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Abstract

This thesis presents the semantics of quantum stacks and a functional quantum pro-

gramming language, L-QPL. An operational semantics for L-QPL based on quantum

stacks in the form of a term logic is developed and used as an interpretation of quan-

tum circuits. The operational semantics is then extended to handle recursion and alge-

braic datatypes. Recursion and datatypes are not concepts found in quantum circuits,

but both are generally required for modern programming languages.

The language L-QPL is introduced in a discussion and example format. Various

example programs using both classical and quantum algorithms are used to illustrate

features of the language. Details of the language, including handling of qubits, general

data types and classical data are covered.

The quantum stack machine is then presented. Supporting data for operation of

the machine are introduced and the transitions induced by the machine’s instructions

are given.
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Chapter 1

Introduction

This thesis introduces a quantum stack and its semantics together with a quantum pro-

gramming language which has quantum control and classically controlled data types.

The quantum stack gives the basis for an abstract (quantum) machine, the QSM. The

quantum programming language, L-QPL, gives programmers a high-level functional

language, suitable for experimination and design of quantum algorithms. This work

was motivated by the desire to provide a semantically correct programming language

for programming quantum algorithms at a higher level than bits and qubits.

1.1 Why a quantum programming language?

Currently, it is not clear that there will ever be a quantum computer having a number

of qubits comparable to the number of bits available on classical computers. Thus,

it is reasonable to ask what is the point of a quantum programming language. The

compiler for L-QPL presented in this thesis targets a virtual machine — the quantum

stack machine, which has been implemented on a classical computer. Any significant

quantum algorithm written in L-QPL and simulated classically by this virtual machine

is inefficient.

However, there are many reasons to create and use a quantum programming lan-

guage and to understand how to organize a virtual machine for such a language.

Theory of algorithms. The current understanding of the limits of practical com-

putability has led researchers and practitioners to consider probabilistic (and quan-

1
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tum) algorithms. This increases the understanding of those problems and sometimes

may lead back to classical algorithms.

Quantum algorithms subsume probabilistic algorithms in that providing language

support for quantum computing also gives probabilistic support. A simple example

of this can be seen in the program to generate a coin toss given in figure 4.5 on page 72.

Quantum algorithm experimentation. Thinking about quantum algorithms is en-

hanced by having a high level way of expressing algorithms. A high level language

such as L-QPL allows the researcher or practitioner to design an algorithm at an al-

together different level than the standard bits and qubits of quantum circuits. An

emulator and virtual machine as provided by this thesis allows experimentation with

quantum algorithms, allowing a broader exploration of the field.

Quantum computer design. The thesis presents a novel view of quantum compu-

tation using a quantum stack machine. This suggests a way of organizing quantum

computation with a quantum stack machine as the central element. This may stimu-

late others to consider how to realize such a machine with quantum devices.

1.2 Previous research in this area

For this thesis, both functional quantum computing languages and quantum simula-

tors were considered as relevant prior research. Previous quantum languages were

restricted only to functional languages due to the variety of differences between func-

tional and imperative languages, especially the acceptance of type safety as a basic

component of functional languages and the lack of global variables in such languages.
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1.2.1 QPL by Peter Selinger

In 2002, Peter Selinger presented a description and categorical semantics for a func-

tional quantum programming language in [Sel04].

Much of the work in this thesis was inspired by and often based upon the language

described therein. Dr. Selinger first presented a diagrammatic language consisting of

picture fragments corresponding to various operations in the language. In later sec-

tions of the paper, QPL and Block QPL are introduced. QPL closely mirrors the dia-

grammatic language with the addition of a few minor restrictions. Block QPL restricts

the language further by creating a structured language that would allow allocation

of data in a stack based environment rather than on a heap as required for QPL. The

syntax for QPL is can be found in [Sel04].

An alternative direction in quantum programming languages, closely related to

QPL, was explored in a series of papers ([AG05], [AGVS05], [GA05a], and [GA05b])

by Altenkirch and Grattage. L-QPL does not follow the direction taken by QML. The

current compiler for QML translates QML code to Haskell, extended by types and

functions as presented in [Sab03].

Comparison with and contrast to L-QPL

While inspired by QPL, L-QPL has diverged considerably. The syntax of L-QPL has

been changed and extended, data construction has been added, quantum control by

qubits and data types consisting of qubits in an integral part of the language and a

demarcation between classical and quantum data is included in L-QPL.

The two languages are similar in that they both have qubits as a first class datatype

and provide standard operations on qubits. The provided operations include a basis

of unitary transformations and measurement.

Both languages provide procedures, although with different syntax. Each has an
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assignment statement. Each is a functional language in the sense that a statement of

the language is a function from its inputs to its outputs.

The greatest difference between QPL and L-QPL is that QPL is a bit and qubit

oriented language, while L-QPL was designed to work with algebraic data types. L-

QPL retains qubits, but bits are not built-in to L-QPL.

The syntax for unitary transformations differs between the languages, with QPL

using an operator-assignment type of syntax and L-QPL syntactically treating trans-

formations in the same way as function calls. Quantum control in QPL is done via

assuming various built-in controlled transforms, while L-QPL requires specifying the

control variables of a transform explicitly.

QPL provides explicit looping based upon a bit’s value. In L-QPL, all looping is

done via recursion.

The semantics of L-QPL is inspired by QPL. We provide an operational semantics

in this thesis. An explicit semantic comparison is left for future work.

1.2.2 Quantum simulators

For this thesis, I considered two Haskell based simulators and one in C++. The first

Haskell simulator is from Shin-Cheng Mu and Richard Bird [MB01] in 2001 and the

second was published by Amr Sabry [Sab03] in 2003. The C++ simulator is discussed

in [BCS03], although the primary intent of this latter paper is to discuss a possible

architecture for quantum computers. The C++ implementation, available on the in-

ternet, is a simulator and a set of classes intended to serve as an extension to the C++

language ([Str97]).

Each of these papers provide ways to represent qubits in their language of choice,

typically by storing the coefficients of the standard dirac notation in some way. (i.e, if
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q = α |0〉+ β |1〉 for some complex α and β, the α and β are stored).

The salient feature of these papers, from our perspective, is that they simulate rather

than emulate the quantum computation. Simulate means that at measurments the sim-

ulator does a “throw the dice” and actually collapses qubits. Emulate means that the

emulator continues to track all possible outcomes of the quantum computation. The

quantum stack machine emulates a quantum computation by using the density matrix

of the entire system.

This creates two major differences between these simulators and the quantum

stack machine.

The first, a postive effect for the quantum stack machine, directly affects how an

experimentor can view results. Consider Grover’s search algorithm in a simple case,

choosing 1 number out of 16. The probability of success in this case is 96.1%, provided

the correct number of iterations of applying the grover transform is chosen. (See ap-

pendix C.2.1 on page 150 and [Wat] for details.) To verify this by experimentation in

a simulator requires a large number of “runs” of the simulator. To verify that in the

quantum stack machine, an emulator, requires a single “run”.

The second effect is on the space used. In a simulator, space used is on the order

of 2N where N is the number of qubits. In the quantum stack machine emulator, the

space used is on the order of 4N, the square of the simulator’s space usage. This issue

is mitigated by various sparse storage techniques, but can still limit the usability of

the emulator vs. the simulator when experimenting with larger numbers of qubits.

1.3 Description and reading guide

The two main contributions of this thesis, the quantum stack and L-QPL, may be re-

viewed independently of each other.
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For those interested in reviewing the introduction of the quantum stack machine

and its implementation the recommended reading path is the chapter on semantics,

chapter 3, followed by chapter 5. In appendix B, further details are given on quantum

stack machine instructions and the translation of L-QPL into quantum stack machine

code.

Chapter 4 is the primary required reading for learning L-QPL. All facets of the

language are presented in that chapter interspersed with a number of examples. Fur-

ther examples of programs in L-QPL can be found in appendix C, including quantum

arithmetic, Grover’s search algorith, Simon’s algorithm and order finding. A complete

BNF description of L-QPL is available in appendix A.

Details of running the L-QPL compiler and the quantum stack machine emulator

are given in appendix D.



Chapter 2

Quantum computation and circuits

2.1 Linear algebra

Quantum computation requires familiarity with the basics of linear algebra. This sec-

tion will give definitions of the terms used throughout this thesis. Further information

and details may be found in many university level algebra texts, e.g., [Lan02].

2.1.1 Basic definitions

The first definition needed is that of a vector space.

Definition 2.1.1 (Vector Space). Given a field F, whose elements will be referred to as scalars,

a vector space over F is a non-empty set V with two operations, vector addition and scalar

multiplication. Vector addition is defined as + : V × V → V and denoted as v + w where

v, w ∈ V . The set V must be an abelian group under +. Scalar multiplication is defined

as : F × V → V and denoted as cv where c ∈ F, v ∈ V . Scalar multiplication distributes

over both vector addition and scalar addition and is associative. F’s multiplicative identity is

an identity for scalar multiplication.

The specific algebraic requirements are:

1. ∀u, v, w ∈ V , (u + v) + w = u + (v + w);

2. ∀u, v ∈ V , u + v = v + u;

3. ∃0 ∈ V such that ∀v ∈ V , 0 + v = v;

4. ∀u ∈ V , ∃v ∈ V such that u + v = 0;

7
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5. ∀u, v ∈ V , c ∈ F, c(u + v) = cu + cv;

6. ∀u ∈ V , c, d ∈ F, (c + d)u = cu + du;

7. ∀u ∈ V , c, d ∈ F, (cd)u = c(du);

8. ∀u ∈ V , 1u = u.

Examples of vector spaces over F are: Fn×m – the set of n×m matrices over F; and

Fn – the n−fold Cartesian product of F. Fn×1, the set of n × 1 matrices over F is also

called the space of column vectors, while F1×n, the set of row vectors. Often, Fn is

identified with Fn×1.

This thesis shall identify Fn with the column vector space over F.

Definition 2.1.2 (Linearly independent). A subset of vectors {vi} of the vector space V is

said to be linearly independent when no finite linear combination of them,
∑

ajvj equals 0

unless all the aj are zero.

Definition 2.1.3 (Basis). A basis of a vector space V is a linearly independent subset of V

that generates V . That is, any vector u ∈ V is a linear combination of the basis vectors.

2.1.2 Matrices

As mentioned above, the set of n ×m matrices over a field is a vector space. Addi-

tionally, matrices compose and the tensor product of matrices is defined.

Matrix composition is defined as usual. That is, for A = [aij] ∈ Fm×n, B = [bjk] ∈

Fn×p:

A B =



(

∑

j

aijbjk

)

ik


 ∈ Fm×p.

Definition 2.1.4 (Diagonal matrix). A diagonal matrix is a matrix where the only non-zero

entries are those where the column index equals the row index.
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The diagonal matrix n × n with only 1’s on the diagonal is the identity for matrix

multiplication, and is designated by In.

Definition 2.1.5 (Transpose). The transpose of an n ×m matrix A = [aij] is an m × n

matrix At with the i, j entry being aji.

When the base field of a matrix is C, the complex numbers, the conjugate transpose

(also called the adjoint) of an n×m matrix A = [aij] is defined as the m×n matrix A∗

with the i, j entry being aji, where a is the complex conjugate of a ∈ C.

When working with column vectors over C, note that u ∈ C
n

=⇒ u
∗ ∈ C

1×n

and that u∗ × u ∈ C1×1. This thesis will use the usual identification of C with C1×1. A

column vector u is called a unit vector when u∗ × u = 1.

Definition 2.1.6 (Trace). The trace, Tr(A) of a square matrix A = [aij] is
∑

aii.

Tensor product

The tensor product of two matrices is the usual Kronecker product:

U⊗ V =




u11V u12V · · · u1mV

u21V u22V · · · u2mV

...
...

. . .

un1V un2V · · · unmV




=




u11v11 · · · u12v11 · · · u1mv1q

u11v21 · · · u12v21 · · · u1mv2q

...
...

...
. . .

un1vp1 · · · un2vp1 · · · unmvpq




Special matrices

When working with quantum values certain types of matrices over the complex num-

bers are of special interest. These are:

Unitary Matrix : Any n× n matrix A with AA∗ = I (= A∗A).

Hermitian Matrix : Any n× n matrix A with A = A∗.
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Positive Matrix : Any Hermitian matrix A in Cn×n where u∗Au > 0 for all vectors

u ∈ Cn. Note that for any Hermitian matrix A and vector u, u∗Au is real.

Completely Positive Matrix : Any positive matrix A in Cn×n where Im ⊗ A is posi-

tive.

The matrix [
0 −i

i 0

]

is an example of a matrix that is unitary, Hermitian, positive and completely positive.

Superoperators

A Superoperator S is a matrix over C with the following restrictions:

1. S is completely positive. This implies that S is positive as well.

2. For all positive matrices A, Tr(S A) 6 Tr(A).

2.2 Basic quantum computation

This section provides a basic introduction to the mathematical descriptions of quan-

tum bits and quantum computations. For a more complete treatment of the subject,

please see [NC00] or [Wat].

2.2.1 Quantum bits

Quantum computation deals with operations on qubits. A qubit is typically repre-

sented in the literature on quantum computation as a complex linear combination

of |0〉 and |1〉, respectively identified with (1,0) and (0,1) in C2. Because of the iden-

tification of the basis vectors, any qubit can be identified with a non-zero vector in

C2. In standard quantum computation, the important piece of information in a qubit
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is its direction rather than amplitude. In other words, given q = α |0〉 + β |1〉 and

q ′ = α ′ |0〉 + β ′ |1〉 where α = γα ′ and β = γβ ′, then q and q ′ represent the same

quantum state.

A qubit that has either α or β zero is said to be in a classical state. Any other combi-

nation of values is said to be a superposition.

Section 2.3 on page 15 will introduce quantum circuits which act on qubits. This

section will have some forward references to circuits to illustrate points introduced

here.

2.2.2 Quantum entanglement

Consider what happens when working with a pair of qubits, p and q. This can be

considered as the a vector in C4 and written as

α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 . (2.1)

In the case where p and q are two independent qubits, with p = α |0〉 + β |1〉 and

q = γ |0〉+ δ |1〉,

p⊗ q = αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉 (2.2)

where p⊗ q is the standard tensor product of p and q regarded as vectors. There are

states of two qubits that cannot be written as a tensor product. As an example, the

state
1√
2

|00〉+ 1√
2

|11〉 (2.3)

is not a tensor product of two distinct qubits. In this case the two qubits are said to be

entangled.
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2.2.3 Quantum gates

Quantum gates operate on qubits. These gates are conceptually similar to logic gates

in the classical world. In the classical world the only non-trivial single bit gate is the

Not gate which sends 0 to 1 and 1 to 0. However, there are infinitely many non-trivial

quantum gates.

An n−qubit quantum gate is represented by a 2n × 2n matrix. A necessary and

sufficient condition for such a matrix to be a quantum gate is that it is unitary.

The entanglement of two qubits, p and q, is accomplished by applying a Hadamard

transformation to p followed by a Not applied to q controlled by p. The circuit in fig-

ure 2.2 on page 16 shows how to entangle two qubits that start with an initial state of

|00〉. See figure C.1 on page 145 for how this can be done in L-QPL.

A list of some common gates, together with their usual quantum circuit represen-

tation is given in the next section in table 2.1 on page 17.

2.2.4 Measurement

The other allowed operation on a qubit or group of qubits is measurement. When a

qubit is measured it assumes only one of two possible values, either |0〉 or |1〉. Given

q = α |0〉+ β |1〉 (2.4)

where |α|2 + |β|2 = 1, then measuring q will result in |0〉 with probability |α|2 and |1〉

with probability |β|2. Once a qubit is measured, re-measuring will always produce the

same value.

In multi-qubit systems the order of measurement does not matter. If p and q are

as in equation (2.1) on the preceding page, let us suppose measuring p gives |0〉. The

measure will result in that value with probability |α00|
2 + |α01|

2, after which the system
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collapses to the state:

α00 |00〉+ α01 |01〉 (2.5)

Measuring the second qubit, q, will give |0〉with probability |α00|
2 or |1〉with prob-

ability |α01|
2.

Conversely, if q was measured first and gave us |0〉 (with a probability of |α00|
2 +

|α10|
2) and then p was measured, p will give us |0〉 with probability |α00|

2 or |1〉 with

probability |α10|
2.

Thus, when measuring both p and q, the probability of getting |0〉 from both mea-

sures is |α00|
2, regardless of which qubit is measured first.

Considering states such as in equation (2.3), measuring either qubit would actually

force the other qubit to the same value. This type of entanglement is used in many

quantum algorithms such as quantum teleportation.

2.2.5 Mixed states

The notion of mixed states refers to an outside observer’s knowledge of the state of a

quantum system. Consider a 1 qubit system

ν = α |0〉+ β |1〉 . (2.6)

If ν is measured but the results of the measurement are not examined, the state of

the system is either |0〉 or |1〉 and is no longer in a superposition. This type of state is

written as:

ν = |α|2{|0〉} + |β|2{|1〉}. (2.7)

An external (to the state) observer knows that the state of ν is as expressed in equa-

tion (2.7). Since the results of the measurement were not examined, the exact state (0

or 1) is unknown. Instead, a probability is assigned as expressed in the equation.
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Thus, if the qubit ν is measured and the results are not examined, ν can be treated as

a probabilistic bit rather than a qubit.

2.2.6 Density matrix notation

The state of any quantum system of qubits may be represented via a density matrix. In

this notation, given a qubit ν, the coefficients of |0〉 and |1〉 form a column vector u.

Then the density matrix corresponding to ν is uu∗. If ν = α |0〉+ β |1〉,

ν =

(
α

β

)(
α β

)
=

(
αα αβ

βα ββ

)
. (2.8)

When working with mixed states the density matrix of each component of the

mixed state is added. For example, the mixed state shown in equation (2.7) on the

preceding page would be represented by the density matrix

|α|2
(

1 0
0 0

)
+ |β|2

(
0 0
0 1

)
=

(
|α|2 0
0 |β|2

)
. (2.9)

Note that since the density matrix of mixed states is a linear combination of other

density matrices, it is possible to have two different mixed states represented by the

same density matrix.

The advantage of this notation is that it becomes much more compact for mixed

state systems. Additionally, scaling issues are handled by insisting the density matrix

has a trace = 1. During a general quantum computation, as we shall see, the trace can

actually fall below 1 indicating that the computation is not everywhere total.

Gates and density matrices

When considering a qubit q as a column vector and a unitary transform T as a matrix,

the result of applying the transform T to q is the new vector Tq. The density matrix of

the original qubit is given by q q∗, while the density matrix of the transformed qubit
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is (Tq)(Tq)∗, which equals T(qq∗)T∗. Thus, when a qubit q is represented by a density

matrix A, the formula for applying the transform T to q is TAT∗.

