.2. In a representable tangent category with negatives, a section of the

tangent bundle is precisely a map X : M −→ [D , M ] such that X (m )(0) = m It is

equivalently, a map X̂ : D ×M −→M such that X̂ (0, m ) =m. It is equivalently, a

map X̃ : D −→ [M , M ] such that X̃ (0) = 1M .

Proof. Begin with a X̂ : D ×M −→M such that X̂ (0, m ) =m ; currying the D we

have X : M −→ [D , M ]. Suppressing the isomorphisms λ(1A) : A −→ [1, A] and
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[1, A] ' 1× [1, A]
ev−−→ A, we have X (m )(0) =m . Alternatively, currying the other

direction, we have X̃ (0) =λm .m = 1M .

Lemma 6.4.3. In a representable tangent category with negatives, a vector field,

regarded as a map X : D ×M −→M such that X (0, m ) =m, has

D ?D×M
+×M−−−−→D×M

X−−→M =D ?D×M
i? ×1
−−−−→D×D×M

1×X−−−−→D×M
X−−→M

where D ?D −→ D ×D is given the universal property of the pushout: the two

injections of D
D ×D−−−−→ by 〈0, 1〉 and 〈1, 0〉 both make the defining square for D ?D

commute.

The equality of lemma 6.4.3 in the internal logic of a cartesian closed category

is

X (d1+d2, m ) = X (d1, X (d2, m ))

Proof. In the internal logic we have

X (d1+0, m ) = X (d1, m ) = X (d1, X (0, m ))

and

X (0+d2, m ) = X (d2, m ) = X (0, X (d2, m ))

Which by the universal property of the pushout implies X (d1+d2, m ) = X (d1, X (d2, m )).

To see the pushout property being used more directly, first consider the curry

of both sides:

D ?D
λ((+×M ); X )
−−−−−−−−→ [M , M ] and D ?D

λ((i? ×M ); (1×X )X )
−−−−−−−−−−−−−→ [M , M ]

As they are both maps out of a pushout, then it suffices to show that they are equal

on precomposition with both injections. For the first injection D
i1−−→D ?D :

i1λ((+×M ); X ) =λ((i1×M ); (+×M ); X )

=λ(X ) as i1;+= 1

=λ(〈1, 1〉π1X )

=λ((〈1, 0〉×1); (1D×D ×X ); X ) as (0×1)X =π1

=λ((i1×M ); (i?×M ); (1D×D ×X ); X ) as i1i? = 〈1, 0〉

= i1λ((i?×M ); (1×X ); X )
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As required. Similarly for i2. Thus,

λ((+×M ); X ) =λ((i?×M ); (1×X ); X )

But, λ is an isomorphism; hence

(+×M ); X = (i?×M ); (1×X ); X

As required.

Here the proof makes heavy use of the higher order structure.

Lemma 6.4.4. In a complete, representable tangent category with negatives, let X

be a vector field, regarded as a map D ×M −→M with X (0, m ) =m. Then

X (d , X (−d , m )) =m

Proof. This is immediate from the above as X (d , X (−d , m )) = X (d − d , m ) =

X (0, m ) =m .

We can now revisit a proposition of Lavendhomme.

Proposition 6.4.5 ((Lavendhomme, 1996) section 3.2.1, proposition 4). Let X be

a complete, representable tangent category with negatives. Then

X (M )' TIdM
(Aut(M ))

Proof. This follows from 6.4.4 as X (d , ) is an automorphism whose inverse is

X (−d , ).

Provided that the equalizer providing the automorphisms from the endomor-

phisms is transverse, then a tangent vector to the identity in [M , M ]must be an

automorphism.

Proposition 6.4.6. LetX be a coherently closed tangent category, suppose that T M
p
−−→M is a group bundle, suppose the pullback of T [M , M ]

p
−−→M along Id : 1−→

[M , M ] exists, and the equalizer involved in defining the group of automorphisms:

Aut(M ) [M , M ]× [M , M ] [M , M ]
·

sw;·

!;IdM
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is transverse. Then

X (M )' TIdM
(Aut(M ))

Proof. Since the equalizer involved in the definition Aut(M ) is transverse, it is pre-

served by the Yoneda embedding into [Xop,Microl([W1,Set])]. As tangent spaces

are differential objects, the action with anyW1 algebra is a product, hence a limit,

and thus tangent spaces are always transverse limits.

As homs are also preserved by the Yoneda embedding, and tangent functors

are sent to tangent functors, both the constructions ofX (M ) and TIdM
(Aut(M ))

are preserved by the Yoneda embedding. Thus

Y (TIdM
(Aut(M )))' TIdM

(Aut(Y (M )))'X (Y (M ))'Y (X (M ))

using 6.4.5. As the Yoneda embedding is full and faithful:

TIdM
(Aut(M ))'X (M )

ThatX (M )' TIdM
(Aut(M )) holds not just in SDG, but also can be found for

convenient manifolds, provided that Aut(M ) exists (Kriegl and Michor, 1997)

theorem 43.1.

In a similar spirit, one can obtain the Jacobi identity for X (M ). The idea

behind a vector field is that it indicates a direction one can travel in T M . Given

two vector fields X , Y on a curved surface and two infinitesimal distances d1, d2,

it is clear that travelling along X for d1 followed by Y for d2, followed by X for−d1

and finally Y for −d2, that there is no reason to land where one started. The Lie

bracket of X , Y is supposed to represent the distance we are off.

Before proceeding, we make the following observation: in a representable

group tangent category, the multiplication D ×D
·−→D is a regular epic. To see

this, first note, that in a group tangent category, the universality of the lift can be

simplified:

Lemma 6.4.7 ((Cockett and Cruttwell, 2014b) lemma 3.10). In a tangent category

with negatives, the universality of the vertical lift is equivalent to the following
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diagram:

T M T 2M T Ml
p

T p

p p 0

For a representable tangent category with invertible addition this is

T M T 2M T M
[·,M ]

[〈0,D 〉,M ]

[〈D ,0〉,M ]

[!〈0,0〉,M ]

Thus to represent this equalizer we have

Lemma 6.4.8. In a representable tangent category with negatives we have that the

following is a coequalizer:

D D ×D D
!〈0,0〉

〈D ,0〉

〈0,D 〉
·

sketch. Writing out the above coequalizer property on generalized elements, we

have that if D ×D
τ−→M has τ(0, d ) = τ(d ,0) = τ(0,0) then there is a unique D

t−→M such that t (d1 ·d2) =τ(d1, d2).

Lemma 6.4.9. Let X , Y be vector fields, regarded as maps X , Y : D −→ [M , M ].

There exists one and only one vector field [X , Y ] : D −→ [M , M ] such that

[X , Y ](d1 ·d2) = X (d1); Y (d2); X (−d1); Y (−d2)

Proof. Consider the map τ defined as:

D 2 ∆×∆−−−−→D 4 D ×−×D ×−−−−−−−−−−→D 4 ex−−→D 4 X ×Y ×X ×Y−−−−−−−−−→ [M , M ]4
c4−−→ [M , M ]

where the− denotes the map giving the inverse to addition, ex denotes the middle
exchange, and where c4 is the left to right composition map

c4 := [M , M ]× [M , M ]× [M , M ]× [M , M ]
m ×1×1−−−−−−−−−→ [M , M ]× [M , M ]× [M , M ]

m ×1−−−−−−→ [M , M ]× [M , M ]
m−−−→ [M , M ]

and where [M , M ]× [M , M ]
m−−→ [M , M ] is the representative of λ f g x .g ( f x ).

