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Abstract

In this thesis we combine Turing categories with Cartesian left additive restriction cate-

gories and again with differential restriction categories. The result of the first combination

is a new structure which models nondeterministic computation. The result of the second

combination is a structure which models the notion of linear resource consumption. We

also study the structural background required to understand what new features Turing

structure should have in light of addition and differentiation – most crucial to this devel-

opment is the way in which idempotents split. For the combination of Turing categories

with Cartesian left additive restriction categories we will also provide a model.
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Chapter 1

Introduction

The purpose of this thesis is to propose and justify the definition of a differential Turing

category, and to pave the way to understanding what a differential partial combinatory

algebra should be. Partial combinatory algebras (PCA)s were introduced by Feferman

[24] to provide an algebraic formulation of computability. Turing categories were intro-

duced by Cockett and Hofstra [13] to provide a categorical formulation of computability.

Turing categories are closely related to PCAs, and a major objective of this thesis is to

define differential structure for Turing categories and PCAs which maintains these rela-

tionships. To start, we will review the differential λ-calculus and the resource λ-calculus

to build a motivation for adding differential structure to Turing categories and PCAs.

The idea of adding a derivative to a notion of computability was pioneered by Ehrhard

and Regnier [23]. They investigated an extension of the λ-calculus in which terms have

a formal derivative they called differential substitution. Adding formal differentiation to

the λ-calculus, in this manner, produces a system in which “resource sensitive” compu-

tations, in the sense of [5], can be modeled.

The relationship between the differential λ-calculus and resource sensitivity arose

from a relationship which was observed between certain models of Girard’s linear logic

[26], and Milner’s Π-calculus (for communicating processes) [38] and how the latter can

simulate the λ-calculus.

Girard’s linear logic treats propositions as resources, and thus it is intuitively con-

nected to the semantics of resource and concurrency. Girard, in attempting to a find a

model of linear logic based on linear algebra, proposed a model which used Banach spaces

[25]. However, as Ehrhard pointed out, this model did not completely describe the ex-
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ponentials of linear logic [22]. Ehrhard continued Girard’s investigation, and discovered

that a complete model could be obtained using Kothe spaces.

The maps of the coKleisli category of the exponential comonad of Kothe spaces are

infinitely differential maps. As Cartesian closed categories are models of the simply typed

λ-calculus, Ehrhard was able to interpret λ-terms as differentiable maps, and compute

their derivatives. In [23], Ehrhard and Regnier took a syntactic approach to studying

differentiable λ-terms by adding to the λ-calculus a commutative monoid structure and a

formal derivative operator: they called the result the differential λ-calculus. Ehrhard and

Regnier immediately realized that there was a connection to Boudol’s resource λ-calculus

(see [5]). They noted in [23]:

Intuitions behind the differential λ-calculus and the λ-calculus with re-

sources are very similar.

Boudol’s resource λ-calculus began with Milner’s Π-calculus. To show that the Π

calculus is a complete programming language, Milner defined a simulation of the λ-

calculus within the Π-calculus [38]. Milner’s simulation has the property that it soundly

models β-reduction, and that if two terms are not equal in the λ-calculus, then they are

not equal under translation. However, the Π-calculus distinguishes some terms which, in

all λ-contexts, are indistinguishable [5].

In [5], Boudol defined the resource λ-calculus, and proved that this calculus is precisely

the target of Milner’s simulation of the λ-calculus. In [6], Boudol et al refined the

calculus, and began to consider its rewriting theory. The resource λ-calculus was then

further refined by Pagani and Tranquilli to show that the rewriting system is confluent

modulo some equations [42].

In the resource λ-calculus, the second argument of application is a bag of terms, and

terms in this bag are either linear (available for exactly one use), or infinite ( )! (can be
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used many times or discarded). Here is a simple example.

(λx.x[x!])[M,N !]
β−−→M [N !] +N [M,N !].

The β-reduction will linearly substitute the term [M,N !] for x in x[x!]. Since the first x

being substituted into is linear, and there are two options, a choice must be made: either

M is substituted or N is substituted. Since M is linear, when M is substituted, it is

depleted from the bag, but since N is infinite it remains in the bag: at this point we have

(M [x!])[[N !]/x] + (N [x!])[[M,N !]/x]. In this case, the x being substituted into is infinite,

so the substitution is a normal substitution, and we arrive at the result M [N !]+N [M,N !].

Ehrhard and Regnier had observed that the differential substitution of the differential

λ-calculus acts exactly like the linear substitution of the resource λ-calculus. This corre-

spondence, however, was not made precise until a categorical semantics became available

to unify the syntaxes.

Blute et al [3] initiated the categorical semantics of the differential λ-calculus using

differential categories. A differential category is a symmetric monoidal category with

a comonad and a differential combinator; however, only maps of a certain type can be

differentiated. A standard example of a differential category is Ehrhard’s category of

Kothe spaces.

The differential λ-calculus actually arose from the coKleisli category of the exponential

comonad on the category of Kothe spaces. Blute et al [2] thus axoimatized the coKleisli

category of a differential category to continue the investigation into categorical models of

the differential λ-calculus. These Cartesian differential categories are categories in which

every map has a derivative. However, they are not necessarily closed, so these categories

still did not model the full differential λ-calculus.

In [7], Bucciarelli et al defined Cartesian closed differential categories which are the

closed extension of Blute et al ’s Cartesian differential categories. This allowed them to
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make a precise the connection between Ehrhard and Regnier’s differential λ-calculus and

Boudol’s resource λ-calculus. More precisely, Bucciarelli et al showed that the simply

typed differential λ-calculus can be interpreted in a Cartesian closed differential category.

Further they showed that the differential λ-calculus is a retract of the resource λ-calculus;

in particular, this means that every model of the differential λ-calculus is a model of the

resource λ-calculus.

Manzonetto [36] was the first to explicitly consider the untyped differential λ-calculus.

Using the fact that Cartesian closed categories with a reflexive object provide models of

the untyped λ-calculus, Manzonetto proved that Cartesian closed differential categories

with a linear reflexive object provide sound models of the untyped differential λ-calculus.

Manzonetto did not provide a completeness theorem, but he did conjecture that when the

additive structure is idempotent then one can obtain a complete model of the differential

λ-calculus [37]. Manzonetto’s results further led to speculation that all models will have

idempotent addition.

The syntax of the differential λ-calculus forces application to be linear in the first

argument. To obtain models, one needs a pairing combinator which not only provides

a pair type, but also correctly lifts differential structure to the model. One of the main

contributions of this thesis, contrary to what was widely believed by the community, is to

show that this does not require the idempotent induced by pairing to be linear. Instead,

it is shown that a more sophisticated condition must be satisfied. This fact allows for

the possibility of models in which addition is not idempotent.

It should be pointed that a first step in exploring applicative systems that are linear

in the first argument was taken by Carraro et al [8] who introduced resource combinatory

algebras as an algebraic formulation of the purely linear fragment of resource λ-calculus.

They assume application is linear instead of linear in the first argument; further, their

system does not provide a model of computability. Thus their approach is incompatible
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with the content of this thesis.

1.1 Organization

Cockett and Hofstra [13] showed that studying PCAs is essentially the same as studying

Turing categories, and it is the interplay between PCAs and Turing structure which

provides the driving force behind this thesis. The thesis displays this relationship as first

additive and then differential structure is added. The organization of this thesis, then,

reflects a program used to ensure that Turing structure interacts with the additive and

differential structure in a consistent and seamless manner.

This thesis is broken into three chapters corresponding to the levels at which Turing

structure is introduced: Cartesian restriction structure, Cartesian left additive restriction

structure, and differential restriction structure. Each of these chapters displays the same

five stages: the introduction of the underlying categorical structure, investigation of

simple slice structure, idempotent splitting, the development of a sound and complete

term logic, and the introduction of a Turing structure and PCA.

The simple slice category is part of a crucial story involving closed restriction struc-

ture. The complete development of closed restriction structure is not included in this

thesis in order to keep its length manageable. However, the way in which the structure of

a category transfers to the simple slice category suffices, in conjunction with the results

for total closed structure, to understand the properties that a structurally appropriate

applicative system should have.

The main results of this thesis are directly tied to the idempotent completions in

the various settings. For Cartesian left additive restriction categories, one must split

the idempotents such that in the idempotent completion, the retraction preserves addi-

tion. For differential restriction categories, one must split the idempotents such that in
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the idempotent completion, the retraction is strongly linear. These observations have

important implications for appropriate Turing structure in these settings.

The development of a sound and complete term logic makes it easier to see and reason

about PCAs. The author used the term logic in developing many of the results in the

thesis: particularly concerning PCAs and the pairing combinator. However, the main

body of the thesis sticks to categorical notation. The term logic is included because, once

one gets used to it, it is an essential tool in understanding these settings.

Finally, we describe Turing structure and PCAs for these categorical structures. The

first standard result about Turing categories is that they arise from splitting certain idem-

potents. For the Turing structure to fit with the underlying categorical structure, the

way Turing structure splits idempotents must match the way the free idempotent com-

pletion splits the idempotents. This requirement forces certain properties of application,

and in particular, explains why one needs, for differential Turing categories, application

to be linear in its first argument.. The second standard result about Turing structure is

that it is equivalent to the computable maps of a partial combinatory algebra. This in

turn requires the combinatory completeness of an appropriate applicative system. De-

veloping the definition of Turing structure for Cartesian left additive and differential

restriction categories in a way that all of these equivalences are maintained accounts for

the subtleties involved in these structures.

1.2 Contributions

This thesis introduces and explores left-addditive Turing categories; thus, the main new

contributions start in that chapter. Both theorem 3.3.1 which concernts the idempotent

splitting for Cartesian left additive restriction categories, and theorem 3.5.1 which pro-

vides a recognition theorem for left additive Turing categories, are new to this thesis.
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This thesis also provides a characterization of left additive PCAs via proposition 3.5.2,

and provides a model in which an idempotent sum is not required: proposition 3.5.3 and

corollary 3.5.1.

For differential restriction structure, the main contribution is theorem 4.3.1 which

concerns the idempotent splitting for differential restriction categories. From this, the

thesis also provides the definition of a differential Turing category 4.6.1.
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Chapter 2

Background

2.1 Restriction Categories

Partial maps play an imporant role in computability theory where one studies functions

that are computations – computations which need not terminate. An explicit structure

that allows one to reason about partial maps is crucial. This thesis will use restric-

tion categories [16] which were introduced by Cockett and Lack to provide a categorical

structure for handling partiality.

A widely known structure for describing partial maps are the partial map categories

of Robinson and Rosolini [41] which are constructed from a class of monics. One property

that these monics must have is that the pullback along such a monic must exist and again

be in the class of monics, and this is because composition is defined by pullback. This

makes reasoning in partial map categories quite complex.

Cockett and Lack’s restriction categories capture partiality using an idempotent which

acts like the domain of definition of a map. Unlike the partial map category approach,

restriction categories are equationally defined, and thus, simplify calculations. However,

the two approaches are closely related, as every partial map category is a restriction

category, while every restriction category is a full subcategory of a partial map category

[16].

For a historical introduction to partial structures, see [39].

Definition 2.1.1. A restriction category is a category where each map f has an

assignment:
f : A −→ B

f : A −→ A
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which satisfies the following axioms:

[R.1] f f = f ;

[R.2] f g = g f ;

[R.3] f g = f g ;

[R.4] fh = fh f .

Note, that in this thesis, we will write composition diagrammatically.

The standard example of a restriction category is Par [16], the category of sets and

partial functions. The ( ) combinator is defined as

f (x) =


x f(x) ↓

↑ else

,

where ↓ means is defined and ↑ means not defined. Another example is the category of

topological spaces and maps which are continuous on an open susbset.

The following lemma shows some basic manipulations involving the restriction cate-

gory axioms.

Lemma 2.1.1. The following hold in a restriction category X:

(i) f f = f ;

(ii) f = f ;

(iii) fg = f fg ;

(iv) fg = fg .

Proof. Consider the following manipulations.

(i) f f = f f = f by R.3 then R.1.

(ii) f = f f = f f = f f = f by R.1,R.2,R.3 and point 1.
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(iii) fg = f fg = f fg by R.1,R.3.

(iv) fg = f fg = fg f = fg f = fg by point 3 then R.2,R.3,R.4.

By lemma 2.1.1.1 we see that the maps e = e are idempotent, and we will refer to

them as restriction idempotents.

A map is total when its domain of definition is its entire domain; that is, when f = 1.

The total maps in a restriction category form a subcategory which contains all the monic

maps:

Lemma 2.1.2. Let X be a restriction category. Then,

(i) All monic maps (hence all identities and isomorphisms) are total;

(ii) If f : A −→ B and g : B −→ C are both total then fg : A −→ C is total too.

(iii) If fg is total then f is total.

Proof. Consider the following.

(i) Assume f is monic. Then since f f = f = 1f we have f = 1.

(ii) Assume f = 1A and g = 1A. Then applying lemma 2.1.1.4,

fg = fg = f = 1A.

(iii) Assume fg = 1. Then applying lemma 2.1.1.3,

f = f 1 = f fg = fg = 1.

The following proposition is now clear.
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Proposition 2.1.1 (Cockett-Lack [16]). The total maps of a restriction category X are

a subcategory which contains all the monic maps.

We will use Total(X) to denote the subcategory of total maps of a restriction category

X.

A natural relation on parallel, partial maps is that a map f is less defined than g

when g restricted to the domain of f is f . In a restriction category we may define such

a relation on maps.

f ≤ g := f g = f.

We prove that the above relation is a partial order which is preserved by composition.

Lemma 2.1.3. Let X be a restriction category with ≤ defined as above. Then

(i) f ≤ f ;

(ii) f ≤ g and g ≤ f implies f = g;

(iii) f ≤ g and g ≤ h implies f ≤ h;

(iv) f ≤ g implies hfk ≤ hgk;

(v) f = g iff f = g and there is a k such that f, g ≤ k.

Proof. Consider:

(i) f f = f by R.1.

(ii) Assume f g = g f = g. Then, use this assumption, followed by R.3,R.2,R.1, and

then the assumption again.

f = f f = f g f = f g f = g f f = g f = g.

(iii) Assume f g = f and g h = g. Then use the assumption, then R.3 followed by the

assumption twice.

f h = f g h = f g h = f g = f.



12

(iv) Assume f g = f . Then, use R.4, then lemma (2.1.1, R.2,the assumption, R.4, and

then R.1.

hfk hgk = hfk gk = hf fk gk = hfk f gk = hfk fk = hfk hfk = hfk

(v) The “⇒” direction is obvious. Suppose f = g and there is a k such that f, g ≤ k;

that is,

f k = f g k = g.

Thus,

f = f k = g k = g.

The above also establishes that if e = e then e ≤ 1 and that g f, fh ≤ f .

Another standard relation on parallel, partial maps is that whenever both maps are

defined, then they are equal. The compatibility relation is studied more extensively by

Cockett and Hofstra in [11].

Definition 2.1.2. f, g : A −→ B in a restriction category are compatible when f g =

g f , and denoted f ^ g.

The compatibility relation is stable with respect to composition; it is also reflexive and

symmetric. However, one must take care in reasoning about compatible maps because

compatibility is not transitive.

Lemma 2.1.4. In a restriction category we have,

(i) f ^ f ;

(ii) f ^ g implies g ^ f ;

(iii) f ^ g implies hfk ^ hgk;
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(iv) f ^ g iff f g ≤ f iff g f ≤ g;

(v) f ≤ g iff f ^ g and f ≤ g .

Proof. (1) and (2) are obvious. For (3), assume f g = g f then consider

hfk hgk = hfk gk = hf fk gk R.4, lemma 2.1.1.3

= hfk f gk = hfk g fk = hg fk fk R.2, assumption,R.2

= hg fk fk = hf gk fk = hf gk fk R.3, assumption,R.3

= hgk f fk = hgk fk = hgk hfk R.2,R.1,R.4.

For (4), if f ^ g then f g = g f ≤ f . Conversely, if f g ≤ f then f g = f g f = f g f =

g f . Thus f ^ g iff f g ≤ f . Similarly f ^ g iff g f ≤ g. For (5), “⇒” is obvious.

Assume f ^ g and f ≤ g . Then f g = f f g = f g f = f f = f .

Definition 2.1.3. Let X,Y be restriction categories. A restriction functor F : X −→ Y

is a functor where for all f , F (f ) = F (f) .

Lemma 2.1.5. Restriction functors preserve total maps.

Proof. Let F be a restriction functor, and f a total map. Then

F (f) = F (f ) = F (1) = 1.

Definition 2.1.4. Let F,G be restriction functors. A restriction natural transfor-

mation α : F =⇒ G is a natural transformation where each component, αA is total.

Proposition 2.1.2 (Cockett-Lack [16]). Restriction categories,functors, and natural

transformations form a 2-category.
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2.2 Cartesian Restriction Categories

Products in a restriction category are investigated by Cockett and Lack in [14]. They

considered the 2-category of restriction categories, restriction functors, and lax natural

transformations, and defined a restriction category to have restriction products when the

functors ∆ : X −→ X × X and ! : X −→ 1 have right adjoints. Such categories can be

directly axiomatized, and this axiomatization is provided below.

Definition 2.2.1. A restriction terminal object, > is an object in a restriction

category where for any A there is a unique, total map !A : A −→ > such that !> = 1> and

if f : A −→ B then

A
!A //

f   AAAAAAAA
≤
>

B.

!B

OO

A restriction binary product of A,B is an object A × B with total projections π0 :

A × B −→ A and π1 : A × B −→ B s.t. if f : C −→ A and g : C −→ B then there is a

unique map 〈f, g〉 : C −→ A×B with the property that 〈f, g〉π0 = g f and 〈f, g〉π1 = f g.

A Cartesian restriction category is a restriction category with all restriction bi-

nary products and a restriction terminal object.

Next, to set some notation, let X be a Cartesian restriction category, then set

A0 := 1 An+1 := An × A.

In other words, An = (· · · (A× A)× · · ·A).

Next, we have a lemma regarding Cartesian restriction categories.

Lemma 2.2.1. The following all hold in a Cartesian restriction category.

(i) 〈f, g〉π0 = g f and 〈f, g〉π1 = f g if and only if 〈f, g〉π0 ≤ f , 〈f, g〉π1 ≤ g, 〈f, g〉 =

f g .



15

(ii) (f × g)π0 = π1g π0f and (f × g)π1 = π0f π1g.

(iii) If e = e then e〈f, g〉 = 〈ef, g〉 = 〈f, eg〉.

(iv) f〈g, h〉 = 〈fg, fh〉.

(v) 〈f, g〉(h× k) = 〈fh, hk〉.

(vi) (f × g)(h× k) = (fh× gk).

(vii) If f ≤ f ′ then 〈f, g〉 ≤ 〈f ′, g〉; if g ≤ g′ then 〈f, g〉 ≤ 〈f, g′〉.

(viii) π0, π1 are lax natural.

(ix) 〈π0, π1〉 = 1

(x) A×B ∼= B × A

(xi) If g is total then π0f = (f × g)π0; if f is total then πg = (f × g)π1.

(xii) f × g = f × g ;

(xiii) 1× f = πf and f × 1 = π0f ;

(xiv) A ∼= A×> ∼= >× A.

Proof.

(i) ⇒: Assume 〈f, g〉π0 ≤ f, 〈f, g〉π1 ≤ g, 〈f, g〉 = f g . Then,

〈f, g〉π0 = 〈f, g〉π0 f assumption

= 〈f, g〉π0 f lemma (2.1.1.4

= f g f = g f f assumption and R.4

= g f

A symmetric argument shows 〈f, g〉π1 = f g.

⇐: Assume that 〈f, g〉π0 = g f and 〈f, g〉π1 = f g. The restriction ordering shows
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that 〈f, g〉π0 ≤ f and 〈f, g〉π1 ≤ g. Further, consider,

〈f, g〉 = 〈f, g〉π1 = 〈f, g〉π1 = f g = f g .

(ii) Consider

(f × g) π0 = 〈π0f, π1g〉π0 = π1g π0f,

and similarly (f × g)π1 = π0f π1g.

(iii) Assume e = e. Then note,

〈f, eg〉π0 = eg f

= e g f assumption

= e g f R.3

= e 〈f, g〉π0

= e〈f, g〉π0. assumption

Similarly 〈f, eg〉π = e〈f, g〉π1, but 〈f, eg〉 is the unique map such that

Q

≥ ≤

f

||xxxxxxxxxx
eg

##GGGGGGGGG

〈f,g〉
��

A A×Bπ0
oo

π1
// B.

Thus, e〈f, g〉 = 〈f, eg〉. A similar argument shows e〈f, g〉 = 〈ef, g〉.

(iv) Consider,

〈fg, fh〉π0 = fh fg

= fh g R.4

= f〈g, h〉π0.

Similarly, 〈fg, fh〉π1 = f〈g, h〉π1. Thus, f〈g, h〉 will satisfy the same universal

property as 〈fg, fh〉; therefore, f〈g, h〉 = 〈fg, fh〉.



17

(v) Consider,

〈f, g〉(h× k) = 〈f, g〉〈π0h, π1k〉

= 〈〈f, g〉π0h, 〈f, g〉π1k〉 part 4

= 〈g fh, f gk〉

= g f 〈fh, gk〉 part 3

= g 〈f fh, gk〉 part 3

= g 〈fh, gk〉 R.1

= 〈fh, gk〉 part 3,R.1

(vi) Assume f ≤ f ′. Then,

〈f, g〉 〈f ′, g〉 = f g 〈f ′, g〉

= f 〈f ′, g〉 part 3,R.1

= 〈f f ′, g〉 part 3

= 〈f, g〉. f ≤ f ′

Thus 〈f, g〉 ≤ 〈f ′, g〉. A symmetric argument shows that if g ≤ g′ then 〈f, g〉 ≤

〈f, g′〉.

(vii) Consider,

(f × g) (h× k) = 〈π0f, π1g〉 (h× k) = 〈π0fh, π1gk〉 = (fh× gk) .

(viii) We will show π0 is lax natural; π1 follows follows by a symmetric argument. Consider

we must show,

A×B π0 //

f×g
��

≤

A

f

��
C ×D π0

// C.
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Now,

(f × g) π0 π0f = π1g π0f π0f

= π1g π0f π0f

= π1g π0f

= (f × g) π0,

as required.

(ix) Consider that 〈π0, π1〉π0 = π0 and 〈π0, π1〉π1 = π1. Thus 〈π0, π1〉 will satisfy the

same universal property as 1; therefore, 〈π0, π1〉 = 1.

(x) We show 〈π1, π0〉 : A×B −→ B×A is an involution thus an isomorphism. Consider,

〈π1, π0〉〈π1, π0〉 = 〈〈π1, π0〉π1, 〈π1, π0〉π0〉 = 〈π0, π1〉 = 1.

(xi) Assume g is total. Then,

(f × g) π0 = π1g π0f

= π1g π0f

= π1 π0f assumption

= π0f.

Similarly, if f is total, then (f × g)π1 = π1g.
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(xii) Consider,

f × g = 〈π0f , π1g 〉

= 〈π0f π0, π1g π1〉 R.4

= π0f π1g 〈π0, π1〉

= π0f π1g

= 〈π0f, π1g〉

= f × g

(xiii) We will show that 1×f = π1f , and f ×1 = π0f follows by a symmetric argument.

Consider that

1× f = 1 × f 1 is total

= 1× f

= π1f .

(xiv) We will show that 〈1A, !A〉 : A −→ A×> is an isomorphism. Since ! is total,

〈1, !〉π0 = ! 1 = 1.

Also, there is a unique total map A×> −→ >. Thus, !A×> = π1 = π0!A; therefore,

π0〈1A, !A〉 = 〈π0, π0!A〉 = 〈π0, π1〉 = 1.

In a Cartesian restriction category the restriction structure is determined by the

product structure:

Lemma 2.2.2. Let X be a Cartesian restriction category. Then, the restriction structure

may be interpreted as

f := 〈1, f〉π0,
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or

f := 〈f, 1〉π1.

Proof. Consider,

〈1, f〉π0 = f 〈f, 1〉π1 = f .

Lemma 2.2.3. Let X be a Cartesian restriction category. Then Cartesian restriction

structure is unique up to isomorphism.

Proof. • Let >,>′ be restriction terminal objects. Let !A denote the unique total

map A −→ > and !′A denote the unique total map A −→ >′. Now the following

commutes since there is a unique total map > −→ > and !> = 1>.

>
!′> //

1>

77>′
!>′ // >

• Let (×, π0, π1, 〈 , 〉) and (×′, π′0, π′1, 〈 , 〉′) be two restriction product structures.

It suffices to show that 〈π′0, π′1〉 : A×′ B −→ A×B is an isomorphism. Now,

〈π′0, π′1〉〈π0, π1〉′ = 〈〈π′0, π′1〉π0, 〈π′0, π′1〉π1〉′ lemma (2.2.1.4)

= 〈π′1 π′0, π′0 π′1〉

= 〈π′0, π′1〉

= 1.

Similary calculations show that 〈π0, π1〉′〈π′0, π′1〉 = 1; thus, 〈π′0, π′1〉 is an isomor-

phism.

Definition 2.2.2. Let F : X −→ Y be a restriction functor. F is a Cartesian restric-

tion functor in case F preserves all restriction product and restriction terminal object

diagrams.
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Lemma 2.2.4. The map σ× = 〈F (π0), F (π1)〉 : ( × )F −→ F ( × ) is restriction

natural.

Proof. We must show that for all A,B the following diagram commutes.

F (A×B)
σ× //

F (a×b)
��

F (A)× F (B)

F (a)×F (b)

��
F (A′ ×B′) σ×

// F (A′)× F (B′)

It does since,

F (a× b)σ× = F (a× b)〈F (π0), F (π1)〉

= 〈F (a× b)F (π0), F (a× b)F (π1)〉

= 〈F ((a× b)π0), F ((a× b)π1)〉

= 〈F (π1b π0a), F (π0a π1b)〉

= 〈F (π1b)F (π0a), F (π0a)F (π1b)〉 restriction functor

= 〈F (π0a), F (π1b)〉 lemma (2.2.1.3),R.2,R.1

= 〈F (π0)F (a), F (π1)F (b)〉

= σ×(F (a)× F (b)) lemma (2.2.1.5)

Since restriction functors preserve total maps, σ× is a tuple of total maps hence σ× itself

is total. Therefore, σ× is a restriction natural transformation.

We end this subsection with a characterization of Cartesian restriction functors.

Proposition 2.2.1 (Cockett-Lack [14]). Let X,Y be Cartesian restriction categories, and

let F : X −→ Y be a restriction functor. F is a Cartesian restriciton functor iff σ× and

!F (>) are isomorphisms.

Proof. If F is a Cartesian restriction functor then lemma (2.2.3) shows that σ× : F (A×B)

−→ F (A)×F (B) is an isomorphism and that !F (>) is an isomorphism. Conversely, if σ×
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and !F (>) are isomorphisms then F preserves all restriction product and terminal object

diagrams.