2.3 Quantum circuits

2.3.1 Contents of quantum circuits

Currently a majority of quantum algorithms are defined and documented using quan-

tum circuits. These are wire-type diagrams with a series of qubits input on the left of

the diagram and output on the right. Various graphical elements are used to describe

quantum gates, measurement, control and classical bits.

Gates and qubits

The simplest circuit is a single wire with no action:

x

The next simplest circuit is one qubit and one gate. The qubit is represented by a single

wire, while the gate is represented by a box with its name, G, inside it. This is shown

in the circuit in figure 2.1. In general, the name of the wire which is input to the gate G

may be different from the name of G’s output wire. Circuit diagrams may also contain

constant components as input to gates as in the circuit in figure 2.3 on the following

page.

x
G

y

Figure 2.1: Simple single gate circuit

Future diagrams will drop the wire labels except when they are important to the

concept under discussion.
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x
H

x ′ • x ′

y ��������y
′

Figure 2.2: Entangling two qubits.

|1〉 �������� |0〉
|1〉 • |1〉

Figure 2.3: Controlled-Not of |1〉 and |1〉

Controlled gates, where the gate action depends upon another qubit, are shown

by attaching a wire between the wire of the control qubit and the controlled gate. The

circuit in figure 2.2 shows two qubits, where a Hadamard is applied to the top qubit,

followed by a controlled-Not applied to the second qubit. In circuits, the control qubit

is on the vertical wire with the solid dot. This is then connected via a horizontal wire

to the gate being controlled.

A list of common gates, their circuits and corresponding matrices is given in ta-

ble 2.1 on the following page.

Measurement

Measurement is used to transform the quantum data to classical data so that it may be

then used in classical computing (e.g. for output). The act of measurement is placed

at the last part of the quantum algorithm in many circuit diagrams and is sometimes

just implicitly considered to be there.

While there are multiple notations used for measurement in quantum circuit di-

agrams, this thesis will standardize on the D-box style of measurement as shown in

figure 2.4.

W 2534M D-box

Figure 2.4: Measure notation in quantum circuits

A measurement may have a double line leaving it, signifying a bit, or nothing,
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Gate Circuit Matrix

Not (X) ��������

[
0 1
1 0

]

Z Z

[
1 0
0 −1

]

Hadamard H
1√
2

[
1 1
1 −1

]

Swap ××




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




Controlled-Not •
��������




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




Toffoli ••
��������




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




Table 2.1: Gates, circuit notation and matrices



18

signifying a destructive measurement.

Operations affecting multiple qubits at the same time are shown by extending the

gate or measure box to encompass all desired wires. In the circuit in figure 2.5, the

gate U applies to all of the first three qubits and the measurement applies to the first

two qubits.

U
bits
ED
BC

Figure 2.5: Examples of multi-qubit gates and measures

0-control and control by bits

The examples above have only shown control based upon a qubit being |1〉. Circuits

also allow control on a qubit being |0〉 and upon classical values. The circuit in fig-

ure 2.6 with four qubits (r1, r2, p and q) illustrates all these forms of control.

At g1, a Hadamard is 1−controlled by r2 and is applied to each of r1 and p. This is

followed in column g2 with the Not transform applied to r2 being 0−controlled by r1 .

In the same column, a Z gate is 0−controlled by q and applied to p. p and q are then

measured in column g3 and their corresponding classical values are used for control

in g4. In g4, the UR gate is applied to both r1 and r2, but only when the measure result

of p is 0 and the measure result of q is 1.

r1
H ��
��	
�

URr2 • ��������

p
H Z

Mp,q
ED
BC

��
��	
�

q ��
��	
� •
g1 g2 g3 g4

Figure 2.6: Other forms of control for gates
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Multi-qubit lines

It is common to represent multiple qubits on one line. A gate applied to a multi-

qubit line must be a tensor product of gates of the correct dimensions. The circuit

in figure 2.7 shows n qubits on one line with the Hadamard gate (tensored with itself

n times) applied to all of them. That is followed by a unary gate UR tensored with

I⊗(n−2) and tensored with itself again. This will have the effect of applying an UR gate

to the first and last qubits on the line.

/
n

H⊗n UR ⊗ I⊗(n−2) ⊗UR

Figure 2.7: n qubits on one line

Other common circuit symbols

Two other symbols that are regularly used are the swap and controlled-Z, shown in

the circuit in figure 2.8. Note that swap is equivalent to a series of three controlled-Not

gates with the control qubit changing. This can also be seen directly by multiplying

the matrices for the controlled-Not gates as shown in equation (2.10).

× ≡ • �������� •
× �������� • ��������

•
= �

Z �

Figure 2.8: Swap and controlled-Z




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (2.10)
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2.3.2 Syntax of quantum circuits

Quantum circuits were originally introduced by David Deutsch in [Deu89]. He ex-

tended the idea of standard classical based gate diagrams to encompass the quantum

cases. In his paper, he introduced the concepts of quantum gates, sources of bits, sinks

and universal gates. One interesting point of the original definition is that it does allow

loops. Currently, the general practice is not to allow loops of qubits. The commonly

used elements of a circuit are summarized in table 2.2 on the following page.

A valid quantum circuit must follow certain restrictions. As physics requires qubits

must not be duplicated, circuits must enforce this rule. Therefore, three restrictions in

circuits are the no fan-out, no fan-in and no loops rules. These conditions are a way to

express the linearity of quantum algorithms. Variables (wires) may not be duplicated,

may not be destroyed without a specific operation and may not be amalgamated.

2.3.3 Examples of quantum circuits

This section will present three quantum algorithms and the associated circuits. Each

of the circuits presented may be found in [NC00].

First, quantum teleportation, an algorithm which sends a quantum bit across a dis-

tance via the exchange of two classical bits. This is followed by the Deutsch-Jozsa al-

gorithm, which provides information about the global nature of a function with less

work than a classical deterministic algorithm can. The third example includes circuits

for the quantum Fourier transformation and its inverse.

Quantum teleportation

The standard presentation of this algorithm involves two participants Alice and Bob.

In the diagrams, these will be labelled as A and B. Alice and Bob first initialize two

qubits to |00〉, then place them into what is known as an EPR (for Einstein, Podolsky
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Desired
element

Element in a quantum circuit diagram. Example

qubit A single horizontal line.

Classical bit A double horizontal line.

Single-qubit
gates

A box with the gate name (G) inside it,
one wire attached on its left and one wire
attached on the right.

G

Multi-qubit
gates

A box with the gate name (R) inside it, n

wires on the left side and the same num-
ber of wires on the right.

R

Controlled
qubit gates

A box with the gate name (H, W) in-
side, with a solid (1-control) or open (0-
control) dot on the control wire with a
vertical wire between the dot and the sec-
ond gate.

• W

H ��
��	
�

Controlled-
Not
gates

A target ⊕, with a solid (1-control) or
open (0-control) dot on the control wire
with a vertical wire between the dot and
the gate.

•
��������

Measure-
ment

A D-box shaped node with optional
names or comments inside. One to n sin-
gle wires are attached on the left (qubits
coming in) and 0 to n classical bit wires
on the left. Classical bits may be dropped
as desired.

•
q, r
ED
BC

H

Classical
control

Control bullets attached to horizontal
classical wires, with vertical classical
wires attached to the controlled gate.

"%#$r •

X

Multiple
qubits

Annotate the line with the number of
qubits and use tensors on gates.

/
n

H⊗n

Table 2.2: Syntactic elements of quantum circuit diagrams
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and Rosen) state. This is accomplished by first applying the Hadamard gate to Alice’s

qubit, followed by a controlled-Not to the pair of qubits controlled by Alice’s qubit.

Then, Bob travels somewhere distant from Alice, taking his qubit with him1.

At this point, Alice receives a qubit, ν, in an unknown state and has to pass ν on

to Bob. She then uses ν as the control and applies a controlled-Not transform to this

new pair. Alice then applies a Hadamard transform applied to ν.

Alice now measures the two qubits and sends the resulting two bits of classical

information to Bob.

Bob then examines the two bits that he receives from Alice. If the bit resulting

from measuring Alice’s original bit is 1, he applies the Not (also referred to as X) gate

(=
[

0 1
1 0

]
) to his qubit. If the measurement result of ν is one, he applies the Z gate

(=
[

1 0
0 −1

]
). Bob’s qubit is now in the same state as the qubit Alice wanted to send.

The circuit for this is shown in figure 2.9.

|ν〉 • H :=;<M1 •

A �������� :=;<M2 •

B X Z |ν〉
|s1〉 |s2〉 |s3〉 |s4〉

Figure 2.9: Quantum teleportation

For comparison , see figure C.1 on page 145 showing how this would be imple-

mented in L-QPL. Additionally, a semantic proof of the correctness of the quantum

teleportation protocol is discussed by Abramsky and Coecke in [AC04] and [Abr04].

1Notice that all other physical constraints are ignored in this algorithm. There is no concern about
how one separates the qubits, transports the qubit or potential decoherence of the qubits.
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Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm describes a way of determining whether a function 2 f

is constant (i.e. always 0 or 1) or balanced (i.e. produces an equal number of 0 or 1

results) based on applying it to one quantum bit. The function takes n bits as input

and produces a single bit.

The function f is assumed to be expensive, therefore, it is desired to evaluate f as

few times as possible before determining if f is balanced or constant. The worst case

scenario when evaluating f classically is that determining the result requires 2n−1 + 1

invocations of the function. The best possible case is 2 invocations, which occurs when

f is balanced and the first two inputs chosen produce different results.

The quantum circuit requires only one application of the function to n + 1 qubits

which have been suitably prepared to make the decision.

The algorithm relies on being able to construct an n + 1 order unitary operator

based upon f. In general, a unitary operator like this may be constructed by mapping

the state |a, b〉 to |a, b⊕ f(a)〉where⊕ is the exclusive-or operator and a is n bit values.

If we name this operator Uf, the circuit in figure 2.10 will solve the problem with just

one application. See the appendix, appendix C.1.3 on page 146 for how this would be

done in L-QPL.

|0〉 /
n

H⊗n

Uf

H⊗n

DJ
ED

BC
|1〉 H

Figure 2.10: Circuit for the Deutsch-Jozsa algorithm

The idea of quantum parallelism is what makes this and many other quantum

algorithms work. The initial state of the system is set to |0⊗n ⊗ 1〉 after which the

2The required pre-condition for the Deutsch-Jozsa algorithm is that the function f is either balanced
or constant and not some general function. The results are not well-defined if f does not fit into one of
the two possible categories.
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Hadamard gate is applied to all of the qubits. This places the input qubits into a

superposition of all possible input values and the answer qubit is a superposition of 0

and 1. At this point, the unitary transformation Uf is applied to the qubits. Then the

Hadamard transform is applied again to the input qubits.

To complete the algorithm, measure all the qubits. It can be shown that if f is

constant, the input qubits will all measure to 0, while if it is balanced, at least one of

those qubits will be 1.

Quantum Fourier transform

The circuits for the quantum Fourier transformation and its inverse are in figure 2.11

and figure 2.12 respectively. These transforms are used extensively in many quantum

algorithms, including order finding in Shor’s factoring algorithm.

The quantum Fourier transform is definable on an arbitrary number of qubits. This

is typically presented by eliding the 3rd to the n − 3rd lines and interior processing.

The L-QPL code for the quantum Fourier transform is in the appendix, figure C.2 on

page 146. In this circuit, the parametrized transform Rn is the rotation transform,

given by:

Rn =

[
1 0
0 e

2πi
2n

]

H R2 · · · Rn−1 Rn · · ·

• · · · H · · · Rn−2 Rn−1 · · ·
...

...
...

• · · · • · · · H R2

• · · · • · · · • H

Figure 2.11: Circuit for the quantum Fourier transform

The inverse of a circuit is determined by traversing the circuit from right to left.
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This process changes the original quantum Fourier circuit to its inverse as shown

in figure 2.12. The L-QPL code for the inverse quantum Fourier transform is in the

appendix, figure C.28 to figure C.29 on page 168.

· · · R−1
n R−1

n−1 · · · R−1
2 H

· · · R−1
n−1 R−1

n−2 · · · H · · · •
...

...
...

R−1
2 H · · · • · · · •

H • · · · • · · · •

Figure 2.12: Circuit for the inverse quantum Fourier transform

2.4 Extensions to quantum circuits

To facilitate the transition to the programming language L-QPL, this section intro-

duces three extensions to quantum circuits. The extensions are renaming, wire bending

and crossing, and scoped control. Each extension adds expressive power to quantum

circuits but does not change the semantic power. For each of the extensions, exam-

ples of how to re-write the extension in standard quantum circuit terminology will be

provided.

2.4.1 Renaming

Quantum circuits currently allow renaming to be an implicit part of any gate. The cir-

cuit in figure 2.13 gives an operation to explicitly do this and its rewriting in standard

circuit notation.

y
x := y x ≡ y

I
x

Figure 2.13: Renaming of a qubit and its equivalent diagram
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2.4.2 Wire crossing

Crossing and bending of wires in a circuit diagram is added to allow a simpler presen-

tation of algorithms. The circuit in figure 2.14 illustrates the concept of re-organizing

and bending of wires.

U1

))
))

))
))

)

U3

U2 33
33

3 �����

Figure 2.14: Bending

2.4.3 Scoped control

This extension allows us to group different operations in a circuit and show that all

of them are controlled by a particular qubit. This is the same as attaching separate

control wires to each of the gates in the grouped operations. Measurements are not

affected by control. Figure 2.15 shows a scoped control box on the left which includes

a measure. The right hand side of the same figure shows the circuit translated back to

standard circuit notation, with the measure not being affected by the control.

H Z

××
2534M

•

≡

H Z

××
2534M

• • •

Figure 2.15: Scope of control

Scoping boxes correspond to procedures and blocks in L-QPL.

Naturally, both scoping and bending may be combined as in figure 2.16.
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U1 U3

Z

U2

''
''
''
''
''
' 2534M ��
��	
� •������ U4 U5

•

Figure 2.16: Extensions sample

However, note that exchanging wires is not the same as swap. Exchanging a pair

of wires is not affected by control, but a swap is affected by control, as shown in fig-

ure 2.17.

×
×
•

≡
×

6= 44
44

4

×







• •
≡ 44

44
4 






Figure 2.17: Swap in control vs. exchange in control

2.4.4 Circuit identities

Circuits allow the writing of the same algorithm in multiple ways. This sub-section

will list some of the circuit identities that hold with the extended notation.

First, note that although a measure may appear inside a control box, it is not af-

fected by the control, as in figure 2.18. Conversely, a measurement commutes with

control of a circuit as in figure 2.18.

2534M

≡

2534M

•
Figure 2.18: Measure is not affected by control

One of the notations introduced earlier was that of 0-control. This type of control

is the same as applying a Not transform before and after a 1-control, as shown in fig-

ure 2.20 on the following page.
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2534M •
≡

• 2534M

C1 C1

Figure 2.19: Control is not affected by measure

U

≡
U

��
��	
� �������� • ��������

Figure 2.20: Zero control is syntactic sugar

Figure 2.21 shows that scoped control of multiple transforms is the same as con-

trolling those transforms individually. Figure 2.22 similarly shows that scoped control

U1

≡
U1

U2 U2

• • •
Figure 2.21: Scoped control is parallel control

of multiple transforms of the same qubit is the same as controlling those transforms

serially.

Multiple control commutes with scoping as shown in figure 2.23 to figure 2.24 on

the following page.
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U1 U2 ≡ U1 U2

• • •
Figure 2.22: Scoped control is serial control

U1

≡
U1

• •
• •

Figure 2.23: Multiple control

•
≡

•

U1 U1

• •

Figure 2.24: Control scopes commute



Chapter 3

Semantics

3.1 Basic L-QPL statements

Quantum circuits can be translated into basic L-QPL statements, which form a core

fragment of the L-QPL language. Later sections in this chapter will provide the se-

mantics for these statements and progressively build up to providing a semantics of

L-QPL.

The language is introduced in a series of judgements which give the construction

of valid L-QPL statements. Judgements have the following form:

Γ ; Γ ′

 I

where Γ is the context input to the statement I and Γ ′ is the context after it is completed.

Notation of this form is becoming the standard way to communicate the meaning of

language statements. For an thorough introduction to the subject, please see [Rey98]

or [Win93].

Basic L-QPL has seven distinct statements: identity, new, assign, discard, measure,

control and unitary. Statements may also be composed, creating a block of statements

which may be used wherever a statement is required.

The quantum pseudocode conventions, as suggested by Knill in [Kni96] translate

in reasonably obvious ways to these statements, with two exceptions. The main ex-

ception (functions) is covered later in this chapter. The other exception, reversability

of quantum computations, is not handled by L-QPL directly. When the reverse of a

particular computation is required, it would have to be directly coded.

30
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The judgements for the creation of basic L-QPL statements are given in figure 3.1.

The identity statement is a do-nothing statement that does not change the stack or

context. The statements new and assign share a similar syntax and create new variables

in the output context. Assign will remove an existing variable, while new just creates

the new variable. Discard removes a variable from the input context. The measure

statement performs a destructive measure of a qubit, while applying different sets of

dependent statements contingent on the result of the measure. Control modifies the

execution of dependent statements, contingent upon the value of the attached control

variable. The final statement, unitary, applies unitary transformations to a qubit.

Γ ; Γ 
 ε
identity

i ∈ {0, 1}

Γ ; (x::bit), Γ 
 x = i
new bit

k ∈ {0, 1}

Γ ; (q::qubit), Γ 
 x = |k〉
new qubit

(x::τ), Γ ; (y::τ), Γ 
 x = y
assign

(x::τ), Γ ; Γ 
 disc x
discard

Γ ; Γ ′ 
 I0 Γ ; Γ ′ 
 I1

(x::qubit), Γ ; Γ ′ 
 meas x |0〉 => I0 |1〉 => I1
measure

Γ ; Γ ′ 
 I

(z::τ), Γ ; (z::τ), Γ ′ 
 I <= z
control Γ ; Γ ′ 
 I1 Γ ′; Γ ′′ 
 I2

Γ ; Γ ′′ 
 (I1; I2)
compose

Γ1; Γ ′
1 
 I1 Γ2; Γ ′

2 
 I2

Γ1Γ2; Γ ′
1Γ

′
2 
 (I1; ; I2)

tensor compose

(x::qubit), Γ ; (x::qubit), Γ 
 U x
unitary

Figure 3.1: Judgements for creation of basic L-QPL statements.
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3.1.1 Examples of basic L-QPL programs

The examples in this sub-section use the statements as introduced in figure 3.1 to give

some example programs.