This will send (d1, d2) first to (d1, d1, d2, d2), and then to (d1,−d1, d2,−d2), and

then to (d1, d2,−d1,−d2), and then to (X (d1), Y (d2), X (−d1), Y (−d2)), and then
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finally applying c4 will give λm : M .Y (−d2)(X (−d1)(Y (d2)(X (d1)(m )))). Thus we

have described essentially the commutator.

Thus, in the internal type theory we have formed the term

d1 : D , d2 : D `λm : M .Y (−d2)(X (−d1)(Y (d2)(X (d1)(m ))))

We claim that the above map coequalizes 〈0, D 〉 , 〈D , 0〉 , and 〈0, 0〉.
If we cut 0 in for d1 we get

λm .Y (−d2)(X (0)(Y (d2)(X (0)(m ))))

=λm .Y (−d2)(Y (d2)(m ))

=λm .m

using X (0) = 1M , and that Y (−d2) = Y (d2)−1 from the fact that TIdM
(Aut(M )) '

X (M ).
Likewise if we cut 0 in for d2 we get λm .m , and if we cut both d1, d2 with 0,

we get λm .m . Thus the map defined coequalizes the three maps. Then there is a

unique [X , Y ] : D −→ [M , M ] such that

D ×D
·−→D

[X , Y ]
−−−−→ [M , M ] =D ×D

τ−→ [M , M ]

as required.

Having gotten the Lie bracket into the same form as used in synthetic dif-

ferential geometry, we could use their equational proof that it gives a Lie alge-

bra. We state the theorem without proof as we would just be copying the proof

here verbatim. The proof of the following is due to Reyes and Wraith (Reyes and

Wraith, 1978b) and can be found in Lavendhomme (Lavendhomme, 1996), 3.2.2

proposition 7. Note that the proof is just over one page in length, and this can be

contrasted with Rosickýs general proof of the Jacobi identity for a tangent category

that is over 40 pages long.

Lemma 6.4.10. In a complete, representable tangent category with negatives,

X (M ) equipped with the Lie bracket of 6.4.9, is an internal Lie algebra.
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Proposition 6.4.11. LetX be a coherently closed group tangent category for which

the tangent space X (M ) ' TIdM
([M , M ]) exists. Then X (M ) is an internal Lie

algebra.

Proof. As tangent spaces are transverse, and the Yoneda embedding preserves

internal homs, we have

Y (TIdM
[M , M ])' TIdY (M ) [Y (M ),Y (M )]

which is a Lie algebra by 6.4.10. By full and faithfulness of the Yoneda embedding,

then so is TIdM
([M , M ]).

6.5 Tangent subcategories of Weil actions

We have established a connection between Weil algebras and tangent categories,

and used this to express coherent closure from an enriched point of view. We have

seen how to express tangent structure from Weil algebras that preserve limits.

In this section we develop a bit of general machinery for extracting a coherently

closed tangent category from a Cartesian closed category with just a monoidal

action byW1.

Suppose X is a category with (just) a monoidal action X×W1
⊗∞−−−→X.

Definition 6.5.1. An object A is called microlinear if for every transverse limit

L = lim j Vj inW1 , A⊗∞ L is a limit in X over the diagram components A⊗∞ Vj .

In other words, A⊗∞ lim j Vj ' lim j (A⊗∞ Vj ).

In a tangent category, every object is microlinear, but also:

Proposition 6.5.2. The microlinear objects with respect to a monoidal action X×
W1

⊗∞−−−→X form a tangent category, Microl(X).

Proof. The proof is nearly immediate. One must show the action restricts to

Microl(X); that is, for each A ∈Microl(X) and U ∈W1, we must show that A⊗∞U

is in Microl(X).
Then let L be any transverse limit inW1, and consider

(A⊗∞U )⊗∞ L ' A⊗∞ (U ⊗ L )
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due to the monoidal action. Next, U ⊗L is a transverse limit inW1 by the inductive

definition of transverse limits inW1. But A is microlinear, hence A⊗∞ (U ⊗L ) is a

limit in X, and thus A⊗∞U is microlinear.

Thus the action restricts to Microl(X). By definition, the action of a transverse

limit on a microlinear object is a limit. Thus Microl(X) is a tangent category.

Proposition 6.5.3. SupposeX has products, and letX×W1
⊗∞−−−→X be a monoidal

action for which each V ∈W1 preserves products; that is, (M ×N )⊗∞ V ' (M ⊗∞
V )× (N ⊗∞ V ). Then Microl(X) is a cartesian tangent category.

Proof. By observation 6.2.2 it suffices to show that if M , N are microlinear, the

M ×N is microlinear. Let L be a limit inW1. Then M ⊗∞ L and N ⊗∞ L are limits

in X by microlinearity. The product functor is a right adjont and hence preserves

limits; thus, (M ⊗∞ L )× (N ⊗∞ L ) is a limit.

WhenX has all limits, one might expect, following SDG, that the microlinear

objects have all limits. Indeed, this is the case for many situations; however, in

general, for a limit X = limF in X, where F (d ) is microlinear, the result need not

be. The issue is that ( ⊗∞W ) need not preseve limits. We restate the notion of

transverse limit even when X is not a tangent category, but just admits a Weil

algebra action.

Definition 6.5.4. A limit X = limi Fi is called transverse (Cockett and Cruttwell,

2016) if it is preserved by all tangent bundles3: for every W ∈W1, we have (limi Fi⊗∞
W )' limi (Fi ⊗∞W ).

Proposition 6.5.5. For any X with a monoidal action X×W1
⊗∞−−−→ X, suppose

that A is microlinear. Then for any transverse limit L ∈W1, A⊗∞ L is a transverse

limit in X.

Moreover, if ⊗∞ V preserves products for every V ∈ W1 then products are

transverse limits in X.

3This is the same notion of transverse introduced earlier in the thesis, but expressed in terms
of Weil actions.
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This might seem like a restatement of the definition of microlinear. It is not

quite. This says that the limits in Microl(X) created by ⊗∞ (limi Vi )where limi Vi

is transverse inW1, are transverse in X.

Proof. Let L = lim j Vj be a transverse limit inW1. Then by the inductive construc-

tion of transverse limits inW1, for any W , L ⊗W is a transverse limit inW1. Then

for any A ∈X, A⊗∞ L is transverse:

(lim j A⊗∞ Vj )'⊗∞W = (A⊗∞ L )⊗∞W ' A⊗∞ (L ⊗W )' A⊗∞ (lim j Vj ⊗W )

As A is microlinear, the above is lim j A⊗∞ (Vj ⊗W ), as required.

The rest of the proposition is immediate.

In particular, in a tangent category X, all the limits involved in the tangent

structure (pullback powers of p , the equalizer diagram for the universality of the

lift) are transverse.

Proposition 6.5.6. When X has all limits, then any limit of microlinear objects

that is transverse is microlinear.

Proof. This follows from the fact that in a complete category, limits commute.

Suppose that A = limi Fi is a transverse limit of microlinear objects and that L =

lim j Vj is a limit inW1.

A⊗∞ L ' (limi Fi )⊗∞ L

' limi (Fi ⊗∞ L ) transversality

' limi (Fi ⊗∞ lim j Vj )

=' limi lim j (Fi ⊗∞ Vj ) microlinearity

=' lim j limi (Fi ⊗∞ Vj ) commutativity of limits

= lim j A⊗Vj

as required.

An immediate consequence of 6.5.6 is:
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Corollary 6.5.7. Suppose X has all limits. Then if for every V ∈ W1, the functor

⊗∞V is continuous; that is, every limit is transverse, then Microl(X) has all limits.

Also, in this case

Microl(X)×W1
⊗∞−−−→Microl(X)

is continuous in its first argument, and preserves transverse limits in its second.