2.3 Simple Slices

When X is total (so that restriction products are categorical products) and A is an object

of X, the coKleisli category for the comonad ( × A) is called the simple slice category

X over A and denoted X[A] [29] [27]. The coKleisli category is a well known categorical

construction; see for example [34]. In [29], Jacobs shows that when a category X has finite

products that the simple slice category is equivalent to the category of computations

in context. In [31], such categories are used to prove the functional completeness of

Cartesian closed categories. Thus, simple slice categories have an important role in the

semantics of programming languages.

In a Cartesian restriction category, we will define X[A] in the same way. This section

will prove that any comonad S = (S, ε, δ), where S is a restriction functor and ε is total,

will lift Cartesian restriction structure to the coKleisli category. In particular, ( × A)

is an example of such a comonad thus Cartesian restriction structure lifts to X[A].

2.3.1 CoKleisli Category

For notation: in calculations, we will use boldface for maps in the coKleisli category,

and plain font for maps in the base category.

Note that for a comonad on a restriction category, δxεS(X) = 1; thus, by lemma (2.1.2)

δX is total at each component (i.e. δ is a restriction natural transformation); however, ε

need not be. The following is a straightforward generalization of the fact that, for total

categories, XS is a category (see for example [34]).

Proposition 2.3.1. If X is a restriction category, and S = (S, ε, δ) is a comonad with
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S a restriction functor, then XS is a restriction category where f = f εX . Further, the

inclusion X J−−→ XS is a restriction functor.

Proof. We must show the restriction identities. First note that from the comonad laws

we have δXS(εX) = δXεS(X) and for all g, δXS(g)εY = g. Combining this with the fact

that S is a restriction functor we have the following very useful identity,

(f )] = δXS(f εX) = f .

The calculation for the above is

δXS(f εX) = δXS(f )S(εX) = δXS(f)S(εX) = δXS(F ) δXS(εX)

= δXS(F ) δXεS(X) = δXS(f) εS(X) = δXS(f )εS(X) = f

R.1 Using the above identity we have

f f = (f εX)]f = f f = f = f .

R.2 Again using the above identity we have

f g = (f εX)]g εX = f g εX = g f εX = (g εX)]f εX = g f .

R.3 From the above identity,

f g = (f εX)]g εX = f g εX = f g εX = (f εX)]g εX = f g .

R.4 Again, use the above identity, and also that f = δXS(f)εY .

fh f = δXS(δXS(f)h εX) = (δXS(f)h εX)]f = δXS(f)h f

= δXS(f)h δXS(f)εY = δXS(f)h εY = f ]h εY = fh .

Therefore, XS is a restriction category.
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That the inclusion X J−−→ XS is a restriction functor: Consider

J(f ) = εXf = S(f )εX = S(f) εX = S(f)εX εX = εXf εX = J(f) εX ,

so that J preserves the restriction as required.

The above proof relies on the fact that S is a restriction functor. We did not need ε

to be total, but for the next step we will. The following proposition is a generalization of

the fact that for total categories, the coKleisli category of a Cartesian category is again

a Cartesian category.

Proposition 2.3.2. If X is a Cartesian restriction category, and S = (S, ε, δ) is a

comonad with S a restriction functor and where ε is total then XS is a Cartesian restric-

tion category. Further, the inclusion X J−−→ XS is a Cartesian restriction functor.

Define !A : A −→ > =!S(A) : S(A) −→ >, and define the projections and pairings:

S(A×B)
επ0−−−→ A

A×B
π0−−→ A

S(A×B)
επ1−−−→ B

A×B
π1−−→ B

S(Z)
〈f, g〉−−−−→ A×B

Z
〈f, g〉−−−−→ A×B

Proof. That > is a restriction terminal object in XS follows from the fact that it is a

restriction terminal object in X. The projections are total as

επi = επi ε = ε ε = ε = 1.

Next we must show that XS has binary restriction product structure. Recall that

(f εA)] = f . Consider for π0,

〈f, g〉π0 = (〈f, g〉)]εA×Bπ0 = 〈f, g〉π0 = g f = (g εB)]f = g f

Similarly for π1, 〈f, g〉π1 = f g. Thus the restriction product laws hold, and now we

must show that 〈f, g〉 is the unique map that makes these laws hold. Suppose v also

satisfies vπ0 = g f and vπ1 = f g. Then,

vπ0 = v]εA×Bπ0 = vπ0 = g f = (g εA)]f = g f.
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Similarly vπ1 = f g. Thus, v = 〈f, g〉 by the uniqueness of 〈f, g〉 in X. Thus XS is a

Cartesian restriction category.

That the inclusion X J−−→ XS is a Cartesian restriction functor, use proposition (2.2.1).

That !J(>) is an isomorphism follows because it is an isomorphism in X. That σ× is an

isomorphism,

〈J(π0), J(π1)〉 = 〈επ0, επ1〉 = ε〈π0, π1〉 = ε = 1.

Thus, by proposition (2.2.1), J is a Cartesian restriction functor.

In XS , f×g = 〈(επ0)]f, (επ1)]g〉 = σ×(f×g) which implies that J preserves products

strictly, because

J(f × g) = ε(f × g) = 〈επ0f, επ1g〉 = 〈S(π0)εf, S(π1)εg〉

= σ×(εf × εg) = σ×(J(f)× J(g)) = J(f)× J(g)

Also note that the association map a× = J(a×).

2.3.2 The Simple Slice Category

To show that ( × A) is a comonad, we will use the coKleisli triple presentation of a

comonad1.

The map ( × A) : X −→ X is defined as X 7→ (X × A) on objects. Next, define

εX := (X × A)
π0−−→ X and f ] := (X × A)

〈f, π1〉−−−−→ (Y × A)

Note that

f ]ε = 〈f, π1〉π0 = f π]0 = 〈π0, π1〉 = 1

and

f ]g] = 〈f, π1〉〈g, π1〉 = 〈〈f, π1〉g, π1〉 = (f ]g)].

1The (co)Kleisli triple presentation of a (co)Monad was provided by Manes in [35]. Recall, its data
consists of an object map, a family of morphisms ε, and a combinator ( )]
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Thus, using the coKleisli triple presentation of a comonad, the following proposition

is obvious.

Proposition 2.3.3. Let X be a Cartesian restriction category. Then, ( × A) is a

comonad on X.

Note that f × 1 = f × 1 = f × 1 , so that × A is a restriction functor. Also note

that ε = π0 is total, thus by proposition (2.3.2),

Proposition 2.3.4. X[A] is a Cartesian restriction category.

To unwind this comonad further, given a map f : X −→ Y then S(f) = (f×1) : X×A

−→ Y × A and that δX = 〈1, π1〉 = ∆(1× π1). Also, σ× = 〈(π0 × 1), (π1 × 1)〉.

2.4 Idempotent Splitting

Definition 2.4.1. Let e : A −→ A be an idempotent; e is a split idempotent when e

factors,

A
e //

r

��

A

E

s

??~~~~~~~

where sr = 1E.

Further, given a split idempotent like the one above, we call E a retract of A, and

write E C A. Obviously, an idempotent e splits into rs if and only if sr = 1E, and also

r is a retraction and s is a section thus a monic.

The following construction, called the Cauchy completion or idempotent splitting of

a category, splits a class of idempotents into a retraction followed by a section. This

construction can be found in Karoubi [30].

Definition 2.4.2. Let X be a category, and E a class of idempotents in X. SplitE(X) is

the structure with
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Obj: (A, e), such that A is an object in X and e ∈ E such that e : A −→ A.

Arr: (A, e)
f−−→ (B, e′) is a map A

f−−→ B in X such that efe′ = f .

Id: (A, e)
e−→ (A, e).

Composition: (A, e)
f−−→ (B, e′)

f ′−−→ (C, e′′) = (A, e)
ff ′−−−→ (C, e′′).

First, note that composition is well defined since

eff ′e′′ = eefe′e′f ′e′′e′′ = efe′e′f ′e′′ = ff ′.

Further note that a map f satisfies efe′ = f if and only if ef = f = fe′.

The following lemma will be quite useful in many proofs.

Lemma 2.4.1. Let e = ee be an idempotent in a restriction category. Then

e e = e = ee .

Proof. Suppose e = ee. First, it is always the case that e = e e. To show that e = ee

consider

ee = ee e = e e = e.

The following, from [30], is straightforward to check.

Proposition 2.4.1 (Karoubi). For every X and class E of idempotents, SplitE(X) is a

category.

In this section we show that a class of idempotents that is closed to taking products

may be split to guarantee that the resultant category is a Cartesian restriction category.

First, we show that one can split any class of maps in a restriction category and again

obtain a restriction category. The following is a generalization of theorem 1 in [4] to

restriction categories.
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Proposition 2.4.2. Let X be a restriction category. Then

(i) SplitE(X) has a restriction structure given by (A, e)
f−−→ (B, e′) = (A, e)

ef−−→ (A, e).

(ii) If E contains all the identities of X, then there is a restriction preserving embedding

X ↪→ SplitE(X).

(iii) All maps in E split in SplitE(X).

Proof. (i) Note the restriction is well defined since

eef e = eef ee = eef e = eef = ef .

Now, we must show that this gives a restriction structure.

[R.1] ef f = ef = f .

[R.2] We need that ef eg = eg ef . Consider,

ef eg = ef eeg e = ef eeg ee = ef eg e = eg ef e = eg ef = eg eef = eg ef .

[R.3] We must show ef eg = eef g . Now (using ef = ef e),

eef g = eef eg = eef eg = ef eg = ef g = ef eg .

[R.4] Note, the burden is a bit trickier this time. We have (A, e)
f−−→ (B, e′)

h−−→ (C, e′′), so that the restriction of h is e′h and the restriction of fh is

efh . Thus, we must show that fe′h = efh f . Now,

fe′h = efe′h e′ = efh e′ = efh fe′ = efh f.

Thus SplitE(X) has the restriction structure as described.

(ii) Define the inclusion on objects A 7→ (A, 1A) and on arrows A
f−−→ B 7→ (A, 11)

f−−→ (B, 1B). The inclusion obviously preserves the restriction. Note the inclusion
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is well defined since 1Af1B = f . This inclusion is clearly a functor, and is full and

faithful since

X(A,B) ∼= SplitE(X)((A, 1A), (B, 1B)).

(iii) To see that E idempotents split in SplitE(X) suppose d ∈ E , and (A, e)
d−→ (A, e) is

a map in SplitE(X) (this map is necessarily idempotent). Note that (A, d)
d−→ (A, d)

is also a map in SplitE(X); also r = (A, e)
d−→ (A, d) and m = (A, d)

d−→ (A, e)

are maps in SplitE(X) since edd = dd = d and dde = dd = d respectively. It is

straightforward to show that mr = (A, d)
d−→ (A, d) and rm = (A, e)

d−→ (A, e),

which completes the proof.

Now, we can consider when a map in SplitE(X) is total. Suppose (A, e)
f−−→ (B, e′) is

total. Then we have ef = e.

Lemma 2.4.2. Let X be a restriction category. Then the following are true.

(i) A map (A, e)
f−−→ (B, e′) is total in SplitE(X) iff e ≤ f in X.

(ii) If E is exactly the class of restriction idempotents, then (A, e)
f−−→ (B, e′) is total

iff e ≤ f in X.

Proof. Consider the following:

(i) Suppose (A, e)
f−−→ (B, e′) is total; i.e. ef = e. Then e f = e f = e . Conversely,

suppose e f = e . Then,

ef = e ef = e ef e = e f e = e e = e.

(ii) This follows immediately from (1) since e = e .
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Proposition 2.4.3. Let X be a Cartesian restriction category, and E a class of idempo-

tents which is closed under taking products (i.e. if e1, e2 ∈ E then e1 × e2 ∈ E). Then

SplitE(X) can be given Cartesian restriction structure.

Take the restriction terminal object to be (>, 1>), and the total maps into the terminal

object to be

(A, e)
e!A−−−→ (>, 1>).

Define the product of (B, e′) and (C, e′′) to be (B × C, e′ × e′′). Take projections out of

(B × C, e′ × e′′) to be (e′ × e′′)π0 and (e′ × e′′)π1. Take the pairing of (A, e)
f−−→ (B, e′)

and (A, e)
g−→ (C, e′′) to be just 〈f, g〉.

Proof. First, note that the maps into the restriction terminal object are well defined as

ee!A1> = e!A. We must show that the restriction of e!A is e;

ee!A = ee!A = ee = e e = e.

Next, we must show that if (A, e)
f−−→ (B, e′) then fe!B ≤ e!A; by using the fact X has

Cartesian restriction structure we have,

efe!B e!A = ef e!A = ef !A = ef !B = fe!B.

Now we must show that the structure defined gives a binary restriction product structure.

First, note that (e′ × e′′) is always an idempotent when e′ and e′′ are, and thus E being

closed under products is well defined. Next, consider that the pairing of maps is well

defined as e〈f, g〉(e′ × e′′) = 〈ef, eg〉(e′ × e′′) = 〈efe′, ege′′〉 = 〈f, g〉. Also, note that

projections are total. We will show the argument for π0:

(e′ × e′′)(e′ × e′′)π0 = (e′ × e′′)(e′ × e′) = (e′ × e′′).

Next, consider that the pairing of maps satisfies the correct laws for restriction product

structure:

〈f, g〉(e′ × e′′)π0 = 〈fe′, ge′′〉π0 = 〈f, g〉π0 = g f,
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and

〈f, g〉(e′ × e′′)π1 = 〈fe′, ge′′〉π1 = 〈f, g〉π1 = f g.

Finally, we show that 〈f, g〉 is the unique map with this property. Suppose (A, e)
v−→

(B × C, e′ × e′′) satisfies v(e′ × e′′)π0 = g f and v(e′ × e′′)π1 = f g. Then note that

v(e′ × e′′) = v, so that vπ0 = g f and vπ1 = f g. Then by the universal property in X we

have that v = 〈f, g〉. This completes the proof.

2.5 Term Logic

A functional type theory or term logic for a category permits equational reasoning about

the maps. A term logic should be sound and complete with respect to the translation

of the logic into the categorical setting. A soundness and completeness theorem for a

translation means that theorems in the logic correspond precisely to equations in the

category. The development of term logic we use here follows [18]; these results can be

found in Cockett and Hofstra’s notes [9].

Also worth noting is that a term logic can often be used as a programming language.

This allows the development of categorical abstract machines, and often these machines

allow one to discover new optimizations [17].

A functional type theory is given by three pieces: syntax, type inference judgments,

and equations. The syntax of a functional type theory is generated inductively from a

set of atomic terms and atomic types. Type inference judgments ensure that terms in

the theory are well typed. Let T be a set of atomic types and V a set of atomic terms,

Ω a set of function symbols, and let there be a mapping σ : Ω −→ T∗ × T, called the

sorting 2. Note that the arity, ω : Ω −→ N, can be defined in terms of the sorting as

ω := σ; π0; length.

2M∗ is the free monoid of the set M
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Recall some basic notation.

Definition 2.5.1. A context is a finite bag of (term,type) pairs.

Definition 2.5.2. A term-in-context is a sequent

Γ ` m : A

where Γ is a context, m is a term, and A is a type.

Term formation judgments

t1 · · · tn
t

assert that if t1, · · · , tn are terms in the logic, then t a term in the logic. An equation

is a judgment of the form;
Γ ` t1 : A Γ ` t2 : A

Γ `e t1 = t2 : A.

However, the rule above will often be abbreviated by t1 =Γ t2 : A, and when the context

and type are clear as just t1 = t2. A proved term is a term which can be derived only

from judgments.

The syntax of the Cartesian restriction terms and types are respectively generated by

the following inductively defined sets. First let V be a set of variables. Then a pattern

p is a tuple of variables with the property that each variable occurs exactly once in the

tuple.

T := V | () | (T, . . . , T ) | {p.T}T | T|T

Ty := T | 1 | Ty × · · · × Ty

T is often called the carrier set of the term logic [20].
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Basic terms:

Γ, x : A ` x : A Proj
Γ ` t : A Γ, p : A ` s : B

Γ ` {p.s}T : B Cut

Γ ` t1 : A1 · · · Γ ` tn : An σ(f) = ([A1, . . . , An], B)

Γ ` f(t1, . . . , tn) : B Fun

Cartesian terms:

Γ ` () : 1 Unit
Γ ` t1 : A1 · · ·Γ ` tn : An

Γ ` (t1, . . . , tn) : A1 × · · · × An Tuple

Γ, t1 : A1, . . . , tn : An ` t : A

Γ, (t1, . . . , tn) : A1 × · · ·An ` t : A Pat

Partial Terms:
Γ ` t : A Γ ` s : B

Γ ` t|s : A Rest

Table 2.1: Cartesian Restriction Term Formation Rules

The term formation rules for Cartesian restriction term logic are given in table (2.5.3).

Note that for the cut rule, variables are removed from context and put into the proved

term. Since the proof of s depends on these variables, they are said to be bound in s.

Also, for convenience we will write t|s,s′ to denote (t|s)|s′ .

There are essentially six classes of equations placed on terms.

α-Renaming The terms introduced by the cut rule contain bound variables, and these

variables can be renamed with fresh variables by a process called α-renaming. Two

terms t1, t2 are α-equivalent if they can be made syntactically equal after a finite

number of bound variable changes. α-equivalence is indeed an equivalence relation,

and the rule is written,

Γ ` t1 : A Γ `e t2 : A t1 ≡α t2
Γ `e t1 = t2 : A

α

Axioms Axioms specify basic equalities on terms. Axioms do not depend on any gen-

erated equivalence; we assume Γ ` t1 : A and Γ ` t2 : A, and we write

Γ `e t1 = t2 : A.
Axiomε



34

ESB.1 {x.x}tV t

ESB.2 {x.y}tV y|t when y 6= x

ESB.3 {x.f(t1, . . . , tn)}tV f({x.t1}t, . . . , {x.tn}t)

ESB.4 {().t}k V t|k

ESB.5 {().t}()V t

ESB.6 {x.()}tV ()|t

ESB.7 {x.(t1, . . . , tn)}tV ({x.t1}t, . . . , {x.tn}t)

ESB.8 {(x1, . . . , xn).s}(t1, . . . , tn)V {x1.· · · ({xn.s}tn) · · ·}t1

ESB.9 {x.s|v}tV {x.s}t|{x.v}t

Table 2.2: Cut Elimination for Cartesian restriction terms

Equational We ensure that the equations generate an equivalence relation using the

following rules.

Γ ` t : A
Γ `e t = t : A

Refl
Γ `e t2 = t1 : A
Γ `e t1 = t2 : A

Symm

Γ `e t1 = t2 : A Γ `e t2 = t3 : A
Γ `e t1 = t3 : A

Tran

Subterm We also have rules that ensure that terms with equal subterms are equal.

There is one subterm equality rule for each term formation rule; for example, for

the Fun rule,

Γ `e t1 = t′1 : A1 · · · Γ `e tn = t′n : An σ(f) = ([A1, . . . , An], B)

Γ `e f(t1, . . . , tn) = f(t′1, . . . , t
′
n) : B

Subfun

Cut-elimination The equations for cut elimination of Cartesian restriction terms are

in table 2.2. These equations are written directed because they can be viewed as a

rewriting system on terms.
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CRL.1 t = t|t

CRL.2 t|s,s′ = t|s′,s

CRL.3 t|s,s′ = t|s|s′

CRL.4 t = t|x

CRL.5 f(t1, . . . , (tk)|s, . . . , tn) = f(t1, . . . , tn)|s

CRL.6 t|(s1,...,sn) = t|s1,...,sn

CRL.7 (t1, . . . , (tk)|s, . . . , tn) = (t1, . . . , tn)|s

Table 2.3: Equations for Cartesian restriction terms

Equations The equations for Cartesian restriction term logic are in table 2.3.

A theory of Cartesian restriction term logic is T = (Ty,Ω, σ, ξ) where ξ is the set of

axioms that are imposed on Cartesian restriction term logic.

2.5.1 Cut Elimination

In this subsection, we will show that any term in Cartesian restriction term logic is

equivalent to a term with no cuts. We will use the bag ordering technique to establish

cut elimination.

Definition 2.5.3. Let (W,<) be a well founded set. Let B1, B2 ∈ Bag(W ), and define

<< on Bag(W ) by B1 << B2 if

• B1 = M1 ∪ C

• B2 = M2 ∪ C

• for all x ∈M1 there exists y ∈M2 such that x < y

The bag ordering allows us to remove some common subbag of B1, B2, and then

compare what is left pointwise.
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Proposition 2.5.1 (Dershowitz). If (W,<) is a well founded set, then (Bag(W ), <<)

is also a well founded set.

Proof. See [21].

Theorem 2.5.1 (Dershowitz). Let (W,<) be a well founded set, T be a set of terms,

and V⊆ T × T a rewrite relation. Let ν : T −→ (W,<). If for every aV b, ν(b) < ν(a)

then the rewrite rule terminates.

Proof. Again see [21].

Proposition 2.5.2. Every Cartesian restriction term is equal to one with no cuts.

Proof. (Sketch):

Consider the well founded set (N×N,≤lex), and the map | | : Terms −→ N which is the

size of the term. Define

ν : Terms −→ Bag(N× N, <<)

by

ν(t) = {| (|t′|, |s|) | {p.s}t′ is a subterm of t |}

Now we must compare ν(t1) and ν(t2) for each t1 V t2. However, using the bag ordering,

we can eliminate ν(t1) ∩ ν(t2), so we only need to compare singleton bags. For example,

take (ESB.4). Now, for all i |ti| ≤lex |(t1, . . . , tn)|. Thus (|ti|, ) ≤lex (|(t1, . . . , tn)|, |s|) as

required. Or, for example, take (ESB.6). It is clear that (|t|, |ti|) ≤lex (|t|, |f(t1, . . . , tn)|)

as required. The rest of the rules are similar.

2.5.2 Basic Equalities

This subsection presents some equalities between terms that are useful in establishing

the completeness theorem for this term logic.

First, a lemma regarding some basic manipulations of restriction terms.
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Lemma 2.5.1. (i) t|s,s = t|s

(ii) t|() = t

(iii) If x 6∈ s then {x.s}t = s|t

(iv) If no variables of p are in s then {p.s}t = s|t

(v) ({p.t′}t)|s = {p.t′|s}t

(vi) ({p.t′}t)|s = {p.t′}
(
t|s
)

Points (iii) − (vi) of the above lemma are all proved by induction. We will prove

point (v) explicitly and sketch proofs of the rest.

Proof. Consider the following calculations:

(i) Using CRL.3, followed by CRL.1 on s|s,

t|s,s = t|s|s = t|s

(ii) Using ESB.4 followed by ESB.5,

t|() = {().t}() = t

(iii) The proof is by induction on the structure of s.

(iv) The proof is by induction on the length of the pattern p. For the case when p = ()

use ESB.4. When p = x is a variable, use part 3 of this lemma. When p =

(p1, . . . , pn),

{(p1, . . . , pn).t}(t1, . . . , tn) = {p1.(· · · {pn.t}tn · · ·)}t1

= {p1.
(
· · · t|tn · · ·

)
}t1

= · · ·

= t|tn,...,t1 = t|t1,...,tn

= t|(t1,...,tn)
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(v) Assume that t, t′ do not contain any cuts. Then the proof proceeds by induction

on the structure of the pattern p. When p = () consider that

({().t′}t)|s = t′|t,s = t′|s,t = {().t′|s}t

When p = x, is a variable, induct on the structure of t′. The case for tuples is

omitted because it is almost the same as the case for function application. Note,

that parts 3 and 4 of this lemma are used extensively below.

({x.()}t)|s = ()|t,s = ({x.()}t)|s,t

= ({x.()}t)|s|t = {x.()}t|{x.s}t = {x.()|s}t

({x.x}t)|s = t|s = ({x.x}t)|s,t

= {x.x}t|{x.s}t = {x.x|s}t

({x.f(t1, . . . , tn)}t)|s = f({x.t1}t|s, . . . , {x.tn}t|s) = f({x.t1|s}t, . . . , {x.tn|s}t)

= {x.f(t1|s, . . . , tn|s)}t = {x.f(t1, . . . , tn)|s}t

({x.t|t′}s′)|s = {x.t}s′|{x.t′}s′,s = {x.t}s′|{x.t′}s′|s

= {x.t}s′|{x.t′|s}s′ = {x.t|t′|s}s
′ = {x.t|t′,s}s′

Which completes the induction when p is a variable.

Finally, assume p = (p1, . . . , pn), and consider

{(p1, . . . , pn).t}(t1, . . . , tn)|s = {p1.· · · {pn.t}tn · · ·}t1|s

= {p1.(· · · {pn.t}tn · · ·)|s}t1

= · · ·

= {p1.· · · {pn.t|s}tn · · ·}tn

= {(p1, . . . , pn).t|s}(t1, . . . , tn)

This completes the induction and the proof of point (v).
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(vi) For this, use induction on the length of the pattern p. The calculations are direct

when p = () or when p = (p1, . . . , pn). Induct on the structure of t′ when p = x, is

a variable.

Next, to make a few lemmas easier, we can define normal substitution [t/p] s which

does not update the restrictions appropriately.

Lemma 2.5.2. {p.t}t′ = ([t′/p] t)|t′

Proof. The proof is by induction on the pattern. First, if p = (), then {().t}t′ = t|t′ =

([t′/()] t)|t′ . Next assume that p = x, is a variable. Then proceed by induction on t.

The case for tuples is omitted due to similarity with the case for function application.

Consider,

{x.()}t′ = ()|t′ = ([t′/x] ())|t′

{x.x}t′ = t′ = t′|t′ = ([t′/x]x)|t′

{x.y}t′ = y|t′ = ([t′/x] y)|t′

{x.f(t1, . . . , tn)}t′ = f({x.t1}t′, . . . , {x.tn}t′)

= f(([t′/x] t1)|t′ , . . . , ([t
′/x] tn)|t′)

= f([t′/x] t1, . . . , [t
′/x] tn)|t′,...,t′ = f([t′/x] t1, . . . , [t

′/x] tn)|t′

= ([t′/x] f(t1, . . . , tn))|t′

{x.t1|t2}t
′ = {x.t1}t′|{x.t2}t′ = [t′/x] t1|t′,([t′/x]t2)|t′

= [t′/x] t1|[t′/x]t2,t′,t′
= [t′/x] t1|[t′/x]t2,t′

=
(

[t′/x] t1|[t′/x]t2

)
|t′

=
(
[t′/x]

(
t1|t2

))
|t′

This has a few consequences.
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TCR.1 Jx : A ` xK = 1A

TCR.2 J(p1, . . . , pn) ` xK = πiJpi ` xK (for x ∈ pi)

TCR.3 JΓ ` ()K =!M(Γ)

TCR.4 JΓ ` (t1, . . . , tn)K = 〈JΓ ` t1K, . . . , JΓ ` tnK〉

TCR.5 JΓ ` f(t1, . . . , tn)K = 〈JΓ ` t1K, . . . , JΓ ` tnK〉M(f)

TCR.6 JΓ ` {p.s}tK = 〈JΓ ` tK, 1〉J(p,Γ) ` sK

TCR.7 JΓ ` t|sK = JΓ ` sK JΓ ` tK

Table 2.4: Translation of Cartesian restriction terms

Corollary 2.5.1.