Program to swap two qubits. This program will swap two qubits by successive re-

naming. Both the input and output contexts have two qubits.

q, v :: qubit ; v, q :: qubit 

w = q ;
q = v ;
v = w;

Program to do a coinflip. The program has an empty input context and a single bit

in its output context. At the end, the bit b will be 0 with probability .5 and 1 with an

equal probability.

∅ ; b :: bit 

q = |0> ;
Had q ;
meas q

|0> => { b = 0 }
|1> => { b = 1 }

Program to entangle two qubits. This program places two input qubits into an EPR

state.

q, r :: qubit ; q, r :: qubit 

Had q ;
Not r ⇐ q ;

3.2 Translation of quantum circuits to basic L-QPL

Quantum circuits are translatable to L-QPL statements. The semantic meaning of a

circuit is denoted by enclosing the circuit between J and K.
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When a new wire is added to a diagram (at the start of the diagram, this can be

done for all wires) the meaning is an assignment of |0〉 to that variable.

r
|0〉 q

z
= q = |0〉 (3.1)

An existing line with no operations on it translates to an identity statement:

J K = ε. (3.2)

A unitary transform U translates to the obvious corresponding L-QPL statement:

r
q

U
q

z
= U q. (3.3)

A renaming of a qubit wire translates to an assign statement:

r
y

x := y x
z

= x = y. (3.4)

A quantum circuit followed by another circuit is the composition of the meanings:

r
C1 /

n

C2

z
= JC1K ; JC2K . (3.5)

A circuit that is above another is the tensor composition of the two circuits meanings:
u
v /

n

C1

/
m

C2

}
~ = JC1K ; ; JC2K . (3.6)

Measurement of a qubit and outputting a bit translates to the measure instruction:

r
q *-+,q b

z
= meas q |0〉 => {b = 0} |1〉 => {b = 1}. (3.7)

A destructive measure, where the resulting bit is discarded, is translated as a discard:

r
q *-+,q

z
= disc q . (3.8)
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Control of a circuit translates to L-QPL control constructions. The controlling variable

may be a qubit or bit: u
v

z •
C1

}
~ = JC1K⇐ z. (3.9)

Equation (3.1) through equation (3.9) give a meaning for all the standard quantum

circuit elements and their extensions described in section 2.4 on page 25. Certain con-

structs such as 0 − control have not been included as they are describable in terms of

other circuit elements that have been assigned a semantics. See section 2.4 on page 25

for those identities.

3.3 Quantum stacks

This section will define a quantum stack and use quantum stacks to provide an oper-

ational semantics for L-QPL statements. The previous section has provided a transla-

tion of quantum circuits into these statements.

3.3.1 Definition of a quantum stack

In classical computing, a stack is an object together with operations for pushing new

items onto the stack, retrieving items from the stack and examining whether the stack

is empty or not. Refinements are often made in terms of adding linear addressing

to the stack, multiple push-pull operations or defining specific data elements that are

allowed on the stack.

A quantum stack is a somewhat more complex object, due to the properties of en-

tanglement and superpositions. However, the basic idea of an object together with

methods of adding and removing elements is retained. The initiating idea of the quan-

tum stack was to find a stack-like way to represent the state of a quantum system and
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therefore the density matrix describing it.

The construction of a quantum stack is given by four judgements, shown in fig-

ure 3.2. These judgements show the quantum stack is a pair, Γ ⊢ S. The Γ , called the

context, is a list of names and their types. The S, called the stack, contains the actual

stack nodes and traces. The stack will often be written as St where the t is an explicitly

shown trace.

The judgement rules do not restrict quantum stacks to be Hermitian (i.e., corre-

spond to a tuple of matrices, all of which are Hermitian) or to have a trace less than

1. However, when applied to a quantum stack with these properties, the statements

used to interpret quantum circuits do not increase the trace and take Hermitian stacks

to Hermitian stacks.

⊢ ∅0 ⊢ α
√

αα
scalar

Γ ⊢ S
t00
00 , St01

01 , St10
10 , St11

11

q::qubit, Γ ⊢ q{ij→ Sij}
t00+t11

qubit

Γ ⊢ S
t0
0 , St1

1

b::bit, Γ ⊢ b{i→ Si}
t0+t1

bit

Figure 3.2: Judgements for a quantum stack

Description of the quantum stack

A quantum stack is a tree where each node is associated with a particular bit or qubit.

The nodes associated with a qubit have four branches, corresponding to the density

matrix representation of a qubit. The nodes associated with a bit have two branches,

corresponding to the probabilistic representation of a bit. (i.e., bit b = α0 + β1, where

α + β 6 1.0). All nodes have a trace. Data values, which are the result of multiplying
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the probabilities of bits and density matrix entries for qubits, are stored at the leaves

of the tree.

The trace of a quantum stack is a non-negative real number. It is defined recur-

sively as shown in figure 3.3.

trace(Q) =























trace(Q00) + trace(Q11) when Q = q

{

00→ Q00; 01→ Q01

10→ Q10; 11→ Q11

}

trace(B0) + trace(B1) when Q = b{0→ B0; 1→ B1}√
vv when Q = v (a scalar at the leaf)

Figure 3.3: Definition of the trace of a quantum stack

Examples

The quantum stack of a single bit, b, which is 0 with a probability of .25 and 1 with a

probability of .75, is represented as:

b{0→ .25; 1→ .75}1.0.

A qubit q that was 0 and then subjected to the Hadamard transform followed by a

Phase transformation is represented as:

q{00→ .5; 01→ −.5i; 10→ .5i; 11→ .5}1.0.

A general qubit r having the density matrix
[
a00 a01

a10 a11

]
is represented as

r{ij→ aij}
(a00+a11)

where the ij of the labelling correspond to the row and column of q’s density matrix.

The number at the upper right of the node representation is its trace.

Given a single bit b as above and a qubit q1 which is 0, the representation is

b{0→ q1{00→ .25}.25; 1→ q1{00→ .75}.75}1.0.
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As shown in this example, values that are zero probabilities or zero entries of the

matrix can be elided without loss of meaning.

3.3.2 Quantum stack equivalence

The equality judgements for quantum stacks are given in figure 3.4.

Γ ⊢ S
Γ ⊢ S = Γ ⊢ S

reflexivity
Γ ⊢ S2 = Γ ⊢ S1

Γ ⊢ S1 = Γ ⊢ S2
symmetry

Γ ⊢ S1 = Γ ⊢ S2 Γ ⊢ S2 = Γ ⊢ S3

Γ ⊢ S1 = Γ ⊢ S3
transitivity

Γ , (t::τ), Γ ′ ⊢ S

Γ , (t::τ), Γ ′ ⊢ S = (rotate t) · Γ , (t::τ), Γ ′ ⊢ S
rotation

Figure 3.4: Judgements for quantum stack equality

Rotation brings a desired node to the top of the stack and then reorganizes the

tree so that the Huffman-like encoding of the leaves is invariant. Given a tree with

four nodes (a, b, c, d), each of the leaves can be encoded by the indexes depending

on the node names. e.g., via;ib;ic;id
. Then, after rotating a tree, following a particular

index path in the tree will take you to the same node. That is, if the tree order is now

(d, b, c, a) with d, c qubits, a, b bits, then following the path 01 → 1 → 10 → 0 will

take you to the leaf v0;1;10;01, where the labelling is from the original a, b, c, d ordering.

An example of this in the bit, qubit case is provided below.

Rotation example

Consider the following single bit, single qubit quantum stack,

c















0→ r

{

00→ v0;00; 01→ v0;01

10→ v0;10; 11→ v0;11

}v0;00+v0;11

1→ r

{

00→ v1;00; 01→ v1;01

10→ v1;10; 11→ v1;11

}v1;00+v1;11















∑

v

,
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where
∑

v = v0;00 +v0;11 +v1;00 +v1;11. If the qubit r is rotated to the top of the quantum

stack, the resulting stack will be

r

{

00→ c{0→ v0;00; 1→ v1;00}
v ′

00 ; 01→ c{0→ v0;01; 1→ v1;01}
v ′

01

10→ c{0→ v0;10; 1→ v1;10}
v ′

10 ; 11→ c{0→ v0;11; 1→ v1;11}
v ′

11

}

∑

v

,

where
∑

v is as before and v ′
ij = v0;ij + v1;ij.

Details of rotation on a quantum stack

Rotation is defined recursively on a quantum stack. Given a target name t and a

quantum stack Γ ⊢ S, rotation brings the node named t to the top and thus changes

Γ ⊢ S to the quantum stack (t : τ), Γ ′ ⊢ S ′. The quantum stack Γ ⊢ S is equivalent to

(t : τ), Γ ′ ⊢ S ′.

If a quantum stack has duplicate names, only the highest node with that name will

be rotated up. Rotation’s definition can be broken into cases depending on whether

the target name is at the top, the second element or somewhere lower in the stack and

whether the nodes being affected are bits or qubits.

When the target name is the top element of the stack, there is no change to the stack

and rotation is just an identity transformation of the quantum stack.

In the case where the target name is the second element of the stack, there are four

separate cases to consider: bit above a bit; bit above a qubit; qubit above a qubit and

qubit above a bit.

bit above a bit:

(rotate1 b2) · b1

{

0→ b2{0→ S0;0; 1→ S0;1}

1→ b2{0→ S1;0; 1→ S1;1}

}t

= b2

{

0→ b1{0→ S0;0; 1→ S1;0}

1→ b1{0→ S0;1; 1→ S1;1}

}t

.
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bit above a qubit:

(rotate1 q2) · b1











0→ q2

{

00→ S0;00; 01→ S0;01

10→ S0;10; 11→ S0;11

}

1→ q2

{

00→ S1;00; 01→ S1;01

10→ S1;10; 11→ S1;11

}











t

= q2

{

00→ b1{0→ S0;00; 1→ S1;00}; 01→ b1{0→ S0;01; 1→ S1;01}

10→ b1{0→ S0;10; 1→ S1;10}; 11→ b1{0→ S0;11; 1→ S1;11}

}t

.

qubit above a bit:

(rotate1 b2) · q1











00→ b2{0→ S00;0; 1→ S00;1}

01→ b2{0→ S01;0; 1→ S01;1}

10→ b2{0→ S10;0; 1→ S10;1}

11→ b2{0→ S11;0; 1→ S11;1}











t

= b2

{

0→ q1{00→ S00;0; 01→ S01;0; 10→ S10;0; 11→ S11;0}

1→ q1{00→ S00;1; 01→ S01;1; 10→ S10;1; 11→ S11;1}

}t

.

qubit above a qubit:

(rotate1 q2) · q1



































00→ q2

{

00→ S00;00; 01→ S00;01

10→ S00;10; 11→ S00;11

}

01→ q2

{

00→ S01;00; 01→ S01;01

10→ S01;10; 11→ S01;11

}

10→ q2

{

00→ S10;00; 01→ S10;01

10→ S10;10; 11→ S10;11

}

11→ q2

{

00→ S11;00; 01→ S11;01

10→ S11;10; 11→ S11;11

}



































t

= q2



































00→ q1

{

00→ S00;00; 01→ S01;00

10→ S10;00; 11→ S11;00

}

01→ q1

{

00→ S00;01; 01→ S01;01

10→ S10;01; 11→ S11;01

}

10→ q1

{

00→ S00;10; 01→ S01;10

10→ S10;10; 11→ S11;10

}

11→ q1

{

00→ S00;11; 01→ S01;11

10→ S10;11; 11→ S11;11

}



































t

.

When the node to be rotated up is deeper in the quantum stack, we recurse down.

Otherwise, we just apply rotate1. That is:

(rotate n3) · n1{ℓk → n2{ℓ
′
m → S}}

= (rotate1 n3) · n1{ℓk → (rotate n3) · n2{ℓ
′
m → S}}
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and

(rotate n2) · n1{ℓk → n2{ℓ
′
m → S}} = (rotate1 n2) · n1{ℓk → n2{ℓ

′
m → S}}.

In this way, the desired node “bubbles” to the top of the quantum stack.

3.3.3 Basic operations on a quantum stack

Quantum stacks may be added, tensored and multiplied by scalars. Multiplication

of a quantum stack Γ ⊢ S by a scalar α recurses down the stack of S until the leaves

are reached. Each leaf value is then multiplied by α. This will also have the effect of

multiplying the trace of S by
√

αα.

When adding two stacks, Γ ⊢ S and Γ ⊢ T , the first step is to align the stacks.

Aligning is done by recursively rotating nodes in the second stack to correspond with

the same named nodes in the first stack. When the alignment is completed, the val-

ues at the corresponding leaves are added to produce a result stack. The trace of the

resulting quantum stack will be the sum of the traces of S and T .

Tensoring of two quantum stacks Γ1 ⊢ S1 and Γ2 ⊢ S2 proceeds by first creating

a new context Γ , which is the concatenation of Γ1 and Γ2. The new stack portion S is

created by replacing each leaf value of S1 with a copy of S2 multiplied by the previous

leaf value. The trace of the tensor will be the product of the traces of S1 and S2. The

notation for this operation is

S = S1 ⊗ S2.

The judgements for these stack operations are shown in figure 3.5 on the following

page.

When recursing down stacks to do an addition or a scalar multiplication, any

elided branches are treated as having the required structure with leaf values of 0.
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Γ ⊢ St

Γ ⊢ (αS)t
√

αα
scalar multiply

Γ ⊢ St1
1 , St2

2

Γ ⊢ (S1 + S2)
t1+t2

add

Γ1 ⊢ St1
1 Γ2 ⊢ St2

2

Γ1Γ2 ⊢ (S1 ⊗ S2)
t1×t2

tensor

Figure 3.5: Judgements for basic stack operations

As an example, consider adding the following two quantum stacks:

S1 = q{00→ b{0→ .1; 1→ .1}.2; 11→ b::{1→ .1}.25}.45

S2 = q{00→ b{0→ .05; 1→ .1}.15; 11→ b{0→ .15; 1→ .25}.4}.55.

In the first stage, recursively add the 00 branches of each, i.e.:

S1[00] = b{0→ .1; 1→ .1}.2

S2[00] = b{0→ .05; 1→ .1}.15.

When adding these two branches, each of the labels immediately point to leaves. As

leaves are the base case for addition, this gives a result of:

S ′[00] = b{0→ .15; 1→ .2}.35.

Similarly, apply the addition process in the same manner to the 11 branches of S1 and

S2:

S1[11] = b{1→ .25}.25

S2[11] = b{0→ .15; 1→ .25}.4.
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Note that in this case, the first sub-stack does not have a branch labelled by 0, due to

elision of zero leaf values. The result of adding this is

S ′[11] = b{0→ .15; 1→ .5}.65,

which gives us the final result of:

S = q{00→ b{0→ .15; 1→ .2}.35; 11→ b{0→ .15; 1→ .5}.65}1.

The general cases for addition are given in figure 3.6. In the figure, the token

〈empty〉 stands for any sub-branches that have been elided because all leaves below

that node are 0. Sub-scripted upper case S’s (Si) represent quantum stacks, lower case

sub-scripted v’s (vi) represent leaf values and sub-scripted curly l’s (ℓi) are the labels

of sub-stacks.

S1 + 〈empty〉 = S1

〈empty〉+ S2 = S2

v1 + v2 = v1 + v2

v1 + 〈empty〉 = v1

〈empty〉+ v2 = v2

nm::{ℓi → Si} + nm::{ℓi → S ′
i} = nm::{ℓi → (Si + S ′

i)}

S1 + S2 = S1 + (rotate nmS1) · S2.

Figure 3.6: Definition of addition of quantum stacks

3.4 Semantics of basic L-QPL statements

Section 3.1 introduced basic L-QPL statements, giving the judgements for their forma-

tion. This section introduces the concept of a statement modifier. Modifiers will be one



43

Notation Meaning

z̃ A list of names

Γ ; Γ ′ 
 I · ΓΓ ′′ ⊢ S Application of the statements I to the quantum
stack S.

(Γ ; Γ ′ 
 I⇐ z̃) · Γ ⊢ S Application of the statements I to the quantum
stack S, controlled by the bits and qubits in z̃.

(Γ ; Γ ′ 
 I) · Γ ⊢ St  Γ ′ ⊢ S ′t ′
Application of the statements I with inputs Γ

and output Γ ′ to the quantum stack S in context
Γ results in the quantum stack S ′ in context Γ ′.

Γ ⊢ I · St  Γ ′ ⊢ S ′t ′
Alternate way to write the application of the
statements I to the quantum stack S. Γ will con-
tain the input variables of I and Γ ′ will contain
the output variables.

Table 3.1: Notation used in judgements for operational semantics

of IdOnly, Left, or Right. The judgement for formation of statements with a modifier is:

M ∈ {IdOnly, Left, Right} Γ ; Γ ′ 
 I

Γ ; Γ ′ 
MI
modifier

An operational semantics for basic L-QPL statements is given by the judgement

diagrams in figure 3.7 on page 45 and figure 3.8 on page 46. Table 3.1 gives the addi-

tional notation used in the judgements.

The modifiers ( IdOnly, Left, Right) come from examining the effect of a

controlled transformation in a general setting. When a controlled transform and a

general density matrix are multiplied:



1 0

0 U







A B

C D







1 0

0 U∗


 =




A BU∗

UC UDU∗


 (3.10)

Equating the density matrix to the quantum stack notation, a controlled transforma-

tion is controlled by the qubit at the top of the quantum stack. It has the four sub-stacks

A, B, C and D and the controlled − U transform is applied as in equation (3.10). The
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resulting quantum stack, with the same qubit at the top now has the four sub-stacks

A, BU∗, UC and UDU∗. This leads to the obvious terminology of “IdOnly U” for the

action on A, “Right U” for the action on B and “Left U” for the action on C. The

action on D is a normal application of the transform U to D. As such, it does not need

a modifier to describe the action.

Figure 3.7 on the following page presents the operational semantics of the the

L-QPL statements identity, new, discard, measure, compose and control. Figure 3.8 on

page 46 presents the operational semantics of unitary and the effects of statement mod-

ifiers.

3.4.1 Operational semantics commentary

Identity

This has no effect on the quantum stack or the context.

New bit and new qubit

These two statements transform the quantum stack S by adding a new node at the

top of S. Both bit and qubit nodes are added with a single sub-branch which points

to S. In the case of a bit the new sub-branch is labelled with 0, for a qubit the new

sub-branch is labelled with 00. These labels mean the bit is 0 with 100% probability

and the qubit is 1.0 |0〉+ 0.0 |1〉.