6.6 Exponentiability

In this section, we revisit Nishimura’s idea of exponentiability from (Nishimura,

2010; Nishimura, 2009). Nishimura’s idea is that one should be able to extract a

well-behaved cartesian closed subcategory from the microlinear spaces. Making

use of the notion of a coherently closed tangent category, we can realize his goal in

a precise manner; we will show that if one starts with a cartesian closed actegory,

that one may extract a coherently closed tangent category.

Let X be a cartesian closed category, and let X×W1
⊗∞−−−→ X be an actegory

where for each V ∈W1, ⊗∞ V preserves products. For each U ∈W1, there is a

strength:

θU := A× (B ⊗∞U )
(A⊗∞ ηU )×1
−−−−−−−−−→ (A⊗∞U )× (B ⊗∞U )

m×−−−→ (A×B )⊗∞U

An object B ∈X is W1 exponentiable when for every A ∈X and every U ∈W1,

the inferred exponential strength [A, B ]⊗∞U −→ [A, B ⊗∞U ] is an isomorphism:

A× ([A, B ]⊗∞U )
θ−−→ (A× [A, B ])⊗∞U

ev⊗∞ 1
−−−−−→ B ⊗∞U

[A, B ]⊗∞U −−−−−−−−−→
λ(θ ; (ev⊗∞ 1))

[A, B ⊗∞U ]

Lemma 6.6.1. LetX be a cartesian closed category with an actegoryX×W1
⊗∞−−−→X.

Then

1. The strength θU : A× (B ⊗∞U )−→ (A×B )⊗∞U satisfies

A× (B ⊗∞ (U ⊗V )) (A×B )⊗∞ (U ⊗V )

(A× (B ⊗∞U ))⊗∞ V ((A⊗∞U )× (B ⊗∞U ))⊗∞ V ((A×B )⊗∞U )⊗∞ V

θU⊗V

1×α α

θV θU⊗∞V
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2. Suppose the exponential strength ψU := λ(θU ; (ev ⊗∞U )) : [X , Y ⊗∞U ]

−→ [X , Y ]⊗∞U has an inverse. Then

X × [X , Y ⊗∞U ] X × ([X , Y ]⊗∞U ) (X × [X , Y ])⊗∞U

Y ⊗∞U

1×ψ-1
U

ev

θU

ev⊗∞U

Proof.

1. Consider the following diagram:

A× (B ⊗∞ (U ⊗V )) (A⊗∞ (U ⊗V ))× (B ⊗∞ (U ⊗V )) (A×B )⊗∞ (U ⊗V )

A× ((B ⊗∞U )⊗∞ V ) (A⊗∞ V )× (B ⊗∞ (U ⊗V )) (A⊗∞U )⊗∞ V × (B ⊗∞U ⊗∞ V )

(A⊗∞ V )× ((B ⊗∞U )⊗∞ V ) (A⊗∞U )⊗∞ V × (B ⊗∞U )⊗∞ V

(A× (B ⊗∞U ))⊗∞ V ((A⊗∞U )× (B ⊗∞U ))⊗∞ V ((A×B )⊗∞U )⊗∞ V

(A⊗∞ηU⊗V )×1

1×α
(A⊗∞ηV )×1

m×

α×1

α(A⊗∞ηV )×1

((A⊗∞ηU )⊗∞V )×1

1×α
1×α

(A⊗∞ηU )⊗∞V ×1

m× m×

((A⊗∞ηU )×1)⊗∞V m×

From the top left to the bottom right, clockwise is θU⊗V α and counterclock-

wise is (1×α);θV ; (θU ⊗∞ V ). The right rectangle commutes because of

the coherence of the action preserving products. The bottom rectangle

commutes because of naturality. The middle trapezoid and left triangle

commute because of bifunctoriality. This leaves the upper left trapezoid.

It suffices to prove that

(A⊗∞ ηU⊗V );α= (A⊗∞ ηV ); ((A⊗∞ ηU )⊗∞ V )

Note that

A ≡ A⊗∞ R ≡ (A⊗∞ R )⊗∞ R ≡ A⊗∞ (R ⊗R )

and that A⊗∞(R⊗R )
α−→ (A⊗∞R )⊗∞R is the identity. Finally A

A⊗∞ ηU⊗V−−−−−−−−→
A⊗∞ (U ⊗V ) is exactly

A ≡ A⊗∞ (R ⊗R )
A⊗∞ (ηU ⊗ηV )−−−−−−−−−−→ A⊗∞ (U ⊗V )

and the result follows.
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2. As every isomorphism is epic, it suffices to show that

(1×ψ)ev= (1×ψ)(1×ψ-1)θU (ev⊗∞U )

which, (1×ψ)ev= θU (ev⊗∞U ) by definition.

Proposition 6.6.2. Let X be a cartesian closed category with actegory structure

X×W1
⊗∞−−−→X such that ⊗∞ V preserves products for all V ∈W1. Suppose X is

W1 exponentiable.

1. X ⊗∞U isW1 exponentiable for every U .

2. If Y is anotherW1 exponentiable object, then so is X ×Y .

3. For every B , [B , X ] isW1 exponentiable.

Proof. Suppose X isW1 exponentiable.

1. Let U be aW1 algebra. Let Y be arbitrary in X and V be arbitrary inW1 (or

Weil). There is clearly an isomorphism:

[X , Y ⊗∞U ]⊗∞ V ' ([X , Y ]⊗∞U )⊗∞ V ' [X , Y ]⊗∞ (U ⊗V )

' [X , Y ⊗∞ (U ⊗V )]' [X , (Y ⊗∞U )⊗∞ V ]

However, we must show it is the correct isomorphism. Let ψU denote

λ(θU ; (ev⊗∞U )). Writing down the isomorphisms used above explicitly,

our goal is to show that

(ψ-1⊗∞V );α-1;ψ; [X ,α] =λ(θV ;ev⊗∞V ) : [X , Y ⊗∞U ]⊗∞V −→ [X , (Y ⊗∞U )⊗∞V ]

Because gλ( f ) =λ((1× g ) f ), we have that

(ψ-1⊗∞V );α-1;ψ; [X ,α] =λ((1×(ψ-1⊗∞V )); (1×α-1);θU⊗V ; (ev⊗∞(U⊗V ));α)

Hence it suffices to show that

(1× (ψ-1⊗∞ V )); (1×α-1);θU⊗V ; (ev⊗∞ (U ⊗V ));α= θV ; (ev⊗∞ V )
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Then

(1× (ψ-1⊗∞ V )); (1×α-1);θU⊗V ; (ev⊗∞ (U ⊗V ));α

= (1× (ψ-1⊗∞ V )); (1×α-1);θU⊗V ;α; (ev⊗∞U )⊗∞ V

= (1× (ψ-1⊗∞ V )); (1×α-1); (1×α);θV ; (θU ⊗∞ V ); (ev⊗∞U )⊗∞ V

= (1× (ψ-1⊗∞ V ));θV ; (θU ⊗∞ V ); (ev⊗∞U )⊗∞ V

= θV ; ((1×ψ-1)⊗∞ V ); (θU ⊗∞ V ); (ev⊗∞U )⊗∞ V

= θV ; (ev⊗∞ V )

The moves are naturality of α, followed by lemma 6.6.1.1, followed by a

tautology, followed by naturality of θV , followed by lemma 6.6.1.2.

This completes the proof.