(i) if t = t′ and s = s′ then ([t/p] s)|t = ([t′/p] s′)|t′

(ii) {p.s}({p′.s′}t) = {p′.{p.s}s′}t

(iii) {p.{p′.s′}s}t = {p′.{p.s′}t}({p.s}t)

2.5.3 Soundness

The interpretation of a logic into a category is sound if, whenever the axioms of the

logic are satisfied, then all the equations are satisfied. In this section we will define a

translation of Cartesian restriction terms into a Cartesian restriction category, and then

show this translation is sound.

The translation of terms J K into a Cartesian restriction category is given in table

2.4.

Proposition 2.5.3 (Cockett and Hofstra [9]: proposition 1.10). The translation defined

in table 2.4 is sound.

Proof. CRL.1 This translates to JΓ ` tK = JΓ ` tK JΓ ` tK which is R.1.
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CRL.2 This translates to JΓ ` sK JΓ ` s′K JΓ ` tK = JΓ ` s′K JΓ ` sK JΓ ` tK which is true

because of R.2.

CRL.3 Using R.3,

JΓ ` t|s|s′ K = JΓ ` s|s′K JΓ ` tK = JΓ ` s′K JΓ ` sK JΓ ` tK

= JΓ ` s′K JΓ ` sK JΓ ` tK = JΓ ` t|s,s′K

CRL.4 Note that when x is variable then JΓ ` xK is a composition of projections, and

so it is total. Then

JΓ ` t|xK = JΓ ` xK JΓ ` tK = JΓ ` tK

CRL.5 By lemma (2.2.1), when e = e then e〈f1, . . . , fn〉 = 〈f1, . . . , efj, . . . , fn〉. Then

JΓ ` f(t1, . . . , (tk)|s, . . . , tn)K = 〈JΓ ` t1K, . . . , JΓ ` sK JΓ ` tkK, . . . , JΓ ` tnK〉M(f)

= JΓ ` sK 〈t1, . . . , tn〉M(f) = JΓ ` f(t1, . . . , tn)|sK

CRL.6 Using lemma (2.2.1), 〈f1, . . . , fn〉 = f1 · · · fn :

JΓ ` t|(s1,...,sn)K = 〈JΓ ` s1K, . . . , JΓ ` snK〉 JΓ ` tK

= JΓ ` s1K · · · JΓ ` snK JΓ ` tK = JΓ ` t|s1,...,snK

CRL.7

JΓ ` (t1, . . . , (tk)|s, . . . , tn)K = 〈JΓ ` t1K, . . . , JΓ ` sK JΓ ` tkK, . . . , JΓ ` tnK〉

= JΓ ` sK 〈t1, . . . , tn〉 = JΓ ` (t1, . . . , tn)|sK

Therefore the interpretation is sound.

2.5.4 Completeness

To show the completeness of the interpretation 2.4, we will show that for each theory

there is a Cartesian restriction category generated freely from the logic. This means that

there is an interpretation or model of each theory in a Cartesian restriction category.
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For each Cartesian restriction theory T define the classifying category, C[T ] to be the

structure with

Obj: Products of atomic types.

Arr: A map f : A −→ B is a term judgment Γ : A ` t : B, under the equivalence

relation given by provable equality in the logic. We will often use the following

notation for such an f : A −→ B; Γ 7→ t, and if the types are clear, just Γ 7→ t.

Id: The identity map 1A = A −→ A; Γ 7→ Γ.

Comp: Composition is given by substitution.

(Γ 7→ t)(Γ′ 7→ t′)

Γ 7→ {p′.t′}t

Rest: The restriction of a map is given by:

f = Γ 7→ t

f = Γ 7→ Γ|t

Products: For the total map into the terminal object use ! = Γ 7→ (). The projections

are π0 = (Γ,Γ′) 7→ Γ and π1 = (Γ,Γ′) 7→ Γ′. Define the pairing as

f = Γ 7→ t1 g = Γ 7→ t2
〈f, g〉 = Γ 7→ (t1, t2).

We must first show:

Lemma 2.5.3. For any Cartesian restriction theory T , C[T ] is a category.

Proof. That the identities act as identities, we must show that for any patterns p, p′ we

have (p 7→ p)(p 7→ t) = p 7→ t and (p 7→ t)(p′ 7→ p′) = p 7→ t. The proof proceeds by
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induction on the pattern. For the base case, the pattern is a variable. Recall that the

restriction of a variable disappears.

(x 7→ x)(y 7→ t) = x 7→ {y.t}x = x 7→ [x/y] t|x

= x 7→ [x/y] t = y 7→ t

where the last equation is α-equivalence. For the right law,

(p 7→ t)(x 7→ x) = p 7→ {x.x}t = p 7→ t.

For the inductive case, assume the patterns are nonempty, and for all subpatterns,

pi, pi 7→ pi acts as an identity. For the left law,

((p1, . . . , pn) 7→ (p1, . . . , pn))((q1, . . . , qn) 7→ t)

= (p1, . . . , pn) 7→ {(q1, . . . , qn).t}(p1, . . . , pn)

= (p1, . . . , pn) 7→ {q1.· · · {qn.t}pn · · ·}p1

= (p1, . . . , pn) 7→ [p1/q1] · · · [pn/qn] t

= (q1, . . . , qn) 7→ t

The last equation is α-equivalence. Note also that the restriction of a pattern disappears,

so the fourth step is sound. For the right law,

(p 7→ (t1, . . . , tn))((p1, . . . , pn) 7→ (p1, . . . , pn))

= p 7→ {(p1, . . . , pn).(p1, . . . , pn)}(t1, . . . , tn)

= p 7→ ({(p1, . . . , pn).p1}(t1, . . . , tn), . . . , {(p1, . . . , pn).pn}(t1, . . . , tn))

= p 7→ (({p1.p1}t1)|t2,...,tn , . . . , ({pn.pn}tn)|t1,...,tn−1
)

= p 7→ ({p1.p1}t1, . . . , {pn.pn}tn)

= p 7→ (t1, . . . , tn)

where the last step is the inductive hypothesis.
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That composition is associative, use corollary (2.5.1).

((p1 7→ t1)(p2 7→ t2))(p3 7→ t3) = (p1 7→ {p2.t2}t1)(p3 7→ t3)

= p1 7→ {p3.t3}({p2.t2}t1)

= p1 7→ {p2.{p3.t3}t2}t1

= (p1 7→ t1)(p2 7→ {p3.t3}t2)

= (p1 7→ t1)((p2 7→ t2)(p3 7→ t3))

Next, we check that C[T ] is a restriction category.

Lemma 2.5.4. For every Cartesian restriction theory, C[T ] is a restriction category

given by the above restriction data.

Proof. R.1

f f = (p 7→ p|t)(p 7→ t) = p 7→ {p.t}p|t

= p 7→ ({p.t}p)|t = p 7→ ([p/p] t)|t

= p 7→ t|p,t = p 7→ t|t = p 7→ t = f

R.2

f g = (p 7→ p|t)(p 7→ p|s) = p 7→ {p.p|s}p|t

= p 7→ ({p.p}p)|t,s = p 7→ ({p.p}p)|s,t = (p 7→ p|s)(p 7→ p|t) = g f

R.3

f g = (p 7→ p|t)(p 7→ p|s) = p 7→ p|t,s = p 7→ p|t|s

= p 7→ t|s = p 7→ {p.s}p|t = (p 7→ p|t)(p 7→ s) = f g
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R.4

fh = (p 7→ t)(q 7→ q|s) = p 7→ {q.q|s}t

= p 7→ {q.q}t|{q.s}t = p 7→ t|{q.s}t

= p 7→ {p.t}p|{q.s}t = (p 7→ p|{q.s}t)(p 7→ t)

= (p 7→ {q.s}t) (p 7→ t) = (p 7→ t)(q 7→ s) (p 7→ t) = fh f

Thus, C[T ] is a restriction category.

Next, we show that C[T ] has the Cartesian restriction structure proposed.

Proposition 2.5.4 (Cockett and Hofstra [9]: theorem 1.12). For every Cartesian re-

striction theory T , C[T ] is a Cartesian restriction category.

Proof. First, we show that C[T ] has a restriction terminal object. First note that ! =

p 7→ () = p 7→ p|() = p 7→ p, so that ! is total, and () 7→ () is the identity. Further,

f ! = (p 7→ t)(q 7→ ()) = p 7→ {q.()}t = p 7→ ()|t = p 7→ {q.()}p|t = f !

Where the equality {q.()}t = ()|t can be proved by induction with the base case being

ESB.6.

Next, we show that the data given defines partial products. First, that the projections

are total is given by straightforward calculations, for example, for π0,

π0 = (p, q) 7→ p = (p, q) 7→ (p, q)|p = (p, q) 7→ (p|p, q) = (p, q) 7→ (p, q).

For the pairing law for π0 note that no variable of t1 occurs in t0, then

〈f, g〉π0 = (p 7→ (t0, t1))((p, q) 7→ p) = p 7→ {q.{p.p}t0}t1

= p 7→ {q.t0}t1 = p 7→ t0|t1 = p 7→ t1 (p 7→ t0) = g f
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Similarly, 〈f, g〉π1 = f g. To see that 〈f, g〉 is unique with respect to this property, assume

p 7→ (v1, v2) also satisfies, (p 7→ (v1, v2))π0 = p 7→ v2 (p 7→ v1) and (p 7→ (v1, v2))π1 =

p 7→ v1 (p 7→ v2). Then consider that

(p 7→ (v1, v2))π0 = p 7→ ([v2/q] v1)|v2

Since q and v1 do not share variables, this implies that t0 = [v2/q] v1 = v1. Similarly,

v2 = t1. This completes the proof that C[T ] is a Cartesian restriction category.

2.6 Turing Categories

Turing categories were introduced by Cockett and Hofstra [13] to give a categorical

characterization of computability theory.

Let X be a Cartesian restriction category, and let f : A×B −→ C t : T ×B −→ C. f

has a t index h : A −→ T if h is total and the following diagram commutes

T ×B t // C

A×B
f

;;xxxxxxxxx
h×1

OO

A map τBC : T × B −→ C is universal if for every A and f : A × B −→ C f has τBC

index. Essentially, we are saying that τ is universal when it acts as a universal Turing

machine, for every f , we get a “code” h which is used by τ to compute f . This leads to

the following definition:

Definition 2.6.1. A Cartesian restriction category X is a Turing category when there

is an object T , called a Turing object, such that for any two objects B,C there is a

map τBC which is universal.

An object T for which every other object is a retract is a universal object.

The standard example of a Turing category is given by the computable functions

over the natural numbers. For some fixed programming language, one may encode each
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program as a natural number. There is a universal function φ(n,m) which applies to

m the program whose number is n. We may look at the category of functions that are

computable in this manner; N is a Turing object and the universal map is φ.

From the definition we have an immediate observation

Lemma 2.6.1. The Turing object T of a Turing category is universal.

Proof. Consider the following diagram.

T

〈1,!〉
))
T ×> τ //

π0

ff A

〈1,!〉rrA×>
π0

;;xxxxxxxxx
h×1

OO

Take m = 〈1, !〉(h× 1)π0 = h and r = 〈1, !〉τ . Then it is obvious that mr = 1A.

Theorem 2.6.1. [Recognition of Turing categories(Cockett-Hofstra [13]: theorem 3.4)]

Let X be a Cartesian restriction category. Then X is a Turing category if and only if

there is an object T for which every other object is a retract and there is a universal map

T × T •−→ T .

Proof. Lemma (2.6.1) shows the implication “ =⇒ .” Thus assume X is a Cartesian

restriction category with an object T for which every object is a retract and there is a

universal T × T •−→ T . Our goal is to show X is in fact a Turing category. Now any two

objects B,C are retracts of T ; thus we have

B
mB **

T
rB
jj C

mC **
T

rC
jj

Define

τBC := T ×B 1×mB−−−−−→ T × T •−→ T
rC−−→ C

Our goal is to show τBC is universal. Suppose f : A×B −→ C. We must show there is a
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total h : A −→ T such that

T ×B τBC // C

A×B

h×1

OO

f

;;xxxxxxxxx

commutes. However, note that (1×mB)(1×rB) = 1A×B, and that there is a total h such

that

T × T • // T

A× T
(1×rB)fmC

;;xxxxxxxxx
h×1

OO

commutes because • is universal. Then consider the following diagram

T ×B 1×mB // T × T • // T
rC // C

A×B

h×1

OO

1×mB

// A× T

h×1

OO

1×rB
// A×B

fmC

OO

f

;;xxxxxxxxx

which proves that τBC is universal, and thus that X is a Turing category.

In a Turing category, the Turing object plays the role of a weak exponential object,

and the index maps play the role of exponential transposes. There is also a way in which

Turing categories arise from models of the untyped lambda calculus. We can consider

an object A in a Cartesian closed category X for which (A ⇒ A) C A; these are called

reflexive objects. Note this makes every power of A a retract of A. Thus we can look

at the full subcategory of X whose objects are the finite powers of A, called Comp⇒(A).

Define A× A •−→ A = A× A r × 1−−−−→ (A⇒ A)× A eval−−−→ A. Let f : An × A −→ A. Then

λ(f)m is total, and the following commutes.

A× A
(r×1)eval // A

An × A
f

77nnnnnnnnnnnnnn
λ(f)m×1

OO

Thus by theorem (2.6.1) Comp⇒(A) is a Turing category.

Another perspective on Turing categories comes from PCAs.
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In a Cartesian restriction category, an applicative system is A = (A, •) where A×A
•−→ A. Also define

•(0) := A
∆−−→ A× A •−→ A •(1) := • •(n+1) := (• × 1)•(n) : A2 × An −→ A

A map f : An −→ A is A-computable if there is a total point h : > −→ A such that

A× An•
(n)

// A

An

〈!h,1〉

OO

f

;;vvvvvvvvv

commutes. h is called a code for f . The notion A-computable may also be extended

to maps An −→ Am. When n = 0, f : > −→ Am is A-computable if !f : A −→ A

is A-computable. For m = 0, f : An −→ > is A-computable when f : An −→ An is

A-computable. For n,m > 0 f : An −→ Am is A-computable if each fπj is A-computable.

To denote the term 〈a, b〉• we will write a • b, or if the context is clear just a b. Also

for notation, it will be assumed that application binds to the left, so the term (a b) c can

be written as just a b c.

For an applicative system, A = (A, •), call the following structure Comp(A):

Obj: Powers of A

Arr: A map An
f−−→ Am is a map which A-computable in the underlying category.

For an arbitrary applicative system A, the structure Comp(A) is not a category; for

example, there is no reason that the identity map is A-computable.

If presented in the term logic, a map in Comp(A) is of the form,

Γ −→ t

where t is a term whose nodes are • and whose leaves are variables in Γ. An applicative

system is combinatory complete if every such t can be represented by a single element
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t such that

tM1 · · · Mn = {xn.· · · {x1.t}M1 · · ·}Mn

where x1, . . . , xn are the variables in Γ. It is a classic result that combinatory complete-

ness devolves into having two particular elements s, k such that

sm1m2m3 = m1m3 (m2m3) km1m2 = m1|m2
.

In a Cartesian restriction category, s, k arise as codes for the following maps respectively

A× A× A 〈〈π0, π2〉, 〈π1, π2〉〉−−−−−−−−−−−→ A4 • × •−−−−→ A× A •−→ A A× A π0−−→ A

An applicative system with s, k is a partial combinatory algebra (PCA).

Proposition 2.6.1 (Curry-Schonfinkel). An applicative system is combinatory complete

if and only if it is a PCA.

Proof. The proof of the combinatory completeness theorem proceeds by constructing

points using only s, k that compute any map. The construction of points is given by

simulating the lambda calculus

λ∗x.x = s k k

λ∗x.z = k z

λ∗x.(t1 t2) = s (λ∗x.t1) (λ∗x.t2).

Then, by induction,

(λ∗x.t)m = {x.t}m

as desired.

To lift these classical results up to results about applicative systems in Cartesian

restriction categories, codes must be total. Thus, we must insist that s x y and k x are

total for all x, y.
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If A is a PCA in a Cartesian restriction category, then Comp(A) may be given the

structure of a Cartesian restriction category. The identity is coded by s k k. Composition

is given by the combinator c := λ∗x y z.x (y z), so that if f has code f and g has code g,

then gf has name c f g. Pairing is given by the combinator λ∗a b p.p a b. π0 is given by k

and π1 is given λ∗x y.y. For restriction, use that f = 〈1, f〉π0. The converse is also true;

if Comp(A) is a Cartesian restriction category, then s, k may be defined.

Moreover, this construction of combinators makes A into a Turing object and •(n)

into a universal map for each n. Thus, Comp(A) may be given the structure of a Turing

category when A is a PCA.

A summary of the above results is:

Theorem 2.6.2 (Cockett and Hofstra [13]: theorems 4.5 and 4.6). Let X be a Cartesian

restriction category, and A an applicative system. Then:

(i) A is a PCA if and only if Comp(A) is a Cartesian restriction category.

(ii) If A is a PCA then Comp(A) is a Turing category.

Every PCA generates a Turing category, and the converse is also true.

Theorem 2.6.3. Let X be a Turing category with Turing object T and universal map

T × T •−→ T . Then (T, •) is a PCA.

Thus, we have given another view on Turing categories using the strong connection

between Turing categories and PCAs. When moving Turing structure into left additive

and differential restriction structure, these connections should be preserved.
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Chapter 3

Cartesian Left Additive Restriction Categories

3.1 Cartesian Left Additive Restriction Categories

Cartesian left additive structure is first introduced in [2] as a prerequisite to Cartesian

differential structure. The idea behind Cartesian left additive restriction categories is that

they should axiomatize arbitrary partial maps between commutative monoids. Much of

this material is in Cockett et al [15]. Such maps have an obvious addition; if f, g : A

−→ B

(f + g)(a) = f(a) + g(a)

hence if h : C −→ A,

(f + g)(h(a)) = f(h(a)) + g(h(a))

then it is obvious that the sum is preserved with composition coming from the left.

However, these maps are not homomorphisms, so in general

h((f + g)(a)) = h(f(a) + g(a)) 6= h(f(a)) + h(g(a)).

Since the maps in a restriction setting are partial, the sum of maps should be defined

precisely where both maps are. The above observations are captured in the following

definition:

Definition 3.1.1. Let X be a restriction category. X is a left additive restriction

category in case each X(A,B) is a commutative monoid such that f + g = f g and

0 = 1, and it is left additive; that is, f(g + h) = fg + fg and f0 = f 0.

Note in the definition above that f0 = f 0 6= 0. This is because 0 is total, but f0

need not be total.
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Some results about left additive structure:

Proposition 3.1.1 (Cockett et al [15]: Proposition 3.2). In any left additive restriction

category:

(i) f + g = g f + f g;

(ii) if e = e , then e(f + g) = ef + g = f + eg;

(iii) if f ≤ f ′, g ≤ g′, then f + g ≤ f ′ + g′;

(iv) if f ^ f ′, g ^ g′, then (f + g) ^ (f ′ + g′).

Proof. (i)

f + g = f + g (f + g) = f g (f + g) = g f f + f g g = g f + f g

(ii)

f + eg

= eg f + f eg by (i)

= e g f + e f g

= e (g f + f g)

= e(f + g) by (i)

(iii) Suppose f ≤ f ′, g ≤ g′. Then:

f + g (f ′ + g′)

= f g (f ′ + g′)

= g f f ′ + f g g′

= g f + f g since f ≤ f ′, g ≤ g′

= f + g by (i).
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so (f + g) ≤ (f ′ + g′).

(iv) Suppose f ^ f ′, g ^ g′. This means that f f ′ = f ′ f and g g′ = g′ g. Then we use

part (3) of this lemma in the following calculation.

f ′ + g′ (f + g) = f ′ g′ (f + g)

= (f ′ f + g′ g)

= (f f ′ + g g′)

= f g (f ′ + g′)

= f + g (f ′ + g′)

Thus, f + g ^ f ′ + g′.

Blute et al noticed that the additive maps, these are the maps h which satisfy

(f + g)h = fh + gh and 0h = 0, form a subcategory. However, additivity does not

translate directly into the partial world, as there is no reason for (f + g)h and fg + gh

to agree on where they are defined. Thus to define an additive map in a left additive

restriction category requires a weaker relation than equality.

Definition 3.1.2. A map h in a left additive restriction category is additive when for

all f, g, (f + g)h ^ fh+ gh and 0h ^ 0

We also have the following alternate characterizations of additivity:

Lemma 3.1.1. A map f is additive if and only if for any x, y,

xf yf (x+ y)f ≤ xf + yf and 0f ≤ 0

or

(xf + yf )f ≤ xf + yf and 0f ≤ 0.
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Proof. The first part is an instance of lemma (2.1.4). Then note that by [R.4]

xf yf (x+ y) = xf x+ yf y = f x+ f y,

so that we get the second part.

Proposition 3.1.2 (Cockett et al [15]: proposition 3.6). In any left additive restriction

category,

(i) total maps are additive if and only if (x+ y)f = xf + yf ;

(ii) restriction idempotents are additive;

(iii) additive maps are closed under composition;

(iv) if g ≤ f and f is additive, then g is additive;

(v) 0 maps are additive, and additive maps are closed under addition.

Proof. In each case, the 0 axiom is straightforward, so we only show the addition axiom.

(i) It suffices to show that if f is total, then (x+ y)f = xf + yf . Indeed, if f is total,

(x+ y)f = x+ y = x y = xf yf = xf + yf .

(ii) Suppose e = e . Then by [R.4],

(xe+ ye)e = xe+ ye e (xe+ ye) ≤ xe+ ye

so that e is additive.

(iii) Suppose f and g are additive. Then

xfg yfg (x+ y)fg

= xfg yfg xf yf (x+ y)fg

≤ xfg yfg (xf + yf)g since f is additive,

≤ xfg + yfg since g is additive,

as required.
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(iv) If g ≤ f , then g = g f , and since restriction idempotents are additive, and the

composites of additive maps are additive, g is additive.

(v) For any 0 map, (x + y)0 = 0 = 0 + 0 = x0 + y0, so it is additive. For addition,

suppose f and g are additive. Then we have

(x+ y)f ^ xf + yf and (x+ y)g ^ xg + yg.

Since adding preserves compatibility, this gives

(x+ y)f + (x+ y)g ^ xf + yf + xg + yg.

Then using left additivity of x, y, and x+ y, we get

(x+ y)(f + g) ^ x(f + g) + y(f + g)

so that f + g is additive.

The above notion of additive map may be strengthened to assert that the domain

is additively closed. This means that whenever fh and gh are defined then (f + g)h is

defined, and 0h is total.

Definition 3.1.3. A map h in a left additive restriction category is strongly additive

when for all f, g, fh+ gh ≤ (f + g)h and 0h = 0.

An alternate description, which can be useful for some proofs, is the following:

Lemma 3.1.2. f is strongly additive if and only if (xf + yf )f = xf + yf and 0f = 0.
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Proof.

xf + yf ≤ (x+ y)f

⇔ xf + yf (x+ y)f = xf + yf

⇔ xf yf (x+ y)f = xf + yf

⇔ (xf x+ yf y)f = xf + yf

⇔ (xf + yf )f = xf + yf by [R.4].

Proposition 3.1.3 (Cockett et al [15]: proposition 3.9). In a left additive restriction

category,

(i) strongly additive maps are additive, and if f is total, then f is additive if and only

if it is strongly additive;

(ii) f is strongly additive if and only if f is strongly additive and f is additive;

(iii) identities are strongly additive, and if f and g are strongly additive, then so is fg;

(iv) 0 maps are strongly additive, and if f and g are strongly additive, then so is f + g;

(v) if f is strongly additive and has a partial inverse g, then g is also strongly additive.

Proof. In most of the following proofs, we omit the proof of the 0 axiom, as it is straight-

forward.

(i) Since ≤ implies ^, strongly additive maps are additive, and by previous discussion,

if f is total, the restrictions of xf + yf and (x+ y)f are equal, so ^ implies ≤.

(ii) When f is strongly additive then f is additive. To show that f is strongly additive
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we have:

(xf + yf )f

= (xf + yf )f (xf + yf ) by [R.4],

= xf + yf (xf + yf )by 3.1.2 as f is strongly additive,

= xf yf (xf + yf )

= xf + yf

Together with 0f = 0f 0 = 0 0 = 0, this implies, using Lemma 3.1.2, that f is

strongly additive.

Conversely, suppose f is strongly additive and f is additive. First, observe:

xf + yf = xf yf

= xf yf

= xf + yf

= (xf + yf )f by 3.1.2 as f is strongly additive

= (xf + yf )f

This can be used to show:

xf + yf = xf + yf (xf + yf)

= (xf + yf )f (xf + yf) by the above

= xf + yf (xf + yf )fas f is additive

= (xf + yf )f (xf + yf )f by the above

= (xf + yf )f,
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For the zero case we have:

0f = 0f 0 since f is additive

= 0f 0

= 0 0 since f is strongly additive

= 0

Thus, by lemma 3.1.2, f is strongly additive.

(iii) Identities are total and additive, so are strongly additive. Suppose f and g are

strongly additive. Then

xfg + yfg

≤ (xf + yf)g since g strongly additive,

≤ (x+ y)fg since f strongly additive,

so fg is strongly additive.

(iv) Since any 0 is total and additive, 0’s are strongly additive. Suppose f and g are

strongly additive. Then

x(f + g) + y(f + g)

= xf + xg + yf + yf by left additivity,

≤ (x+ y)f + (x+ y)g since f and g are strongly additive,

= (x+ y)(f + g) by left additivity,

so f + g is strongly additive.

(v) Suppose f is strongly additive and has a partial inverse g. Using the alternate form
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of strongly additive,

(xg + yg )g

= (xgf + ygf)g

= (xgf + ygf )fg since f is strongly additive,

= (xgf + ygf )f

= xgf + ygf since f strongly additive,

= xg + yg

and 0g = 0fg = 0f = 0, so g is strongly additive.

In the standard example of commutative monoids and partial maps, addition on

a pairing of maps is defined componentwise, and has the effect that for all f, g, h, k,

(f × g) + (h×k) = (f +h)× (g+k). In combining Cartesian restriction and left additive

restriction structure, this interaction between the product functor and the addition on

homsets will be the same.