Delete bit and delete qubit

On the quantum stack S, deletion removes the top node x, merging the appropriate

branches below x. Deletion of a bit merges both the 0 and 1 branches. Deletion of a

qubit merges only the 00 and 11 branches.
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Γ ⊢ ε · S Γ ⊢ S
identity

Γ ⊢ (b = 0) · S 
(b::bit), Γ ⊢ b{0→ S}t

new bit

Γ ⊢ (q = |0〉) · S (q::qubit), Γ ⊢ q{00→ S}t
new qubit

(b::bit), Γ ⊢ (disc b) · b{0→ S0; 1→ S1}
t  Γ ⊢ (S0 + S1)

t
delete bit

(q::qubit), Γ ⊢ (disc q) · q{ij→ Sij}
t  Γ ⊢ (S00 + S11)

t
delete qubit

Γ ⊢ I0 · St0
00  Γ ′ ⊢ S

t ′
0

0 Γ ⊢ I1 · St1
11  Γ ′ ⊢ S

t ′
1

1

(q::qubit)Γ ⊢







meas q :

|0〉 => I0

|1〉 => I1







· q{ij→ Sij}
t0+t1  Γ ′ ⊢ (S0 + S1)

(t ′
0+t ′

1)

measure

Γ ⊢ Op1 · St  Γ ′ ⊢ S ′t ′
Γ ′ ⊢ Op2 · S ′t ′

 Γ ′′ ⊢ S ′′t ′′

Γ ⊢ (Op1; Op2) · St  Γ ′′ ⊢ S ′′t ′′ compose

Γ1 ⊢ Op1 · St1
1  Γ ′

1 ⊢ S ′
1
t ′

1 Γ2 ⊢ Op2 · S2
t2  Γ ′

2 ⊢ S ′
2
t ′

2

Γ1Γ2 ⊢ (Op1; ; Op2) · (S1 ⊗ S2)
t1×t2  Γ ′

1Γ
′

2 ⊢ (S ′
1 ⊗ S ′

2)
t ′

1×t ′
2

tensor

Γ ⊢ I⇐ z̃ · St
1  Γ ⊢ S ′t ′

1

(z::bit), Γ ⊢ (I⇐ z̃, z) · z
{

0→ S
t0
0

1→ St
1

}

 

(z::bit), Γ ⊢ z

{

0→ S0

1→ S ′
1

}t0+t ′

control bit

Γ ⊢ ((IdOnly I)⇐ z̃) · S00  Γ ⊢ S ′
00

Γ ⊢ ((Left I)⇐ z̃) · S10  Γ ⊢ S ′
10

Γ ⊢ ((Right I)⇐ z̃) · S01  Γ ⊢ S ′
01

Γ ⊢ (I⇐ z̃) · St11
11  Γ ⊢ S ′t

′
11

11

(z::qubit), Γ ⊢ (I⇐ z̃, z) · z{ij→ Sij}  

(z::qubit), Γ ⊢ z

{

00→ S ′
00; 01→ S ′

01
10→ S ′

10; 11→ S ′
11

}t00+t ′
11

control qubit

Figure 3.7: Operational semantics of basic L-QPL statements
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U

(
S00 S01

S10 S11

)
U∗ =

(
S ′

00 S ′
01

S ′
10 S ′

11

)

(q::qubit), Γ ⊢ U q · q{ij→ Sij}
t  

(q::qubit), Γ ⊢ q

{

00→ S ′
00; 01→ S ′

01
10→ S ′

10; 11→ S ′
11

}t

U a transform

(q::qubit), Γ ⊢ IdOnly U q · q{ij→ Sij}
t  

(q::qubit), Γ ⊢ q{ij→ Sij}
t

IdOnly U,
U a transform

U

(
S00 S01

S10 S11

)
=

(
S ′

00 S ′
01

S ′
10 S ′

11

)

(q::qubit), Γ ⊢ Left U q · q{ij→ Sij}
t  

(q::qubit), Γ ⊢ q

{

00→ S ′
00; 01→ S ′

01
10→ S ′

10; 11→ S ′
11

}t

Left U,
U a transform

(
S00 S01

S10 S11

)
U∗ =

(
S ′

00 S ′
01

S ′
10 S ′

11

)

(q::qubit), Γ ⊢ Right U q · q{ij→ Sij}
t  

(q::qubit), Γ ⊢ q

{

00→ S ′
00; 01→ S ′

01
10→ S ′

10; 11→ S ′
11

}t

Right U,
U a transform

Γ ⊢ I · S Γ ′ ⊢ S ′

Γ ⊢ (MI) · S Γ ′ ⊢ S ′ MI, (I not a transform)

Γ ⊢ (M1 · · ·Mn)I · S Γ ′ ⊢ S ′ M0 ≡M1

Γ ⊢ (M0 M1 · · ·Mn)I · S Γ ′ ⊢ S ′ modifier reduction

M0 6= M1 Γ ⊢ (IdOnly I) · S Γ ′ ⊢ S ′

Γ ⊢ ((M0 M1 · · ·Mn)I) · S Γ ′ ⊢ S ′ modifier elimination

Figure 3.8: Operational semantics of basic L-QPL statements, continued
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Measure

This statement applies separate groups of statements to the 00 and 11 sub-stacks of a

qubit node, q. After applying those statements, the node q is discarded.

Compose

Composition of the operations on a quantum circuit are done in left to right order of

their application.

Control by bit

When the statement Ib is controlled by the bit z, the effect is to apply Ib only to the 1

sub-branch of z.

Control by qubit

If the statement Iq is controlled by the qubit w, different operations are applied to each

of w’s sub-branches. The modifiers IdOnly, Left and Right are used: (IdOnly Iq)

is applied to the the 00 sub-branch of w; (Left Iq) to the 10 sub-branch; (Right Iq) to

the 01 sub-branch and the unmodified statement, Iq, is applied to the 11 sub-branch.

Unitary transforms

Given the unitary transform U and a quantum stack S having the qubit q at the top,

transforming q by U is defined in terms of matrix multiplication. Note that while

figure 3.8 only gives the operational semantics for a single qubit transform, the same

process is applied for higher degree transforms. A quantum stack with two qubits at

its top may be converted to the 4× 4 density matrix of those two qubits in the obvious

way. A similar process may be used to extend the operation to more qubits.
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Modifiers of unitary transforms

With U a unitary transform, the three rules for IdOnly U, Left U and Right U are

given in terms of the appropriate matrix multiplications. As above, these may be

extended to multiple qubit transformation in the obvious way.

Modifiers of statements other than unitary transforms

Modifiers have no effect on any statement of L-QPL except for unitary transforma-

tions.

Combinations of modifiers: reduction and elimination

When controlling by multiple qubits, it is possible to have more than one modifier

applied to a statement. The modifier reduction rule states that applying the same

modifier twice in a row has the same effect as applying it once.

Modifier elimination, however, reduces the list of modifiers to the single modifier

IdOnly whenever two different modifiers follow one another in the modifier list.

3.5 Example — putting it all together on teleport

Circuit diagrams are interpreted in the algebra of quantum stacks. The preceding

sections have given a translation of quantum circuits to L-QPL programs and an op-

erational semantics of L-QPL programs. From this, we have an operational semantics

of quantum circuits.

3.5.1 Translation of teleport to basic L-QPL

The quantum circuit for teleportation makes a variety of assumptions, including that

the two starting qubits are placed in an EPR state and that the target qubit is in some

unknown state. Figure 3.9 on the following page shows the standard teleport circuit
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assuming that ν is in some unknown state, but that the qubits alice and bob still need

to be placed into an EPR state.

ν • H :=;<M1 •

alice = |0〉 H • �������� :=;<M2 •

bob = |0〉 �������� X Z
s0 s1 s2 s3 s4 s5 s6 s7

Figure 3.9: Preparation and quantum teleportation

The translation of this circuit to a basic L-QPL program is straightforward and is

given in figure 3.10 on the next page.

3.5.2 Unfolding the operational semantics on teleport

This section will step through the program, using the operational semantics to show

the changes to the quantum stack at each of the labelled stages. Input to the algorithm

is assumed to be a single qubit, ν, which is in an unknown state, α |0〉+β |1〉. Therefore,

the starting stack is

ν











00→ αα; 01→ αβ

10→ βα; 11→ ββ











.

When the instructions Is0 are applied, the stack will change to

bob{00→ alice{00→ ν











00→ αα; 01→ αβ

10→ βα; 11→ ββ











}}.



50

alice = |0〉 ;
bob = |0〉 ; (Is0)

Had alice; (Is1)

(Not bob)⇐ alice; (Is2)

Not alice⇐ ν; (Is3)

Had ν; (Is4)

meas ν :

|0〉 => νb = 0
|1〉 => νb = 1

;

meas alice :

|0〉 => aliceb = 0
|1〉 => aliceb = 1

; (Is5)

Not bob⇐ aliceb;

disc aliceb; (Is6)

Z bob⇐ νb;

disc νb (Is7)

Figure 3.10: Basic L-QPL program for teleport
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The next instruction, Is1 , applies the Hadamard transform to alice. alice is first rotated

to the top and then the transformation is applied. The stack will then be in the state

alice































































































00→ bob{00→ ν











00→ .5× αα; 01→ .5× αβ

10→ .5× βα; 11→ .5× ββ











}

01→ bob{00→ ν











00→ .5× αα; 01→ .5× αβ

10→ .5× βα; 11→ .5× ββ











}

10→ bob{00→ ν











00→ .5× αα; 01→ .5× αβ

10→ .5× βα; 11→ .5× ββ











}

11→ bob{00→ ν











00→ .5× αα; 01→ .5× αβ

10→ .5× βα; 11→ .5× ββ











}































































































.

The preparation of EPR state is completed by doing a controlled-Not between alice

and bob. This results in

alice































































































00→ bob{00→ ν











00→ .5× αα; 01→ .5× αβ

10→ .5× βα; 11→ .5× ββ











}

01→ bob{10→ ν











00→ .5× αα; 01→ .5× αβ

10→ .5× βα; 11→ .5× ββ











}

10→ bob{01→ ν











00→ .5× αα; 01→ .5× αβ

10→ .5× βα; 11→ .5× ββ











}

11→ bob{11→ ν











00→ .5× αα; 01→ .5× αβ

10→ .5× βα; 11→ .5× ββ











}































































































.
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This is followed by the application of the controlled-Not to ν and alice, giving

ν































































































00→ alice











00→ bob{00→ .5× αα}; 01→ bob{10→ .5× αα}

10→ bob{01→ .5× αα}; 11→ bob{11→ .5× αα}











01→ alice











00→ bob{01→ .5× αβ}; 01→ bob{11→ .5× αβ}

10→ bob{00→ .5× αβ}; 11→ bob{10→ .5× αβ}











10→ alice











00→ bob{00→ .5× βα}; 01→ bob{10→ .5× βα}

10→ bob{01→ .5× βα}; 11→ bob{11→ .5× βα}











11→ alice











00→ bob{11→ .5× ββ}; 01→ bob{01→ .5× ββ}

10→ bob{10→ .5× ββ}; 11→ bob{00→ .5× ββ}









































































































.

The Hadamard transform is now applied to ν. Unfortunately, the notation used to

this point is somewhat too verbose to show the complete resulting quantum stack. It

begins with:

ν{00→ alice{00→ bob











00→ αα
4 ; 01→ αβ

4

10→ βα

4 ; 11→ ββ

4











. . .} . . .}

...

In the next stage, alice is measured and a Not transform is applied to bob depending
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on the result of the measure. The bit aliceb is then discarded, resulting in

ν































































































00→ bob











00→ αα/2; 01→ αβ/2

10→ βα/2; 11→ ββ/2











01→ bob











00→ αα/2; 01→ −αβ/2

10→ βα/2; 11→ −ββ/2











10→ bob











00→ αα/2; 01→ αβ/2

10→ −βα/2; 11→ −ββ/2











11→ bob











00→ αα/2; 01→ −αβ/2

10→ −βα/2; 11→ ββ/2









































































































.

Then, ν is measured and a RhoZ transform is applied when the resulting bit is 1.

The bit νb is then discarded. The resulting quantum stack is

bob











00→ αα; 01→ αβ

10→ βα; 11→ ββ











,

which shows bob has been changed to the same state ν was in at the start of the pro-

gram.

3.6 Semantics of datatypes

To this point, this chapter has only considered quantum stacks with two node types,

bit and qubit. This section will add nodes for constructed datatypes and probabilistic

classical data and statements that operate on these nodes.

Constructed datatypes will allow the addition of algebraic datatypes to our quan-

tum stacks. This includes sum, product, and recursive data types. For example, types

such as List (a recursive type), Either (a sum type) and Pair (a product type) are now

definable.
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3.6.1 Statements for constructed datatypes and classical data

Two new statements are required to implement datatypes on the quantum stack: node

construction and a case statement. A third statement discard data is also added. Discard

data is semantic sugar for doing a case without any dependent statements.

With the addition of classical data, arithmetic and logical expressions are added to

L-QPL. The standard new and discard statements as well as a use statement are added

to the language. The if-else statement is added to allow choices based on classical

expressions.

The judgements for expressions are given in figure 3.11 and for the new statements

in figure 3.12. Judgements for expressions use the notation

Γc|Γ 
⊣ e :: τC,

which means that given the context Γc of classical variables in the porch and the con-

text Γ of quantum variables, e is a valid expression, with the classical type τC. Judge-

ments for statements will also carry the classical context in the porch as above. State-

ments introduced to this point have not been affected by the classical context, nor

have their operational semantics affected the classical context. The new format of

judgements for statements will be:

Γc|Γ ; Γ ′
c|Γ

′ 
 I.

For the operational semantics, the classical context must also now be carried in

the porch. Additionally, the data in the classical context is not stored in the quantum

stack, but in an adjacent standard stack. The full format of the semantics of a statement

operating on the stacks will now be:

Γc|Γ ⊢ I · (S, C) Γ ′
c|Γ

′ ⊢ (S ′, C ′)
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In many cases, the classical portions are not involved in the semantics and thus may

be elided, resulting in our original syntax for the operational semantics.

n ∈ Z

Γc|Γ 
⊣ n :: Int
integers

n ∈ {true, false}

Γc|Γ 
⊣ b :: Boolean
Booleans

Γc|Γ 
⊣ e1 Γc|Γ 
⊣ e2

Γc|Γ 
⊣ (e1 op e2) :: τop

operations

(n :: τC), Γc|Γ 
⊣ n :: τC

identifiers

Figure 3.11: Judgements for expressions in L-QPL.

3.6.2 Operational semantics

Semantics for datatype statements

In the quantum stack, a datatype node of type τ has multiple branches, where each

branch is labelled with a datatype constructor C of τ and the bound nodes for C. Con-

structors may require 0 or more bound nodes.

The case statement provides dependent statements to be executed for each of the

branches of a datatype node d. Upon completion of the case, the node d is no longer

available.

In discussing datatypes, the notation θz is used for creating a “fresh” variable. The

notation τ(Cns) for the type of the constructor Cns.

The operational semantics for the datatype statements are given in figure 3.13. As

new data and discard data have no effect on the classical context, the original syntax

of the semantics statements is retained for these two statements. The case statement,

however, does affect the classical context in that the classical context is reset at the

beginning of execution of each set of dependent statements and at completion of the
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(v1 :: τ0, . . . vn :: τn), Γ ; (x :: τ(C)), Γ 
 x = C(v1, . . . , vn)
new data

{Γ ; Γ ′ 
 Ii}i

(nd :: τ), Γ ; Γ ′ 


{

case nd :

{ Ci(vij) => Ii}Ci∈τ(Ci)

}
case

(nd :: τ), Γ ; Γ 
 disc nd
discard data

Γc|Γ 
⊣ e

Γc|Γ ; Γc|(x :: τC), Γ 
 x = e
new classical

(n :: τC), Γc|Γ ; Γc|Γ
′ 
 I

Γc|(n :: τC), Γ ; Γc|Γ
′ 
 {use n : {I}}

use

{Γc|Γ 
⊣ ei::Boolean}i=0,...,n−1 {Γc|Γ ; Γ i
c|Γ

′ 
 Ii}i=0,...,n

Γc|Γ ; Γc|Γ
′ 








if e0 => I0

{ ei => Ii}i
else => In







if-else

Γc|(n :: τC), Γ ; Γ ′
c|Γ

′ 
 disc n
discard classical

Figure 3.12: Judgements for datatype and classical data statements.
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statement. Therefore, the semantics for case will use the full syntax introduced in this

section.

(xi::τi)i=1,...m, Γ ⊢ ([θx1/x1]; . . . ; [θxm
; xm]) · S (θxi

::τi)i=1,...m, Γ ′ ⊢ S ′

(xi::τi)i=1,...m, Γ ⊢ (nd = Cns(x1, . . . , xm)) · S 
(nd::τ(Cns)), (θxi

::τi)i=1,...m, Γ ′ ⊢ nd{Cns(θx1 , . . . , θxm
)→ S ′}

new data

{Γ ⊢ ({disc xij}j) · Si  Γ ′ ⊢ S ′
i}i

(nd :: τ), Γ ⊢ disc nd · nd{Ci(xij)→ Si}  Γ ′ ⊢∑

S ′
i

discard data

{Γc|Γ ⊢ ([vij/xij])j; Ii · (Si, C) Γ ′
c|Γ

′ ⊢ (S ′
i, Ci)}i

Γc|(nd :: τ), Γ ⊢
{

case nd :

{ Cnsi(vij) => Ii}

}

· (nd{Cnsi(xij)→ Si}, C) 

Γc|Γ
′ ⊢ (

∑

S ′
i, C)

case

Figure 3.13: Operational semantics for datatype statements

Classical data

Adding probabilistic classical data led to adding a second data structure for the op-

erational semantics. In order to perform standard arithmetic and logical (or other

classically defined) operations on this data, a classical stack is paired with the quantum

stack.

Classical data nodes extend the concept of probabilistic bits to other types. For

example, a node c could hold an integer that had value 7 with probability .3, 5 with

probability .2 and 37 with probability .5. A probabilistic node is restricted to items of

all the same type, e.g., all integers, all floats.

The classical stack is used to operate on non-probabilistic classical data and will

interact with the classical nodes via classical construction and use.

The use statement had a set of dependent statements, I, which are executed for

each sub-stack Si of a a classical node c. Prior to executing I, the classical value ki
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which labels the sub-branch Si is moved onto the top of the classical stack. When

the statements I have been executed for each of c’s sub-stacks, c is removed and the

resulting sub-branches are added together.

The classical stack has standard arithmetic and logic operations defined on it. The

if - else statement is defined to execute various statements depending upon classical

expressions.

The judgements for the classical note construction, discarding, use and interaction

with the classical stack are shown in figure 3.14.