2. In this calculation, m⇒,× is the isomorphism [A, B ×C ] −→ [A, B ]× [A, C ],

and m× is the isomorphism (A⊗∞U )× (B ⊗∞U )−→ (A×B )⊗∞U . Then

consider the following chain of (left to right directed) isomorphisms:

[A, X ×Y ]⊗∞U ' ([A, X ]× [A, Y ])⊗∞U m−1
⇒,×⊗∞U

' [A, X ]⊗∞U × [A, Y ]⊗∞U m×

' [A, X ⊗∞U ]× [A, Y ⊗∞U ] ψ×ψ

' [A, X ⊗∞U ×Y ⊗∞U ] m⇒,×

' [A, (X ×Y )⊗∞U ] [A, m×]

And our goal is to show that this is the right isomorphism, that is the above

must equalψ. In the proof of lemma 5.5.8, we proved that m×;ψ×ψ; m⇒,× =

(m−1
⇒,×⊗∞U );ψ; [A, m−1

× . It is the long equational proof demonstrating the

commutativity of the top left rectangle of the fourth diagram. Thus

m×;ψ×ψ; m⇒,× = (m
−1
⇒,×⊗∞U );ψ; [A, m−1

× ]

Then

(m−1
⇒,×⊗∞U ); m×;ψ×ψ; m⇒,×; [A, m×]

= (m−1
⇒,×⊗∞U ); (m−1

⇒,×⊗∞U );ψ; [A, m−1
× ]; [A, m×]

=ψ
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3. Let cur : [A×B , C ]−→ [B , [A, C ]] denote the curry isomorphism. Then con-

sider the chain of isomorphisms (cur-1⊗∞U );ψ;cur; [A,ψ-1]:

[A, [B , X ]]⊗∞U ' [B ×A, X ]⊗∞U ' [B ×A, X ⊗∞U ]

' [A, [B , X ⊗∞U ]]' [A, [B , X ]⊗∞U ]

We must show that the above isψ. Asψ is an exponential strength 5.2.9, it

satisfiesψcur= (cur⊗∞U );ψ; [A,ψ] by definition. Thus

(cur-1⊗∞U );ψ;cur; [A,ψ-1]

= (cur-1⊗∞U ); (cur⊗∞U );ψ; [A,ψ]; [A,ψ-1]

=ψ

This completes the proof.

Proposition 6.6.3. Let X be a cartesian closed category with a product preserving

actegory structure X×W1
⊗∞−−−→X. If A is microlinear and exponentiable by W 1 =

R [x ]/(x 2), then A is exponentiable for all objects inW1.

Proof. We prove this by the inductive construction of objects inW1. For R , the map

θ = 1 and λ(θ ;ev) =λ(ev) = 1. The base case W 1 is exponentiable by hypothesis.

Next we assume that W n is exponentiable, and show that W n+1 is exponentiable.

Note, that [A, ] always preservelimits, the square on the right hand side is the

pullback.

[B , A]⊗∞ (W n ×W 1) [B , A⊗∞W n+1]

[B , A]⊗∞W 1 [B , A⊗∞W 1]

[B , A]⊗∞W n [B , A⊗∞W n ]

[B , A] [B , A]

∃ !

ψ

ψ

Note, thatψ : [B , A]⊗∞W n+1 −→ [B ,⊗∞W n+1]makes the diagram commute. But

thenψ-1 can be made by considering a similar diagram built withψ-1 on the sides,
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and these inverses exist by the inductive hypothesis and the hypothesis that A is

exponentiable by W 1.

In 6.6.2.1, we showed that if A is exponentiable, then so is A⊗∞U ; a similar

calculation used in the proof of 6.6.2 shows that [B , A]⊗∞ (U ⊗V ) −→ [B , A ⊗∞
(U ⊗V )] is invertible.

Then we immediately get the following corollary.

Corollary 6.6.4. X is a coherently closed tangent category if and only the actegory

structure preserves products and every object isW1 exponentiable.

Theorem 6.6.5. Let X be a Cartesian closed category with a product preserving

actegory structure X×W1
⊗∞−−−→X.

1. The microlinear,W1 (or Weil) exponentiable objects form a coherently closed

tangent category, Microl-Exp(X).

2. If L is a transverse limit inW1, then for any microlinear, exponentiable object

A, A⊗ L is a transverse limit in Microl-Exp(X).

3. If X is complete, then every transverse limit of microlinear, exponentiable

objects is microlinear, exponentiable. That is, Microl-Exp(X) is closed under

transverse limits in X.

Proof. Suppose X has a product preserving actegory structure X×W1
⊗∞−−−→X.

1. Because the actegory structure preserves products, the microlinear objects

are closed to products 6.5.3. Similarly, by 6.6.2.1, exponentiable objects are

closed to product. Thus, the microlinear, exponentiable objects are closed

to product.

By proposition 6.5.2, microlinear objects are closed under the action of Weil

algebras; by 6.6.2.2, so are the exponentiable objects. Thus the microlinear,

exponentiable objects are a cartesian tangent category by 6.5.3.

Next, we show that it is a cartesian closed category. Proposition 6.6.2.3 shows

that if A is microlinear and exponentiable, then [B , A] is exponentiable for
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every B . It remains to show that it is microlinear. Let L be a limit inW1.

Then

[B , A]⊗ L ' [B , A⊗ L ]

and A is microlinear, so that A⊗ L is a limit, and [B , ] is continuous so that

[B , A⊗L ] is a limit, and hence [B , A] is microlinear, proving that microlinear,

exponentiable objects are cartesian closed.

The microlinear, exponentiable objects are a coherently closed tangent

category by 6.6.4.

2. Immediate from 6.5.5, as Microl-Exp(X) is closed to the action by Weil alge-

bras.

3. By 6.5.6, the transverse limit of microlinear, exponentiable objects is always

microlinear. We must show it is exponentiable.

First, note that if F ≡ limi X i is a transverse limit, then the functor [A, ⊗∞U ]

preserves this limit for each A,U :

[A, F ⊗∞U ]≡ [A, limi X i ⊗∞U ]' [A, limi (X i ⊗∞U )]' limi [A, X i ⊗∞U ]

The first step is transversality and the second step is that hom is continuous

in the covariant argument. But [A, ⊗∞U ]' [A, ]⊗∞U we have that [A, ]⊗∞
U preserves any limit that [A, ⊗∞U ] preserves. Thus,

[A, limi X i ]⊗∞U ≡ limi ([A, X i ]⊗∞U )
limiψi−−−−−→
'

limi [A, X i ⊗∞U ]

≡ [A, limi (X i ⊗∞U )]

≡ [A, limi X i ⊗∞U ]

In the last two steps, the use of ≡ instead of ' is justified as limits are only

defined up to isomorphism. That limiψi = ψ follows immediately from

universality.

An immediate corollary is
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Corollary 6.6.6. Suppose X has all limits. Then if for every V ∈W1 (or Weil), the

functor ⊗∞V is continuous; that is, every limit is transversal, then Microl-Exp(X)
has all limits. Further the functor

Microl-Exp(X)×W1
⊗∞−−−→Microl-Exp(X)

is continuous.

6.7 Examples

In this section we produce examples of coherently closed tangent categories.

6.7.1 Representable Weil Actions

A Cartesian closed categoryXhas a representable pre-Weil-prolongation if there

is a functor D ( ) :W op
1 −→ X that preserves products up to isomorphism. Thus

representable pre-Weil-prolongations arise as models of the theory W op
1 in a

cartesian closed category.