Definition 3.1.4. Let X be a Cartesian restriction category and a left additive restriction

category. X is a Cartesian left additive restriction category in case (f + g)× (h+

k) = (f × h) + (g × k), 0 = 0× 0, and π0, π1,∆ are additive.

For total Cartesian left additive categories, there is a structure theorem which states

that Cartesian left additive structure is determined by each object, A, being a commuta-

tive monoid with addition canonically defined as π0 + π1 : A×A −→ A [2]. This theorem

also holds in Cartesian left additive restriction categories.

Theorem 3.1.1 (Cockett et al [15]: theorem 3.11). Let X be a Cartesian restriction

category. Then X is a Cartesian left additive restriction category iff each object is a total
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commutative monoid

+A : A× A −→ A 0A : 1 −→ A

such that the following exchange 1 axiom holds:

+A×B = (A×B)× (A×B)
ex−−→ (A× A)× (B ×B)

+A ×+B−−−−−−→ A×B.

Proof.

(“⇒”): Suppose X is a Cartesian left additive restriction category. Then define

+A := π0 + π1 and 0A := 0.

The identity laws hold since (0 × 1)(π0 + π1) = π00 + π1 = π1, and (1 × 0)(π0 + π1) =

π0 + π10 = π0. Further, the following diagram commutes.

(A× A)× A 〈π0π0,π1×1〉 //

+A×1

��

A× (A× A)
1×+A // A× A

+A

��
A× A

+A

// A

.

To prove the diagram commutes, consider that

〈π0π0, π1 × 1〉(1+A)+A = 〈π0π0, (π1 × 1)+A)(π0 + π1)

= π0π0 + (π1 × 1)+A

= π0π0 + (π1 × 1)(π0 + π1)

= π0π0 + (π0π1 + π1)

= (π0π0 + π0π1) + π1 associativity

= π0(π0 + π1) + π1

= π0 +A +π1

= (+A × 1) +A .

1Recall that the exchange map is defined by ex := 〈π0×π0, π1×π1〉 and that it satisfies, for example,
〈〈f, g〉, 〈h, k〉〉ex = 〈〈f, h〉, 〈g, k〉〉 and (∆×∆)ex = ∆.
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Thus, the structure gives a monoid, and this monoid is total since 0A = 1 and π0 + π1 =

π0 π1 = 1. This monoid is commutative since π0 +π1 = π1 +π0. The exchange law holds

because,

+A×B = π0 + π1

= (π0 + π1)〈π0, π1〉

= 〈(π0 + π1)π0, (π0 + π1)π1〉

= 〈π0π0 + π1π0, π0π1 + π1π1〉 π is additive

= 〈(π0 × π0)+A, (π1 × π1)+B〉

= ex(+A ×+B).

(“⇐”): Given a total commutative monoid structure on each object, the left additive

structure on X is defined by:

A
f−−→ B A

g−→ B
A −−−−−−−−−−−→

f + g := 〈f, g〉+B

B
add

A −−−−−−−−→
0AB :=!A0B

B
zero

That this gives a commutative monoid on each X(A,B) follows directly from the com-

mutative monoid axioms on B and the cartesian structure.

For the right identity law we must show f + 0 = 〈f, !A0B〉+B = f . Consider the

following diagram.

A
〈f,!A0B〉 //

〈1,!A〉

''NNNNNNNNNNNN

f

//

B

+B

��

A× 1

f×0B

33gggggggggggggggggggggggggggg

f×1

((PPPPPPPPPPPP

B × 1

1×0

@@������������������

π0

''OOOOOOOOOOOO

B.

The right most shape commutes because of the laws for commutative monoids, and the

other shapes commute because of the coherences of Cartesian restriction structure. The

left identity holds similarly.
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For associativity, precompose the monoid associativity diagram with 〈〈f, g〉, h〉; around

the bottom is (f + g) + h and around the top is f + (g + h).

For commutativity, use the symmetry 〈π1, π0〉+B = +B of the commutative monoid

laws,

〈f, g〉+B = 〈f, g〉〈π1, π0〉+B = 〈g, f〉+B .

For the interaction with restriction,

0 = !A0B = !A0B = !A = 1,

and

f + g = 〈f, g〉+B = 〈f, g〉+B = 〈f, g〉 = f g .

For the interaction with composition,

f0 = f !B0C = f !A0C = f 0,

and

f(g + h) = f(〈g, h〉+C) = 〈fg, fh〉+C = fg + fh.

The requirement that (f + g) × (h + k) = (f × h) + (g × k) follows from the exchange

axiom:

A× C

〈f,g〉+B×〈h,k〉+D

55

〈f×h,g×k〉 //

〈f,g〉×〈h,k〉

))TTTTTTTTTTTTTTTTT (B ×D)× (B ×D)
ex

sshhhhhhhhhhhhhhhhhhh

+B×D

��

(B ×B)× (D ×D)
+B×+D

++WWWWWWWWWWWWWWWWWWWWW

B ×D

the right triangle is the exchange axiom, and the other two shapes commute by the

cartesian coherences. Also

0 = 0〈π0, π1〉 = 〈0, 0〉 = 〈π00, π10〉 = 0× 0.
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It remains to prove that the diagonal map and projections are additive.

Since π0 is total, π0 is additive in case for all f, g : A −→ B×C, (f+g)π0 = fπ0 +gπ0,

which is shown by the following diagram:

A

〈fπ0,gπ0〉

77

〈f,g〉//

〈〈fπ0,gπ0〉,〈fπ1,gπ1〉〉
MMMMMMMMMMM

&&MMMMMMMMM

(B × C)× (B × C)
+(B×C) //

ex

��

B × C π0 // B

(B ×B)× (C × C)

+B×+C

77ooooooooooooooooooooooo

π0
// B ×B

+B

;;wwwwwwwwwwwwwwwwww

A similar argument shows that π1 is additive. Since ∆ is total, ∆ is additive when

for all f, g : A −→ B, f∆ + g∆ = (f + g)∆. This is shown by the following diagram:

A
〈f∆,g∆〉//

〈f,g〉
��

〈f,g〉+B

))

(B ×B)× (B ×B)

ex
��

+B×B

vv

B ×B
+B

��

∆×∆
55jjjjjjjjjjjjjjjj

〈+B ,+B〉 **TTTTTTTTTTTTTTTTTT
∆ // (B ×B)× (B ×B)

+B×+B

��
B

∆
// B ×B

This completes the proof that X is a Cartesian left additive restriction category.

Proposition 3.1.4 (Cockett et al [15]: proposition 3.1.4). In a cartesian left additive

restriction category:

(i) 〈f, g〉+ 〈f ′, g′〉 = 〈f + f ′, g + g′〉 and 〈0, 0〉 = 0;

(ii) if f and g are additive, then so is 〈f, g〉;

(iii) the projections are strongly additive, and if f and g are strongly additive, then so

is 〈f, g〉,

(iv) f is additive if and only if

(π0 + π1)f ^ π0f + π1f and 0f ^ 0;
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(that is, in terms of the monoid structure on objects, (+)(f) ^ (f × f)(+) and

0f ^ 0),

(v) f is strongly additive if only if

(π0 + π1)f ≥ π0f + π1f and 0f = 0;

(that is, (+)(f) ≥ (f × f)(+) and 0f ≥ 0).

Note that f being strongly additive only implies that + and 0 are lax natural trans-

formations.

Proof. (i) Since the second term is a pairing, it suffices to show they are equal when

post-composed with projections. Post-composing with π0, we get

(〈f, g〉+ 〈f ′, g′〉)π0

= 〈f, g〉π0 + 〈f ′, g′〉π0 since π0 is additive,

= g f + g′ f ′

= g g′ (f + f ′)

= g + g′ (f + f ′)

= 〈f + f ′, g + g′〉π0

as required. The 0 result is direct.

(ii) We need to show

(x+ y)〈f, g〉^ x〈f, g〉+ y〈f, g〉;

however, since the first term is a pairing, it suffices to show they are compatible

when post-composed by the projections. Indeed,

(x+ y)〈f, g〉π0 = (x+ y)g f ^ xg f + yg f
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while since π0 is additive,

(x〈f, g〉+ y〈f, g〉)π0 = x〈f, g〉π0 + y〈f, g〉π0 = xg f + yg f

so the two are compatible, as required. Post-composing with π1 is similar.

(iii) Since projections are additive and total, they are strongly additive. If f and g are

strongly additive,

x〈f, g〉+ y〈f, g〉

= 〈xf, xg〉+ 〈yf, yg〉

= 〈xf + yf, xg + yg〉 by (i)

≤ 〈(x+ y)f, (x+ y)g〉 since f and g are strongly additive,

= (x+ y)〈f, g〉

so 〈f, g〉 is strongly additive.

(iv) If f is additive, the condition obviously holds. Conversely, if we have the condition,

then f is additive, since

(x+ y)f = 〈x, y〉(π0 + π1)f ^ 〈x, y〉(π0f + π1f) = xf + yf

as required.

(v) Similar to the previous proof.

3.2 Simple Slices

Suppose S is a comonad, and S is a restriction functor on a Cartesian left additive

restriction category X; note that we are not assuming that S preserves addition. We

can define maps +A = ε+A and 0A = ε0A to be the components of a total commutative
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monoid structure on the objects of XS . That is, we can define monoid structure on the

objects of XS as the image, under the inclusion X J−−→ XS , of the canonical monoid

structure on X. We will prove that this does give a total commutative monoid structure

on XS . This implies that XS is a Cartesian left additive restriction category, and that

the inclusion X J−−→ XS is a Cartesian left additive restriction functor. In particular,

Cartesian left additive restriction structure lifts to X[A].

The following proposition is a generalization of Blute et al [2], proposition 1.3.3 to

the setting of Cartesian left additive restriction categories.

Proposition 3.2.1. If X is a Cartesian left additive restriction category, and S = (S, ε, δ)

is a comonad with S a restriction functor and where ε is total then XS is a Cartesian left

additive restriction category. Further, the inclusion X ↪→ XS is a Cartesian left additive

restriction functor.

Proof. In proposition (2.3.2), we proved that the inclusion J : X −→ XS strictly preserves

products. This fact is quite useful for proving that XS has Cartesian left additive restric-

tion structure. Note that since J is a functor, it preserves composition, and in XS this

means that for all h, k, J(hk) = J(hk) = J(h)J(k) = (J(h))]J(k).

Now, for the left unit law we must show (0× 1)+A = π1. Consider

(0× 1)+A = (J(0)× J(1))]J(+A) = (J(0× 1))]J(+A)

= J((0× 1)+A) = J(π1) = π1.

Similarly, the right unit law holds. For associativity, we must show a×(1×+A)+A =

(+A× 1)+A. Consider

a×(1×+A)+A = (J(a×))](J(1)× J(+A))]+A

= J(a×(1×+A)+A) = J((+A × 1)+A) = (J(+A)× J(1))]J(+A)

= (+A× 1) +A .
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Finally, we must show the exchange law, +A×B = ex(+A × +B), holds. Note, that

ex = J(ex), so that

+A×B = J(+A×B) = J(ex(+A ×+B)) = (J(ex))](J(+A)× J(+B)) = ex(+A×+B).

Thus, XS is a Cartesian left additive restriction functor, and X J−−→ XS is a Cartesian

left additive restriction functor.

Note that the addition in XS is

f + g = 〈f, g〉+A = (〈f, g〉)]ε+A = 〈f, g〉+A,

in other words, the addition in XS is simply inherited from X.

The following is now obvious.

Proposition 3.2.2. For every Cartesian left additive restriction category X, X[A] is a

Cartesian left additive restriction category.

Note, that if a map f : X × C −→ Y in X[A] is strongly additive then (π0 + π1)f ≥

π0f + π1f and 0f = 0. This means

X × C × A 〈π0 + π1, π2〉f−−−−−−−−−→ Y ≥ X × C × A 〈π0, π2〉f + 〈π1, π2〉f−−−−−−−−−−−−→ Y,

and 〈0, π1〉f = f . Thus:

Proposition 3.2.3. A map f is strongly additive if and only if f is strongly additive in

its first variable.

3.3 Idempotent Splitting

As we shall see, idempotents that split as rs where r is strongly additive are important to

the development of left additive Turing categories. In this section, we will show that any

Cartesian left additive restriction category can be completed to one in which “retractively

additive” idempotents split in the above manner.
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Definition 3.3.1. Let X be a Cartesian left additive restriction category. An idempotent

e is retractively additive when, 0e = 0, (π0 + π1)e ≥ e× e and (π0 + π1)e ≥ (π0e +

π1e)e.

Note that the last conidition is equivalent to having, for all f, g, (f+g)e ≥ (fe+ge)e.

The following lemma will be useful in the next section.

Lemma 3.3.1. If e is strongly additive then for all f, g

fe+ ge = (fe+ ge)e .

Proof. Use the fact that ee = ee e = e e = e. Also use lemma (3.1.2)

(fe+ ge)e = (fee + gee )e = fe + ge = fe ge = fe+ ge

Retractively additive idempotents have the following property,

Lemma 3.3.2. The following hold in any Cartesian left additive restriction category,

(i) If (f + g)e ≥ (fe + ge)e then e is retractively additive if and only if e is strongly

additive.

(ii) If e is strongly additive then e is retractively additive.

(iii) If e is retractively additive then so is e .

(iv) If e is strongly additive, e′ is retractively additive, and ee′ = e′e then ee′ is retrac-

tively additive.

(v) If e, e′ are retractively additive then so is e× e′.

Part 2 in particular says that all identities are retractively additive.

Proof.
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(i) Assume (f + g)e ≥ (fe+ ge)e.

Then assume e is retractively additive. Then it suffices to show that (π0 + π1)e ≥

π0e + π1e . Note that e× e = π0e π1e = π0e+ π1e . Then,

(π0 + π1)e = (π0 + π1)e (π0 + π1) ≥ π0e+ π1e (π0 + π1)

= π0e π1e (π0 + π1) = π0e + π1e .

Assume, e is strongly additive. Then it suffices to show (π0 + π1)e ≥ e× e . Con-

sider,

(π0 + π1)e ≥ π0e + π1e = π0e π1e = π0e+ π1e = e× e

(ii) Suppose e is strongly additive. Then e is also strongly additive. Also,

(f + g)e = (f + g)ee ≥ (fe+ ge)e.

Thus by part (i) of this lemma, e is retractively additive.

(iii) Suppose e is retractively additive. Then by part (i) of this lemma e is strongly

additive. By part (ii) of this lemma e is retractively additive.

(iv) If e is strongly additive and e′ is retractively additive. Then,

0ee′ = 0ee′ 0 = 0ee′0 = 0ee′ 0

= 0e′ 0 = 00 = 0.

Also,

(f + g)ee′ = (f + g)ee′ (f + g) ≥ (fe+ ge)e′ (f + g)

≥ (fee′ + gee′)e′ (f + g) = fee′ + gee′ (f + g) lemma (3.3.1)

= fee′ + gee′

Thus ee′ is strongly additive.
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Next,

(fee′ + gee′)ee′ = (fee′ + gee′)e′e ≤ (fe+ ge)e′e

≤ (f + g)ee′e = (f + g)ee′

Thus, ee′ is retractively additive.

(v) Since both maps are pairings, it suffices to show the inequality after either projec-

tion. For π0

(f + g)(e× e′)π0

= (f + g)π1e′ π0e

= (fπ1 + gπ1)e′ (fπ0 + gπ0)e

≥ (fπ1e′ + gπ1e′)e′ (fπ0e+ gπ0e)e

= (fπ0e fπ1e′ + gπ0e gπ1e′)e′ fπ1e′ gπ1e′ (fπe + gπ0e)e

= (f(e× e′) + g(e× e′))(e× e′)π0.

Thus, (f+g)(e×e′)π0 ≥ (f(e×e′)+g(e×e′))(e×e′)π0. Similarly, (f+g)(e×e′)π1 ≥

(f(e× e′) + g(e× e′))(e× e′)π1. Thus,

(f + g)(e× e′) ≥ (f(e× e′) + g(e× e′))(e× e′).

On part (iv) of the above lemma: ee′ = e′e is needed to ensure that ee′ is actually an

idempotent. One should also note that generally, retractively additive idempotents that

commute are not closed to composition. This is because if e, e′ are retractively additive

then e , e′ are strongly additive. However, it does not follow that ee′ is strongly additive.

For an explicit counter example, take e, e′ : N −→ N defined,

e(n) = 1 e′(n) =


↑ n = 1

n else

.
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It is easy to show that e, e′ are both retractively additive. However, ee′ is not strongly

additive because

(0ee′ )(n) = ee′ (0) =↑= ∅(0).

Where ∅ is the nowhere defined map rather than the 0 map. Thus ee′ is not strongly

additive.

Definition 3.3.2. Let e = rs and sr = 1. e left additively splits if r is strongly

additive.

Next, we have an observation linking left additively split idempotents and retractively

additive idempotents.

Lemma 3.3.3. If e left additively splits, then e is retractively additive.

Proof. Suppose e left additively splits rs where r is strongly additive. Then e = rs = r

is strongly additive. Next, we will show that (fr+gr)s = (fe+ge)e. First, (fr+gr)s =

(fer + ger)s ≤ (fe+ ge)e. Now,

(fr + gr)s = fr + gr = fr gr = fr gr

= fe ge = fe+ ge .

Thus (fr + gr)s = (fe+ ge)e. This allows,

(f + g)e = (f + g)rs ≥ (fr + gr)s = (fe+ ge)e,

as required.

Now, every left additive split idempotent is retractively additive, but retractively

additive idempotents need not split. A Cartesian left additive restriction category is a

split Cartesian left additive restriction category when every retractively additive

idempotent splits with a left additive retraction (i.e. left additively).
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In a Cartesian left additive restriction category, suppose e = A
r−→ E

s−→ A. Then

consider the following diagram,

A
e //

r
��@@@@@@@ A

X
f,g // E

s

??~~~~~~~

One could add f, g by just f + g. However one coud add fs + gs then postcompose

with r; this results in (fs+ gs)r. Now,

Proposition 3.3.1. If rs is a left additively split idempotent, then f + g = (fs + gs)r

and 0 = 0r.

Proof. The 0 case is by definition. Now,

(fs+ gs)r ≥ fsr + gsr = f + g.

Next, use lemma (3.3.1) in the following calculation,

(fs+ gs)r = (fs+ gs)r = (fs+ gs)e

= (fse+ gse)e = fse+ gse = fs+ gs

= fs gs = f g = f + g .

This proves that (fs+ gs)r = f + g.

The above proposition may be restated in terms of the monoid structure: if rs left

additively splits, then

+B = (s× s) +A r 0B = 0Ar.

Also, left additive splittings are unique up to an additive isomorphism.
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Proposition 3.3.2. If

B
s

  AAAAAAAA

A

r
>>}}}}}}}}

r′   AAAAAAA
e // A

B′
s′

>>}}}}}}}

commutes with r, r′ strongly additive and sr = 1, s′r′ = 1 then there is a unique isomor-

phism α : B −→ B′ such that rα = r′ and αs′ = s. Moreover, α is strongly additive.

Proof. Define α := B
s−→ A

r′−−→ B′.

First αs′r = sr′s′r = ser = sr = 1. Thus α is an isomorphism.

Next,

rα = rsr′ = er′ = r′,

αs′ = sr′s′ = se = s.

Thus α satisfies the required identities. Suppose β satisfies the same identities. In

particular αs′ = βs′ Since s′ is monic, it follows that α = β. Thus α is unique. Now,

0α = 0rα = 0r′ = 0

Also,

(f + g)α = (fs+ gs)rα = (fs+ gs)r′ ≥ (fsr′ + gsr′) = fα + gα.

Thus α is strongly additive.

Next, we give a construction that completes a Cartesian left additive restriction cat-

egory to be a split Cartesian left additive restriction category. Let X be a Cartesian left

additive restriction category. If E is a product closed collection of retractively additive

idempotents that contains all the identities, then first each monoid of X lifts directly into

SplitE(X). Further, each e ∈ E splits

1A
e−→ e

e−→ 1A.
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If e is retractively additive then for e to be left additively split, proposition (3.3.1) tells

us that

+e := (e× e) +A e 0e = 0e.

Denote SplitE(X) with this additive structure by SplitE+(X). Then

Lemma 3.3.4. Let X be a Cartesian left additive restriction category. If E is a product

closed collection of retractively additive idempotents that contains all the identities, then

SplitE+(X) is a Cartesian left additive restriction category.

Proof. Since E is product closed, SplitE+(X) is a Cartesian restriction category. We

will use theorem (3.1.1) to show that SplitE+(X) is a Cartesian left additive restriction

category. Thus we must show that each e is a total commutative monoid.

First, we will show that the monoid structure is total.

0e = 0e = 0 =! : > −→ >.

To show that addition is total we must show that (e× e)(e× e) +A e = e× e. It suffices

to show that (e× e) +A e = e× e . Use lemma (3.3.1),

(e× e) +A e = (π0e+ π1e)e = π0e+ π1e = e× e .

Thus the monoid structure is total.

To show show that the unit laws hold, we will show that the right unit law holds, as

the left holds by symmetry. First,

(fe+ 0e)e ≤ (f + 0)e = fe.

Also,

(fe+ 0e)e = fe+ 0e = fe 0e = fe .

Thus the right unit law holds. The left law holds, again, by symmetry.
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For associativity note,

((π0e+ π1e)e+ π2e)e ≥ ((π0 + π1)e+ π2e)e

≥ ((π0 + π1) + π2)e = (π0 + (π1 + π2))e,

(π0e+ (π1e+ π2e)e)e ≥ (π0e+ (π1 + π2)e)e ≥ (π0 + (π1 + π2))e,

and using lemma (3.3.1) multiple times,

((π0e+ π1e)e+ π2e)e = (π0e+ π1e)e+ π2e = (π0e+ π1e)e π2e

= π0e π1e π2e = · · ·

= (π0e+ (π1e+ π2e)e)e .

Then by lemma (2.1.3), ((π0e+ π1e)e+ π2e)e = (π0e+ (π1e+ π2e)e)e.

Commutativity is obvious.

For exchange use the naturality of ex:

+(e×e′) = ((e× e′)× (e× e′)) +(A×B) (e× e′) = ((e× e′)× (e× e′))ex(+A ×+B)(e× e′)

= ex((e× e)× (e′ × e′))(+A ×+B)(e× e′) = ex((e× e) +A e× (e′ × e′) +B e
′).

Thus by theorem (3.1.1), SplitE+(X) is a Cartesian left additive restriction category.

Theorem 3.3.1. Let X be a Cartesian left additive restriction category, and E be the

collection of retractively additive idempotents. Then SplitE+(X) is a split Cartesian left

additive restriction category.

Proof. Lemma 3.3.4 shows that SplitE+(X) is a Cartesian left additive restriction category.

Thus it remains to show that all retractively additive maps left additively split. Let e ∈ I,

and suppose d
e−→ d. Then e splits,

d

e
��>>>>>>>
e // d

e
e

??�������
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We must show that d
e−→ e is strongly additive, the 0 case is obvious. Thus it remains

to show that if f, g : d′ −→ d then (fd+ gd)de ≥ (fe+ ge)e. Now, since e is retractively

additive,

(fd+ gd)de = (f + g)e ≥ (fe+ ge)e,

as required.

Also, interestingly, if e ∈ E is strongly additive then e splits in SplitE+(X) into strongly

additive pieces. This is proved by the following lemma.

Lemma 3.3.5. Let e = ee be left additively split as rs. Then e is strongly additive if

and only if s is strongly additive.

Proof. If s is strongly additive, then e is strongly additive as strongly additive maps

are closed to composition. Thus it remains to show that if r and e are both strongly

additive then s is strongly additive. Since s is total, we must show that 0s = 0 and

(π0 + π1)s = π0s + π1s. For the zero case,0s = (0r)s = 0 because r is strongly additive.

For the additive case, use proposition (3.3.1), then use lemma (3.1.2):

(π0 + π1)s = (π0s+ π1s)rs = (π0se+ π1se)e

= π0see + π1see )e = π0se+ π1se

= π0s+ π1s

Then it is clear that if e ∈ E is strongly additive then it is also retractively additive;

thus, e splits in SplitE+(X) into rs where r is strongly additive. The above lemma shows

that now, s must also be strongly additive.
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Basic terms:

Γ, x : A ` x : A Proj
Γ ` t : A Γ, pat : A ` s : B

Γ ` {pat.s}T : B Cut

Γ ` t1 : A1 · · · Γ ` tn : An σ(f) = ([A1, . . . , An], B)

Γ ` f(t1, . . . , tn) : B Fun

Cartesian terms:

Γ ` () : 1 Unit
Γ ` t1 : A1 · · ·Γ ` tn : An

Γ ` (t1, . . . , tn) : A1 × · · · × An Tuple

Γ, t1 : A1, . . . , tn : An ` t : A

Γ, (t1, . . . , tn) : A1 × · · ·An ` t : A Pat

Additive Terms:

Γ ` 0 : A
Zero

Γ ` t1 : A Γ ` t2 : A
Γt1 + t2 : A Add

Partial Terms:
Γ ` t : A Γ ` s : B

Γ ` t|s : A Rest

Table 3.1: Cartesian Left Additive Restriction Term Formation Rules

3.4 Term Logic

We extend the term logic for Cartesian restriction categories to Cartesian left additive

restriction categories, and then prove this extension is sound and complete with respect

to a translation into Cartesian left additive restriction categories.

The syntax is extended with a formal 0 term and formal sums of terms, which we

assume forms a monoid on the terms.

T := V | () | (T, . . . , T ) | {p.T}T | 0 | T + T | T|T

Ty := T | 1 | Ty × · · · × Ty

The type judgments are extended in table (3.1).

Of the six classes of equalities we only need to update the cut elimination rules and

equations for the logic.

Cut-elimination The equalities for cut elimination of Cartesian left additive restriction

terms is presented in table 2.2.
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Table 2.2, and

ESB.10 {x.0}tV 0|t

ESB.11 {0.t}0V t

ESB.12 {x.(s1 + s2)}tV {x.s1}t+ {x.s2}t

Table 3.2: Cut elimination for Cartesian left additive restriction terms

Table 2.3 and

CLARC.8 t|0 = t

CLARC.9 t1 + · · ·+ (tk)|s + · · ·+ tn = (
∑n

i ti)|s

CLARC.10 t|∑n
i si

= t|s1,...,sn

Table 3.3: Equations for Cartesian left additive restriction terms

Equations The equations for Cartesian left additive restriction term logic are presented

in table 3.3.

We note that cut elimination holds in this logic as well. We also note that lemmas

(2.5.1 and 2.5.2) and corollary (2.5.1) have analogous counterparts. The proofs by in-

duction in lemma (2.5.1) simply require two extra cases – one for the zero and one for

the sum – and these new cases are easy to show.

3.4.1 Soundness

First, extend the translation as in table 3.4.