Γc|Γ 
⊣ e

Γc|Γ ⊢ (n = e) · (S, C) Γc|(n::τC), Γ ⊢ (n{e→ S}, C)
new classical

{(n::τC), Γc|Γ ⊢ I · (Si, ki : C) Γ ′
c|Γ

′ ⊢ (S ′
i, C

′
i)}i

Γc|(n::τC), Γ ⊢ {use nd : {I}} · (nd{ki → Si}, C) Γc|Γ
′ ⊢ (

∑

S ′
i, C)

use

Γc|(n::τC), Γ ⊢ disc n · (nd{cvi → Si}, C) Γc|Γ ⊢ (
∑

Si, C)
discard classical

ek = True {ej = False}j<k Γc|Γ ⊢ Ik · (S, C) Γk
c |Γ ′ ⊢ (S ′, Ck)

Γc|Γ ⊢







if e0 => I0

{ ei => Ii}i
else => In







· (S, C) Γk
c |Γ ′ ⊢ (S ′, Ck)

if-else, ek true

{ej = False}j=0,...,n−1 Γc|Γ ⊢ In · (S, C) Γn
c |Γ ′ ⊢ (S ′, Cn)

Γc|Γ ⊢







if e0 => I0

{ ei => Ii}i
else => In







· (S, C) Γn
c |Γ ′ ⊢ (S ′, Cn)

if-else, else

vi opc vj = vk

i :: τ1, j :: τ2, Γc|Γ ⊢ (capp opc) · (S, vi : vj : C) k :: τ3, Γc|Γ ⊢ (S, vk : C)
binary op

Figure 3.14: Operational semantics for classical data statements

An important point to note in the transitions for the use statement is that the clas-
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sical stack is reset at the beginning of each execution and in the final result. This en-

forces a block-like scoping on the classical stack. This also applies to measure and

case. The revised judgement for measure is given in figure 3.15.

Γc|Γ ⊢ I0 · (S00, C) Γ ′
c|Γ

′ ⊢ (S0, C0)

Γc|Γ ⊢ I1 · (S11, C) Γ ′′
c |Γ ′ ⊢ (S1, C1)

Γc|Γ ⊢







meas q :

|0〉 => I0

|1〉 => I1







· (q{ij→ Sij}, C) Γc|Γ
′ ⊢ ((S0 + S1), C)

measure’

Figure 3.15: Revised semantics for measure with classical stack.

3.7 Semantics of recursion

This section will extend L-QPL with statements for recursion and provide the opera-

tional semantics for them.

3.7.1 Statements for recursion

The only statements added for recursion are the proc and call statements. Proc is used

to create a subroutine that is available for the call statement.

All proc statements are global in scope to a program, hence a subroutine may call

itself or be called by other subroutines defined elsewhere in a program. The judge-

ments for these two new statements are given in figure 3.16 on the next page. The

judgements reuse the notation introduced earlier of z̃j signifying a vector of elements.

3.7.2 Operational semantics for recursion

In order to provide an operational semantics for recursion, the quantum stacks will

now be considered a stream (also known as an infinite list) of quantum stacks. The
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Γc|Γ 
 prc
x

:: (c̃i:τ̃Ci|q̃vj:τ̃j; r̃k:τ̃k) = I
proc

{Γc|(q̃vj :: τ̃j)Γ 
⊣ ei}i

Γc|(q̃vj :: τ̃j)Γ 
 (r̃k) = prc
c
(ẽi|q̃vj)

call

Figure 3.16: Judgements for formation of proc and call statements

Notation Meaning

[z ′/z]Γ ⊢ [z ′/z]S Substituting z ′ for z in the context and stack.

Γc|Γ ⊢ I · (S, C)
d
 

Γ ′
cΓ

′ ⊢ (S ′, C ′)
Application of the statements Γc|Γ ; Γ ′

cΓ
′ 
 I to to the

quantum stack / classical stack pair (S, C) in classi-
cal context Γc and context Γ results in the quantum
stack / classical stack pair (S ′, C ′) in classical con-
text Γ ′

c and context Γ ′ at the dth iteration.

Table 3.2: Notation used in operational semantics once iteration is added

semantics as given previously in this chapter will stay the same, with the provision

that all of these apply across the entire stream.

Additional notation is required for calling subroutines, re-namings (formal in and

out parameters) and for applying a different transition dependent on the level in the

stream. This additional notation is explained in table 3.2.

The operational semantics for recursion is given in figure 3.17. Recursion is done

in the semantics by first diverging at the head of the infinite list and then calling a

subroutine once at the second element, calling twice in the third and so forth. In this

way, the program gives a closer and closer approximation of the actual results the

further one looks down the stream of quantum stacks.
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(x::T), Γ ⊢ [x ′/x] · x{vi → Si}
t  (x ′::T), Γ ⊢ x ′{vi → Si}

t
rename

prc
a

:: (c̃i:τ̃Ci|z̃j:τ̃j; w̃k:τ̃k) = Ia

Γc|(z̃j :: τ̃j)Γ ⊢ (w̃k) = prc
a
(c̃i|z̃j) · (S, C)

0
 Γc|∅ ⊢ (∅0, C)

base call

Γc|Γ ⊢ {[z ′
j/zj]}j; Ia; {[wk/w ′

k]}k · (S, C)
d
 Γ ′

c|(w̃k :: τ̃k)Γ ′ ⊢ (S ′, C ′)

prc
a

:: (c̃ ′
i:τ̃Ci|z̃

′
j:τ̃j; w̃ ′

k:τ̃k) = Ia

{Γc|(z̃j :: τ̃j)Γ 
⊣ ei::τCi}i

Γc|(z̃j :: τ̃j)Γ ⊢ (w̃k) = prc
a
(c̃i|z̃j) · (S, C)

d+1
 Γc|Γ

′ ⊢ (S ′, C)
call d + 1

Figure 3.17: Operational semantics for recursion



Chapter 4

An Informal Introduction to Linear QPL

4.1 Introduction to L-QPL

This chapter presents an overview of the linear quantum program language. Explana-

tions of L-QPL programs, statements, and expressions are given. The explanations are

done using expository presentation with many short examples to illustrate relevant

points.

L-QPL is a language for experimenting with quantum algorithms. The language

provides an expressive syntax for creating functions and defining and working with

different datatypes. L-QPL has qubits as first class citizens of the language, together

with quantum control. Classical operations and classical control are also available to

work with classical data.

The language design started from QPL in [Sel04] and rapidly evolved to a point

where a direct comparison is somewhat difficult. Major differences are the type sys-

tem, the syntax and structure of functions and the choices of individual statements.

4.1.1 Functional versus imperative

L-QPL is a functional language that uses single assignment. It resembles QPL in this

aspect rather than QML of [AG05]. Single assignment means that a variable always

has a unique value until its use. (See sub-section 4.1.2 below.)

Like most functional languages, side effects are not allowed in functions, other than

those that occur due to quantum entanglement. Side effects in imperative languages are

62
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those where a global variable is updated or values are read or written. An example

of this in an imperative quantum language is a procedure in QCL from [Öme00]. L-

QPL does not have the concept of a global variable. Currently, I/O is undefined. Side

effects from quantum entanglement can occur when a qubit is passed as a parameter

to a function and it is operated on in the function.

4.1.2 Linearity of L-QPL

The language L-QPL treats all quantum variables as linear. This means that any vari-

able may only be used once. The primary reason for implementing this is the underlying

aspect of linearity of quantum systems, as exemplified by the no-duplication rule which

must be respected at all times. This allows us to provide compile-time checking that

enforces this rule.

The compiler and language do provide ways to “ease the burden” of linear think-

ing. For example, function calls ( sub-section 4.3.6 on page 77) provide a specialized

syntax for variables which are both input and output to a function. The classical use

statements ( sub-section 4.3.5 on page 75) place values on to the classical stack where

the values may be used multiple times.

1 # Import Prelude . qpl
2

3 len : : ( l i s t I n : L i s t ( a ) ; length : In t ) =

4 { case l i s t I n of
5 Nil => { length = 0 }
6 Cons ( _ , t a i l ) =>

7 { t lLen := len ( t a i l ) ;
8 length = 1 + t lLen }
9 }

Figure 4.1: L-QPL code to return the length of the list

An example illustrating linearity is given in figure 4.1. In line 3, the function len is

defined as taking one argument of type List (a) and returning a variable of type Int. The
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input only argument, listIn , must be destroyed in the function. When the case statement

refers to listIn , the argument is destroyed, fulfilling the requirement of the function to

do so.

4.2 L-QPL programs

L-QPL programs consist of combinations of functions and data definitions, with one

special function named main. The functions and data definitions are simultaneously

declared and so may be given in any order. The program will start executing at the

main function.

A physical program will typically consist of one or more source files with the suffix

.qpl. Each source file may contain functions and data definitions. It may also import

the contents of other source files. The name of a source file is not significant in L-QPL.

Common practice is to have one significant function per source file and then to import

all these files into the source file containing the main function.

The above structure was chosen thinking of Haskell [Pey03] and C [KR88]. Global

definitions of functions and types is borrowed from Haskell, while the main start point

and import feature is a combination of Haskell and C.

4.2.1 Data definitions

L-QPL provides the facilities to define datatypes with a syntax reminiscent of Haskell

[Pey03].

Natively, the language provides Int, Qubit and Bool types. Bool is the standard

Boolean type with values true and false . Int is a standard 32-bit integer. Qubit is a

single qubit.

In L-QPL both native types and other constructed datatypes may be used in the
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definition of constructed datatypes. These constructed datatypes may involve sums,

products, singleton types and parametrization of the constructed type. For example,

a type that is the sum of the integers and the Booleans can be declared as follows:

qdata E i t h e r i b = { L e f t ( Int ) | Right ( Bool ) }

The above example illustrates the basic syntax of the data declaration.

Syntax of datatype declarations. Each datatype declaration must begin with the

keyword qdata. This is followed by the type name, which must be an identifier start-

ing with an uppercase letter. The type name may also be followed by any number

of type variables. This is then followed by an equals sign and completed by a list of

constructors. The list of constructors must be surrounded by braces and each construc-

tor must be separated from the others by a vertical bar. Each constructor is followed

by an optional parenthesized list of simple types. Each simple type is either a built-in

type, (one of Int , Bool, Qubit), a type variable that was used in the type declaration, or

another declared type, surrounded by parenthesis. L-QPL allows recursive references

to the type currently being declared. All constructors must begin with an upper case

letter. Constructors and types are in different namespaces, so it is legal to have the

same name for both. For example:

qdata Record a b = { Record ( Int , a , b ) }

In the above type definition, the first Record is the type, while the second is the con-

structor. The triplet (Int ,a,b) is the product of the type Int and the type variables a and

b. Since constructors may reference their own type and other declared types, recursive

data types such as lists and various types of trees may be created:

qdata L i s t a = { Nil | Cons ( a , L i s t ( a ) ) }

qdata Tree a = { Leaf ( a ) | Br ( Tree ( a ) , Tree ( a ) ) }

qdata STree a = { Tip | Fork ( STree ( a ) , a , STree ( a ) ) }
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qdata Colour = { Red | Black }

qdata RBSet a = { Empty |

RBTip ( Colour , RBSet ( a ) , a , RBSet ( a ) ) }

qdata RTree a = { Rnode ( a , L i s t ( a ) ) }

qdata Rose a = { Rose ( L i s t ( a , Rose ( a ) ) ) }

4.2.2 Function definitions

Function definitions may appear in any order within a L-QPL source file.

Syntax of function definitions. The first element of a function definition is the name,

an identifier starting with a lower case letter. This is always followed by a double

semi-colon and a signature, which details the type and characteristics of input and

output arguments. The final component of the function definition is a body, which is a

block of L-QPL statements. Details of statements are given in section 4.3 on page 69.

The structure of function definitions is unique to L-QPL, although broadly based

on one of the acceptable syntaxes for C function definitions as in [KR88]. The ma-

jor difference occurs in the signature which, as will be seen below, allows for both

classical and quantum input arguments and specifies the quantum outputs of a func-

tion. Another difference is that L-QPL defines all functions globally, hence there is no

requirement for declarations separate from the definitions.

Let us examine two examples of functions. The first, in figure 4.2 on the next page

is a fairly standard function to determine the greatest common divisor of two integers.

The first line has the name of the function, gcd, followed by the signature. The

name and the signature are separated by a double colon. The signature of the function

is (a :Int , b:Int | ; ans:Int). This signature tells the compiler that gcd expects two input

arguments, each of type Int and that they are classical. The compiler deduces this from
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1 gcd : : ( a : Int , b : In t | ; ans : In t ) =

2 { i f b == 0 => { ans = a }
3 a == 0 => { ans = b }
4 a > b => { ans = gcd ( b , a mod b ) }
5 e lse => { ans = gcd ( a , b mod a ) }
6 }

Figure 4.2: L-QPL function to compute the GCD

the fact that they both appear before the ’|’. In this case there are no quantum input

arguments as there are no parameters between the ’|’ and the ’ ;’. The last parameter

tells us that this function returns one quantum item of type Int. Returned items are

always quantum data.

The signature specifies variable names for the parameters used in the body. All in-

put parameters are available as variable names in expression and statements. Output

parameters are available to be assigned and, indeed, must be assigned by the end of

the function.

The next example, in figure 4.3 on the following page highlights the linearity of

variables in L-QPL. This function is used to create a list of qubits corresponding to the

bit representation of an input integer.

At line 1, the program uses the import command. #Import must have a file name di-

rectly after it. This command directs the compiler to stop reading from the current file

and to read code in the imported file until the end of that file, after which it continues

with the current file. The compiler will not reread the same file in a single compilation,

and it will import from any file.

For example, consider a case with three source files, A, B and C. Suppose file A has

import commands for both B and C, with B being imported first. Further suppose that

file B imports C. The compiler will start reading A, suspend at the first import and

start reading B. When it reaches B’s #Import of C, it will suspend the processing of B
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1 # Import Prelude . qpl
2

3 toQubi tL is t : : ( n : In t ; // Input : a p r o b a b i l i s t i c i n t
4 nq : L i s t ( Qubit ) , n : In t )= //Output : qubit l i s t , o r i g i n a l i n t
5 { use n in
6 { i f n == 0 =>

7 { nq = Nil }
8 ( n mod 2 ) == 0 =>

9 { n ’ = n ≫ 1 ;
10 ( nq ’ , n ’ ) = toQubi tL is t ( n ’ ) ;
11 nq = Cons ( |0> , nq ’ ) }
12 e lse => { n ’ = n ≫ 1 ;
13 toQubi tL is t ( n ’ ; nq ’ , n ’ ) ;
14 nq = Cons ( |1> , nq ’ ) } ;
15 n = n // Recrea te as p r o b a b i l i s t i c i n t
16 }
17 }

Figure 4.3: L-QPL function to create a qubit register

and read C. After completing the read of C, the compiler reverts to processing B. After

completing the read of B, the compiler does a final reversion and finishes processing

A. However, when A’s #Import of C is reached, the compiler will ignore this import as

it keeps track of the fact C has already been read.

In the signature on lines 3-4, the function accepts one quantum parameter of type

Int. It returns a Qubit list and an Int. The integer returned, in this program, is computed

to have the same value as the one passed in. If this had not been specified in this way,

the integer would have been destroyed by the function. Generally, any usage of a quantum

variable destroys that variable.

In the body of the function, note the use n in the block of statements. This allows

repeated use of the variable n at lines 6, 8, 9, 12 and 15. In these uses, n is a classical

variable, no longer on the quantum stack. The last usage on line 15 where n is assigned

to itself, returns n to the quantum world.
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4.3 L-QPL statements

The L-QPL language has the following statements:

Assignment: The assign statement, e.g. x = t;

Classical control: The if - else statement.

Case: The case for operating on constructed data types.

Measure: The measure statement which measures a qubit and executes dependent

statements.

Use: The use and classical assign statements which operate on classical data, moving

it on to the classical stack for processing.

Function calls: The various ways of calling functions or applying transformations.

Blocks: A group of statements enclosed by ’{’ and ’}’.

Quantum control: Control of statements by the ⇐ qualifier.

Divergence: The zero statement.

Other: the discard statement.

Most of these correspond to the conceptual statements for quantum pseudo-code

as given in [Kni96].

4.3.1 Assignment statement

Assignments create variables. Typical examples of these are:
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q1 = |0>;

i = 42;

bt1 = Br(Leaf(q1), Br(Leaf(|0>), Leaf(|1>)));

Here the first line creates a qubit, q1, with initial value |0〉. The second line creates

an integer ,i, with the value 42. The last line creates a binary tree, bt1, with q1 as its

leftmost node, and the right node being a sub-tree with values |0〉 and |1〉 in the left

and right nodes respectively. Note that after the execution of the third statement, the

variable q1 is no longer in scope so the name may be reused by reassigning some other

value to it.

The variables on the left hand side of an assignment are always quantum variables.

Syntax of assignment statements. An assignment statement always begins with an

identifier. This must be followed by a single equals sign and then an expression. Ex-

pressions are introduced and defined in section 4.4 on page 83

Identifiers in L-QPL must always start with a lower case letter.

4.3.2 Classical control

Classical control provides a way to choose sets of instructions to execute based upon

the values on the classical stack.

1 smallPrime : : ( a : In t | ;
2 isSmallPr ime : Bool ) =

3 { i f a =< 1 => { isSmallPr ime = f a l s e }
4 a == 2 || a == 3 || a == 5 =>

5 { isSmallPr ime = t rue }
6 a == 4 => { isSmallPr ime = f a l s e }
7 e lse => { isSmallPr ime = f a l s e }
8 }

Figure 4.4: L-QPL program demonstrating if−else
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The expressions in the selectors must be classical. This means they can only consist

of operations on constants and classical identifiers. It is a semantic error to have an

expression that depends on a quantum variable. For an example, see the code to

determine if an input number is a small prime in figure 4.4 on the preceding page.

Some form of classical control is encountered in all current quantum programming

languages. It is central to the semantics of [Sel04]. Note that many languages also

include a classically controlled looping statement (such as while or do). L-QPL does

not, relying on recursive functions to achieve the same end.

Syntax of the if − else statement. The statement starts with the word if, followed

by one or more selectors. Each selector is composed of a classical Boolean expression

eb, the symbols => and a dependent block. The statement is completed by a special

selector where the Boolean expression is replaced with the word else.

In the list of ei => bi selectors, bi is executed only when ei is the first expression to

evaluate to true. All others are skipped. The final grouping of else => block is a default

and will be executed when all the selector expressions in a list evaluate to false .

When writing the dependent blocks of the selectors, quantum variable creation

must be the same in each block. The compiler will give you a semantic warning if a

quantum variable is created in one branch and not another.

4.3.3 Measure statement

The measure statement performs a measurement of a qubit and executes code depend-

ing on the outcome. Currently in L-QPL, all measures are done with respect to the

basis {|0〉 , |1〉}. Referring to figure 4.5 on the next page, there is a measure on line 5.