Products inW op
1 are coproducts inW1 and R is a zero object; thus, we have

that D (U ⊗V )'D (U )×D (V ) and D (R )' 1. In this case, we have a bifunctor

X×W1
⊗∞−−−→X ; (M , V ) 7→ [D (V ), M ]

This bifunctor is a monoidal action as

[D (U ⊗V ), M ]' [D (U )×D (V ), M ]' [D (U ), [D (V ), M ]]

The functor D ( ) is not required to be cocontinuous; thus, colimits in W op
1 i.e.

limits inW1, do not necessarily get sent to colimits inX. A space M is microlinear

if for each limit L in W1, [D (L ), M ] is a limit in X. As [ , M ] sends colimits to

limits, such M are sometimes said to perceive D (L ) as a colimit. From above, the

microlinear objects always form a tangent category.

Proposition 6.7.1. If X has a representable pre-Weil-prolongation, then every

object is Weil exponentiable.
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Proof. We must show that the following map is an isomorphism for every V :

A×[D (V ), [A, B ]]
[!, A]×1
−−−−−→ [D (V ), A]×[D (V ), [A, B ]]' [D (V ), A×[A, B ]]

[D (V ),ev]
−−−−−−−→ [D (V ), B ]

We intepret the above map in the internal language of a cartesian closed category:

(x ,λd a .t d a ) 7→ (λd .x ,λd a .t d a ) 7→λd .(x ,λa .t d a ) 7→λd .t d x

Thus currying the above map yields

[D (V ), [A, B ]]−→ [A, [D (V ), B ]] ; λd a .t d a 7→λa d .t d a

Which is the canonical swap isomorphism [D (V ), [A, B ]]' [A, [D (V ), B ]].

Thus, the microlinear, exponentiable objects are just the microlinear objects.

Combining this with 6.6.5:

Corollary 6.7.2. The microlinear objects of a category with representable pre-Weil-

prolongation is a coherently closed tangent category.

If each D (V ) is microlinear then the tangent functor on microlinear objects is

again representable. As [D (V ), ] is a continuous functor we obtain, from 6.5.7:

Corollary 6.7.3. If X is complete and has a representable pre-Weil-prolongation

where each D (V ) is microlinear, then Microl(X) is a coherently closed, representable

tangent category with all limits.

6.7.2 Synthetic Differential Geometry

Let E be topos with a ringR . We may consider R -W1, the category of Weil algebras

overR . In fact, consider all Weil algebras overR . There is a functor

D ( ) :R-Weilop −→E

Suppose a Weil algebra is presented asR [x1, . . . , xn ]/I and we choose a finite set of

polynomials p1, . . . , pk that generate I ; this is possible as Weil algebras are finitely

generated. Then define the spectrum by:

D (U ) := {(a1, . . . , an ) ∈R n |∀k .pk (a1, . . . , an ) = 0}
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For example

D (W 1) =D (R[x ]/(x 2)) := {d ∈R |d 2 = 0}

Given a homomorphism of Weil algebras U
f
−−→V where U has n generators

and V has m generators, let (b1, . . . , bm ) ∈D (V ). For each generator xi of U , f (xi )

is a polynomial (of V ). Let ai := f (xi )(b1, . . . , bm ).

D ( f )(b1, . . . , bm ) := (a1, . . . , an )

This is well defined. A map U
f
−−→V on presentations is a map R [x1, . . . , xn ]/IU

f
−−→R [x1, . . . , xm ]/IV . This must arise from a map f̂ :R [x1, . . . , xn ]−→R [x1, . . . , xm ]/IV

that sends p ∈ IU to 0 mod IV . In turn this means that f̂ (p ) ∈ IV . Let (b1, . . . , bm ) ∈
D (V ). In particular, f̂ (p )(b1, . . . , bm ) = 0. But

f̂ (p )(b1, . . . , bm )

= f̂ (
∑

α

cαxα)(b1, . . . , bm )

=
∑

α

cα( f x1)
α1 (b1, . . . , bm ) · · · ( f xn )

αn (b1, . . . , bm )

=
∑

α

cα( f (x1)(b1, . . . , bm ))
α1 · · · ( f (xn )(b1, . . . , bm ))

αn

=
∑

α

cαaα1
1 · · ·a

αn

n = p (a1, . . . , an )

Then define an action

E ×R-Weilop ⊗∞−−−→E

Where X ⊗∞U := [D (U ), X ] on objects and f ⊗∞ g := [D (g ), f ] on arrows. This

is clearly a bifunctor as D ( ) is a functor. It is also a monoidal action: note that

D (U ⊗V ) ' D (U )×D (V ) ∈ E (see (Lavendhomme, 1996) 3 in 2.1.2). Thus, we

have

Proposition 6.7.4. For any toposE , and ringR inE , the induced action from above,

is a representable pre-Weil-prolongation. Therefore, Microl(E ) is a coherently closed,

representable tangent category with all limits.
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However, this is not satisfying. The image of D need not be microlinear, nor

does R need to be microlinear, and thus the most basic space for assembling

differential geometry may not be microlinear!

A topos E is called smooth (with respect toR) when the following canonical

map

W
α−→R ⊗∞W := [D (W ),R]

is an isomorphism for each Weil algebra W . If W is presented as W 'R [x1, . . . , xn ]/I

then α arises by considering α̂ : R [x1, . . . , xn ] −→ [D (W ), R ] which sends a poly-

nomial p to the function which evaluates p on D (W ). This map passes to the

quotient, since any p ∈ I is 0 on any element of D (W ).

A consequence of the smoothness assumption is:

W1⊗W2 'R ⊗∞ (W1⊗W2)' (R⊗∞W1)⊗∞W2 'W1⊗∞W2

The following is then immediate

Proposition 6.7.5. The microlinear spaces of a smooth topos E are a coherently

closed, representable tangent category with all limits whereR is microlinear and

for each Weil algebra W , D (W ) is microlinear.

In Microl(E ) the differential objects are precisely the EuclideanR-vector space;

that is, vector spaces that satisfy the Kock-Lawvere axiom: [D (W1), V ] ' V ×V .

One can formulate the notion of manifold modelled on EuclideanR-vector spaces.

Kock showed the following in (Kock, 2009)

Proposition 6.7.6. Synthetic manifolds are microlinear.

6.7.3 Functors out

We revisit the functors out example. Let X be a tangent category presented by

some action X×W1
⊗∞−−−→X and Y be any category. We put an actegory structure

on [X,Y] by assigning F :X−→Y and U :W1 the functor (F ⊗∞U ) :X−→Ywhich

sends X 7→ F (X ⊗∞U ). Given a natural transformationβ : F −→G , defineβ⊗∞U

on components by (β ⊗∞U )X :=βX⊗∞U .

The microlinear functors are then the ones for which each limit L ∈W1 has

F (X ⊗∞ L ) a limit in Y for every X ∈X.
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Observation 6.7.7. Continuous functors are always microlinear.

Of particular interest is whenY= Set. Then [X,Set] is a topos, and in particular

is cartesian closed and has all limits.

Proposition 6.7.8. Representable functors X
X(A, )
−−−−→ Set are microlinear.

This follows immediately as representable functors preserve limits in the

covariant argument.

Proposition 6.7.9. Let X be a tangent category, given by X×W1
⊗∞−−−→ X. Then

every limit of microlinear functors in [X,Set] is transverse.

Proof. A microlinear functor F has the property that that for each transverse

limit of Weil algebras , lim j Vj , F ⊗∞ (lim j Vj ) is a limit. As limits are computed

pointwise into Set, we have F (X ⊗∞ (lim j Vj ))' lim j F (X ⊗∞ Vj ).

limi Fi is a limit of microlinear functors then let lim j Vj be a transverse limit of

Weil algebras.

(F ⊗∞ lim j Vj )(X )' F (X ⊗∞ lim j Vj )' limi (Fi (X ⊗∞ lim j Vj ))

' limi lim j Fi (X ⊗∞ Vj )' lim j (F ⊗∞ lim j Vj )(X )' lim j (F ⊗∞ Vj )(X )

Showing that the limit is transverse.