Table 2.4 and

TCR.8 JΓ ` 0K = 0

TCR.9 JΓ ` t1 + t2K = JΓ ` t1K + JΓ ` t2K

Table 3.4: Translation of Cartesian left additive restriction terms
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To prove the soundness of this translation, it suffices to prove that [CLARC.8-10]

hold.

Theorem 3.4.1. The translation defined in table (3.4) is sound.

Proof. CLARC.8 For this use the fact that 0 is total,

JΓ ` t|0K = JΓ ` 0K JΓ ` tK = JΓ ` tK

CLARC.9 Using proposition (3.1.1), if e = e , then e(f1 + · · · + fn) = f1 + · · · + efi +

· · ·+ fn. Then,

JΓ ` t1 + · · ·+ (tk)|s + · · ·+ tnK = JΓ ` t1K + · · ·+ JΓ ` sK JΓ ` tkK + · · · JΓ ` tnK

= JΓ ` sK
∑
i

JΓ ` tiK = JΓ `

(∑
i

ti

)
|s

K

CLARC.10 Using f + g = f g :

JΓ ` t|∑i si
K = JΓ `

∑
i

siK JΓ ` tK = JΓ ` s1K · · · JΓ ` snK JΓ ` tK = JΓ ` t|s1,...,snK

3.4.2 Completeness

We form the classifying category, now of a Cartesian left additive restriction theory. To

do so we must add a zero map Γ 7→ 0, and define additition,

f = Γ 7→ t1 g = Γ 7→ t2
f + g = Γ 7→ t1 + t2 .

Then it is straightforward to show that C[T ] is a Cartesian left additive restriction

category. Note that 0 is total and f0 = f 0. Also,

(p 7→ t)(q 7→ s1 + s2) = p 7→ {q.s1 + s2}t

= p 7→ {q.s1}t+ {q.s2}t = (p 7→ t)(q 7→ s1) + (p 7→ t)(q 7→ s2)
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And p 7→ f + g = p 7→ p|f+g = p 7→ p|f,g = p 7→ f p 7→ g . Thus C[T ] is a left additive

restriction category. The projections and ∆ = p 7→ (p, p) are easily shown to be additive.

As the addition is defined componentwise, it now follows that

Proposition 3.4.1. C[T ] is a Cartesian left additive restriction category.

3.5 Turing Categories

Now, we are ready to define left additive Turing categories.

Definition 3.5.1. A Turing category X that has left additive structure is a left additive

Turing category when

LT.1 Each universal map τBC : T ×B −→ C is strongly additive in its first argument.

If a universal map is strongly additive in its first argument, call it an additive

universal map.

The above definition mimics the fact that in a Cartesian closed left additive category,

the evaluation map is additive in its first variable. Intuitively, the sum in left additive

Turing categories is meant to capture non-deterministic computation. For example, we

have (in term logic notation)

(t1 + t2) •m = t1 •m+ t2 •m

If either t1 or t2 is applied to some argument m then the result is either t1 •m or t2 •m.

However, in general,

t (m1 +m2) 6= tm1 + tm2.

The justification for calling this non-determinism comes first from Plotkin [40]; Plotkin

used Smyth’s powerdomains [43] to model nondeterministic state transformations. de
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Liguoro and Piperno then refined this approach in [19] where they used Smyth nonde-

terministic algebras to formally model nondeterminism. de Liguoro and Piperno defined

a semilinear applicative system to be what is called here a left additive applicative sys-

tem, with the additional constraint that the sum is idempotent. They then showed that

models of semilinear applicative systems are Smyth nondeterministic algebras.

One expects a recognition theorem for left additive Turing categories similar to the-

orem (2.6.1). A first guess might be that every object is a retract of the Turing object

where both the section and retraction are strongly additive. However, this does not work.

Of course, one may add structure to the definition of left additive Turing categories to

force this condition. However, doing so excludes the very natural example we will present

shortly.

From the section on idempotent splitting, one might expect that the retraction to be

strongly additive. This is indeed the case, and it is actually the following theorem that

inspired the work on idempotent splitting:

Theorem 3.5.1. Let X be a Cartesian left additive restriction category. Then X is a

left additive Turing category with Turing object T if and only if each object is a retract of

T where the retraction is strongly additive and there is an additive universal map T × T
•−→ T .

Proof. Assume X is a left additive Turing category. Then from theorem (2.6.1), every

object is a retract of T . Thus it remains to show that the retraction is strongly additive.

For this, reconsider the following diagram.

T

〈1,!〉
))
T ×> τ //

π0

ff A

〈1,!〉rrA×>
π0

;;xxxxxxxxx
h×1

OO
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The retraction r = 〈1, !〉τ . Now, using that τ is additive in its first argument,

(f + g)r = (f + g)〈1, !〉τ>A = 〈f + g, !〉τ ≥ 〈f, !〉τ + 〈g, !〉τ = f〈1, !〉τ + g〈1, !〉τ = fr+ gr

and

0r = 0〈1, !〉τ = 〈0, !〉τ = 0

Conversely, assume that X is a Cartesian left additive restriction category such where

each object is a retract of T and there retraction is strongly additive. Further suppose

T ×T •−→ T is an additive universal map. From theorem (2.6.1), X is a Turing category.

Thus it remains to prove that the derived universal map (1×m) • r is strongly additive

in the first variable. Note that •r is strongly additive in the first variable because • is

strongly additive in the first variable, and r is assumed to be strongly additive. Consider,

〈f + g, k〉(1×m) • r = 〈f + g, km〉 • r = 〈f, km〉 • r + 〈g, km〉 • r

= 〈f, k〉(1×m) • r + 〈g, k〉(1×m) • r,

thus τ = (1×m) • r is strongly additive in the first variable.

3.5.1 Left additive PCAs

Next, we must discuss left additive PCAs. In a Cartesian restriction category, an addi-

tive applicative system is A = (A, •,+, 0) such that such that (A,+, 0) is a total com-

mutative monoid, and (A, •) is an applicative system where further (x1+x2) y ≥ x1 y+x2 y

and 0 y = 0. In a Cartesian left additive restriction category, an additive applicative sys-

tem is just A = (A, •) where • is strongly additive in its first argument.

If A is an additive applicative system, then A is a combinatory complete if every term

in •,+ can be represented by a point. A left additive partial combinary algebra

(LPCA) is an additive applicative system with s, k just as before. Alternatively, an

LPCA is a PCA in an additive applicative system. An analog of the Curry-Schonfinkel

theorem holds for additive applicative systems as well.
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Proposition 3.5.1. An additive applicative system is combinatory complete if and only

if it is an LPCA.

Proof. Again, codes are constructed using a simulation of the lambda calculus, but now

we may add codes:

λ∗x.x = s k k

λ∗x.z = k z

λ∗x.(t1 t2) = s (λ∗x.t1) (λ∗x.t2)

λ∗x.0 = 0

λ∗x.(t1 + t2) = (λ∗x.t1) + (λ∗x.t2).

By induction,

(λ∗x.t)m = {x.t}m.

Also, if A is an LPCA, then the commutative monoid structure is always computable.

Lemma 3.5.1. If A is an LPCA, then the commutative monoid structure is A-computable.

Proof. First note that 0x = 0, so 0 is A-computable. To show that + is computable, it

suffices to show that π0 + π1 is A-computable. We will show that λ∗xy.x + y is a code

for π0 + π1. Consider,

(λ∗xy.x+ y) 1 1 = ((λ∗xy.x) + (λ∗xy.y)) 1 1

= ((λ∗xy.x) 1 1) + ((λ∗xy.y) 1 1)

= π0 + π1.
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When A is an LPCA, Comp(A) has the structure of a Cartesian left additive restriction

category.

Theorem 3.5.2. For an additive applicative system A, A is an LPCA if and only if

Comp(A) is a Cartesian left additive restriction category.

Proof. Assume that A is an additive applicative system. First, if Comp(A) is a Cartesian

left additive restriction category, then A is a combinatory complete. Thus, A is an LPCA

by proposition 3.5.1.

Conversely assume that A is an LPCA. Then Comp(A) is a Cartesian restriction

category by theorem 2.6.2. We will show that Comp(A) is a Cartesian left additive

restriction category by theorem 3.1.1. First, A0 is obviously a total commutative monoid

with 0 = 1 and + =!. Next, (A,+, 0) is a total commutative monoid since, by lemma

3.5.1, +, 0 are A-computable. Then define

+n+m := ex((+n)× (+m)) 0n+m := 0n × 0m.

Thus, Comp(A) is a Cartesian left additive restriction category by theorem 3.1.1.

Combining theorem 3.5.2 with theorem 2.6.2, if A is an LPCA, then Comp(A) is a

Cartesian left additive restriction category and a Turing category. Moreover,

Proposition 3.5.2. For an LPCA A, Comp(A) is a left additive Turing category.

Proof. By theorem 3.5.1, it suffices to show for each n, An is a left additive retract of A.

Doing so devolves into showing that there are left additive retractions >, A2 C A. For >

take 0 : > −→ A and ! : A −→ >; ! is strongly additive. For A× A take the section to be

(a, b) 7→ λ∗p.p a b.

The retraction is the pairing of the following two maps

P : a 7→ a (λ∗xy.x) Q : a 7→ a (λ∗xy.y)
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Both P and Q are strongly additive, and this follows since • is strongly additive in the

first variable. Consider, for example

(f + g)P = (f + g) • (λ∗xy.x) ≥ (f • λ∗xy.x) + (g • λ∗xy.x) = fP + gP.

Similarly, Q is strongly additive. Further, the pairing of strongly additive maps is again

strongly additive, thus the retraction A×A 〈P,Q〉−−−−→ A is strongly additive. This completes

the proof that Comp(A) is a left additive Turing category.

3.5.2 Bag PCAs

Next, we will construct a model of an additive PCA. The intuition comes from the bag

monad B : Par −→ Par ; recall if A is a set, then B(A) is the free commutative monoid

generated by A. Moreover the bag monad is strong; there is a map

B(A)× A θ−→ B(A× A);

((∑
i

xi

)
, y

)
7→
∑
i

(xi, y).

Suppose that A = (A, •) is a PCA. Then B(A) can be viewed as a nondeterministic

choice of programs. Moreover, using strength, the composite

B(A)× A θ−→ B(A× A)
B(•)−−−→ B(A),

give the effect of nondeterministically applying a choice of programs to a single argument.

We will generalize the needed structure of the bag monad to produce a class of examples

with this nondeterministic flavor. It should be noted that such monads are the algebra

modalities of Blute et al [3] with the added condition of strength on the monad. It should

be noted that algebra modalities are related to the storage modalities of Blute et al [1] or

equivalently the linear exponential monads of Hyland and Schalk [28]; storage modalities

are used to study the semantics of linear logic with exponentials.

Definition 3.5.2. Let X be a Cartesian restriction category. A bag monad is (B, η, µ, θ)

where B : X −→ X is a restriction functor, (B, η, µ) is a monad, (B, θ) is a strong functor,

and further the following are satisfied:
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(i) η is a strong restriction natural transformation; that is, ηA = 1A and (η× 1)θ = η;

(ii) µ is a strong restriction natural transformation; that is, µA = 1B2(A) and (µ×1)θ =

θB(θ)µ;

(iii) For each A, there are restriction natural transformations [] : > −→ B(A) and ⊕ :

B(A)2 −→ B(A) which makes B(A) into a total commutative monoid;

(iv) µ is a homomorphism of this monoid structure; that is,

>

[] ""DDDDDDDDD
[] // B(A)

B2(A)

µ

::vvvvvvvvv

B2(A)×B2(A)
µ×µ //

⊕
��

B(A)×B(A)

⊕
��

B2(A) µ
// B(A)

(v) the monoid structure is strong with respect to ×; that is,

>× A
[]×k//

!

��

B(A)× A

θ
��

>
[]
// B(A× A)

B(A)2 × A
1×∆

��

⊕×1 // B(A)× A

θ

��

B(A)2 × A2

ex

��
(B(A)× A)2

θ×θ
// B(A× A)2

⊕
// B(A× A).

Lemma 3.5.2. Let X be a Cartesian restriction category, let B be a bag monad, and let

A be an object for which there is a total isomorphism A
α−−→ B(A). Then, A can be given

the structure of a total commutative monoid.

Proof. Define the monoid structure as

A× A
α×α

��

+ // A

B(A)×B(A) ⊕
// B(A)

α−1

OO 1
0 //

[] !!DDDDDDDD A

B(A)

α−1

OO

First, 0,+ are clearly total.
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For the right unit law, the identity is ([]α−1 × 1)(α× α)⊕ α−1 = π1.

([]α−1×)(α× α)⊕ α−1 = (1× α)([]× 1)⊕ α−1 = (1× α)π1α
−1

= π1αα
−1 = π1.

The left unit law is similar. For associativity, use that a× is natural, and that ⊕ is

associative.

a×(1×+)+ = a×(1× ((α× α)⊕ α−1))(α× α)⊕ α−1

= a×(α× (α× α)⊕)⊕ α−1 = a×(α× (α× α))(1×⊕)⊕ α−1

= ((α× α)× α)a×(1×⊕)⊕ α−1 = ((α× α)× α)(⊕× 1)⊕ α−1

= ((α× α)⊕ α−1α× α)⊕ α−1 = ((α× α)⊕ α−1 × 1)(α× α)⊕ α−1,

For commutativity, use that c× is natural and that ⊕ is commutative.

c×(α× α)⊕ α−1 = (α× α)c× ⊕ α−1 = (α× α)⊕ α−1,

as required.

Furthermore, α induces an algebra of B.

Lemma 3.5.3. Let X be a Cartesian restriction cateogry, let B be a bag monad, and let

A be an object for which there is a total isomorphism A
α−−→ B(A). Then the map

B(A) ν //

B(α)
��

A

B2(a) µ
// B(A)

α−1

OO

makes (A, ν) into an algebra of B.

Proof. For the unit law, use the naturality of η and that unit law for the monad,

ηB(α)µα−1 = αηµα−1 = αα−1 = 1.
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For the interaction with µ, use the multiplication law for the monad, followed by the

naturality of µ:

B(B(α)µα−1)B(α)µα−1 = B2(α)B(µ)B(α−1)B(α)µα−1

= B2(α)B(µ)µα−1 = B2(α)µµα−1 = µB(α)µα−1

Thus ν is an algebra of B.

Suppose X is a Cartesian restriction category, (B, η, µ, θ, [],⊕) is a bag monad, and

let A = (A, •, s, k) be a PCA with a total isomorphism α : A −→ B(A). Then one can

define the following application on A.

A× A
α×1
��

F // A

B(A)× A

θ ''NNNNNNNNNNN
B(A)

ν

OO

B(A× A)
B(•)

99rrrrrrrrrr

Think of B as the bag monad acting on N; ? interprets the program position as a

bag of numbers; intuitively, n,m 7→ ({|x1, . . . , xj |},m). Each of these numbers is then

regarded as a program and applied nondeterministically to some argument, and the result

is a bag of values; intuitively,

{| (x1,m), . . . , (xj,m) |} 7→ {|x1 •m, . . . , xj •m|}

Then each of these values is interpreted as a nondeterministic choice of answers, and the

result is a bag of bags. µ is applied to flatten the result into one large bag. Finally, this

bag is converted back to a number.

Given a bag monad B and a PCA A, if there is an isomorphism A
α−−→ B(A) and

codes for ηα−1 and ?, then A is a bag pca. If A is a bag PCA, then denote the induced

applicative system (A, ?) by A+. We are going to prove that for every bag PCA A, the

induced A+ is an LPCA;the first step is:
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Lemma 3.5.4. Let X be a Cartesian restriction category, let B be a bag monad, and let

A = (A, •, s, k) be an object for which there is a total isomorphism A
α−−→ B(A). If the

maps ηα−1 and ? are •-computable, then there are s?, k? that make A+ = (A, ?, s?, k?)

into a PCA.

Proof. First define k1 : A −→ A such that k1 ? 1 = π0. Then define k? : > −→ A such that

k? ? 1 = k1. It will then follow that k? is a code for π0 becasue,

k? ? 1 ? 1 = k1 ? 1 = π0.

Define

k1 := (k • 1)ηα−1.

Then,

k1 ? 1 = ((k • 1)ηα−1) ? 1

= (((k • 1)ηα−1)× 1)(α× 1)θB(•)ν

= ((k • 1)η × 1)θB(•)ν

= ((k • 1)× 1)ηB(•)ν strength

= ((k • 1)× 1) • ην naturality

= π0ην (k • 1) • 1 = π0

= π0 algebra.

Now recall that if f has code f and g has code g then the code for fg is λ∗x.g • (f • x).

We have supposed that ηα−1 has a code in • and k • 1 has a code in • because A is a

PCA. The code for k? is essentially the code for the composite, (k • 1)ηα−1; explicitly

first define

k2 := (λ∗x.ηα−1 • (k • 1 • x)),

Then define,

k? := k2ηα
−1.



91

Then,

(k2ηα
−1 × 1)? = ((k2ηα

−1)× 1)(α× 1)θB(•)B(α)µα−1

= (k2η × 1)θB(•)B(α)µα−1

= (k2 × 1)ηB(•)B(α)µα−1 strength

= (k2 × 1) • ηB(α)µα−1 naturality

= (k • 1)ηα−1ηB(α)µα−1 assumption

= (k • 1)ηα−1αηµα−1 naturality

= (k • 1)ηηµα−1

= (k • 1)ηα−1 monad laws.

Therefore there is a code k? such that k? ? x ? y = x.

Next we must show there is a code for the map (π0 ? π2) ? (π1 ? π2). Define,

s? := (λ∗x.ηα−1(λ∗y.ηα−1(λz.?(?xz)(?yz))))ηα−1 : > −→ A.

Note that s? exists because of the assumption that ? has a •-code, and that ηα−1 has a
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•-code. Now, consider,

(s? × 1× 1× 1)(?× 1× 1)(?× 1)?

= ((λ∗x.ηα−1(λ∗y.ηα−1(λz.?(?xz)(?yz))))ηα−1 × 1× 1× 1)

(α× 1× 1× 1)(θ × 1× 1)(B(•)× 1× 1)(ν × 1× 1)(?× 1)?

= ((λ∗x.ηα−1(λ∗y.ηα−1(λz.?(?xz)(?yz)))× 1)η × 1× 1)

(B(•)× 1× 1)(ν × 1× 1)(?× 1) ? strength

= ((λ∗x.ηα−1(λ∗y.ηα−1(λz.?(?xz)(?yz)))× 1) • ×1× 1)

(η × 1× 1)(ν × 1× 1)(?× 1) ? naturality

= ((λ∗x.ηα−1(λ∗y.ηα−1(λz.?(?xz)(?yz)))× 1) • ×1× 1)

(?× 1) ? algebra law

= ((λ∗y.ηα−1(λ∗z.?(?π0z)(?yz)))ηα−1 × 1× 1)(?× 1)?

= · · ·

= ((λ∗z.?(?π0z)(?π1z))× 1)?

= · · ·

= ?(?π0π2)(?π1π2)

= (π0 ? π2) ? (π1 ? π2).

This completes the proof that (A, ?, k?, s?) is a PCA.

Next, we show that if A is a bag PCA, then A+ is an LPCA.

Proposition 3.5.3. Let A be bag PCA. Then A+ is an LPCA.

By lemma 3.5.2, A may be given the structure of a total commutative monoid

(A,+, 0). By lemma 3.5.4 A+ is a PCA. Thus, it remains to show that ? is strongly

additive in its first argument.
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Proof. For the zero case:

0 ? k = 〈0, k〉? = 〈![]α−1, k〉?

= 〈![]α−1, k〉(α× 1)θB(•)ν

= 〈![], k〉θB(•)ν

= 〈!, 1〉([]× k)θB(•)ν

= 〈!, 1〉![]B(•)ν since ([]× k)θ =![]

= 〈!, 1〉![]B(•α)µα−1

= 〈!, 1〉![]µα−1 naturality

=![]µα−1

=![]α−1 since []µ = []

= 0

For the sum case:

(g + h) ? k = 〈g + h, k〉?

= 〈〈gα, hα〉 ⊕ α−1, k〉(α× 1)θB(•)ν

= 〈〈gα, hα〉, k〉(⊕× 1)θB(•)ν

= 〈〈gα, hα〉, k〉(1×∆)ex(θ × θ)⊕B(•)ν ; since (⊕× 1)θ = (1×∆)ex(θ × θ)⊕

= 〈〈gα, hα〉, 〈k, k〉〉ex(θ × θ)⊕B(•)B(α)µα−1

= 〈〈gα, k〉, 〈hα, k〉〉(θ × θ)(B(•)×B(•))(B(α)×B(α))⊕ µα−1 naturality

= 〈〈gα, k〉, 〈hα, k〉〉(θ × θ)(B(•)B(α)µ×B(•)B(α)µ)⊕ α−1 µ is a homomorphism

= 〈〈gα, k〉θB(•)B(α)µ, 〈hα, k〉θB(•)B(α)µ〉 ⊕ α−1

= 〈〈gα, k〉θB(•)B(α)µα−1, 〈hα, k〉θB(•)B(α)µα−1〉(α× α)⊕ α−1

= (g ? k) + (h ? k)
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Corollary 3.5.1. For a bag PCA A, Comp(A+) is a left additive Turing category.

Simulations as described by Cockett and Hofstra [13] [10] and Longley [32] [33]

give a way to compare applicative structures. For PCAs A,B in a Cartesian restriction

category X, Cockett and Hofstra [13] proved that the definition of simulation φ : A −→ B

is equivalent to having a code u : > −→ B such that

(u× φ× φ)•2
B = •Aφ.

Also important is when PCAs A,B are simulation equivalent. In [13] Cockett and

Hofstra prove that A,B in X are simulation equivalent exactly when there are simulations

φ : A −→ B and ψ : B −→ A such that φψ is A-computable and has an A-computable

retraction, and ψφ is B-computable and has a B-computable retraction.

If A is a bag PCA, then we claim that A+ is simulation equivalent to A.

Proposition 3.5.4. Every bag PCA A is simulation equivalent to A+.

Take φ = 1A : A −→ A+ and ψ = 1A : A+ −→ A. If φ and ψ can be proved to be

simulations, then note that simulation equivalence devolves to the fact that 1A is both A-

computable and A+-computable. By assumption, there is a code ? such that ?•1•1 = ?,

thus by the above discussion, ψ is a simulation. Thus, it remains to show that φ is a

simulation.

Proof. We must show there is a code • such that (• × 1 × 1)?2 = •. This can be

accomplished by showing that there is a •′ : A −→ A such that (•′ × 1)? = •, and then

showing there is a • : > −→ A such that (• × 1)? = •′. Then

(• × 1× 1)(?× 1)? = ((• × 1) ?×1)? = (•′ × 1)? = •,

which proves that • is a ?-code for •.
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Define

•′ := ηα−1.

Consider,

(ηα−1 × 1)? = (ηα−1 × 1)(α× 1)θB(•)ν

= (η × 1)θB(•)ν

= ηB(•)ν strength

= •ην naturality

= • algebra law.

By assumption, ηα−1 is a code for ηα−1, then define

• := ηα−1ηα−1.

Consider,

(• × 1))? = (ηα−1 × 1)(ηα−1 × 1)(α× 1)θB(•)B(α)µα−1

= (ηα−1 × 1)(η × 1)θB(•)B(α)µα−1

= (ηα−1 × 1)ηB(•)B(α)µα−1 strength

= (ηα−1 × 1) • ηB(α)µα−1 naturality

= ηα−1ηB(α)µα−1 (ηα−1 × 1)• = ηα−1

= ηα−1αηµα−1 naturality

= ηηµα−1

= ηα−1 monad law.

Thus • is a ?-code for • which completes the proof that A+ is simulation equivalent to

A.



96

3.6 Remarks

3.6.1 Simple Slices

There is always an additive structure on X[A]. This additive structure is actually part

of a deeper structural story. The coherence condition for Cartesian closed left additive

categories, λ(f + g) = λ(f) + λ(g), is determined by forcing the additive structure of

X[A] to coincide with additive structure on the Kleisli category of (A⇒ ) (see Blute et

al [2]).

However, generalizing the above coherence to the restriction case is more subtle. One

might expect that eval should be strongly additive in its first coordinate as a result of this

coherence; i.e., 〈h + g, k〉eval ≥ 〈h, k〉eval + 〈g, k〉eval. However instead of an inequality,

one can show equality, and this suggests that this coherence condition might be too

strong.

3.6.2 Idempotent Splitting

It was widely believed, when this investigation began, that in order to obtain a left

additive restriction category by splitting the idempotents of a left additive restriction

category, one could only split strongly additive idempotents.

An indication that this was incorrect came from the difficulty of axiomatizing a left

additive Turing category in which each object was the splitting of a strongly additive

idempotent. In particular, one could not obtain a reasonable recognition theorem for

these Turing categories.

3.6.3 Turing Categories

Of course, once one realizes that the idempotents need not be strongly additive, and

in particular, that the section of a split idempotent need not be strongly additive, the
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necessity for Manzonetto’s encoding of pairing combinator[37] is no longer needed. In

fact, the standard pairing combinator works as long as one is in an additive applicative

system.
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Chapter 4

Differential Restriction Categories

4.1 Differential Restriction Categories

Cartesian left additive restriction categories provide the structure on which differential

restriction categories rests. The total derivative of smooth partial functions between finite

dimensional, real vector spaces provides a motivating example of differential restriction

structure where the derivative is given by the Jacobian matrix. Given a smooth partial

function, say f : Rn −→ Rm, the total derivative of f at a point in Rn (the Jacobian of f at

a point), D[f ](x) is a linear map Rn( Rm. However, the derivative may be generalized

to settings without closed structure by using the uncurried form of the derivative, D[f ] :

Rn×Rn −→ Rm. The second argument is the point at which the derivative is being taken;

the first is the direction in which the derivative is being evaluated. A key example of

a differential restriction category is developed by Cockett et al in [?] which is based on

the notion of taking the formal derivative of a rational polynomial with coefficients in a

commutative ring.

Definition 4.1.1. A differential restriction category is a Cartesian left additive

restriction category with a differential combinator

f : X −→ Y

D[f ] : X ×X −→ Y

that satisfies

DR.1 D[0] = 0 and D[f + g] = D[f ] +D[g];

DR.2 〈0, g〉D[f ] = gf 0 and 〈g + h, k〉D[f ] = 〈g, k〉D[f ] + 〈h, k〉D[f ];
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DR.3 D[π0] = π0π0 and D[π1] = π0π1;

DR.4 D[〈f, g〉] = 〈D[f ], D[g]〉;

DR.5 D[fg] = 〈D[f ], π1f〉D[g];

DR.6 〈〈g, 0〉, 〈h, k〉〉D[D[f ]] = h 〈g, k〉D[f ];

DR.7 〈〈0, h〉, 〈g, k〉〉D[D[f ]] = 〈〈0, g〉, 〈h, k〉〉D[D[f ]];

DR.8 D[f ] = (1× f )π0;

DR.9 D[f ] = 1× f .