Consider the program in figure 4.5 which emulates a coin flip. In the function cflip ,

a qubit is prepared by initializing it to |0〉 and applying the Hadamard transform. This



72

1 qdata Coin = { Heads | T a i l s }
2 c f l i p : : ( ; c : Coin ) =

3 { q = |0> ;
4 Had q ;
5 measure q of
6 |0> => { c = Heads }
7 |1> => { c = T a i l s }
8 }
9 main : : ( ) =

10 { c = c f l i p ( ) }

(a) Coin flip code (b) Stack machine state at end

Figure 4.5: L-QPL program to do a coin flip

creates a qubit whose density matrix is
(

.5 .5

.5 .5

)
. When this qubit is measured, it has

a 50% chance of being 0 and an equal chance of being 1.

In the branches of the measure, different values are assigned to the return variable

c. Each of these assignments happens with a probability of 50%. Once the measure

statement is completed, the variable c will be Heads and Tails each with a probability of

50%. In the quantum stack machine this is represented as in sub-figure b of figure 4.5.

This illustrates the largest difference between quantum and classical processing of

choices. In classical programming languages, a choice such as a case type statement

will only execute the code on one of the branches of the case. In L-QPL, every branch may be

executed.

1 main : : ( ) =

2 { q = |0> ;
3 Had q ;
4 measure q of
5 |0> => { i = 0 }
6 |1> => { i = 17 } ;
7 q = |0>

8 }

(a) Balanced creation

1 main : : ( ) =

2 { q = |0> ;
3 Had q ;
4 measure q of
5 |0> => { c = 0 }
6 |1> => { d = 17 } ;
7 q = |0>
8 }

(b) Unbalanced creation

Figure 4.6: L-QPL programs contrasting creation
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When writing the dependent blocks of measure (and case in sub-section 4.3.4) vari-

able creation must be the same in each dependent list of statements. The compiler will

give you a semantic warning if a variable is created in one branch and not another.

For example, consider figure 4.6 on the preceding page. In the left hand program

on the measure starting at line 4, each branch creates a variable named ’ i’. This is legal

and from line 7 forward, ’ i’ will be available.

On the other hand, the measure in the right hand program starting in line 4 assigns

to the variable ’c’ in the |0〉 branch and ’d’ in the |1〉 branch. At line 7, neither variable

will be available. The compiler will give the warnings:

Warning: Unbalanced creation, discarding c of type INT

Warning: Unbalanced creation, discarding d of type INT

Syntax of the measure statement. This statement starts with the word measure, fol-

lowed by a variable name, which must be of type Qubit. Next, the keyword of signals

the start of the two case selections. The case selection starts with either |0〉 or |1〉, fol-

lowed by => and the block of dependent statements.

Note that both case selections for a qubit must be present. However, it is permissi-

ble to not have any statements in a block.

4.3.4 Case statement

The case statement is used with any variable of a declared datatype.

In figure 4.7 on the next page, the program declares the List data type, which is

parametrized by one type variable and has two constructors: Nil which has no argu-

ments and Cons which takes two arguments of types a and List (a) respectively.

The function reverse takes a list as an input argument and returns a single list, which

is the original list in reverse order. Because of the linearity of the language the original
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1 qdata L i s t a = { Nil | Cons ( a , L i s t ( a ) ) }
2

3 reverse : : ( l i s : L i s t ( a ) ; r e v l i s : L i s t ( a ) )=
4 { rev ’ ( l i s , Nil ; r e v l i s ) }
5

6 rev ’ : : ( l i s : L i s t ( a ) , accumIn : L i s t ( a ) ; r e t u r n L i s t : L i s t ( a ) )=
7 { case l i s of
8 Nil => { r e t u r n L i s t = accumIn }
9 Cons ( hd , t a i l ) => { acc = Cons ( hd , accumIn ) ;

10 r e t u r n L i s t = rev ’ ( t a i l , acc ) }
11 }

Figure 4.7: L-QPL program demonstrating case, a function to reverse a list.

input list is not in scope at the end of the function. The function reverse delegates to

the function rev’ which uses an accumulator to hold the list as it is reversed.

The case statement begins on line 7. For Nil, it assigns the accumulator to the return

list. For Cons, it first adds the current element to the front of the accumulator list, then

it uses a recursive call to reverse the tail of the original list with the new accumulator.

1 qdata TTree a = { Tip | Br ( TTree ( a ) , a , TTree ( a ) ) | Node( a ) }
2

3 treeMaxDepth : : ( t : TTree ( a ) ; depth : In t ) =

4 { case t of
5 Tip => { depth = 0 }
6 Node( _ ) => { depth = 1 }
7 Br ( t1 , _ , t2 ) =>

8 { j := treeMaxDepth ( t1 ) ;
9 k := treeMaxDepth ( t2 ) ;

10 i f j > k => { depth = 1 + j }
11 e lse => { depth = 1 + k } }
12 }

Figure 4.8: L-QPL program demonstrating case, a function to compute the max tree
depth.

Consider the example in figure 4.8. TTree is a parametrized data type which de-

pends on the type variable a. It has three constructors: Tip which takes no arguments;

Br which takes three arguments of types TTree a, a and TTree a; and Node which takes

one argument of type a.
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In treeMaxDepth, the case statement on line 4 illustrates a “don’t care” pattern for

both the Node and Br constructors. This function returns the maximum depth of the

TTree and actually discards the actual data elements stored at nodes.

Syntax of the case statement. This statement starts with the word case, followed by

a variable of some declared type. Next, the keyword of signals the start of the case

selections. The number of constructors in a type determine how many case selections

the statement has. There is one selection for each constructor. Each case selection

consists of a constructor pattern, a ’=>’ and dependent statements.

Constructor patterns are the constructor followed by a parenthesized list of vari-

ables and / or don’t care symbols, ’_’. Non-parametrized constructors appear without

a list of variable names. The don’t care symbol causes data to be discarded.

4.3.5 Use and classical assignment statements

The use statement is used with any variable of type Int or Bool. This statement has a

single set of dependent statements. These may either be explicitly attached to the use

statement or implicit. Implicit dependent statements are all the statements following

the use until the end of the current block.

Classical assignment is grouped here as it is syntactic sugar for a use with implicit

statements. This is illustrated in figure 4.9.

...
...

i := exp;

s1;
≡

i = exp;

use i;

s1;

...
...

Figure 4.9: Syntactic sugar for use / classical assignment
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The three types of classical use are semantically equivalent, but do have different

syntaxes as illustrated in figure 4.10 on the next page.

1 Br ( t1 , _ , t2 ) =>

2 { j = treeMaxDepth ( t1 ) ;
3 k = treeMaxDepth ( t2 ) ;
4 use j , k in
5 { i f j > k => { depth = 1 + j }
6 e lse => { depth = 1 + k } }
7 }

(a) Explicit dependence

1 Br ( t1 , _ , t2 ) =>

2 { j = treeMaxDepth ( t1 ) ;
3 k = treeMaxDepth ( t2 ) ;
4 use j , k ;
5 i f j > k => { depth = 1 + j }
6 e lse => { depth = 1 + k }
7 }

(b) Implicit dependence

1 Br ( t1 , _ , t2 ) =>

2 { j := treeMaxDepth ( t1 ) ;
3 k := treeMaxDepth ( t2 ) ;
4 i f j > k => { depth = 1 + j }
5 e lse => { depth = 1 + k }
6 }

(c) Classical assign

Figure 4.10: Fragments of L-QPL programs contrasting use syntax

In sub-figure (a) of figure 4.10, the use statement starts on line 4. The next two

statements are explicitly in its scope, which ends at line 6. In sub-figure (b) of the

same figure, the use at line 4 is implicit. Its scope extends to line 7. Finally, in sub-

figure(c), the same effect is achieved with two classical assignments at lines 2 and 3.

The scope of these assignments extend to line 6.

Unlike data types and Qubits, which have a maximum number of sub-stacks, an Int

has the potential to have an unbounded number of values and therefore sub-stacks.

The dependent statements of the use statement are executed for each of these values.

To execute different statements depending on the value of the Int, L-QPL provides

the if - else statement as discussed in sub-section 4.3.2 on page 70. Typical use would

be immediately after the use statement, or as the first statement of the dependent block

of an explicit use statement.
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Syntax of the use statement. This statement starts with the word use, followed by a

list of variable names, which must be of type Int or Bool. If there is an explicit depen-

dent block for the statement, it is given by the keyword in followed by the dependent

block.

When the use statement is not followed by a dependent block, the rest of the state-

ments in the enclosing block are considered in the scope of the use.

Classical assign syntax is a variable name, followed by the symbol ’ :=’ followed by

an expression. The expression must have type Int or Bool.

4.3.6 Function calls

Function calls include calling functions defined in programs and the predefined trans-

forms. The list of predefined transforms valid in a L-QPL program are given in ta-

ble 4.1 on the next page.

In addition to the predefined transforms, L-QPL allows you to prefix any of the

predefined transformations with the string Inv− to get the inverse transformation.

Controlled versions of all of these are available by using the quantum control con-

struction as defined in sub-section 4.3.8 on page 82. For example, the Toffoli3 gate as

shown in table 2.1 on page 17 is simply a controlled-controlled-Not transformation.

The signatures of transforms are dependent upon the size of the associated matrix.

A 2×2 matrix gives rise to the signature (q:Qubit ; q:Qubit). In general, a 2n×2n matrix

will require n qubits in and out. The parametrized transforms such as Rot will require

one or more integers as input.

Syntax of function calls

There are three different calling syntaxes for functions:

1. Functional — (y1, . . . , ym) = f(n1, . . . , nk | x1, . . . , xj).
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L-QPL A.K.A. Matrix

Not X, Pauli-X, ρX

[
0 1
1 0

]

RhoY Y, Pauli-Y, ρY

[
0 −i

i 0

]

RhoZ (=Rot(0)) Z, Pauli-Z, ρZ

[
1 0
0 −1

]

Had Had, H 1√
2

[
1 1
1 −1

]

Swap Swap




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




Phase (=Rot(2)) S, Phase
√

Z

[
1 0
0 i

]

T(=Rot(3)) T , π
8 ,
√

S

[
1 0
0 eiπ/4

]

Rot(n) Rn, Rotation
[

1 0
0 e2iπ/2n

]

Table 4.1: L-QPL transforms
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2. Procedural — f(n1, . . . , nk | x1, . . . , xj ; y1, . . . , ym).

3. Transformational — f(n1, . . . , nk) z1 z2 . . . zj.

Functions with classical and quantum inputs. These functions may be called1 in

each of the three ways.

1 f : : ( c1 : Int , c2 : In t | q1 : Qubit , i 1 : In t ; a : Qubit , b : In t ) = { . . . }

2 . . .

3 ( a , b ) = f ( c1 , c2 | q1 , i 2 ) ;

4 f ( c1 , c2 | q1 , i 2 ; a , b ) ;

5 f ( c1 , c2 ) q i ;

When a function is called in the transformational syntax, as on the last line of the

above code, the arguments separated by spaces (q i in the example) are both passed

into the function as arguments and used as return variables. The arguments in the

parenthesis ( c1,c2 in our example), must be classical and a semantic error will result if

a quantum variable is used. If the number of in and out quantum arguments are not

the same or their types do not match, this syntax is not available.

Functions which have no quantum input arguments. Functions which have only

classical inputs may be called in either the functional or procedural syntax. As there

are no input quantum arguments, transformational syntax is not allowed.

1 g : : ( c1 : Int , c2 : In t | ; r : Int , d : In t ) = { . . . }

2 . . .

3 ( a , b ) = g ( c1 , c2 | ) ;

4 g ( c1 , c2 | ; a , b ) ;

1A function call where a single unparenthesized variable appears on the left hand side of the equals
is actually an assignment statement. The right hand side of the assignment is a function expression.
See sub-section 4.3.1 and sub-section 4.4.4 for further details.
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Functions which have no classical input arguments. Functions having only quan-

tum inputs may use all three syntaxes. In this case, where the classical variable list

of arguments is empty, the “|” may be eliminated in procedural or functional calling,

and the parenthesis may be eliminated in transformational calling.

1 h : : ( q1 : Int , q2 : In t ; r : Int , d : In t ) = { . . . }

2 . . .

3 ( a , b ) = h (|c , d ) ;

4 ( a , b ) = h ( c , d ) ;

5 h ( | a , b ; c , d ) ;

6 h ( a , b ; c , d ) ;

7 h a b ;

Linearity of function call arguments. Each input argument is no longer in scope

after the function call. If the input is a simple identifier, the same identifier may be

used in the output list of the function. The transformational syntax uses this technique

to leave the variable names unchanged.

Syntactic forms of function and transform calls. In all three of the forms for func-

tion calling, the number and type of input arguments must agree with the definition

of the function. Output identifiers must agree in number and their type is set accord-

ing to the definition of the functions output parameters. Output variables are always

quantum.

The functional syntax for function calling has three parts. The first part is a paren-

thesized list of variable names separated by commas. The parenthesized list is then

followed by an equals sign. The right hand side consists of the function name fol-

lowed by the parenthesized input arguments. The input arguments consists of two

lists of arguments separated by ’|’. The first list consists of the classical arguments,
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the second of the quantum arguments. Each argument must be a valid expression as

defined in section 4.4 on page 83. If there are no classical arguments, the ’|’ is optional.

The procedural syntax for function calling starts with the function name, followed

by a parenthesized grouping of input and output arguments. As in the functional

form, the list of classical input arguments are separated from the quantum ones by ’|’,

which may be eliminated when there are no classical arguments. The input arguments

are separated from the output arguments by ’ ;’.

The transformational syntax starts with the function name followed by a parenthe-

sized list of classical expressions and then by a series of identifiers, separated by white

space. A requirement for using this syntax is that the number and types of the input

and output quantum arguments must be the same. The identifiers will be passed as

input to the function and will be returned by the function. The parenthesis for the list

of classical expressions may be eliminated when there are no classical parameters.

Function calls may also be expressions, which is discussed in sub-section 4.4.4.

4.3.7 Blocks

Blocks are created by surrounding a list of statements with braces. A block may ap-

pear wherever a statement does. All of the “grouping” types of statements require

blocks rather than statements as their group. See, for example, the discussion on case

statements in sub-section 4.3.4.

4.3.8 Quantum control

Quantum control provides a general way to create and use controlled unitary trans-

forms in an L-QPL program. An example of quantum control is shown in the prepare

and teleport functions in figure 4.11.
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1 prepare : : ( ; a : Qubit , b : Qubit )=
2 { a = |0> ; b = |0> ;
3 Had a ;
4 Not b ⇐ a ;
5 }
6 t e l e p o r t : : ( n : Qubit , a : Qubit , b : Qubit ; b : Qubit ) =

7 { Not a ⇐ n ;
8 Had n ;
9 measure a of

10 |0> => { } |1> => { Not b } ;
11 measure n of
12 |0> => { } |1> => {RhoZ b }
13 }

Figure 4.11: L-QPL program demonstrating quantum control

Syntax of quantum control In L-QPL any statement, including block statements and

procedure calls may be quantum controlled. Semantically, this will affect all trans-

forms that occur within the controlled statement, including any of the transforms in

a called function. The syntax is statement followed by the symbols <=, followed by a

list of identifiers. These identifiers may be of any type, but are typically either qubits

or constructed data types with qubit elements, such as a List (Qubit). Additionally,

any identifier may be preceeded by a tilde (˜) to indicate 0−control. The default is

1−control.

The identifiers that are controlling a statement can not be used in the statement.

Controlling identifiers are exempt from linearity constraints in that they remain in

scope after the quantum control construction.

The effect of the control statement is that all qubits in the control list, or contained

in items in that list are used to control all unitary transformations done in the con-

trolled statement.
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4.3.9 Divergence

To force the execution of a program to diverge, you can use the zero statement. This

will set the probability of the values of a program to 0, and is interpreted as non-

termination.

4.3.10 Discard

In some algorithms, such as in recursive functions when they process the initial cases

of constructed data, the algorithm does not specify any action. In these cases, the

programmer may need to examine the requirements of linearity with respect to any

passed in parameters. Often, these will need to be explicitly discarded in base cases

of such algorithms. This is done via the discard statement. An example may be seen

in figure C.29 on page 168.

4.4 L-QPL expressions

Expressions in L-QPL are used in many of the statements discussed in section 4.3 on

page 69. The four basic types of expressions are identifiers, constants, constructor

expressions, and calling expressions. Arithmetic and logical combinations of classi-

cal constants and classical identifiers are allowed. As well, constructor and calling

expressions often take lists of other expressions as arguments.

4.4.1 Constant expressions

The possible constant expressions in L-QPL are shown in table 4.2. The category col-

umn in this table contains the word “Classical” when the constant may be used in

arithmetic or Boolean expressions.
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Expression Type Category

integer Int Classical

true Bool Classical

false Bool Classical

|0〉 Qubit Quantum

|1〉 Qubit Quantum

Table 4.2: Allowed constant expressions in L-QPL

4.4.2 Identifier expressions

These expressions are just the identifier name. While an identifier may be used wher-

ever an expression is expected, the reverse is not true. As an example, in function

calls, any of the input arguments may be expressions but the output arguments must

be identifiers.

Identifier expressions may be either quantum or classical in nature. As discussed

in sub-section 4.3.1 on page 69, an identifier is first created by an assignment state-

ment. When initially created, the identifier is always quantum. Using it where a

classical expression is required will result in an error. When it is desired to operate on

an identifier classically, it must first be the object of a use statement. In all statements

in the scope of that use statement the identifier will be considered classical. See sub-

section 4.3.5 on page 75 for further information and examples.

4.4.3 Constructor expressions

These expressions are used to create new instances of declared data types. Consider

this sample fragment of code.



85

1 qdata TTree a = { Tip | Br ( TTree ( a ) , a , TTree ( a ) ) | Node( a ) }
2 qdata L i s t a = { Nil | Cons ( a , L i s t ( a ) ) }
3

4 qbtree = Br ( Tip , |1> , Br (Node(|0>) , |1> , Node( |1> ) ) ) ;
5 i n t l i s t = reverse ( Cons ( 5 , Cons ( 4 , Cons ( 3 , Cons ( 2 , Cons ( 1 , Nil ) ) ) ) ) ) ;

These statements create a tree as in figure 4.12 and the list [1, 2, 3, 4, 5]. Compare

the logical representation of qbtree as in figure 4.12 versus how it is stored in the quan-

tum stack machine, shown in figure 4.13 on the next page. The assignment statement

qbtree= |1>

|1>

|1>

|0>

Figure 4.12: Pictorial representation of qbtree

Figure 4.13: Quantum stack contents after creation of qbtree

which creates qbtree uses five constructor expressions. The second assignment state-
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ment, which creates intlist uses six constructor expressions and one function expres-

sion.