A similar proof to the above uses that in any Grothendieck topos (e.g. [X,Set]),

filtered colimits commute with finite limits, to show that filtered colimits of mi-

crolinear functors are microlinear.

Proposition 6.7.10. For any tangent category X, Microl([X,Set]) has filtered col-

imits of microlinear functors.

Proof. Let F = colimi Fi be a filtered colimit where each Fi is a microlinear functor.

To show that F is microlinear, let L be a transverse limit lim j Vj inW1. Note this is

a finite limit, by the inductive construction of transverse limits inW1. As colimits

and limits are computed pointwise:

(F ⊗∞ lim j Vj )(X )' F (X ⊗∞ lim j )' colimi Fi (X ⊗∞ lim j Vj )

' colimi lim j Fi (X ⊗∞ Vj )' lim j colimi Fi (X ⊗∞ Vj )

' lim j F (X ⊗∞ Vj )' lim j (F ⊗∞ Vj )(X )
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is a limit, thus F is microlinear.

Thus for a tangent categoryX, the category Microl(X,Set) has transfinite com-

position.

Corollary 6.7.11. LetX be a tangent category. Microl(X,Set) is a complete tangent

category, with filtered colimits, where every limit is transverse.

Immediate from 6.5.6, 6.7.9, 6.7.10, and 6.5.7.

One could look to extract the Weil exponentiable functors. It would be sur-

prising if representable functors were always exponentiable.

6.7.4 Weil spaces

The categoriesW1 and Weil are both tangent categories. We can extract the micro-

linear functorsW1 −→ Set and Weil−→ Set; it turns out here that every microlinear

functor is exponentiable.

Recall the Yoneda lemma, for F :X−→ Set, F (X )'Nat(X(X , ), F ). Also recall

the hom, [H , K ](X ) :=Nat(H ×X(X , ), K ).

Observation 6.7.12. The Yoneda embedding is product preserving when viewed

as a functor Xop Y−−→ [X,Set].

InW op
1 products are the coproducts ofW1 which are the operation U ⊗V . That

Y preserves products, means that Y (U ⊗V ) ' Y (U )×Y (V ); it also sends the

terminal object inW op
1 which is the zero object R to the terminal objectY (R )' 1.

Thus,

Proposition 6.7.13. The categories [Weil,Set] and [W1,Set] have representable

pre-Weil-prolongations, D ( ) :=Y ( ).

Corollary 6.7.14. The categories Microl([Weil,Set]) and Microl([W1,Set]) are com-

plete, coherently closed, representable tangent categories with respect to the action

induced by having a representable pre-Weil-prolongation.

This is immediate from corollary 6.7.3
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Proposition 6.7.15. The actegory structures [Weil,Set]×Weil −→ [Weil,Set] and

[W1,Set]×W1 −→ [W1,Set] given by representable pre-Weil-prolongation D ( ) :=Y
are the standard Weil prolongation on categories of functors into Set.

Proof. We must show that (F ⊗∞U ) := F ( ⊗∞U ) and (F ⊗∞U ) := [Y (U ), F ] are

the same. The proof is Yoneda’s lemma followed by the fact that inW1 X ⊗∞U =

X ⊗U , and finally followed the product preservation ofY .

F ( ⊗∞U )'Nat(Y ( ⊗∞U ), F )'Nat(Y ( ⊗U ), F )'Nat(Y (U )×Y ( ), F )' [Y (U ), F ]

Thus we can use proposition 6.7.8, to show that R is microlinear, and that

more generally every Weil algebra is microlinear, when regarded as representable

functors.

Proposition 6.7.16. The functors Weil−→ Set andW1 −→ Set that represent Weil

algebras are microlinear (i.e. W1(U , ) is microlinear).

Observation 6.7.17. A microlinear functor Weil−→ Set orW1 −→ Set is precisely a

functor that preserves transverse limits of Weil algebras.

Proof. If a functor F preserves all transverse limits then as U ⊗ L is a transverse

limit by construction, F (U ⊗ L ) is a limit.

If F (U ⊗ L ) is a limit for every transverse limit L , and every U , then set U =

R .

Functors Weil−→ Set are called Weil spaces by (Bertram, 2014).

Consider R -W1 for some ring R , and let V be an R -module. This then gives

rise to a Weil space.

V : Weil−→ Set

where

V (U ) :=V ⊗R U V ( f : U −→U ′) :=V ⊗R f

by taking the tensor over R . One recovers V as V (R )'V ⊗R 'V .
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Proposition 6.7.18. The assignment V 7→V extends to a functor

R -Modfp −→Microl(Weil-S)

The proof follows immediately from a theorem in commutative algebra.

Lemma 6.7.19. Suppose that B is finitely presented, and that Ai are of finite length

(or less generally finitely generated and free). Then

limi (Ai ⊗R B )' limi Ai ⊗R B

There is a simpler proof. The category of R -modules and linear maps are a

cartesian differential category with D [ f ] =π0 f ; hence they are a tangent category

with T A := A×A and T f := f × f .

Proof. The product of Weil algebras, U ⊕V , is a transverse limit. Then:

A⊗ (U ⊕V )' (A⊗U )⊕ (A⊗V )

as ⊗ distributes over ⊕.

Next the equalizer of 6.1.13 is transverse. As any Weil algebra is finite dimen-

sional, and ⊗ distributes over ⊕ that A⊗U ' An where n is the dimension of U .

Then

A⊗ (W 1×W 1)
A⊗




π0λ,π1η
�

−−−−−−−−−→ A⊗ ((W 1×W 1)⊗W 1)
A⊗ (σ⊗W 1)
−−−−−−−−→ A⊗ (W 1⊗W 1)

is, up to linear isomorphism, the map:

A⊕A⊕A
〈π0,π1, 0,π2〉−−−−−−−−→ A⊕A⊕A⊕A

which may be thought of as the map (a , h , v ) 7→ (a , h , 0, v ). The map A⊗(W 1⊗W 1)
A⊗ (ε⊗W 1)
−−−−−−−−→ A⊗W 1 is, up to linear isomorphism, the map:

A4 〈π0,π2〉−−−−−→ A2

which is thought of as the map (a , h , v, c ) 7→ (a , v ). Finally, the map A⊗ (W 1⊗W 1)
A⊗ ((ε⊗ε)η)
−−−−−−−−→ A⊗W 1 is the map

A4 〈π0, 0〉
−−−−→ A2
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which is thought of as the map (a , h , v, c ) 7→ (a , 0).

〈π0,π1, 0,π2〉weakly equalizes 〈π0,π2〉and 〈π0, 0〉. Suppose that H = 〈H1, H2, H3, H4〉 :

X −→ A4 weakly equalizes the maps. Then it is immediate that H3 = 0. Then

X
〈H1, H2, H4〉−−−−−−−→ A3

has

〈H1, H2, H4〉 〈π0,π1, 0,π2〉= 〈H1, H2, H3, H4〉

and 〈H1, H2, H4〉 is the unique map that makes the above an equality, thus 〈π0,π1, 0,π2〉
is an equalizer.

Thus for any finitely presented R -module A, the associated Weil space A is

microlinear. The idea of this proof is due to (Bertram, 2014), we just extended the

proof to all the cases required for microlinearity.

Corollary 6.7.20. The category of finitely presented modules, regarded as Weil

spaces, form a Cartesian differential subcategory of the differential objects of Microl(Weil-S).

Using the notion of generalized cartesian differential category, we may enlarge

finitely presented modules to a generalized cartesian differential subcategory.