Note that D[!A] =!A×A since D[!A] is a total map A × A −→ >. A brief description

of these axioms may help with their meaning. DR.1 says that D[ ] is a linear operator.

DR.2 says that the derivative of a map is additive in the first coordinate. DR.3 says

that projections are linear. DR.4 says that the derivative respects the product structure

correctly. DR.5 is the chain rule. We shall see shortly that DR.6 says that the deriva-

tive of a map is linear in its first variable. DR.7 says that the order in which partial

derivatives is taken does not matter. DR.8 says that restriction idempotents are linear.

DR.9 says that the partiality of the derivative of a map is determined by the “point” of

differentiation.

An important notion for Cartesian differential categories is that of a linear map; in

that setting a map f is linear if D[f ] = π0f . However, note in a differential restriction

category, equal maps have equal restrictions; thus

(f × 1) = π0f = D[f ] = (1× f ) = π1f = (1× f ),

is true if and only if f = 1; i.e. f is total. Hence a map in a differential restriction

category, f , is linear when D[f ] ^ π0f .

Proposition 4.1.1 (Cockett et al : proposition 3.20). In a differential restriction cate-

gory:
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(i) if f is total, f is linear if and only if D[f ] = π0f ;

(ii) if f is linear, then f is additive;

(iii) restriction idempotents are linear;

(iv) if f and g are linear, so is fg;

(v) if g ≤ f and f is linear, then g is linear;

(vi) 0 maps are linear, and if f and g are linear, so is f + g;

(vii) projections are linear, and if f and g are linear, so is 〈f, g〉;

(viii) if f is linear and has a partial inverse g, then g is also linear.

Proof. (i) It suffices to show that if f is total, D[f ] = π0f . Indeed, if f is total,

D[f ] = 1× f = f × 1 = π0f .

(ii) For the 0 axiom use [R.4], that f is linear, and then [DR.2].

0f = 0f 0f = 〈0, 0〉π1f 〈0, 0〉π0f

= 〈0, 0〉π1f π0f ≤ 〈0, 0〉D[f ]

= 0f 0 ≤ 0

and for the addition axiom use that f is linear and [DR.2],

(x+ y)f)(xf + yf) = (x+ y)f(xfxf + yxfxyf)

= (x+ y)f(xfxf + yxfxyf) = (x+ y)f(〈x, x〉π1f〈x, x〉π0f + 〈y, x〉π1f〈y, x〉π0f)

= (x+ y)f(〈x, x〉π1fπ0f + 〈y, x〉π1fπ0f) ≤ (x+ y)f(〈x, x〉D[f ] + 〈y, x〉D[f ])

= 〈x+ y, x〉π0f〈x+ y, x〉D[f ] = 〈x+ y, x〉π0fD[f ]

= 〈x+ y, x〉π1fπ0f = x+ y, x〉π1f〈x+ y, x〉π0f

= x+ yxfx(x+ y)f ≤ (x+ y)f

as required.
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(iii) Suppose e = e . Then consider

π1e π0e = π1e π0e π0 ≤ π1e π0 = 〈π0e, π1e〉π0 = (1× e)π0 = D[e],

so that e is linear

(iv) Suppose f and g are linear; then consider

D[fg] = 〈D[f ], π1f〉D[g]

≥ 〈π1fπ0f, π1f〉π1gπ0g = 〈π1fπ0f, π1f〉π1g〈π1fπ0f, π1f〉π0g

= π1fπ0fπ1fgπ1fπ1fπ0fg = π1fπ1fgπ0fπ0fg

= π1fgπ0fg.

(v) If g ≤ f , then g = g f ; since restriction idempotents are linear and the composite

of linear maps is linear, g is linear.

(vi) Since D[0] = 0 = π00, 0 is linear. Suppose f and g are linear; then consider

π0(f + g)D[f + g] = π0f + π0g(D[f ] +D[g])

= π0fπ0g(D[f ] +D[g]) = π0fD[f ] + π0gD[g]

= π1fπ0f + π1gπ0g = π1fπ1gπ0(f + g)

≤ π0(f + g)

as required.

(vii) By [DR.3], projections are linear. Suppose f and g are linear; then consider

D[〈f, g〉] = 〈D[f ], D[g]〉

≥ 〈π1fπ0f, π1gπ0g〉 = π1fπ1gπ0〈f, g〉

= π1fπ1gπ0〈f, g〉 = π1fπ1gπ0〈f, g〉

= π1fgπ0〈f, g〉 = π1〈f, g〉π0〈f, g〉

as required.
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(viii) If g is the partial inverse of a linear map f , then

D[g] ≥ (g × g )D[g]

= (gf × gf)D[g] = (g × g)(f × f)D[g]

= (g × g)〈π0f, π1f〉D[g] = (g × g)〈π1f π0f, π1f〉D[g]

= (g × g)〈π0f D[f ], π1f〉D[g] = (g × g)π0f 〈D[f ], π1f〉D[g]

= (g × g)π0f D[fg] = (g × g)π0f D[f ]

= (g × g)π0f (1× f )π0 = (g × g)π0f (g × g)(1× f )π0

= π1g π0gf (g × g)π0 = π1g π0g π1g π0g

= π1g π0g

as required.

The above lemma establishes that the collection of linear maps in X is a partial inverse

closed, differential restriction subcategory Lin(X) such that the inclusion L : Lin(X)

−→ X preserves the deriviative, and has the property that if e1 = e1 6= e2 = e2 then

L(e1) 6= L(e2).

Partial differentials in a differential restriction category may be obtained by “zeroing

out” the components on which the derivative is not being taken: the partial derivatives

in the first and second variables (respectively) are:

A×B f−−→ C
A× (A×B) −−−−−−−−−→

(〈1, 0〉 × 1)D[f ]
C
D×,0

A×B f−−→ C
B × (A×B) −−−−−−−−−→

(〈0, 1〉 × 1)D[f ]
C
D×,1

The following is a generalization of [2] lemma 4.5.1 to the restriction setting.
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Lemma 4.1.1. In any differential restriction category

D[f ] = (π0 × 1)D×,0[f ] + (π1 × 1)D×,1[f ].

Proof. Consider,

(π0 × 1)D×,0[f ] + (π1 × 1)D×,1[f ]

= (π0 × 1)(〈1, 0〉 × 1)D[f ] + (π1 × 1)(〈0, 1〉 × 1)D[f ]

= 〈〈π0π0, 0〉, π1〉D[f ] + 〈〈0, π0π1〉, π1〉D[f ]

= 〈〈π0π0, 0〉+ 〈0, π0π1〉, π1〉D[f ] DR.2

= 〈〈π0π0, π0π1〉, π1〉D[f ]

= 〈π0, π1〉D[f ] = D[f ]

as required.

Partial derivatives allow one to speak of being linear in one argument. Of interest is

when a function is linear in its first argument. To explain what this means choose

A × B
f−−→ C. The partial derivative with respect to the first variable has the type

A× (A× B)
D×,0[f ]−−−−−→ C, and to say D×,0[f ] is linear is the requirement that D×,0[f ] ^

(1× π1)f = a−1
× (π0 × 1)f .

If f is linear in the first variable then 〈1, 0〉f is linear.

Lemma 4.1.2. If a map in a differential restriction category is linear in its first variable

then

D[〈1, 0〉f ] ^ π0〈1, 0〉f.
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Proof. Assume that f is linear in its first variable, and then consider the following:

D[〈1, 0〉f ] = 〈D[〈1, 0〉], π1〈1, 0〉〉D[f ]

= 〈〈D[1], D[0]〉, π1〈1, 0〉〉D[f ] = 〈〈π0, 0〉, π1〈1, 0〉〉D[f ]

= (〈1, 0〉 × 〈1, 0〉)D[f ] = (1× 〈1, 0〉)(〈1, 0〉 × 1)D[f ]

^ (1× 〈1, 0〉)(1× π1)f = (1× 0)f

= 〈π0, π10〉f = 〈π0, 0〉f = 〈π0, π00〉f

= π0〈1, 0〉f

DR.6 obviously implies that the derivative of a map is linear in its first variable.

Moreover,

Lemma 4.1.3. DR.6 is equivalent to (〈1, 0〉 × 1)D[D[f ]] = (1× π1)D[f ].

Proof. Assume DR.6. Then,

(〈1, 0〉 × 1)D[D[f ]] = 〈π0〈1, 0〉, π1〈π0, π1〉〉D[D[f ]]

= 〈〈π0, 0〉, 〈π1π0, π1π1〉〉D[D[f ]]

= 〈π0, π1π1〉D[f ] DR.6

= (1× π1)D[f ].

Conversely assume that (〈1, 0〉 × 1)D[D[f ]] = (1× π1)D[f ]. Then

〈〈g, 0〉, 〈h, k〉〉D[D[f ]] = h 〈g, k〉D[f ] = 〈g, 〈h, k〉〉(〈1, 0〉 × 1)D[D[f ]]

= 〈g, 〈h, k〉〉(1× π1)D[f ] = 〈g, 〈h, k〉π1〉D[f ] = h 〈g, k〉D[f ]

Corollary 4.1.1. For all f in a differential restriction category,

D[〈1, 0〉D[f ]] = π0〈1, 0〉D[f ] = 〈π0, 0〉D[f ].
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4.2 Simple Slices

Differential restriction structure does not lift to the coKleisli category like Cartesian left

additive restriction structure does 1. However, the simple slice category X[A] is always a

differential restriction category, and in this section we prove it.

The following theorem generalizes Blute et al [2] corollary 4.5.2 to the restriction

setting; however, here a direct proof is given instead of using the term logic appeal that

Blute et al used.

Theorem 4.2.1. Let X be a differential restriction category. Then for each A, X[A] is

a differential restriction category where the derivative is defined as

D[f ] := a×D×,0[f ].

Again, of great help is that

(f )] = f .

Also, for readability let N := (〈1, 0〉 × 1).

Proof. The proof is by calculation in X[A].

DR.1 For the zero case,

D[0] = a×D×,0[0] = 0.

For the sum use left additivity,

D[f+g] = a×ND[f+g] = a×N(D[f ]+D[g]) = a×ND[f ]+a×ND[g] = D[f ]+D[g].

DR.2 For the zero case,

〈0, g〉D[f ] = 〈〈0, g〉, π1〉a×ND[f ] = 〈0, 〈g, π1〉〉ND[f ]

= 〈0, 〈g, π1〉〉D[f ] = 〈g, π1〉f 0 = gf 0.

1One can put a differential restriction structure on the coKleisli category for certain comonads;
however, ( ×A) is not an example of such a comonad.
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For the sum, use the that 〈1, 0〉 is total and additive.

〈g+ h, k〉D[f ]

= 〈〈g + h, k〉, π1〉a×D×,0[f ] = 〈g + h, 〈k, π1〉〉(〈1, 0〉 × 1)D[f ]

= (g〈1, 0〉+ h〈1, 0〉, 〈k, π1〉〉D[f ] = 〈g, 〈k, π1〉〉D×,0[f ] + 〈h, 〈k, π1〉〉D×,0[f ]

= 〈g, k〉D[f ] + 〈h, k〉D[f ].

DR.3 For π0,

D[π0] = a×ND[π0π0] = a×(〈1, 0× 1)π0π0π0

= a×π0π0 = π0π0π0 = 〈π0π0, π1〉π0π0

= π0π0.

Similarly, D[π1] = π0π1.

DR.4 Consider,

D[〈f, g〉] = a×ND[〈f, g〉] = a×N〈D[f ], D[g]〉 = 〈D[f ],D[g]〉.

DR.5 Consider,

D[fg] = a×ND[fg] = a×N〈D[〈f, π1〉], π1〈f, π1〉〉D[g]

= a×(〈1, 0〉 × 1)〈〈D[f ], π0π1〉, 〈π1fπ1π1〉〉D[g]

= 〈〈D[f ], 0〉, 〈a×π1f, a×π1π1〉〉D[g]

= 〈D[f ], 〈π1f, π1〉〉(〈1, 0〉 × 1)D[g] = 〈D[f ], π1f〉D[g].
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DR.6 Consider,

〈〈g,0〉, 〈h, k〉〉D[f ] = 〈〈〈g, 0〉, 〈h, k〉〉, π1〉a×ND[a×ND[f ]]

= 〈〈〈g, 0〉, 0〉, 〈〈h, k〉, π1〉〉D[a×ND[f ]]

= 〈〈〈g, 0〉, 0〉, 〈〈h, k〉, π1〉〉(a×N × a×N)D[D[f ]]

= 〈〈〈g, 0〉, 0〉, 〈〈h, 0〉, 〈k, π1〉〉D[D[f ]]

= 〈h, 0〉 〈〈g, 0〉, 〈k, π1〉〉D[f ] = h 〈g, 〈k, π1〉〉(〈1, 0〉 × 1)D[f ]

= h 〈〈g, k〉, π1〉D[f ] = h 〈g, k〉D[f ].

DR.7 Consider,

〈〈0, g〉, 〈h, k〉〉D[D[f ]] = 〈〈〈0, g〉, 〈h, k〉〉, π1〉a×ND[a×ND[f ]]

= 〈〈0, g〉, 〈〈h, k〉, π1〉〉ND[a×ND[f ]] = 〈〈〈0, g〉, 0〉, 〈〈h, k〉, π1〉〉D[a×ND[f ]]

= 〈〈〈0, g〉, 0〉, 〈〈h, k〉, π1〉〉(a×N × a×N)D[D[f ]]

= 〈〈0, 〈g, 0〉〉, 〈〈h, 0〉, 〈k, π1〉〉〉D[D[f ]] = 〈〈0, 〈h, 0〉〉, 〈〈g, 0〉, 〈k, π1〉〉〉D[D[f ]]

= · · ·

= 〈〈0, h〉, 〈g, k〉〉D[D[f ]].

DR.8 Recall that f = f π0. Then,

D[f ] = a×D×,0[f π0] = a×(〈1, 0〉 × 1)(1× f )π0π0

= a×(1× f )(〈1, 0〉 × 1)π0π0 = a×(1× f )π0

= 〈π0π0, 〈π0π1, π1〉f 〉π0 = 〈π0π1, π1〉f π0π0 = π1f π0π0

= π1f π0.
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DR.9 Consider,

D[f ] = axD×,0[f ] π0 = a×(〈1, 0〉 × 1)(1× f ) π0

= 〈π0π0〈1, 0〉, 〈π0π1, π1〉f 〉π0

= 〈π0π1, π1〉f π0 = π1f .

Therefore, X[A] is a differential restriction category.

Denote X[A] with the above differential restriction structure by X[A]D.

Note that a strongly linear map in X[A]D is f such that

a×D×,0[f ] = D[f ] ≤ π0f = (π0 × 1)f.

Proposition 4.2.1. A map f is strongly linear if and only if f is strongly linear in its

first variable.

Proof. Assume f is strongly linear. Then,

D×,0[f ] = a−1
× a×D×,0[f ] ≤ a−1

× (π0 × 1)f = (π1 × 1)f,

so f is strongly linear in its first argument.

Conversely, assume that f is strongly linear in its first argument. Then

a×D×,0[f ] ≤ a×(π1 × 1)f = (π0 × 1)f,

so f is strongly linear.

4.3 Idempotent Splitting

In [36], Manzonetto showed that a source of models for the untyped differential lambda

calculus are linear reflexive objects. These are objects A in a Cartesian closed differential

category for which (A⇒ A) is a retract of A and such that the s, r giving the retraction

are both linear.
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In this section, we will show that a more general class of idempotents can be split in

a differential restriction category to again obtain a differential restriction category. The

key observation made in this section is that when these idempotents split, they have the

property that the retraction is linear; however, the section need not be.

Suppose that e = ee splits as rs, and consider the following diagram:

X
f // E

s

��

E

s

��

g // Y

A

r
??~~~~~~~

e
// A

It is desirable that the splitting interacts well with the derivative. Denote f (0) := f

and f (n) := f (n−1) × f (n−1). Also, we will use E
(r,s)
C A to denote the splitting of an

idempotent e as rs where E
s−→ A and A

r−→ E.

Definition 4.3.1. An n-differential splitting is E
(r,s)
C A such that r is strongly addi-

tive and linear, and for all k ≤ n and all X
f−−→ E, E

g−−→ Y :

Dk[f ] = Dk[fs]r and Dk[g] = s(k)Dk[rg].

Given an n-differential splitting, call the idempotent, rs, n-differentially split.

In the above, the conditions on each n are, as far as we can see, independent. In this

thesis we only consider, in detail, 2-differential splittings which is sufficient for theorem

4.3.1. For arbitrary n , the proofs in this chapter are more complicated because they

rely on higher order chain rules. We believe the results hold for arbitrary n, and further,

we believe that proofs may be obtained by using Cockett and Seely’s Faa di Bruno

construction [12] which provides the formulae for higher order chain rules.

It is clear that if E
(r,s)
C A,E ′

(r′,s′)
C A are n-differential splittings, and E

f−−→ E ′, then

for k ≤ n the derivative can be characterized as Dk[f ] = s(k)Dk[rfs′]r′, or equivalently

as e(k)Dk[rfs′]e′.

When the retraction of an n-differential splitting is linear, we observe:
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Proposition 4.3.1 (n ≤ 2). Suppose E
(r,s)
C A is such that r is strongly additive and

linear. Then E
(r,s)
C A an n-differential splitting if and only if for all k ≤ n, Dk[s]r =

π0 · · · π0 (k times).

Proof. Suppose E
(r,s)
C A is such that r is strongly additive and linear.

(⇒): First, assume E
(r,s)
C A is an n-differential splitting. Then,

π0 = D[1] = D[1s]r = D[s]r

π0π0 = D[π0] = D[D[1]] = D[D[s]]r

(⇐): Conversely assume that D[s]r = π0 and D2[s]r = π0π0.

D[g] = (s× s)(r × s)D[g] = (s× s)(r × 1)〈D[g], π1r〉D[g]

= (s× s)D[rg]

D2[g] = s(2)((r × r)× (r × r))D2[g]

= s(2)(1× 1× r × 1)((r × r)× (r × r))D2[g]

= s(2)〈π0(r × r), 〈π1D[r], π1π1r〉〉D2[g]

= s(2)〈〈π0π0r, π0π1r〉, 〈π1D[r], π1π1r〉〉D2[g]

= s(2)(1× r × 1× 1)〈〈π0π0r, (π1 × π1)π0r〉, 〈π1D[r], π1π1r〉〉D2[g]

= s(2)〈〈π0π0r, (π1 × π1)D[r]〉, 〈π1D[r], π1π1r〉〉D2[g]

= s(2)(r × 1× 1× 1)〈〈π0π0r, (π1 × π1)D[r]〉, 〈π1D[r], π1π1r〉〉D2[g]

= s(2)〈〈D2[r], (π1 × π1)D[r]〉, 〈π1D[r], π1π1r〉〉D2[g]

= s(2)〈D[〈D[r], π1〉], π1〈D[r], π1r〉〉D2[g]

= s(2)D[〈D[r], π1r〉D[g]]

= s(2)D2[rg]
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D[f ] = D[f ] = 〈D[f ], π1〉π0 = 〈D[f, π1f〉D[s]r = D[fs]r

D2[f ] = 〈〈D2[f ], (π1 × π1)D[f ]〉, π1〈D[f ], π1f〉〉π0π0

= 〈〈D2[f ], (π1 × π1)D[g]〉, π1〈D[f ], π1f〉〉D2[s]r

= 〈D[〈D[f ], π1f〉], π1〈D[f ], π1f〉〉D2[s]r

= D[〈D[f ], π1f〉D[s]]r

= D2[fs]r;

Thus, E
(r,s)
C A is a 2-differential splitting.

Note that the above calculations involving g used only linearity.

The following lemma will be useful in calculations:

Lemma 4.3.1. Let r be and linear and sr = 1, then:

(i) (a) D[rs]r = D[rs] ⇔ (b) D[s]r = D[s] ⇔ (c) D[s]r = π0,

(ii) (a) D2[rs]r = D[rs] ⇔ (b) D2[s]r = D2[s] ⇔ (c) D2[s]r = π0π0.

Proof. For the first set of equivalences:

(a)⇒ (b): D[s]r = (s× s)D[rs]r = (s× s)D[rs] = D[s],

(b)⇒ (c):

D[s]r = 〈D[s]π1s〉π0r = 〈D[s], π1s〉(1× r )π0r = 〈D[s], π1s〉(r × 1)D[r]

= 〈D[s]r , π1s〉D[r] = D[sr] = π0,

(c)⇒ (a): Note that D[rs]r ≤ D[rs], thus they are equal if they have the same restric-

tion. Consider,

D[rs]r = 〈D[r], π1r〉D[s]r = 〈D[r], π1r〉π0 = D[r] .
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For the next set of equivalences, first note that D2[s] = (s× s× s× s)D2[rs]. Then:

(a)⇒ (b):

D2[s]r = (s× s× s× s)D2[rs]r = (s× s× s× s)D2[rs] = D2[s].

(b)⇒ (c):

D2[s]r = 〈D2[s], π1D[s]〉π0r = 〈D2[s]r , π1D[s]〉π0r

= 〈D2[s], π1D[s]〉D[r] = D[D[s]r] = D[π0] = π0π0,

(c)⇒ (a): D[rs]r ≤ D[rs], and they will be shown equal by showing they have the same

restriction.

D2[rs]r = 〈〈D2[r], (π1 × π1)D[r]〉, π1〈D[r], π1r〉〉D2[s]r

= 〈〈D2[r], (π1 × π1)D[r]〉, π1〈D[r], π1r〉〉π0π0 = D2[r]

= π1π1r = π1π1rs = D2[rs] .

n-Differential splittings are unique up to a linear isomorphism. Further, an idempo-

tent may split with (just) a linear retraction in many ways, and if any one of these split-

tings is, in addition, an n-differential splitting, then all of the splittings are n-differential

splittings.

Proposition 4.3.2. If

E
s

  AAAAAAAA

A

r
>>}}}}}}}} e //

r′   AAAAAAA A

E ′
s′

>>}}}}}}}

commutes, and r, r′ are linear. Then
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(i) There is a unique isomorphism E
α−−→ E ′ such that rα = r′ and αs′ = s. Moreover,

α is linear.

(ii) (n ≤ 2) If, in addition, r, r′ are strongly additive and E
(r,s)
C A is an n-differential

splitting then so is E ′
(r′,s′)
C A .

Proof. Suppose r, r′ are linear. Then,

(i) The proof that α := sr′ is the unique isomorphism such that rα = r′ and αs′s is

the same as for proposition 3.3.2. To see that α is linear, consider:

D[α] = (s× s)D[rα] = (s× s)D[r′] ^ (s× s)π′r = π0sr
′.

(ii) Suppose that r, r′ are strongly additive and E
(r,s)
C A is an n-differential splitting.

Since r′ is linear, e will show that E ′
(r′,s′)
C A is an n-differential splitting using

proposition 4.3.1. To show that D[s′]r′ = π0 use that since α−1 is total and linear,

then for any g, D[α−1g] = (α−1 × α−1)D[g].

D[s′]r′ = D[α−1s]rα = 〈D[α−1], π1α
−1〉D[s]rα = (α−1 × α−1)π0α = π0,

To show that D2[s′]r′ = π0π0, use that since α−1 is total and linear , then for any

g, D2[α−1g] = (α−1)(2)D[g].

D2[s′]r′ = D2[α−1s]rα = (α−1)(2)D2[s′]r′ = (α−1)(2)π0π0α = π0π0

Next, we characterize the idempotents which split as n-differential splittings:

Definition 4.3.2. Let X be a differential restriction category. An idempotent e is an n-

differential idempotent when e is strongly additive, (f+g)e ≥ (fe+ge)e, D[e]e ^ π0e,

(e× 1)D[e] = (e × 1)D[e], and for all k ≤ n, Dk[e]e = Dk[e].

n-Differential idempotents have the following properties:
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Lemma 4.3.2 (n ≤ 2). The following hold in any differential restriction category:

(i) If e is n-differentially split, then e is a n-differential idempotent.

(ii) If e, e′ are n-differential idempotents, then e× e′ is an n-differential idempotent.

(iii) If e = e then e is an n-differential idempotent if and only if e is total (i.e. the

identity).

Proof. (i) Suppose e = rs is n-differentially split. The additive properties follow be-

cause of lemma (3.3.3). The first thing to show is D[rs]rs ^ π0rs. Consider,

D[rs]rs = 〈D[r], π1r〉D[s]rs = 〈D[r], π1r〉π0s = D[r]s ^ π0rs.

Next we show (rs× 1)D[rs] = (rs × 1)D[rs]. Consider,

(rs× 1)D[rs] = (rs× 1)〈D[r], π1r〉D[s] = (rsr × r)D[s] = (r × r)D[s]

= (r × 1)〈D[r], π1r〉D[s] = (rs × 1)D[rs].

The other two properties are from lemma (4.3.1). Thus, rs is an n-differential

idempotent.

(ii) Suppose e, e′ are n-differential idempotents. The additive properties hold by lemma

(3.3.2). Next, we showD[e×e′](e×e′) ^ π0(e×e′). First, note thatD[e× e′](e× e′) =

π1π0e π1π1e′ .

π0(e× e′)D[e× e′](e× e′) = π0π0e π0π1e′ 〈(π0 × π0)D[e], (π1 × π1)D[e′]〉(e× e′)

= 〈(π0 × π0)(e × 1)D[e]e, (π1 × π1)(e′ × 1)D[e′]e′〉

= 〈(π0 × π0)D[e] π0e, (π1 × π1)D[e′] π0e
′ = π1π0e π1π1e′ 〈π0π0e, π0π1e

′〉

= D[e× e′](e× e′) π0(e× e′),
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as required. Next, we show ((e × e′) × 1)D[e × e′] = ((e × e′ ) × 1)D[e × e′]. Use

lemma (4.3.3) in the first and last steps, and consider,

((e× e′)× 1)D[e× e′] = 〈(e× 1)D[e], (e′ × 1)D[e′]〉 = 〈(e × 1)D[e], (e′ × 1)D[e′]〉

= ((e × e′ )× 1)D[e× e′],

as required. Next, we will show D[e× e′](e × e′ ) = D[e× e′]. Consider,

D[e× e′](e × e′ ) = 〈(π0 × π0)D[e], (π1 × π1)D[e′]〉(e × e′ )

= 〈(π0 × π0)D[e]e , (π1 × π1)D[e′]e′ 〉 = 〈(π0 × π0)D[e], (π1 × π1)D[e′]〉 = D[e× e′],

as required. Finally, we will show D2[e× e′](e × e′ ). Consider,

D[D[e× e′]](e × e′ ) = 〈(π0 × π0 × π0 × π0)D2[e], (π1 × π1 × π1 × π1)D2[e′]〉(e × e′ )

= 〈(π0 × π0 × π0 × π0)D2[e], (π1 × π1 × π1 × π1)D2[e′]〉 = D2[e× e′].