Constructor expressions either have no arguments (e.g. Tip, Nil above), or require

a parenthesized list of expressions which agree in both number and type with the

template supplied at the declaration of the type. These expressions are unrestricted

otherwise. They may be constants, identifiers, other constructor expressions, expres-

sion calls or compound expressions. Any expressions that are classical in nature, such

as constants, are upgraded to quantum automatically.

4.4.4 Function expressions

When a function returns a single value, it may be used in a function expression. The

bottom two lines of listing below shows two examples of function expressions.

1 f : : ( c1 : Int , c2 : Int , c3 : In t | q1 : Qubit , i 1 : In t ; out : Qubit )

2 = { . . . }

3 . . .

4 qout = f ( c1 , c2 , c3 | q1 , i 2 ) ;

5 q l i s t = Cons ( f ( 1 , 2 , 3 | qout , 5 ) , Nil ) ;

In the first function expression, f is the right hand side of an assignment statement.

The assignment statement creates the variable qout with the value returned by the

function.

In the second function expression, f is the first argument of a constructor expres-

sion which will create a one element List (Qubit). The constructor expression is part of

an assignment statement which creates the variable qlist and sets it to the one element

list. Note that due to linearity, the variable qout is no longer available after the second

function expression.
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A function expression is always a quantum expression, so it may only be used in

those places where quantum expressions are allowed. Nesting of these calls inside

constructor expressions, other function expressions and function calls is allowed.

1 qdata L i s t a = { Nil | Cons ( a , L i s t ( a ) ) }
2

3 append : : ( l i s t 1 : L i s t ( a ) , l i s t 2 : L i s t ( a ) ; appendList : L i s t ( a ) )=
4 { case l i s t 1 of
5 Nil => { appendList = l i s t 2 }
6 Cons ( hd , t a i l ) =>

7 { appendList = Cons ( hd , append ( t a i l , l i s t 2 ) ) }
8 }

Figure 4.14: L-QPL code for appending two lists

In figure 4.14, line 7 shows the append being used as a function expression inside of

a constructor expression.



Chapter 5

The quantum stack machine

5.1 Introduction to the quantum stack machine

The quantum stack machine provides an execution environment where quantum and

classical data may be manipulated. The primary component of this machine is the

quantum stack, which stores both quantum and probabilistic data.

The quantum stack has the same function as a classical stack in that it provides

the basic operations and data structures required for quantum computation. Chap-

ter 3 initially showed how quantum circuits can be interpreted as acting on a simple

quantum stack consisting of bits and qubits. Later sections of chapter 3 extended the

quantum stack with datatype and classical data nodes, together with operations on

those nodes. Section 3.7 gave the interpretation of recursive functions acting on a

quantum stack.

This chapter describes a machine using this full quantum stack and other data

structures to provide an execution environment for L-QPL programs.

5.2 Quantum stack machine in stages

The quantum stack machine is described in terms of four progressively more elaborate

stages. The first stage is the basic QS-machine, labelled BQSM. This stage provides

facilities for the majority of operations of our machine, including classical operations,

adding and discarding data and classical control. The second stage, the labelled QS-

machine, called LBQSM adds the capability of applying unitary transforms with the

88
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modifiers Left, Right and IdOnly as introduced in section 3.4. The third stage,

the controlled QS-machine, is labelled CQSM and provides the ability to do quantum

control. The final stage, the QS-machine, is labelled QSM and adds the ability to call

subroutines and do recursion.

These stages are ordered in terms of complexity and the operations definable on

them. The ordering is:

BQSM < LBQSM < CQSM < QSM

When a function is defined on one of the lower stages, it is possible to lift it to a

function on any of the higher stages.

5.2.1 Basic quantum stack machine

The quantum stack machine transitions for the quantum instructions are defined at

this stage. The state of the basic quantum stack machine has a code stream, C, a clas-

sical stack, S, a quantum stack, Q, a dump, D and a name supply, N.

(C, S, Q, D, N) (5.1)

The code, C, is a list of machine instructions. Transitions effected by these instruc-

tions are detailed in sub-section 5.4.1 on page 96. English descriptions of the instruc-

tions and what they do are given in appendix B.1 on page 127.

The classical stack, S, is a standard stack whose items may be pushed or pulled

onto the top of the stack and specific locations may be accessed for both reading and

updating. Classical arithmetic and Boolean operations are done with the top elements

of the classical stack. Thus, an add will pop the top two elements of the classical stack

and then push the result on to the top of the stack.



90

The dump, D, is a holding area for intermediate results and returns. This is used

when measuring quantum bits, using probabilistic data, splitting constructed data

types and for calling subroutines. Further details are given in sub-section 5.2.6 on

page 92.

The name supply, N, is an integer that is incremented each time it is used. The

name supply is used when binding nodes to constructed data nodes. As they are

bound, they are renamed to a unique name generated from the name supply. For

further details on this, see the transitions for QBind at sub-section 5.4.2 on page 96.

5.2.2 Labelled quantum stack machine

The labelled QS-machine, designated as LBQSM, extends BQSM by labelling the quan-

tum stack, L(Q). The quantum stack is labelled to control the application of unitary

transformations, which allows quantum control to be implemented.

The labelled QS-machines state is a tuple of five elements:

(C, S, L(Q), D, N) (5.2)

The quantum stack is labelled by one of four labels: Full, Right, Left or

IdOnly. These labels describe how unitary transformations will be applied to the

quantum stack.

When this labelling was introduced in section 3.4, it was used as an instruction

modifier rather than a labelling of the quantum stack. While the implementation of

these modifiers is changed, the effect on the quantum stack is the same. The quantum

stack machine transitions for unitary transformations are detailed in sub-section 5.4.8

on page 107.
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5.2.3 Controlled quantum stack machine

The controlled quantum stack machine, CQSM, adds the capability to add or remove

quantum control. This stage adds a control stack, C, and changes the tuple of classical

stack, labelled quantum stack, dump and name supply into a list of tuples of these

elements. In the machine states, a list will be denoted by enclosing the list items or

types in square brackets.

The CQSM state is a tuple of three elements, where the third element is a list of

four-tuples:

(C, C, [(S, L(Q), D, N)]) (5.3)

The control stack is implemented using a list of functions, each of which is defined

on the third element of CQSM. The functions in the control stack transform the list

of tuples (S, L(Q), D, N). Control points are added to the control stack by placing an

identity function at the top of the stack. Control points are removed by taking the top

of the control stack and applying it to the current third element of CQSM, resulting in

a new list of tuples. Adding a qubit to control will modify the function on top of the

control stack and change the list of tuples of (S, L(Q), D, N).

5.2.4 The complete quantum stack machine

The complete machine, QSM, allows the implementation of subroutine calling. Its

state consists of an infinite list of CQSM elements.

Inflist(C, C, [(S, L(Q), D, N)]) (5.4)

Subroutine calling is done in an iterative manner. At the head of the infinite list,

no subroutines are called, but result in divergence. Divergence is represented in the

quantum stack machine by a quantum stack with a trace of 0.
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In the next position of the infinite list, a subroutine will be entered once. If the

subroutine is recursive or calls other subroutines, those calls will diverge. The next

position of the infinite list will call one more level. At the nth position of the infinite

list subroutines are executed to a call depth of n.

5.2.5 The classical stack

The machine uses and creates values on the classical stack when performing arith-

metic operations. This object is a standard push-down stack with random access.

Currently it accommodates both integer and Boolean values.

5.2.6 Representation of the dump

When processing various operations in the machine, such as those labelled as quan-

tum control (measure et. al.), the machine will need to save intermediate stack states

and results. To illustrate, when processing a case deconstruction of a datatype, the

machine saves all partial trees of the node on the dump together with an empty stack

to accumulate the results of processing these partial trees. After processing each case

the current quantum stack is merged with the result stack and the next partial stack is

processed. The classical stack is also saved in the dump element at the beginning of

the process and reset to this saved value when each case is evaluated.

The dump is a list of dump elements. There are two distinct types of dump elements,

one for quantum control instructions and one used for call statements. The details of

these elements may be found in the description of the quantum control transitions

in sub-section 5.4.5 on page 101 and function calling in sub-section 5.4.9 on page 109.
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5.2.7 Name supply

The name supply is a read-only register of the machine. It provides a unique name

when binding nodes to a data node. The implementation uses an integer value which

is incremented for each of the variables in a selection pattern in a case statement. It is

reset to zero at the start of each program.

5.3 Representation of data in the quantum stack

The quantum stack was introduced and described in chapter 3. This section will give

further details of the implementation of the quantum stacks and show example nodes.

5.3.1 Representation of qubits.

A single qubit is represented on the quantum stack as a node with four possible

branches. This assumes a basis for quantum computation of two elements, which

is identified with (0, 1) and (1, 0) in C2. The four possible values of the branches rep-

resent the elements of the qubit’s density matrix. This is illustrated in figure 5.1. From

left to right, the branches are labelled with 00, 01, 10 and 11. The value at each branch

is .5. This corresponds to the density matrix
[

.5 .5

.5 .5

]

Figure 5.1: A qubit after a Hadamard transform

With multiple qubits, the representation becomes hierarchical. For example, two

qubits will be represented by a tree with one of the qubits at the top and each of its sub-

branches having the second qubit below it. Consider applying a Hadamard transform
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to one qubit, followed by a controlled-Not with that qubit as the control. This is a

standard way to entangle two qubits. As illustrated in figure 5.2, this creates a tree

in the quantum stack with a total of four non-zero leaves. The quantum stack in the

figure corresponds to a sparse representation of the density matrix:



.5 0
0 0

0 .5
0 0

0 0
.5 0

0 0
0 .5




Figure 5.2: Two entangled qubits

5.3.2 Representation of integers and Boolean values

Numeric and Boolean data in the quantum stack machine is represented by a node

with a sub-branch for each value that occurs with a non-zero probability. These values

may be of either integer or Boolean type.

Figure 5.3: An integer with three distinct values
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Figure 5.3 on the preceding page depicts an integer i1 which has a 50% probability

of being 5, and 25% each of being 12 or 17.

5.3.3 Representation of general data types

The general datatype is represented as a node with one branch for each of the construc-

tors that occurs with a non-zero probability. Each branch is labelled by the constructor

and the names of any nodes that are bound to it1. These nodes will be referred to as

bound nodes.

Figure 5.4: A list which is a mix of [ ] and [1].

For example, in the List that appears in figure 5.4, the top node is a mix of values.

The node d1 has a 25% chance of being Nil and 75% of being a Cons of two bound

nodes. The first bound node is an element of the base type, integer. It is labelled

1For example, in Lists of integers, the Cons constructor requires a base integer and another List.
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Cons_1_a which is an integer node having the single value 1. The second bound

element is Cons_0_nil1, which is another list having the single value of Nil.

5.4 Quantum stack machine operation

This section describes the actual transitions of the stack machine for each of the in-

structions in the machine.

5.4.1 Machine transitions

The majority of the transitions presented in this section are defined on a machine of

type BQSM = (C, S, Q, D, N) as was introduced in sub-section 5.2.1 on page 89. As

discussed in that section, labelling only affects the transition of unitary transforms.

All other instruction transitions ignore it, giving us:

Ins(L(Q)) = L(Ins(Q))

where Ins is the transition of some other instruction.

The transition for the application of transformations will use LBQSM, while the

transition for the add/remove control instructions uses the machine state of CQSM.

The call instruction uses the state of the complete machine, QSM, which allows re-

cursion. All of these stages and their associated states were defined and discussed

in section 5.2 on page 88.

5.4.2 Node creation

There are three instructions which allow us to create data on the stack and one which

binds sub-nodes into a data type. These are QLoad, QCons, QMove and QBind.

The transitions are shown in figure 5.5 on the following page.
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The instructions do the following tasks:

QLoad nm |i〉— Load a new qubit named nm on top of the quantum stack with the

value |i〉;

QCons nm Cns – Load a new datatype node on top of the quantum stack with name

nm and value Cns. Sub-nodes are not bound by this instruction.

QMove nm — Load a new classical node on top of the quantum stack with name nm

and value taken from the top of the classical stack. If the classical stack is empty,

the value is defaulted to 0.

QBind nm — Binds a sub-node down the branch of the node to the datatype con-

structor on top of the quantum stack. Furthermore, the act of binding will cause

the newly bound sub-node to be renamed so that it is hidden until an unbind is

performed. QBind uses the name supply, N, to create the new name for the sub-

node. The machine will generate an exception if the top of the quantum stack is

not a single branched datatype or if a node named nm is not found.

(QLoad x |k〉 :C, S, Q, D, N)

=⇒ (C, S, x:[|k〉 → Q], D, N)

(QCons x c:C, S, Q, D, N)

=⇒ (C, S, x:[c{}→ Q], D, N)

(QMove x:C, v:S, Q, D, N)

=⇒ (C, S, x:[v̄→ Q], D, N)

(QBind z0:C, S, x:[c{z ′
1, . . . , z ′

n}→ Q], D, N)

=⇒ (C, S, x:[c{z(N), z ′
1, . . . , z ′

n}→ Q[z(N)/z0]], D, N ′)

Figure 5.5: Transitions for node construction
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5.4.3 Node deletion

Three different instructions, QDelete, QUnbind and QDiscard remove data from

the quantum stack. These instructions are the converses of QBind, QLoad and QMove.

Their transitions are shown in figure 5.6 and figure 5.7. The instructions do the fol-

lowing tasks:

QDelete — removes the top node of the stack and any bound sub-nodes. This instruc-

tion has no restrictions on the number of sub-stacks or bindings in a data node;

QDiscard — removes the top node of the stack. In all cases, the top node can only

be removed when it has a single sub-stack. For datatype nodes, QDiscard also

requires there are no bound sub-nodes.

QUnbind nm — removes the first bound element from a data type provided it has a

single sub branch. The datatype node must be on top of the quantum stack. The

newly unbound sub-node is renamed to nm.

(QDelete:C, S, Q:[|kij〉 → Qij], D, N) =⇒ (C, S, (Q00 + Q11), D, N)

(QDelete:C, S, DT :[ci{bij}→ Qi], D, N) =⇒ (C, S,
∑

i(del({bij}, Qi)), D, N)

(QDelete:C, S, I:[vi → Qi], D, N) =⇒ (C, S,
∑

i Qi, D, N)

Figure 5.6: Transitions for destruction

For the QDelete instruction, the type of node is irrelevant. It will delete the node

and, in the case of datatype nodes, any bound nodes. This instruction is required to

implement sub-routines that have parametrized datatypes as input arguments. For

example, the algorithm for determining the length of a list is to return 0 for the “Nil”

constructor and add 1 to the length of the tail list in the “Cons” constructor. When
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doing this, the elements of the list are deleted due to the linearity of L-QPL. The com-

piler will have no way of determining the type of the elements in the list and therefore

could not generate the appropriate quantum split and discards. The solution is to use

a QDelete instead.

The subroutine del used in the transitions in figure 5.6 will recursively rotate up

and then delete the bound nodes of a datatype node.

(QDiscard:C, S, x:[|k〉 → Q], D, N) =⇒ (C, S, Q, D, N)

(QDiscard:C, S, x:[c{}→ Q], D, N) =⇒ (C, S, Q, D, N)

(QDiscard:C, S, x:[v→ Q], D, N) =⇒ (C, v:S, Q, D, N)

(QUnbind y:C, S, x:[c{z ′
1, . . . , z ′

n}→ Q], D, N)

=⇒ (C, S, x:[c{z ′
2, . . . , z ′

n}→ Q[y/z ′
1]], D, N)

Figure 5.7: Transitions for removal and unbinding

The renaming is an integral part of the QUnbind instruction, as a compiler will not

be able to know the bound names of a particular data type node. The instruction does

not delete the data type at the top of the stack or the unbound node. If the top node is

not a data type or has more than a single branch or does not have any bound nodes,

the machine will generate an exception.

The machine ensures that it does not create name capture issues by rotating the

bound node to the top of the sub-stack before it does the rename. That is, given the

situation as depicted in the transitions, the quantum stack machine performs the fol-

lowing operations:

1. Q ′ ← pull(z ′
1, Q);

2. Q ′′ ← Q ′[y/z ′
1];

3. z ′
1 is removed from the list of constructors;

4. The new quantum stack is now set to x:[c{z ′
2, . . . , z ′

n}→ Q ′′].
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5.4.4 Stack manipulation

Most operations on a quantum stack affect only the top of the stack. Therefore, the

machine must have ways to move items up the stack. This requirement is met by the

instructions QPullup and QName. The transitions are shown in figure 5.8.

The instructions do the following tasks:

QPullup nm — brings the first node named nm to the top of the quantum stack. It

is not an error to try pulling up a non-existent address. The original stack will

not be changed in that case.

QName nm1 nm2 — renames the first node in the stack having nm1 to nm2.

(QPullup x:C, S, Q, D, N) =⇒ (C, S, pull(x, Q), D, N)

(QName x y:C, S, Q, D, N) =⇒ (C, S, Q[y/x], D, N)

Figure 5.8: Transitions for quantum stack manipulation

A QPullup nm has the potential to be an expensive operation as the node nm

may be deep in the quantum stack . In practice, many pullups interact with only the

top two or three elements of the quantum stack.

The algorithm for pullup is based on preserving the bag of path signatures. A path

signature for a node consists of a bag of ordered pairs (consisting of the node name

and the branch constructor) where every node from the top to the leaf is represented.

Pulling up a node will reorder the sub-branches below nodes to keep this invariant.

Due to the way arguments of recursive subroutines are handled in L-QPL, it is

actually possible to get multiple nodes with the same name, however, this does not

cause a referencing problem as only the highest such node is actually available in the

L-QPL program.
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5.4.5 Measurement and choice

The instructions Split, Measure and Use start the task of operating on a node’s

partial stacks, while the fourth, EndQC is used to iterate through the partial stacks.

The transitions are shown in figure 5.9 on the following page.

The instructions do the following tasks:

Use Lbl — uses the classical node at the top of the quantum stack and executes the

code at Lbl for each of its values.

Split (c1, lbl1), . . . , (cn, lbln) — uses the datatype node at the top of the stack and

execute a jump to the code at lbli when there is a branch having constructor ci.

Any constructors not mentioned in the instruction are removed from the node

first. There is no ordering requirement on the pairs of constructors and labels in

Split.

Measure Lbl00 Lbl11 — using the qubit node on top of the quantum stack, executes

the code at its two labels for the 00 and 11 branches. The off-diagonal elements

of the qubit will be discarded. This implements a non-destructive measure of

the qubit.

EndQC — signals the end of processing of dependent instructions and begins pro-

cessing the next partial stack. When all values are processed, merges the results

and returns to the instruction after the corresponding Measure, Use or Split

instruction.

Each of the code fragments pointed to by the instruction labels must end with the

instruction EndQC. The EndQC instruction will trigger execution of the code associated

with the next partial stack.