Before beginning, recall again that for an R -module A we have

A⊗U ' A⊗ (R ⊕U̇ )' A⊕ (A⊗U̇ )

where U̇ is the ideal of augmentation.

Now, let X be a subset of A where A is a finitely presented R -module. Then

define a Weil space:

X (U ) := X × (A⊗U̇ )

Lemma 6.7.21. For subsets X of A, the Weil spaces X are microlinear.

Proof. As any Weil algebra U is augmented, U ' R ⊕U̇ , a limit of Weil algebras

always takes the form:

lim j Uj ' lim j (R ⊕U̇j )R ⊕ lim j U̇j

192



due to the fact that ⊕ is a product and hence commutes with limits. Then let

lim j Uj be a transverse limit inW1. We have

X (lim j Uj ) = X × (A⊗ lim j U̇j )' X × lim j (A⊗Uj )

' lim j (X ×A⊗Uj ) = lim j X (Uj )

The first ' is again 6.7.19. The second ' follows as the product functor preserves

limits.

Corollary 6.7.22. For subsets X of A, the Weil spaces X form a tangent subcategory

of Microl(Weil-S), denoted O (R -Mod-Weil)

Now that we have a generalized cartesian differential category, we may con-

sider manifolds. Bertram call these manifolds set theoretic manifolds. We first

consider set theoretic manifolds modelled on R -modules, and then show that

this can be lifted to Weil spaces.

A set theoretic manifold modelled on an R -module A is a set M , together

with subsets X i ⊆ A and transitions X i

φi j
−−−→ X j , and M '

⋃

i Ui .

Set up this way, it is clear that a set theoretic manifold is uniquely determined

up to isomorphism, by the charts and transitions. Given a set theoretic manifold

M , we obtain a Weil space M . This category of manifolds is a tangent category;

below we show that the tangent structure in this tangent category is the tangent

structure in Weil-S; that is, these Weil manifolds are all microlinear, and form a

tangent subcategory of Microl(Weil-S). We briefly summarize Bertram’s argument.

Proposition 6.7.23 ((Bertram, 2014)). The Weil spaces that are generated as man-

ifolds modelled on O (R -Mod-Weil) are all microlinear in Weil-S. Moreover, the

tangent structure on them is the tangent structure when regarded as objects of

Weil-S.

Proof. Let M be a manifold modelled on O (R -Mod-Weil). Then M is a family of

Weil spaces X i together with transition functionsφi j . Note that

X i ' X i ×1' X i × (A⊗ Ṙ ) = X i (R )

and similarlyφi j =φi j
R

. Thus the manifold M is completely determined by a set

theoretic manifold M .

193



Further, M ⊗∞U is defined by the atlas

(X i ⊗∞U ,φi j ⊗∞U )≡ (X i ( ⊗U ),φi j ⊗U
)

Thus, for each U , we obtain a Weil space M ⊗∞U , which is again a Weil manifold.

For any limit lim j Vj inW1, each chart X i (lim j Vj ) = lim j X i (Vj ) hence the at-

las as a whole preserves the limit. The tangent structure on these manifolds is

definitionally the same as the one on Weil-S.

In the above proof, we constructed the image for each Weil algebra, by defining

a new set theoretic manifold for each M (U ).

Corollary 6.7.24. The category whose objects are Mf(jn(O (R -Mod-Weil))) is pre-

cisely the subcategory of functors M : Weil−→ Set such that

Weil Set

Set-Th-Man

M

M

and M has an atlas (X i ,φi j )where X i is underlied by a subset of an R -module A.

A functor M : Weil−→ Set that factors through set theoretic manifolds as above

is called a Weil manifold. In summary,

Proposition 6.7.25. The category Microl(Weil-S) is a coherently closed tangent

category with all limits and filtered colimits that contains all the Weil manifolds.

6.7.5 Convenient vector spaces

(Kock, 1986) introduces the Weil prolongation to formalize the calculus of jets for

convenient vector spaces and smooth maps. We formalize the Weil prolongation

of convenient vector spaces using the characterization ofR-Weil algebras given

in section 6.1.2.

In example 2.1.12 we introduced convenient vector spaces as special cases of

Frölicher spaces. We need a few facts about Frölicher spaces which we state with-

out proof but refer to the reader for example to (book:kriegl-frolicher; thesis:DG-In-CCC).

194



Proposition 6.7.26. The category of Frölicher spaces:

1. is topological over Set;

2. is complete and cocomplete;

3. is Cartesian closed;

We also will need

Proposition 6.7.27. The category of convenient vector spaces is an exponential

ideal of Frölicher spaces and hence is Cartesian closed.

Reference. This is proposition 23.4 of (Kriegl and Michor, 1997).

We use the Cartesian closedness of convenient vector spaces and the charac-

terization ofR-weil algebras to give a Weil prolongation for convenient vector

spaces.

Let (X , CX , FX ) be a Frölicher space. Define the action at the level of sets first.

X ⊗∞U := Fröl (R n , X )/∼I
where g1 ∼I g2 if

• g1(0, . . . , 0) = g2(0, . . . , 0);

• g1 f − g2 f :Rn −→R ∈ I for every f ∈ FX .

Let X
h−−→ Y be a Frölicher map. Then define

(h ⊗∞U )([g ]) := [g h ] h ⊗∞U : X ⊗∞U −→ Y ⊗∞U

Note that this is well defined at the level of sets. If g1 ∼I g2 then

• h (g1(0, . . . , 0)) = h (g2(0, . . . , 0));

• We must show that g1h f − g2h f ∈ I for every f ∈ FY . But, h f ∈ FX as h is

smooth, hence g1(h f )− g2(h f ) ∈ I .

We must put a Frölicher structure on these actions.

Consider (R , C∞(R), C∞(R)). Then the action by each U ∈Weil onR inher-

its the action from the category of convenient vector spaces (or smooth manifolds,

if preferred). Then we may equip (R⊗∞U ,CVS(R , R ⊗∞U ),CVS(R ⊗∞U , R )).
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Then the Frölicher structure put on X ⊗∞U is the initial Frölicher structure

such that X ⊗∞U
f ⊗∞U
−−−−−→R ⊗∞U is smooth for all f ∈ FX .

Lemma 6.7.28. When the prolongation of a Frölicher space is applied to a con-

venient vector space, the result is again a convenient vector space. The action is

functorial in both arguments

reference. This is (Kock, 1986), proposition 2.2.

Proposition 6.7.29. The action of prolongation by Weil algebras on convenient

vector spaces is an actegory.

reference. This is developed in section 3, and in particular theorem 3.1 of (Kock,

1986).

At the end of section 5 (the top of page 14) of (Kock, 1986), it is pointed out

that X ⊗∞U is a power of X , and since products preserve limits, we have that

every object is microlinear with respect to this prolongation. Thus,

Proposition 6.7.30. The category of microlinear convenient vector spaces is the

category of all convenient vector spaces.

Finally:

Theorem 6.7.31. The category of convenient vector space is a coherently closed

tangent category.

Proof. On page 14 of (Kock, 1986), it is pointed out that [A, B ]⊗∞U ' [A, B⊗∞U ].

On the same page shows that the isomorphism takes a certain form, namely

[A, B ]⊗∞U
λ(θ ;ev)
−−−−−→ [A, B ⊗∞U ]

as required.
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6.7.6 Sikorski spaces

Sikorski spaces also known as differential spaces have been used to formalize the

notions of stratifold and orientifold, and to pursue symplectic reduction (Śniatycki,

2013).