Thus, e× e′ is an n-differential idempotent.

(iii) Assume e = e and that e is an n-differential idempotent. In particular, from

D[e]e = D[e] we have

(1× e )π0 = D[e ] = D[e] = D[e]e = (e × e )π0.

Together with 0e = 0, we have,

e = 〈e , 0〉π0 = 〈1, 0〉(e × e )π0 = 〈1, 0〉(1× e )π0 = 〈1, 0e 〉π0 = 1,

thus e is total.

Every n-differentially split idempotent is an n-differential idempotent; however, n-

differential idempotents need not split. A differential restriction category is an n-

split differential restriction category when every n-differential idempotent is n-

differentially split.
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Proposition (4.3.1) says that for SplitE(X) to be an n-split differential restriction

category, if e
f−−→ e′, the derivative of f must be:

D[f ] := (e× e)D[efe′]e′ = (e× e)D[f ]e′.

Denote SplitE(X) with this differential structure by SplitED(X).

The goal in the remainder of this section is to prove the following theorem.

Theorem 4.3.1. Let X be a differential restriction category. SplitED(X) is a 2-split

differential restriction category if and only if ED is the class of 2-differential idempotents.

The following lemma will be useful in calculations.

Lemma 4.3.3. In a differential restriction category, the following hold:

(i) If e is strongly additive then, (f + g)e ≥ (fe + ge)e if and only if (fe + ge )e =

(fe+ ge)e.

(ii) If e is an n-differential idempotent, then (fD[e] + gD[e])e = (fD[e]e+ gD[e]e)e.

(iii) For all a, b, c, d, e, f, g:

(a) 〈〈a, b〉, 〈c, d〉〉D[f × g] = 〈〈a, c〉D[f ], 〈b, d〉D[g]〉;

(b) (1× 1× e × 1)D[g] = D[(e × 1)g];

(c) 〈〈a, b〉, 〈c, d〉〉D[(e× 1)g] = 〈〈〈a, c〉D[e], b〉, 〈ce, d〉〉D[g].

(iv) If f = ef and f = fe′ where e, e′ are n-differential idempotents, then:

(a) (e × 1)D[f ] = (e× 1)D[f ];

(b) 〈0e, k〉D[f ] = kf 0;

(c) 〈〈a, b〉, 〈c, d〉〉(1× 1× e × 1)D2[f ] = 〈〈〈a, c〉D[e], b〉, 〈ce, d〉〉D2[f ];

(d) D[f ] = D[f ]e′ ;

(e) D2[f ] = D2[f ]e′ ;
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(f) D[D[f ]e′]e′ = D2[f ]e′.

Proof. (i) Suppose e is strongly additive. Consider,

(f + g)e ≥ (fe+ ge)e

⇔ (fe+ ge)e (f + g)e = (fe+ ge)e

⇔ fe ge (f + g)e = (fe+ ge)e lemma 3.3.1

⇔ (fe + ge )e = (fe+ ge)e

(ii) Suppose e is an n-differential idempotent. Then,

(fD[e] + gD[e])e = (fD[e]e + gD[e]e )e

= (fD[e]e+ gD[e]e)e part (i)

(iii) Consider the following:

(a)

〈〈a, b〉, 〈c, d〉〉D[f × g] = 〈〈a, b〉, 〈c, d〉〉〈(π0 × π0)D[f ], (π1 × π1)D[g]〉

= 〈〈a, c〉D[f ], 〈b, d〉D[g]〉;

(b)

D[(e × 1)g] = 〈D[e × 1], π1(e × 1)〉D[g] = 〈〈(π0 × π0)D[e ], π0π1〉, π1(e × 1)〉D[g]

= 〈〈π1π0e π0(1× 1), π1(e × 1)〉D[g] = (1× 1× e × 1)D[g];

(c)

〈〈a, b〉, 〈c, d〉〉D[(e× 1)g] = 〈〈a, b〉, 〈c, d〉〉〈D[e× 1], π1(e× 1)〉D[g]

= 〈〈〈a, c〉D[e], b〉, 〈ce, d〉〉D[g] part (a);

(iv) Assume f = ef , f = fe′ , and e, e′ are n-differential idempotents. Consider:
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(a) Note that (e × 1)π1 = (e× 1)π1. Then

(e × 1)D[f ] = (e × 1)D[ef ] = (e × 1)〈D[e], π1e〉D[f ]

= 〈(e × 1)D[e], (e × 1)π1e〉D[f ] = 〈(e× 1)D[e], (e× 1)π1D[e]

= (e× 1)〈D[e], π1e〉D[f ] = (e× 1)D[f ].

(b) Use that e is strongly additive; in particular, 0e = 0.

〈0e, k〉D[f ] = 〈0, k〉(e× 1)D[f ] = 〈0e , k〉D[f ] = 〈0, k〉D[f ] = kf 0.

(c) Use part (iii.b), (iv.a), then (iii.c):

〈〈a, b〉, 〈c, d〉〉(1× 1× e × 1)D2[f ] = 〈〈a, b〉, 〈c, d〉〉D[(e × 1)D[f ]]

= 〈〈a, b〉, 〈c, d〉〉D[(e× 1)D[f ]] = 〈〈〈a, c〉D[e], b〉, 〈ce, d〉〉D2[f ].

(d) Consider,

D[f ] = 〈D[f ], π1f〉D[e′] = 〈D[f ], π1f ]D[e′]e′ = D[f ]e′ .

(e) Consider,

D2[f ] = D2[fe′] = 〈〈D2[f ], (π1 × π1)D[f ]〉, π1〈D[f ], π1f〉〉D2[e′]

= 〈〈D2[f ], (π1 × π1)D[f ]〉, π1〈D[f ], π1f〉〉D2[e′]e′ = D2[f ]e′

(f) Consider,

D[D[f ]e′]e′ = 〈D2[f ], π1D[f ]〉D[e′]e′ = 〈D2[f ]e′ , π1D[f ]〉D[e′]e′

= 〈D2[f ], π1D[f ]〉(e′ × 1)D[e′]e′ = 〈D2[f ], π1D[f ]〉D[e′]e′ π0e
′

= 〈D2[f ], π1D[f ]e′ 〉π0e
′ = D2[f ]e′
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Next, we show that SplitED(X) is an n-split differential restriction category. E consists

of only n-differential idempotents hence they are retractively additive; thus, theorem

(3.3.1) says that SplitED(X) is a Cartesian left additive restriction category. Next we

must check the differential restriction axioms:

DR.1 For the zero case:

(e× e)D[e0e′]e′ = (e× e)D[0e′]e′ = (e× e)(0× 0)(e × 1)D[e′]e′

= (e0× e0)π1e′ π0e
′ = (e× e)(0× 0)e′ = (e× e)0e′.

For the sum:

(e× e)D[(f + g)e′)]e′ = (e× e)〈D[f + g], π1(f + g)〉D[e′]e′

= (e× e)〈D[f ] +D[g], π1(f + g)〉D[e′]e′

= (e× e)(〈D[f ], π1(f + g)〉D[e′] + 〈D[g], π1(f + g)〉D[e′])e′

= (e× e)(〈D[f ], π1(f + g)〉D[e′]e′ + 〈D[g], π1(f + g)〉D[e′]e′)e′ lemma 4.3.3

= (e× e)(〈D[f ], π1f(f + g)〉π1e′ π0e
′ + 〈D[g], π1(f + g)〉π1e′ π0e

′)e′

= (e× e)(π1(fe′ + ge′)e′D[f ]e′ + π1(fe′ + ge′)e′D[g]e′)e′

= (e× e)π1fe′ π1ge′ (D[f ]e′ +D[g]e′)e′

= (e× e)D[f ]e′ + (e× e)D[g]e′.

DR.2 For the zero case:

〈e0e′, g〉(e′ × e′)D[f ]e′′ = (e× e)〈0e′, g〉D[f ]e′′ = (e× e)gf 0e′′

For the sum:

〈(h+ k)e, g〉(e× e)D[f ]e′ = 〈h+ k, g〉(e × 1)D[f ]e′ = 〈h+ k, g〉D[f ]e′

= (〈h, g〉D[f ] + 〈k, h〉D[f ])e′

= (〈h, k〉(e× e)D[f ]e′ + 〈g, k〉(e× e)D[f ]e′)e′ lemma 4.3.3
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DR.3 Let f : e −→ e1 and g : e −→ e2.

(e× e)D[〈f, g〉](e1 × e2) = 〈(e× e)D[f ]e1, (e× e)D[g]e2〉.

DR.4 Consider the following,

((e× e′)× (e× e′))D[(e× e′)π0]e = ((e× e′)× (e× e′))〈D[e× e′], π1(e× e′)〉π0π0e

= ((e× e′)× (e× e′))D[e× e]π0e = ((e× e′)× (e× e′))π1π1e′ (π0 × π0)D[e]e

= ((e× e′)× (e× e′))(π0 × π0)D[e]e = (π1e′ π0e× π1e′ π0e)(e × 1)D[e]e

= (π1e′ π0e× π1e′ π0e)π1e π0e = ((e× e′)× (e× e′))π0π0e

= ((e× e′)× (e× e′))π0π0

DR.5 Consider,

〈(e1 × e1)D[f ]e2, (e1 × e1)π1f〉(e2 × e2)D[g]e3 = (e1 × e1)〈D[f ], π1f〉(e2 × 1)D[g]e3

(e1 × e1)〈D[f ], π1f〉(e2 × 1)D[g]e3 = (e1 × e1)〈D[f ], π1f〉D[g]e3

(e1 × e1)D[fg]e3.

DR.6 Consider,

〈〈g, d0e〉, 〈h, k〉〉(e× e× e× e)D[(e× e)D[f ]e′]e′

= d〈〈g, 0e〉, 〈h, k〉〉〈D[e× e], π1(e× e)〉D[D[f ]e′]e′

= d〈〈〈g, h〉D[e], 〈0e, k〉D[e]〉, 〈h, k〉〉D2[f ]e′

= d〈〈〈g, h〉D[e], 0〉, 〈h, k〉〉D2[f ]e′ = dh 〈〈g, h〉D[e], k〉D[fe]′

= d〈〈g, h〉D[e]e , k〉D[f ]e′ = d〈g, h〉D[e]e, k〉D[f ]e′

= d〈〈g, h〉π0e, k〉D[f ]e′ = dh 〈g, k〉D[f ]e′.
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DR.7 Consider:

〈〈d0e, g〉, 〈h, k〉〉(e× e× e× e)D[(e× e)D[f ]e′]e′

= d〈〈0e, g〉, 〈h, k〉〉〈D[e× e], π1(e× e)〉D[D[f ]e′]e′

= d〈〈〈0e, h〉D[e], 〈g, k〉D[e]〉, 〈h, k〉〉D2[f ]e′

= d〈〈0, 〈g, k〉D[e]〉, 〈h, k〉〉D2[f ]e′

= d〈〈0, h〉, 〈〈g, k〉D[e], k〉〉D2[f ]e′ DR.7

= d〈〈0, h〉, 〈〈g, k〉D[e], k〉〉(1× 1× e × 1)D2[f ]e

= d〈〈〈0, 〈g, k〉D[e]〉D[e], h〉, 〈〈g, k〉D[e]e, k〉〉D2[f ]e′ lemma 4.3.3

= d〈〈0, h〉, 〈g, k〉〉D2[f ]e′

= · · ·

= 〈〈d0e, h〉, 〈g, k〉〉(e× e× e× e)D[(e× e)D[f ]e′]e′.

DR.8 Consider:

(e× e)D[f ]e = (e× e)π1f π0e = (e× e)(e× e)π1f (e× e)π0.

DR.9 Consider:

(e× e)(e× e)D[f ]e′ = (e× e)(e× e)〈D[f ], π1f〉D[e′]e′

= (e× e)(e× e)〈D[f ], π1f〉D[e′]e′ = (e× e)(e× e)〈D[f ], π1f〉D[e′]

= (e× e)(e× e)D[f ] = (e× e)(e× e)π1f .

Next, we will show that each n-differential idempotent is n-differentially split. First,

every idempotent e ∈ E splits in SplitED(X) as:

d

e
��>>>>>>>
e // d

e
e

??�������
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Theorem 3.3.1 proves that the retraction, e : d −→ e, is strongly additive. To show

that the retraction is linear, we must show that

(d× d)D[e]e ^ (d× d)π0e

which is true by definition. Lemma 4.3.1 proves that d is a linear 2-differential splitting.

Thus SplitED(X) is a differential restriction category in which every retractively linear

idempotent is linear differentially splits. �

4.4 Term Logic

We extend the term logic for Cartesian left additive restriction categories to differential

restriction categories, and and then prove this extension is sound and complete with re-

spect to a translation into differential restriction categories. This term logic generalizes

the term logic described by Blute et al [2] to the restriction setting. It is worth noting

that the syntax of this logic is related to by Ehrhard and Regnier’s differential λ-calculus,

the syntax here is an uncurried form of Ehrhard and Regnier’s syntax. Using the deriva-

tive in uncurried form makes using the term logic more intuitive, and also makes the

completeness theorem possible without requiring closed structure.

The syntax is extended with a formal derivative operation.

T := V | () | (T, . . . , T ) | {T.T}T | 0 | T + T | ∂T
∂T

(T ) · T | T|T

Ty := T | 1 | Ty × · · · × Ty

The type judgments are extended in table (4.1).

Of the six classes of equalities we only need to update the cut elimination rules and

equations for the logic.

Cut-elimination The following equalities are written as directed equalities because they
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Basic terms:

Γ, x : A ` x : A Proj
Γ ` t : A Γ, p : A ` s : B

Γ ` {p.s}T : B Cut

Γ ` t1 : A1 · · · Γ ` tn : An σ(f) = ([A1, . . . , An], B)

Γ ` f(t1, . . . , tn) : B Fun

Cartesian terms:

Γ ` () : 1 Unit
Γ ` t1 : A1 · · ·Γ ` tn : An

Γ ` (t1, . . . , tn) : A1 × · · · × An Tuple

Γ, t1 : A1, . . . , tn : An ` t : A

Γ, (t1, . . . , tn) : A1 × · · ·An ` t : A Pat

Additive Terms:

Γ ` 0 : A
Zero

Γ ` t1 : A Γ ` t2 : A
Γt1 + t2 : A Add

Differential Terms:
Γ, p : A ` t : B Γ ` s : A Γ ` U : A

Γ ` ∂t
∂p

(s) · u : B D

Partial Terms:
Γ ` t : A Γ ` s : B

Γ ` t|s : A Rest

Table 4.1: Differential Restriction Term Formation Rules
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Table 3.2 and

ESB.12 {x.∂f
∂y

(s) · u}tV ∂{x.f}t
∂y

({x.s}t) · {x.u}t

Table 4.2: Differential restriction cut elimiation

can be viewed as a rewriting system on terms which removes occurences of cut. We

extend the cut elimination rules in table 4.2.

Equations The equalities for differential restriction term logic are presented in table

4.3.

In table 4.3, the variable contexts are not explicitly mentioned. However, one should

mind these variable contexts. For example, DRL.18 does not make sense unless p′ does

not occur in either s or t.

Note that cut elimination holds in this logic as well. Lemmas (2.5.1 and 2.5.2) and

thus corollary (2.5.1) have analogous counterparts. The proofs by induction in lemma

(2.5.1) simply require three extra cases: one for the zero, one for the sum , and one for

the derivative. The case for the derivative is a bit tricky.

To extend lemma (2.5.1), consider the following calculation used in the inner induc-

tion: proving the statement when the pattern is a variable. In the following calculation,
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Table 3.3 and

DRL.11
∂t|s
∂p

(v) · u =
(
∂t
∂p

(v) · u
)
|{p.s}v

and ∂t
∂p

(s|r) · u = ∂t
∂p

(s) · (u|r) =
(
∂t
∂p

(s) · u
)
|r

DRL.12 t| ∂f
∂p

(s)·u = t|s,u,{p.f}s

DRL.13 ∂t1+t2
∂p

(s) · u = ∂t1
∂p

(s) · u+ ∂t2
∂p

(s) · u and ∂0
∂p

(s) · u = 0|u,s;

DRL.14 ∂t
∂p

(s) · (u1 + u2) = ∂t
∂p

(s) · u1 + ∂t
∂p

(s) · u2 and Γ ` ∂t
∂p

(s) · 0 = Γ ` 0|{p.t}s;

DRL.15
∂x
∂x

(s) · u = u|s,
∂t

∂(p,p′)
((s, s′)) · (u, 0) = ∂{p′.t}s′

∂p
(s) · u, and

∂t
∂(p,p′)

((s, s′)) · (0, u′) = ∂{p.t}s
∂p′

(s′) · u′;

DRL.16 ∂(t1,t2)
∂p

(s) · u =
(
∂t1
∂p

(s) · u, ∂t2
∂p

(s) · u
)

;

DRL.17 ∂{p′.t}t′
∂p

(s) · u = ∂t
∂p′

({p.t′}s) · ∂t′
∂p

(s) · u
(chain rule; we require that no free variable of p occur in t);

DRL.18
∂ ∂t

∂p
(s)·p′

∂p′
(r) · u =

(
∂t
∂p

(s) · u
)
|r

;

DRL.19
∂ ∂t

∂p1
(s1)·u1
∂p2

(s2) · u2 =
∂ ∂t

∂p2
(s2)·u2
∂p1

(s1) · u1;

Table 4.3: Differential term logic equations
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no variables in p are in s′.(
{x.∂t

′

∂p
(s) · u}t

)
|s′

=

(
∂{x.t′}t
∂p

({x.s}t) · {x.u}t
)
|s′

=

(
∂{x.t′}t
∂p

({x.s}t) · {x.u}t
)
|s′,{x.s}t

=

(
∂{x.t′}t
∂p

({x.s}t) · {x.u}t
)
|s′|{x.s}t

=

(
∂{x.t′}t
∂p

({x.s}t) · {x.u}t
)
|{p.s′}({x.s}t)

=
∂({x.t′}t)|s′

∂p
({x.s}t) · {x.u}t DRL.11

=
∂{x.t′|s′}t

∂p
({x.s}t) · {x.u}t

= {x.
∂t′|s′

∂p
(s) · u}t

= {x.
(
∂t′

∂p
(s) · u

)
|{p.s′}s

}t DRL.11

= {x.
(
∂t′

∂p
(s) · u

)
|s′,s
}t

= {x.
(
∂t′

∂p
(s) · u

)
|s′
}t

To extend lemma (2.5.2), note that no variable in p occurs in t′.

{x. ∂t
∂p

(s) · u}t′ = ∂{x.t}t′

∂p
({x.s}t′) · {x.u}t′

=
∂([t′/x] t)|t′

∂p
(([t′/x] s)|t′) ·

(
([t′/x]u)|t′

)
=

(
∂[t′/x] t

∂p
([t′/x] s) · [t′/x]u

)
|t′,t′,{p.t′}[t′/x]s

=

(
∂[t′/x] t

∂p
([t′/x] s) · [t′/x]u

)
|t′,[t′/x]s

=

(
∂[t′/x] t

∂p
([t′/x] s) · [t′/x]u

)
|t′

=

(
[t′/x]

(
∂t

∂p
(s) · u

))
|t′

Now, we prove a few equations that are useful for handling the derivative of terms.
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Lemma 4.4.1. The following equalities hold in differential restriction term logic.

(i) ∂t
∂()

(()) · () = 0|t

(ii) If no variable in p occurs in t then ∂t
∂p

(s) · u = 0|t,u,s

(iii) If no variable in p′ occurs in t then ∂t
∂(p,p′)

(s, s′) ·(u, u′) =
(
∂t
∂p

(s) · u
)
|{p.t}s,s′,u′

. Simi-

larly, if no variable in p occurs in t then ∂t
∂(p,p′)

(s, s′)·(u, u′) =
(
∂t
∂p′

(s′) · u′
)
|{p′.t}s′,s,u

.

(iv) ∂t
∂(p,p′)

(s, s′) · (u, u′) = ∂{p′.t}s′
∂p

(s) · u+ ∂{p.t}s
∂p′

(s′) · u′.

(v) ∂t
∂(p,p′)

(s, s′) · (u, u′) = ∂t
∂(p′,p)

(s′, s) · (u′, u).

(vi) If f is linear in its first argument; i.e. ∂f(x,u)
∂x

(a) · v ^ f(v, u) (when x 6∈ u) then,

∂f(s, u)

∂x
(a) · v = f

(
∂s

∂x
(a) · v, {x.u}a

)
+
∂f({x.s}a, z1)

∂z1

({x.u}a) · ∂u
∂x

(a) · v.

Proof. First note that () = 0. Then,

(i)

∂t

∂()
(()) · () =

∂t

∂()
(0) · 0 = 0|{().t}0 = 0|t|0 = 0|t

(ii) That no variable in p occurs in t makes the use of DRL.17 valid. Consider

∂t

∂p
(s) · u =

∂{().t}()
∂p

(s) · u =
∂{().t}0
∂p

(s) · u

=
∂t

∂()
({p.0}s) ·

(
∂0

∂p
(s) · u

)
=

(
∂t

∂()
(0) · 0

)
|u,s

= 0|t,u,s
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(iii) Assume that no variable in p occurs in t. Then

∂t

∂(p, p′)
(s, s′) · (u, u′) =

∂t

∂(p, p′)
(s, s′) · (u, 0) +

∂t

∂(p, p′)
(s, s′) · (0, u′)

=
∂{p′.t}s′

∂p
(s) · u+

∂{p.t}s
∂p′

(s′) · u′

= 0|{p′.t}s′,s,u +
∂{p.t}s
∂p′

(s′) · u′

=

(
0 +

∂{p.t}s
∂p′

(s′) · u′
)
|{p′.t}s′,s,u

=

(
∂t|s
∂p′

(s′) · u′
)
|{p′.t}s′,s,u

=

(
∂t

∂p′
(s′) · u′

)
|{p′.t}s′,s,u,{p′.s}s′

=

(
∂t

∂p′
(s′) · u′

)
|{p′.t}s′,s,u,s,s′

=

(
∂t

∂p′
(s′) · u′

)
|{p′.t}s′,s,u

The other statement holds by a symmetric argument.

(iv) This is immediate from the first two steps of the previous calculation.

(v) The sum is commutative, so this follows from the previous identity.
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Table 3.4 and

TCR.10 JΓ ` ∂t
∂p

(s) · uK = 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK]

Table 4.4: Translation of Differential Terms

(vi) Consider the following calculation,

∂f(s, u)

∂x
(a) · v =

∂{(z0, z1).f(z0, z1)}(s, u)

∂x
(a) · v

=
∂f(z0, z1)

∂(z0, z1)
({x.(s, u)}a) · ∂(s, u)

∂x
(a) · v

=
∂f(z0, z1)

∂(z0, z1)
({x.s}a, {x.u}a) ·

(
∂s

∂x
(a) · v, ∂u

∂x
(a) · v

)
=
∂{z0.f(z0, z1)}{x.s}a

∂z0

({x.s}a) · ∂s
∂x

(a) · v +
∂{z1.f(z0, z1)}xsa

∂z1

({x.u}a) · ∂u
∂x

(a) · v

=
∂f(z0, {x.u}a)

∂z0

({x.s}a) · ∂s
∂x

(a) · v +
∂f({x.s}a, z1)

∂z1

({x.u}a) · ∂u
∂x

(a) · v

= f

(
∂s

∂x
(a) · v, {x.u}a

)
|{x.s}a

+
∂f({x.s}a, z1)

∂z1

({x.u}a) · ∂u
∂x

(a) · v

= f

(
∂s

∂x
(a) · v

|{x.s}a
, {x.u}a

)
+
∂f({x.s}a, z1)

∂z1

({x.u}a) · ∂u
∂x

(a) · v

= f

(
∂s

∂x
(a) · v, {x.u}a

)
+
∂f({x.s}a, z1)

∂z1

({x.u}a) · ∂u
∂x

(a) · v

The soundness theorem generalizes Blute et al [2] proposition 4.3.1 to the partial

term setting.

4.4.1 Soundness

First, the extended translation of terms J K into a differential restriction category is given

in table 4.4

To prove the soundness of this translation, it suffices to show [DRL.11-19] hold.

Theorem 4.4.1. The translation defined in table (4.4) is sound.
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Proof.DRL.11 Consider the following calculation for the first part:

JΓ `
∂t|s
∂p

(v) · uK = 〈〈JΓ ` uK, 0〉, 〈JΓ ` vK, 1〉〉D[J(p,Γ) ` t|sK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` vK, 1〉〉D[J(p,Γ) ` sK J(p,Γ) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` vK, 1〉〉〈D[J(p,Γ) ` sK], π1J(p,Γ) ` sK〉D[J(p,Γ) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` vK, 1〉〉(1× J(p,Γ) ` sK)D[J(p,Γ) ` tK]

= 〈JΓ ` vK, 1〉J(p,Γ) ` sK 〈〈JΓ ` uK, 0〉, 〈JΓ ` vK, 1〉〉D[J(p,Γ) ` tK]

= JΓ ` {p.s}vK JΓ ` ∂t

∂p
(v) · uK

= JΓ `
(
∂t

∂p
(v) · u

)
{p.s}v

K

For the second part, consider that

JΓ ` ∂t

∂p
(s) · u

|r
K = JΓ ` rK 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK]

Then,

JΓ ` rK 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK]

= 〈〈JΓ ` rK JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK] = JΓ ` ∂t

∂p
(s) · (u|r)K

and

JΓ ` rK 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` rK JΓ ` sK, 1〉〉D[J(p,Γ) ` tK] = JΓ ` ∂t

∂p
(s|r) · uK

So that

JΓ `
(
∂t

∂p
(s) · u

)
|r
K = JΓ ` ∂t

∂p
(s|r) · uK = JΓ ` ∂t

∂p
(s) · (u|r)K

as required.

DRL.12 Consider the following calculation
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JΓ ` t| ∂f
∂p

(s)·uK = JΓ ` ∂f
∂p

(s) · uK JΓ ` tK

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` fK] JΓ ` tK

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉(1× J(p,Γ) ` fK ) JΓ ` tK

= 〈JΓ ` sK, 1〉J(p,Γ) ` fK 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉 JΓ ` tK

= 〈JΓ ` sK, 1〉J(p,Γ) ` fK 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉 JΓ ` tK

= JΓ ` {p.f}sK JΓ ` uK JΓ ` sK JΓ ` tK

= JΓ ` t|s,u,{p.f}sK

DRL.13 For the zero case:

JΓ ` ∂0

∂p
(s) · uK = 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` 0K]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[0] = 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉0

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉 0 = JΓ ` uK JΓ ` sK 0

= JΓ ` 0|u,sK

For the nonzero case:

JΓ ` ∂t1 + t2
∂p

(s) · uK = 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` t1 + t2K]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉 (D[J(p,Γ) ` t1K] +D[J(p,Γ) ` t2K])

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` t1K] + 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` t2K]

= JΓ ` ∂t1
∂p

(s) · uK + JΓ ` ∂t2
∂p

(s) · uK

= JΓ ` ∂t1
∂p

(s) · u+
∂t2
∂p

(s) · uK
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DRL.14 For the zero case:

JΓ ` ∂t

∂p
(s) · 0K = 〈〈0, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK]

= 〈0, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK] = 〈JΓ ` sK, 1〉J(p,Γ) ` tK 0

= JΓ ` {p.t}sK 0 = JΓ ` 0|{p.t}sK

For the nonzero case:

JΓ ` ∂t

∂p
(s) · u1 + u2K = 〈〈JΓ ` u1 + u2K, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK]

= 〈〈JΓ ` u1K + JΓ ` u2K, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK]

= 〈〈JΓ ` u1K, 0〉+ 〈JΓ ` u2K, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK]

= 〈〈JΓ ` u1K, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK] + 〈〈JΓ ` u2K, 0〉, JΓ ` sK, 1〉〉D[J(p,Γ) ` tK]

= JΓ ` ∂t

∂p
(s) · u1K + JΓ ` ∂t

∂p
(s) · u2K

= JΓ ` ∂t

∂p
(s) · u1 +

∂t

∂p
(s) · u2K

DRL.15 For the first part:

JΓ ` ∂x
∂x

(s) · uK = 〈〈JΓ ` uK, 1〉, 〈JΓ ` sK, 1〉〉D[Jx,Γ ` xK]

= 〈〈JΓ ` uK, 1〉, 〈JΓ ` sK, 1〉〉D[π0Jx ` xK]

= 〈〈JΓ ` uK, 1〉, 〈JΓ ` sK, 1〉〉D[π0]

= 〈〈JΓ ` uK, 1〉, 〈JΓ ` sK, 1〉〉π0π0

= JΓ ` sK JΓ ` uK = JΓ ` u|sK

For the second part, DR.2 is used; in particular, that 〈0, 1〉D[h] = h 0. We will

also use the fact the reassociation maps and commutativity maps for the prod-

uct are linear; for example, 〈〈a, b〉, 〈e, d〉〉D[c×f ] = 〈〈a, b〉, 〈e, d〉〉(c××c×)D[f ] =

〈〈b, a〉, 〈d, e〉〉D[f ]. The preceding fact can be combined with the fact that

c×J(a, b) ` tK = J(b, a) ` tK to reorder the context under the derivative. An
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analogous fact may be used to reassociate a context under the derivative. Now,

consider the following:

JΓ ` ∂t

∂(p, p′)
(s, s′) · (u, 0)K

= 〈〈〈JΓ ` uK, 0〉, 0〉, 〈〈JΓ ` sK, JΓ ` s′K〉, 1〉〉D[J((p, p′),Γ) ` tK]

= 〈〈〈0, JΓ ` uK〉, 0〉, 〈〈JΓ ` s′K, JΓ ` sK〉, 1〉〉D[J((p′, p),Γ) ` tK]

= 〈〈0, 〈JΓ ` uK, 0〉〉, 〈JΓ ` s′K, 〈JΓ ` sK, 1〉〉〉D[J(p′, (p,Γ)) ` tK]

= 〈〈〈0, 1〉D[JΓ ` s′K], 〈JΓ ` uK, 0〉〉, 〈JΓ ` s′K, 〈JΓ ` sK, 1〉〉〉D[J(p′, (p,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈〈(π1 × π1)D[JΓ ` s′K], π0〉, π1〈π1JΓ ` s′K, 1〉〉

D[J(p′, (p,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈〈〈D[π1], π1π1〉D[JΓ ` s′K], π0〉, π1〈π1JΓ ` s′K, 1〉〉

D[J(p′, (p,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈〈D[π1JΓ ` s′K], π0〉, π1〈π1JΓ ` s′K, 1〉〉

D[J(p′, (p,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈〈D[π1JΓ ` s′K], D[1]〉, π1〈π1JΓ ` s′K, 1〉〉

D[J(p′, (p,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈D[〈π1JΓ ` s′K, 1〉], π1〈π1JΓ ` s′K, 1〉〉

D[J(p′, (p,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[〈π1JΓ ` s′K, 1〉J(p′, (p,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[〈J(p,Γ) ` s′K, 1〉J(p′, (p,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` {p′.t}s′K]

= JΓ ` ∂{p
′.t}s′

∂p
(s) · uK

A similar calculation works for the third part.
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DRL.16 Consider the following:

JΓ ` ∂(t1, t2)

∂p
(s) · uK = 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` (t1, t2)K]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[〈J(p,Γ) ` t1K, J(p,Γ) ` t2K〉]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈D[J(p,Γ) ` t1K], D[J(p,Γ) ` t2K]〉

= 〈〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` t1K],

〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` t2K]〉

= 〈JΓ ` ∂t1
∂p

(s) · uK, JΓ ` ∂t2
∂p

(s) · uK〉 = JΓ `
(
∂t1
∂p

(s) · u, ∂t2
∂p

(s) · u
)

K

DRL.17 Assume no variable in p is in t. Recall that a−1
× (c×× 1)a×π1 = 1× π1. Consider

the following
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JΓ ` ∂{p
′.t}t′

∂p
(s) · uK = 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` {p′.t}t′K]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[〈J(p,Γ) ` t′K, 1〉J(p′, (p,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈D[〈J(p,Γ) ` t′K, 1〉], π1〈J(p,Γ) ` t′K, 1〉〉

D[J(p′, (p,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈D[〈J(p,Γ) ` t′K, 1〉], π1〈J(p,Γ) ` t′K, 1〉〉

D[a−1
× (c× × 1)a×J(p, (p′,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈D[〈J(p,Γ) ` t′K, 1〉], π1〈J(p,Γ) ` t′K, 1〉〉

(a−1
× (c× × 1)a× × a−1

× (c× × 1)a×)D[J(p, (p′,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈D[〈J(p,Γ) ` t′K, 1〉], π1〈J(p,Γ) ` t′K, 1〉〉

(a−1
× (c× × 1)a× × a−1

× (c× × 1)a×)D[π1J((p′,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈〈D[J(p,Γ) ` t′K], π0〉, 〈π1J(p,Γ) ` t′K, π1〉〉

((1× π1)× (1× π1))D[J((p′,Γ)) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉〈〈D[J(p,Γ) ` t′K], π0π1〉, 〈π1J(p,Γ) ` t′K, π1π1〉〉

D[J((p′,Γ)) ` tK]

= 〈〈〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` t′K], 0〉, 〈〈JΓ ` sK, 1〉J(p,Γ) ` t′K, 1〉〉

D[J((p′,Γ)) ` tK]

= 〈〈JΓ ` ∂t
′

∂p
(s) · uK, 0〉, 〈JΓ ` {p.t′}sK, 1〉〉D[J(p′,Γ) ` tK]

= JΓ ` ∂t

∂p′
({p.t′}s) · ∂t

′

∂p
(s) · uK

DRL.18 Assume p′ does not occur in s or t. Consider the following
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JΓ `
∂ ∂t
∂p

(s) · p′

∂p′
(r) · uK

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` rK, 1〉〉D[Jp′,Γ ` ∂t

∂p
(s) · p′K]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` rK, 1〉〉D[〈〈Jp′,Γ ` p′K, 0〉, 〈Jp′,Γ ` sK, 1〉〉D[J(p, (p′,Γ)) ` tK]]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` rK, 1〉〉D[〈〈π0, 0〉, 〈Jp′,Γ ` sK, 1〉〉((1× π1)× (1× π1))

D[J(p,Γ) ` tK]]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` rK, 1〉〉D[〈〈π0, 0〉, 〈π1JΓ ` sK, π1〉〉D[J(p,Γ) ` tK]]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` rK, 1〉〉〈D[〈〈π0, 0〉, 〈π1JΓ ` sK, π1〉〉],

π1〈〈π0, 0〉, 〈π1JΓ ` sK, π1〉〉〉D2[J(p,Γ) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈JΓ ` rK, 1〉〉〈〈〈π0π0, 0〉, 〈(π1 × π1)D[JΓ ` sK], π0π1〉〉,

π1〈〈π0, 0〉, 〈π1JΓ ` sK, π1〉〉〉D2[J(p,Γ) ` tK]

= 〈〈〈JΓ ` uK, 0〉, 〈〈0, 1〉D[JΓ ` sK], 0〉〉,

〈〈JΓ ` rK, 0〉, 〈JΓ ` sK, 1〉〉D2[J(p,Γ) ` tK]

= 〈〈〈JΓ ` uK, 0〉, 0〉, 〈〈JΓ ` rK, 0〉, 〈JΓ ` sK, 1〉〉〉D2[J(p,Γ) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈〈JΓ ` rK, 0〉, 〈JΓ ` sK, 1〉〉〉 (〈1, 0〉 × 1)D2[J(p,Γ) ` tK]

= 〈〈JΓ ` uK, 0〉, 〈〈JΓ ` rK, 0〉, 〈JΓ ` sK, 1〉〉〉(1× π1)D[J(p,Γ) ` tK]

= JΓ ` rK 〈〈JΓ ` uK, 0〉, 〈JΓ ` sK, 1〉〉D[J(p,Γ) ` tK]

= JΓ ` rK JΓ ` ∂t

∂p
(s) · uK = JΓ `

(
∂t

∂p
(s) · u

)
|r
K

DRL.19 Assume that p1, p2 do not occur in any of s1, s2, u1, u2. Denote the map a−1
× (c××

1)ax by tw. Consider the following,
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JΓ `
∂ ∂t
∂p1

(s1) · u1

∂p2

(s2) · u2K

= 〈〈JΓ ` u2K, 0〉, 〈JΓ ` s2K, 1〉〉D[〈〈Jp2,Γ ` u1K, 0〉, 〈Jp2,Γ ` s1K, 1〉〉

D[J(p1, (p2,Γ)) ` tK]]

= 〈〈JΓ ` u2K, 0〉, 〈JΓ ` s2K, 1〉〉D[〈〈π1JΓ ` u1K, 0〉, 〈π1JΓ ` s1K, 1〉〉

D[J(p1, (p2,Γ)) ` tK]]

= 〈〈JΓ ` u2K, 0〉, 〈JΓ ` s2K, 1〉〉〈D[〈〈π1JΓ ` u1K, 0〉, 〈π1JΓ ` s1K, 1〉〉],

π1〈〈π1JΓ ` u1K, 0〉, 〈π1JΓ ` s1K, 1〉〉〉D2[J(p1, (p2,Γ)) ` tK]

= 〈〈JΓ ` u2K, 0〉, 〈JΓ ` s2K, 1〉〉〈〈〈(π1 × π1)D[JΓ ` u1K], 0〉, 〈(π1 × π1)D[JΓ ` s1K], π0〉〉,

〈〈π1π1JΓ ` u1K, 0〉, 〈π1π1JΓ ` s1K, π1〉〉〉D2[J(p1, (p2,Γ)) ` tK]

= 〈〈〈〈0, 1〉D[JΓ ` u1K], 0〉, 〈〈0, 1〉D[JΓ ` s1K], 〈JΓ ` u2K, 0〉〉〉,

〈〈JΓ ` u1K, 0〉, 〈JΓ ` s1K, 〈JΓ ` s2K, 1〉〉〉〉D2[J(p1, (p2,Γ)) ` tK]

= 〈〈0, 〈0, 〈JΓ ` u2K, 0〉〉〉, 〈〈JΓ ` u1K, 0〉, 〈JΓ ` s1K, 〈JΓ ` s2K, 1〉〉〉〉

D2[J(p1, (p2,Γ)) ` tK]

= 〈〈0, 〈JΓ ` u1K, 〈0, 0〉〉〉, 〈〈0, 〈JΓ ` u2K, 0〉〉, 〈JΓ ` s1K, 〈JΓ ` s2K, 1〉〉〉〉

D2[twJ(p2, (p1,Γ)) ` tK]

= 〈〈0, 〈JΓ ` u1K, 〈0, 0〉〉〉, 〈〈0, 〈JΓ ` u2K, 0〉〉, 〈JΓ ` s1K, 〈JΓ ` s2K, 1〉〉〉〉

(tw × tw × tw × tw)D2[J(p2, (p1,Γ)) ` tK]

= 〈〈0, 〈0, 〈JΓ ` u1K, 0〉〉〉, 〈〈JΓ ` u2K, 0〉, 〈JΓ ` s2K, 〈JΓ ` s1K, 1〉〉〉〉

D2[J(p2, (p1,Γ)) ` tK]

= · · ·

= JΓ `
∂ ∂t
∂p2

(s2) · u2

∂p1

(s1) · u1K

Therefore the interpretation is sound.
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4.4.2 Completeness

We form the classifying category, now of a differential restriction theory, so derivatives

must be added. The derivative of a map is given by:

f = p 7→ t

D[f ] = (p′, p) 7→ ∂t
∂p

(p) · p′

(where p, p′ : A). It remains to show that there is an h such that D[h]〈1, !〉(1×s)•r = π0.

As a remark on the differential structure in C[T ], consider the derivative (p′, p) 7→
∂f
∂p

(p) · p′. The derivative binds, in f , the variables of p. This has the effect that under

composition q 7→ {(p′, p).∂f
∂p

(p) · p′}(m1,m2), an alpha conversion is required of f , and

the result, after moving some of the restrictions around, is q 7→ ∂f|m1,m2

∂p
(m2) ·m1. Using

DRL.11, this is equal to(
∂f

∂p
(m2) ·m1

)
|{p.m2}m2,{p.m1}m2

=

(
∂f

∂p
(m2) ·m1

)
|m2,m1

=
∂f

∂p
(m2) ·m1.

The completeness theorem generalizes the completeness theorem of Blute et al [2] to

the setting of partial terms.

Theorem 4.4.2. For every differential restriction theory T , C[T ] is a differential re-

striction category.

Proof. DR.1

D[p 7→ 0] = (p′, p) 7→ ∂0

∂p
(p) · p′ = (p′, p) 7→ 0|p,p′ = (p′, p) 7→ 0

where the last step is justified because the restriction of a variable pattern disap-

pears.

D[p 7→ t1 + t2] = (p′, p) 7→ ∂t1 + t2
∂p

(p) · p′ = (p′, p) 7→ ∂t1
∂p

(p) · p′ + ∂t2
∂p

(p) · p′

=

(
(p′, p) 7→ ∂t1

∂p
(p) · p′

)
+

(
(p, p′) 7→ ∂t2

∂p
(p) · p′

)
= D[p 7→ t1] +D[p 7→ t2]
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DR.2 For the zero case,

〈0, g〉D[f ] = (p 7→ (0, g))((q′, q) 7→ ∂f

∂q
(q) · q′)

= p 7→ ∂{q.f}g
∂q

(g) · 0

= p 7→ 0|{q.{q.f}g}g = p 7→ 0|({q.f}g)|g

= p 7→ 0|{q.f}(g|g) = p 7→ 0|{q.f}g

= p 7→ ({p.0}p)|{q.f}g = p 7→ {p.0}
(
p|{q.f}g

)
= (p 7→ p|{q.f}g)(p 7→ 0) = p 7→ {q.f}g (p 7→ 0)

= (p 7→ g)(q 7→ f) (p 7→ 0) = gf 0

For the sum case,

〈g + h, k〉D[f ]

= (p 7→ (g + h, k))((q′, q) 7→ ∂f

∂q
(q) · q′)

= p 7→
∂({q.f}k)|g,h

∂q
(k) · (g + h)

= p 7→
(
∂{q.f}k
∂q

(k) · (g + h)

)
|{q.g}k,{q.h}k

= p 7→
(
∂{q.f}k
∂q

(k) · g +
∂{q.f}k
∂q

(k) · h
)
|{q.g}k,{q.h}k

=

(
p 7→

∂({q.f}k)|g
∂q

(k) · g

)
+

(
p 7→

∂({q.f}k)|h
∂q

(k) · h

)

= (p 7→ (g, k))((q′, q) 7→ ∂f

∂q
(q) · q′) + (p 7→ (h, k))((q′, q) 7→ ∂f

∂q
(q) · q′)

= 〈g, k〉D[f ] + 〈h, k〉D[f ]
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DR.3 For π0, use lemma (4.4.1), then DRL.15.

D[π0] = D[(p, q) 7→ p] = ((p′, q′), (p, q)) 7→ ∂p

∂(p, q)
(p, q) · (p′, q′)

= ((p′, q′), (p, q)) 7→
(
∂p

∂p
(p) · p′

)
|{p.p}p,q′,q

= ((p′, q′), (p, q)) 7→ p′|p,q′,q

= ((p′, q′), (p, q)) 7→ p′ = π0π0

The last step is justified because restrictions of variable patterns vanish. A similar

argument works for π1.

DR.4 Use DRL.16,

D[〈f, g〉] = D[p 7→ (f, g)] = (p′, p) 7→ ∂(f, g)

∂p
(p) · p′

= (p′, p) 7→
(
∂f

∂p
(p) · p′, ∂g

∂p
(p) · p′

)
= 〈D[f ], D[g]〉

DR.5 In the following, note that p does occur in g, and so the use of DRL.17 is valid.

We also must use the above remark on the differential structure in C[T ] on the

third to last step.

D[fg] = D[(p 7→ f)(q 7→ g)] = D[p 7→ {q.g}f ]

= (p′, p) 7→ ∂{q.g}f
∂p

(p) · p′

= (p′, p) 7→ ∂g

∂q
({p.f}p) ·

(
∂f

∂p
(p) · p′

)
= (p′, p) 7→ ∂g

∂q
(f) ·

(
∂f

∂p
(p) · p′

)
= (p′, p) 7→ {(q′, q).

(
∂g

∂q
(q) · q′

)
}
(
∂f

∂p
(p) · p′, f

)
=

(
(p′, p)

(
7→ ∂f

∂p
(p) · p′, f

))(
(q′, q) 7→ ∂g

∂q
(q) · q′

)
= 〈D[f ], π1f〉D[g]
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DR.6 For this use DRL.15 then DRL.18.

(〈1, 0〉 × 1)D2[f ]

= ((q′, (p′, p)) 7→ ((q′, 0), (p′, p)))(((q′, q), (p′, p)) 7→
∂ ∂f
∂p

(p) · p′

∂p′, p
(p′, p) · (q′, q)

= (q′, (p′, p)) 7→
∂ ∂f
∂p

(p) · p′

∂(p′, p)
(p′, p) · (q′, 0)

= (q′, (p′, p)) 7→
∂{p.∂f

∂p
(p) · p′}p
∂p′

(p′) · q′

= (q′, (p′, p)) 7→
∂ ∂f
∂p

(p) · p′

∂p′
(p′) · q′

= (q′, (p′, p)) 7→
(
∂f

∂p
(p) · q′

)
|p′

= (q′, (p′, p)) 7→ ∂f

∂p
(p) · q′

= ((q′, (p′, p)) 7→ (q′, p))((q′, p) 7→ ∂f

∂p
(p) · q′) = (1× π1)D[f ]

DR.7 For this, if one tries to directly prove DR.7, one quickly runs into bound variable

issues, and importantly, DRL.19 cannot be used. However, note that

〈〈〈0, 0〉, 〈h, 0〉〉, 〈〈0, g〉, 〈k1, k2〉〉〉D2[f ] = 〈〈〈0, 0〉, 〈0, g〉〉, 〈〈h, 0〉, 〈k1, k2〉〉〉D2[f ]

=⇒ 〈〈0, 〈h, 0〉〉, 〈〈0, g〉, 〈0, k〉〉〉D2[(π0 + π1)f ]

= 〈〈0, 〈0, g〉〉, 〈〈h, 0〉, 〈0, k〉〉〉D2[(π0 + π1)f ]

=⇒ 〈〈0, 〈h, 0〉〉, 〈〈0, g〉, 〈0, k〉〉〉(π0 + π1)4D2[f ]

= 〈〈0, 〈0, g〉〉, 〈〈h, 0〉, 〈0, k〉〉〉(π0 + π1)4D2[f ]

=⇒ 〈〈0, h〉, 〈g, k〉〉D2[f ] = 〈〈0, g〉, 〈h, k〉〉D2[f ]

In other words, the first equation implies DR.7, and crucially, the first equation
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can be shown in C[T ] without the same troubles. Consider,

〈〈〈0, 0〉, 〈h, 0〉〉, 〈〈0, g〉, 〈k1, k2〉〉〉D2[f ]

= (a 7→ (((0, 0), (h, 0)), ((0, g), (k1, k2))))D2[(x1, x2) 7→ f ]

= (a 7→ (((0, 0), (h, 0)), ((0, g), (k1, k2))))

D[((u1, u2), (s1, s2)) 7→ ∂f

∂(x1, x2)
(s1, s2) · (u1, u2)]

= (a 7→ (((0, 0), (h, 0)), ((0, g), (k1, k2))))

((((v1, v2), (v3, v4)), ((r1, r2), (r3, r4))) 7→

∂ ∂f
∂(x1,x2)

(s1, s2) · (u1, u2)

∂((u1, u2), (s1, s2))
((r1, r2), (r3, r4)) · ((v1, v2), (v3, v4)))

= a 7→
∂ ∂f
∂(x1,x2)

(s1, s2) · (u1, u2)

∂((u1, u2), (s1, s2))
((0, g), (k1, k2)) · ((0, 0), (h, 0))

= a 7→
∂ ∂f
∂(x1,x2)

(s1, s2) · (0, g)

∂(s1, s2)
(k1, k2) · (h, 0) DRL.15

= a 7→
∂ ∂f
∂(x1,x2)

(s1, k2) · (0, g)

∂s1

(k1) · h DRL.15

= a 7→
∂ ∂{x1.f}s1

∂x2
(k2) · g

∂s1

(k1) · h DRL.15

= a 7→
∂ ∂f
∂x2

(k2) · g
∂x1

(k1) · h α-rename

= a 7→
∂ ∂f
∂x1

(k1) · h
∂x2

(k2) · g DRL.19

= · · ·

= 〈〈〈0, 0〉, 〈0, g〉〉, 〈〈h, 0〉, 〈k1, k2〉〉〉D2[f ]
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DR.8 Consider,

D[f ] = D[p 7→ p|f ] = (p′, p) 7→
∂p|f
∂p

(p) · p′

= (p′, p) 7→
(
∂p

∂p
(p) · p′

)
|f

= (p′, p) 7→ p′|f

=
(

(p′, p) 7→ (p′, p)|f

)
((p′, p) 7→ p′) = (p′, p) 7→ f π0

= (p′, p) 7→ {p.p}f π0 = π1f π0

DR.9 Consider,

D[f ] = (p′, p) 7→ ∂f

∂p
(p) · p′

= (p′, p) 7→ (p′, p)| ∂f
∂p

(p)·p′

= (p′, p) 7→ (p′, p)|f

= π1f

Thus, C[T ] is a differential restriction category as proposed.

Theorem (4.4.2) establishes the completeness of differential restriction categories as

models of differential restriction term logic.

4.5 Turing Categories

4.6 Differential Turing Categories and DPCAs

We are now ready to speculate on what a differential Turing category must be. Clearly

it must be an additive Turing category but also the key idempotent splittings which

make every object retractions of the Turing object must become at least 2-differential

splittings. In fact, we shall propose that they should be ∞-differential splittings.

The issue is how to arrange this in a uniform manner. Our proposed definition is:
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Definition 4.6.1. Let X be a differential restriction category:

(i) A differential index for f : A × B −→ C in •BC : T × B −→ C is a map sf : A

−→ T such that (using the term logic):

• s(x) •BC y = f(x, y) (so it is an index in the usual sense);

• (u, v) 7→ ∂s(x)
∂x

(u) · v is a differential index for ((u, v), y) 7→ ∂f(x,y)
∂x

(u) · v.

(ii) A map •BC : T × B −→ C is said to be differentially universal in case it is both

linear and strongly additive in its first argument and each map f : A×B −→ C has

a differential index in •BC.

(iii) X is a differential Turing category if it has differential Turing structure,

that is an object T with for each pair of objects B and C a differentially universal

map •BC : T ×B −→ C.

Note the derivative of a differential index for f is required to be not only an ordinary

index for the derivative of f with respect to its first argument, but also a differential

index - so its derivative is in turn a differential index.

Recall that there is a recognition theorem for Turing categories: it is reasonable to see

whether the analogue holds for differential Turing categories. For this we must show that

A C(〈1,!〉τ1,A,s) T is an ∞-differential splitting for each n. For this we need, for example,

D[s]〈1, !〉τ1,A = π0. In the term logic this calculation is:

∂s(x)

∂x
(u) · v • () =

∂s(x) • ()

∂x
(u) · v =

∂x

∂x
(u) · v = v

as required. The calculation for the higher derivatives is similar.

A similar calculation makes the standard encoding for pairs TCT×T an∞-differential

splitting.

These observations then guide the definition of a differential partial combinatory al-

gebra, A, because Comp(A) must be a differential Turing category. Therefore, there must
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be a combinator d such that dxu v = ∂x z
∂z

(u) · v which satisfies the required equations.

While there remains considerable details to fill (which are beyond the scope of this

thesis), what has been achieved is a better understanding of which idempotents can be

split to maintain additive and differential structure. Manzonetto’s [36], had conjectured

only strongly additive linear idempotent could be split: this led him proposing a com-

plicated encoding of pairing via a linear idempotent. This encoding led him to further

conjecture that the addition would have to be idempotent. What has been shown in this

thesis is that one can split more general idempotents, and avoid Manzonetto’s dilemma.

What this thesis has not done is to provide an example of a differential Turing category

which is either not total or does not have an idempotent addition. Rather it has shown

that such examples have not actually been precluded. Providing such examples (as was

done for left additive Turing categories) would be critical in determining how reasonable

our proposed definition, above, really is.

4.7 Conclusion

In Ehrhard and Regnier’s differential λ-calculus, application is assumed to be linear in

the first argument [23]. A natural next step is to consider differential applicative systems,

and to assume that application should be linear in its first argument as well.

Manzonetto [36] realized that it was necessary to encode pairing as an idempotent

which when split provided both additive and differential structure. He conjectured [37]

that for an idempotent to do this, it is necessary to require that the idempotent itself is

linear.

A significant contribution of this thesis has been to analyze this assumption in detail

(and in more generality for the partial case). It turns out that the situation is more

delicate: the idempotents themselves do not need to be linear. Thus Manzonetto’s
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conjecture was too strong.

An immediate consequence of allowing more general idempotents is that the standard

pairing combinator can be used. Thus, Manzonetto’s complex pairing combinator, which

in turn led him to suggest that the idempotent must be linear, is unnecessary. Therefore,

we have opened the possibility that there are models of the differential lambda calculus

which do not have an idempotent addition.

This thesis has not provided any (non-trivial) models of differential Turing categories.

It is known that total models exist (see [36]) although the addition in these models is

idempotent. The next step in this work is to develop models which illustrate both that

addition need not be idempotent and that application can be partial.
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