A classical Sikorski space (book:diff-alg-top) is a

• A topological space X ;

• A set of functionals F ⊆ C0(X ,R) that is a subalgebra of theR algebra of

continuous functionals;

such that

• Let g i = g |Vi
with g ∈ F ; if ∪i Vi = X then ∨i g i ∈ F ;

• If f1, . . . , fk ∈ F and g ∈C∞(Rk ,R) then



f1, . . . , fk

�

g ∈ F .

Sikorski spaces can be generalized to presheaves O (R) −→ Set where O (R)
is the generalized cartesian differential category of smooth maps on open sub-

sets ofRn . The category of abstract Sikorski spaces is the category of functors

Fun(O (R),Set). Note that classical Sikorski spaces embed into abstract Sikorski

spaces due to the second condition.

We know that in general we can extract a complete tangent category from this

category of abstract Sikorski spaces.

Proposition 6.7.32. The category of microlinear abstract Sikorksi spaces is a com-

plete tangent category with filtered colimits.

If one wants the topological properties of a classical Sikorski spaces and micro-

linearity, one can select those classical Sikorski spaces which as abstract Sikorski

spaces are microlinear, and for which all Weil actions are classical Sikorski spaces.

However it is not clear that Sikorski spaces have a nice subcategory of Weil

exponential objects.

Note that an abstract Sikorski space F :O (R) F−−→ Set naturally gives rise to a

functor

O (R)×W1
⊗∞−−−→O (R) F−−→ Set
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that sends transverse limits in the second argument to limits.

A Weil-Sikorksi space is a functor

O (R)×W1 −→ Set

that sends transverse limits in the second argument to limits.

This can be curried to obtain a map

O (R)−→Microl(W1,Set)

As we have seen Microl(W1,Set) is a complete, cartesian closed tangent category.

Hence

Fun(O (R),Microl(W1,Set))

is a complete cartesian closed category, that is also a tangent category. However, it

need not be coherently closed. In fact, it is not clear that we can even exponentiate

representable functors.

Proposition 6.7.33. The category of microlinear, exponentiable objects in Fun(O (R),Microl(W1,Set))

contains the category of tangent functors Tan(O (R),Microl(W1,Set)).

Proof. For any tangent categories, X,Y, there is an embedding of tangent cate-

gories

Tan(X,Y) ,→Microl(X,Y)

As Tan(O (R),Microl(W1,Set)) is representable 6.3.3, every object is exponentiable

6.7.1. Thus,

Tan(O (R),Microl(W1,Set)) ,→Microl-Exp(O (R),Microl(W1,Set))

Proposition 6.7.34.

Tan(O (R),Microl(W1,Set))

contains the representable functors O (S , )( ); hence, representables are microlinear

and exponentiable.
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Proof. Note that by Wood’s characterization of actegories as presheaf categories

that admit powers by representables:

O (S , T M )( )' [Y (W 1),O (S , M )( )]

And in Microl(W1,Set), T X ' [Y (W 1), X ] by proposition 6.7.15. Thus the func-

tor preserves tangent structure, and hence is microlinear and exponentiable by

proposition 6.7.33.

Of course, this means, that we obtain a model of the differential λ-calculus in

Microl-Exp(O (R),Microl(W1,Set)).

6.7.7 Weil Diffeological Spaces

Diffeological spaces are the concrete sheaves on the concrete siteO (R) (preprint:baez-hoffnung-diffeological),

and are hence a quasitopos. Baez also argues that it might be easier to work with

all sheaves, which for general reasons are localizations of presheaves, and all

sheaves form a topos. From the point of view of tangent categories, sheaves are

not well understood yet.

By abstract diffeological space, we mean an object in the category of presheaves

Fun(O (R)op,Set).

We can extract the microlinear objects from this category if we desire; however,

from the tangent categories perspective, this is a harder category to work with

than microlinear Sikorski spaces, as the opposite tangent category is less well

behaved. Instead we jump straight to Weil diffeological spaces.

A Weil-Diffeological space is a functor

O (R)op×W1 −→ Set

that sends transverse limits inW1 to limits.

A module or profunctor X9 Y is a functor Xop ×Y −→ Set. When X and Y
are tangent categories, a tangent module X9Y is a module that is underlied by

a tangent preserving functor Xop −→Microl(Y,Set).

Garner proved that the tangent modulesX9W1 for any tangent categoryX is

a representable tangent category (Garner, 2018) (theorem 28). Thus by proposition

6.7.1 the tangent modules underlie exponentiable, microlinear functors. Hence.
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Proposition 6.7.35. The category of microlinear, exponentiable objects in

Fun(O (R)op,Microl(W1,Set))

contains the category of tangent modules O (R)9W1.

And also similarly to Weil-Sikorski spaces

Proposition 6.7.36. The category of tangent modules O (R)9 W1 contains the

representable presheaves.

This follows as (enriched) presheaves always give (enriched) profunctors.

Thus from the point of view of Weil actions abstract diffeological spaces can

be made very easy to work with. However, one of the reasons people work with

diffeological spaces is that they are a category of sheaves. It could be interesting

to consider the tangent modules O (R)9W1 that satisfy the sheaf condition in

the first argument. However, we require a better understanding of how colimits

interact with tangent structure to make this precise.
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Chapter 7

Future Work

This thesis considered the differential λ-calculus as a syntax relevant to differ-

ential geometry. To make this precise, we considered models of the differential

λ-calculus in coherently closed tangent categories.

This brings up an immediate question. The differential λ-calculus only gives

the internal logic for the differential objects of a tangent category. More generally,

it could be useful to have a syntactic presentation of a tangent category. Much of

the work would involve turning the actegory characterization of tangent categories

into explicit syntax for tangent categories. The syntax would be similar to the

syntax for synthetic∞-categories (journal:riehl-shulman-infity-types). There

would be a Weil layer, that formalizes the types and maps ofW1 overN . There

would then be a tope layer where one has a “stooped” context that expresses the

action of the Weil layer. Alternatively, the type theory could be expressed through

the enriched Yoneda lemma, and the presentations of type theories via Yoneda’s

lemma by (book:taylor-practical-foundations).

More substantially to obtain closed models, we essentially looked at localiza-

tions of presheaf categories (locally presentable categories), and enriched functor

categories. We showed that looking at these kinds of categories gave the right be-

haviour with respect to limits: namely the enriched Yoneda embedding preserves

transverse limits.

However, the behaviour with respect to colimits is a bit mysterious. We get col-

imits abstractly from theorems about locally presentable categories, and enriched
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functor categories into cocomplete enriched categories. However, obtaining col-

imits in a tangent category is a bit, admittedly, strange. For example, take the

pushout of two copies ofR along the origin 0; there is no reason to think this is a

good smooth space.

Orbifolds, orientifolds, stratifolds, and sheaves on O (R) present progressively

more general ways to obtain controlled and well behaved colimits or quotients.

But it is not known how colimits interact with tangent structure. The desire to

understand colimits, could lead to a better notion of sheaves for tangent cate-

gories; diffeological spaces certainly do not work – in this thesis we resorted to a

generalization of diffeological spaces to get around this. However, understanding

sheaves in a tangent category sense could lead to a better notion of diffeological

space.

We also believe that the category of microlinear Weil spaces is regular. This

would be significant because it would allow the development of regular tangent

categories. Regular categories admit categories of internal relations. Regular

tangent categories may have application to classically subtle topics, like the Wein-

stein, symplectic, and Fukaya categories, as these are all categories of relations

built out of certain kinds of subobjects, for example, Lagrangian submanifolds

(chapter:symplectic-category; journal:lagrangian-subman; preprint:symplectic-cats;

preprint:orbi-symplectic).

This thesis then seems to be the start of a long-term research project to un-

derstand colimits and regularity in tangent categories and more broadly in the

context of differential geometry.
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