102

(Use ⊲CU:C, S, x:[v̄i → Qi], D, N)

=⇒ (EndQC, S, 0,Qc(S, [(xi:vi → Qi, ⊲CU)], ⊲C, 0):D, N)

(EndQC, S ′, Q,Qc(S, [(xi:vi → Qi, ⊲CU)]i=j,...,m, ⊲C, Q ′):D, N)

=⇒ (CU, S, xj,Qc(S, [(xi:vi → Qi, ⊲CU)]i=j+1,...,m, ⊲C, Q + Q ′):D, N)

(EndQC, S ′, Q,Qc(S, [], ⊲C, Q ′):D, N)

=⇒ (C, S, Q + Q ′, D, N)

(Split [(ci, ⊲Ci)]:C, S, x:[ci{Vi}→ Qi], D, N)

=⇒ (EndQC, S, 0,Qc(S, [(xi:ci{Vi}→ Qi, ⊲Ci)], ⊲C, 0):D, N)

(EndQC, S ′, Q,Qc(S, [(xi:ci{Vi}→ Qi, ⊲Ci)]i=j,...,m, ⊲C, Q ′):D, N)

=⇒ (Cj, S, xj,Qc(S, [(xi:ci{Vi}→ Qi, ⊲Ci)]i=j+1,...,m, ⊲C, Q + Q ′):D, N)

(EndQC, S ′, Q,Qc(S, [], ⊲C, Q ′):D, N)

=⇒ (C, S, Q + Q ′, D, N)

(Meas ⊲C0 ⊲C1:C, S, x:[|0〉 → Q0, |1〉 → Q1, . . .], D, N)

=⇒ (EndQC, S, 0,Qc(S, [(xk: |k〉 → Qk, ⊲Ck)]k∈{0,1}, ⊲C, 0):D, N)

(EndQC, S ′, Q,Qc(S, [(xk: |k〉 → Qk, ⊲Ck)]k∈{0,1}, ⊲C, Q ′):D, N)

=⇒ (C0, S, x0,Qc(S, [(x1: |1〉 → Q1, ⊲C1)], ⊲C, Q + Q ′):D, N)

(EndQC, S ′, Q,Qc(S, [(x1: |1〉 → Q1, ⊲C1)], ⊲C, Q ′):D, N)

=⇒ (C1, S, x1,Qc(S, [], ⊲C, Q + Q ′):D, N)

(EndQC, S ′, Q,Qc(S, [], ⊲C, Q ′):D, N)

=⇒ (C, S, Q + Q ′, D, N)

Figure 5.9: Transitions for quantum node choices



103

The QUnbind is meant to be used at the start of the dependent code of a Split

instruction. The sequencing to process a datatype node is to do a Split, then in each

of the dependent blocks, execute QUnbind instructions, possibly interspersed with

QDelete instructions when the bound node is not further used in the code. This is

always concluded with a QDiscard that discards the data node which was the target

of the Split.

In the following discussion there are no significant differences between the Split

and Measure. The action of Split is described in detail.

The Split, Measure and Use instructions make use of the dump. The dump

element used by these instructions consists of four parts:

• The return label. This is used when the control group is complete.

• The remaining partial stacks. A list consisting of pairs of quantum stacks and their

corresponding label. These partial stacks are the ones waiting to be processed

by the control group.

• The result quantum stack. This quantum stack accumulates the merge result of

processing each of the control groups partial stacks. This is initialized to an

empty stack with a zero trace.

• The saved classical stack. The classical stack is reset to this value at the start of pro-

cessing a partial stack and at the end. This occurs each time an EndQC instruction

is executed.

The instruction Split [(c1, l1), (c2, l2)] begins with the creation of a dump entry

holding [(c1 → Q1, l1), (c2 → Q2, l2)] as the list of partial stacks and label pairs. The

dump entry will hold 0 quantum stack as the result stack, the current state of the
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classical stack and the address of the instruction following the Split. The final pro-

cessing of the Split instruction sets the current quantum stack to zero and sets the

next code to be executed to be EndQC.

The EndQC will change the top dump element by removing the first pair (c1 →

Q1, l1) from the execution list. It will set the current quantum stack to the first element

of this pair and the code pointer to the second element. Execution then proceeds with

the first instruction at l1.

When the next EndQC instruction is executed, the dump will again be changed.

First the current quantum stack will be merged with the result stack on the dump.

Then the next pair of partial quantum stack Pq (= c2 → Q2) and code pointer l2 is

removed from the execution list. The current quantum stack is set to Pq and the code

pointer is set to l2. Finally, the classical stack is reset to the one saved in the dump

element.

When the partial stack list on the dump element is empty, the EndQC instruction

will merge the current quantum stack with the result stack and then set the current

quantum stack to that result. The classical stack is reset to the one saved on the dump,

the code pointer is set to the return location saved in the dump element and the dump

element is removed. Program execution then continues from the saved return point.

Normally, the first few instructions pointed to by the Label in the pairs of construc-

tor and code labels will unbind any bound nodes and delete the node at the top of the

stack. QSM does not require this, hence, it is possible to implement both destructive

and non-destructive measurements and data type deconstruction.

Using classical values. The Use instruction introduced above differs from the in-

structions Split and Measure in that it works on a node that may an unbounded

number of sub-nodes. The Use lbl instruction moves all the partial stacks to the quan-



105

tum stack, one at a time, and then executes the code at lbl for the resulting machine

states. Normally, this code will start with a QDiscard, which will put the node value

for that partial stack onto the classical stack, and finish with an EndQC to trigger the

processing of the next partial stack.

The dump and EndQC processing for a Use lbl is the same as for a Split or

Measure. The execution list pairs will all have the same label, the lbl on the instruc-

tion.

5.4.6 Classical control

The machine provides the three instructions Jump, CondJump and NoOp for branch

control. Jumps are allowed only in a forward direction. The transitions for these are

shown in figure 5.10. The instructions do the following tasks:

Jump lbl — causes execution to continue with the code at lbl.

CondJump lbl — examines the top of the classical stack. When it is False, execution

will continue with the code at lbl. If it is any other value, execution continues

with the instruction following the CondJump.

NoOp — does nothing in the machine. Execution continues with the instruction fol-

lowing the NoOp.

(Jump ⊲CJ:C, S, Q, D, N) =⇒ (CJ, S, Q, D, N)

(CondJump ⊲CJ:C,False:S, Q, D, N) =⇒ (CJ, S, Q, D, N)

(CondJump ⊲CJ:C,True:S, Q, D, N) =⇒ (C, S, Q, D, N)

(NoOp:C, S, Q, D, N) =⇒ (C, S, Q, D, N)

Figure 5.10: Transitions for classical control.
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No changes are made to the classical stack, the quantum stack or the dump by

these instructions. While NoOp does nothing, it is allowed as the target of a jump. This

is used by the L-QPL compiler in the code generation as the instruction following a

Call.

5.4.7 Operations on the classical stack

The machine has five instructions that affect the classical stack directly. They are

CGet, CPut, CPop, CApply and CLoad, with transitions shown in figure 5.11.

The instructions perform the following tasks:

CPop — destructively removes the top element of the classical stack.

CGet n — copies the nth element of the classical stack to the top of the classical stack.

CApply op — applies the operation op to the top elements of the classical stack,

replacing them with the result of the operation. Typically, the op is a binary

operation such as add.

CLoad v — places the constant v on top of the classical stack.

(CPop:C, v:S, Q, D, N) =⇒ (C, S, Q, D, N)

(CGet n:C, v1: · · · :vn:S, Q, D, N) =⇒ (c, vn:v1: · · · :vn:S, Q, D, N)

(CPut n:C, v1: · · · :vn:S, Q, D, N) =⇒ (c, v1: · · · :v1:S, Q, D, N)

(CApply opn:C, v1: · · · :vn:S, Q, D, N) =⇒ (C, opn(v1, . . . , vn):S, Q, D, N)

(CLoad n :C, S, Q, D, N) =⇒ (C, n:S, Q, D, N)

Figure 5.11: Transitions for classical stack operations.
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5.4.8 Unitary transformations and quantum control

The QS-Machine has three instructions which add or remove qubits (and other nodes)

from quantum control. The instruction transitions in this group are defined directly

on CQSM or LBQSM, as they will either affect the control stack (AddCtrl, QCtrl,

UnCtrl) or need to take into account the labelling of the quantum stacks (QApply).

The first three instructions do not affect the actual state of the quantum stack, clas-

sical stack or dump. The QApply does affect the state of the quantum stack. The

transitions are shown in figure 5.12 on the following page.

The instructions perform the following tasks:

AddCtrl — starts a new control point on the control stack.

QCtrl — adds the node at the top of the quantum stack, together with any depen-

dent sub-nodes to the control stack.

UnCtrl — removes all the nodes in the top control point of the control stack.

QApply n T — parametrized the transform T with the top n elements of the classical

stack and then applies the parametrized transform to quantum stack. Control is

respected because of the labelling of the quantum stack.

The function cTrans in the transition for QApply must first create the transform.

In most cases, this is a fixed transform (e.g., Not, Hadamard), but both rotate and the

UM transforms are parametrized. The transform rotate is used in the quantum Fourier

transform and UM is the ax mod N transform used in order finding.

When the top node is a qubit, the function expects its required number of qubits to

be the top nodes. For example, a Hadamard expects only 1, a swap expects 2 and an

UM will expect as many qubits as N requires bits.
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(AddCtrl:C, C, [(Si, L(Qi), Di, Ni)]i=1,···n)])

=⇒ (C, id:C, [(Si, L(Qi), Di, Ni)]i=1,···n)])

(QCtrl:C, f:C, [(Si, L(Qi), Di, Ni)]i=1,···n)])

=⇒ (C, (g ◦ f):C, [(S
′

j, L(Qj)
′
, D

′

j)]j=1,···m)])

(UnCtrl:C, f:C, [(Si, L(Qi), Di, Ni)]i=1,···n)])

=⇒ (C, C, [(S
′′

j , L(Qj)
′′
, D

′′

j )]j=1,···p)])

(QApply m t:C, (v1: · · · :vm:S), L(Q), D, N)

=⇒ (C, S, cTrans([v1, . . . , vm], t, L(Q)), D, N)

Figure 5.12: Transitions for unitary transforms

When a transform is applied to a datatype node the machine will attempt to rotate

up the required number of qubits to the top, perform the operation and then re-rotate

the datatype node back to the top.

The first step is to rotate the bound nodes of the datatype node starting at the

left and proceeding to the right. Left to right is determined by the ordering in the

original constructor expression used to create the datatype node. The machine will

throw an exception if there are insufficient bound nodes (e.g., Nil for a list) or if the

rotation would be indeterminate. The machine considers a rotation for a transform to

be indeterminate whenever the subject datatype node has more than one sub-stack.

For example, this means a transform can not be applied to an Either that is a mix of

Left(|0>) and Right(|1>).

When the rotation of the qubits succeeds the function will transform the top parts

of the stack into a matrix Q of appropriate size (2× 2 for a 1−qubit transform, 16× 16

for a 4−qubit and so forth) with entries in the matrix being the sub-stacks of the qubits

used in the transform.

At this point, the control labelling of the quantum stack is considered and one of

the following four transforms will happen. If the actual transform is named T , the
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result will be:

cTrans T L(Q) =















































L(Q) L = IdOnly

L(TQ) L = Left

L(QT∗) L = Right

L(TQT∗) L = Full

Following this the quantum stack is reformed from the resulting matrix.

5.4.9 Function calling and returning

The Call and Return instructions are used for function calling. The Call instruction

is the only instruction that needs to directly work on QSM, the infinite list of CQSM

items. The transition for this is defined in terms of a subordinate function enterF which

is defined on BQSM. Its transition is also described below.

Recall the QS-machine stages have the states:

BQSM = (C, S, Q, D, N)

CQSM = (C, C, [(S, L(Q), D, N)])

QSM = Inflist(C, C, [(S, L(Q), D, N)])

For the state QSM, an infinite list will be expressed as

H0 ◮ T = H0 ◮ H1 ◮ H2 ◮ · · ·

where H is an element of the correct type for the infinite list.

The instructions do the following tasks:

Call n lbl — Calls the subroutine at lbl, copying the top n elements of the classical

stack to a classical stack for the subroutine.
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Returnn — Uses the return label in the head of the dump to return from the subrou-

tine. It also copies the top n elements from the classical stack and places them

on top of the saved classical stack from the dump element.

(Call n ⊲CC:C, C, [(Si, L(Q)i, Di, Ni)])0 ◮ T

=⇒ (C, C, [(Si, L(∅)i, Di, Ni)])0 ◮ lift (enterf n ⊲CC) T

enterf n ⊲CC(C, v1: · · · :vn:S, Q, D, N)

=⇒ (CC, [v1, . . . , vn], Q, R(S, ⊲C):D, N)

(Return n, v1: · · · :vn:S ′, Q, R(S, ⊲C):D, N)

=⇒ (C, [v1, . . . , vn]:S, Q, D, N)

Figure 5.13: Transitions for function calls.

To illustrate how Call is being processed, consider the following diagram:

(0) M0 ◮ M1 ◮ M2 ◮ M3 ◮ . . .

(1) (Call f) : 0 ◮ f ·M1 ◮ f ·M2 ◮ f ·M3 ◮ . . .

(2) (Call f) : 0 ◮ 0 ◮ f · f ·M2 ◮ f · f ·M3 ◮ . . .

(3) (Call f) : 0 ◮ 0 ◮ 0 ◮ f · f · f ·M3 ◮ . . .

...

At the start, in line (0), the machine has state M0 ◮ Mi. After the first call to f, at

line (1), the head of the infinite list state has been zeroed out, indicating divergence.

However, at every position further down the infinite list, the subroutine f is entered.

Continuing to line (2) and calling f again, the divergence has moved one position

to the right and we now have a state of 0 ◮ 0 ◮ f · f ·Mi. Line (3) follows the same

pattern. Thus, the further along in the infinite list one goes, the greater the call depth.

The Call and Return instructions use a dump element as part of subroutine link-

age. The Call i lbl instruction creates a dump element to store the current classical

stack and the address of the instruction following the Call instruction. The Returnn
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instruction will use the top dump element to reset the code pointer to the saved return

location. Return also takes the classical stack from the top dump element and the

top n values from the current classical stack are added to the top of it. Return then

removes the top dump element.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The language L-QPL, as presented here and in the appendices meets the goal of being

a language usable for experimenting with quantum algorithms.

As seen in appendix C on page 145, L-QPL has the capability to implement various

quantum algorithms such as quantum teleportation and Grover’s search algorithm.

Experimentation with the algorithms is possible, e.g., determining the appropriate

number of times to apply the Grover transform for a given number of qubits, or de-

termining the actual likelihood of getting the correct result from the algorithm.

This thesis has provided a complete description of the language, including an op-

erational semantics in terms of a quantum stack and a less formal description of indi-

vidual statements and operations in the language.

The quantum stack has been thoroughly described and been used to give an in-

terpretation of quantum circuit diagrams. It has been compared and contrasted with

the Q-RAM machine. All of its operations have been completely described via an

operational semantics.

The thesis as it stands will be useful for researchers investigating quantum pro-

gramming languages and for those experimenting with quantum algorithms.

112



113

6.2 Future work

I believe there are many avenues of exploration still left open with respect to L-QPL

and its quantum stack machine, some of which I have described below.

6.2.1 Language extensions

The programming language L-QPL, while currently interesting and useful, could use

additional features to make it a fully functional and powerful tool for developing

quantum algorithms.

Refinements to the type system

In addition to the current qdata construction, a corresponding construction for classical

data creation could be added. This declared classical data would be held in a classical

node on the quantum stack, but could be moved back and forth to the classical stack.

A type aliasing declaration and potentially a class system to allow for closed types

may also be useful.

Transform definition

Currently the language has a finite set of built-in transforms, with the rotation trans-

forms being parametrized by integer values. However, one common feature of quan-

tum algorithms seems to be the application of generic reversible classical computation

on bits as a unitary transformation on qubits.

This is typically done by transforming the computation to a reversible bit compu-

tation and then extending it by linearity to a qubit computation.

I would like to add supporting syntax and semantics to the language to accomplish

this, without sacrificing the compile time type safety.
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Input/Output

The ability to allow a program to read in values and print out results, likely outside of

the bounds of any qubit manipulation, is a necessity for future development.

Miscellaneous enhancements

Additional base types in the language, such as characters and floating point numbers,

would be useful in some algorithms and in I/O.

6.2.2 Semantics

Creation of a categorical semantics for L-QPL, which matches the operational seman-

tics, is a vital step in further understanding and exploration of the language.

Special attention will need to be given to higher-order functions, input / output

and the area of quantum control.

6.2.3 Program transformation

The applicability of program transformation to quantum programming languages and

quantum algorithms has not been explored yet. Starting with specifics in L-QPL, it will

be interesting to explore general mechanisms for program transformation.



Bibliography

[Abr04] S. Abramsky, High-level methods for quantum computation and information,
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science (LiCS‘04), IEEE Computer Science Press., 2004, pp. 410–414.

[Abr05] , Abstract scalars, loops, and free traced and strongly compact closed cat-
egories, CALCO, 2005, pp. 1–29.

[AC98] Roberto M. Amadio and Pierre-Louis Curien, Domains and Lambda-Calculi,
Cambridge Tracts in Theoretical Computer Science, vol. 46, Cambridge
University Press, Cambridge, CB2 1RP, Great Britain, 1998, ISBN 0-521-
62277-8.

[AC02] S. Abramsky and B. Coecke, Physical traces: Quantum vs. classical information
processing, Electr. Notes Theor. Comput. Sci 69 (2002).

[AC04] , A categorical semantics of quantum protocols, Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science (LiCS‘04), IEEE
Computer Science Press. (extended version at arXiv:quant-ph/0402130),
2004, pp. 415–425.

[AC05] , Abstract physical traces, Theory and Applications of Categories 14
(2005), 114–124.

[AG05] Thorsten Altenkirch and Jonathan Grattage, A functional quantum program-
ming language, LICS, 2005, pp. 249–258.

[AGVS05] Thorsten Altenkirch, Jonathan Grattage, Juliana K. Vizzotto, and Amr
Sabry, An algebra of pure quantum programming, 3rd International Workshop
on Quantum Programming Languages, 2005, to appear in ENTCS.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxenz, PRIMES is in P, An-
nals of Mathematics 160 (2004), 781–793.

[App98] Andrew W. Appel, Modern Compiler Implementation in ML, Cambridge Uni-
verstiy Press, The Edinburgh Building, Cambridge CB2 2RU, United King-
dom, 1998, ISBN 0-521-58274-1.

[BBC+95] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. Divincenzo,
Peter Shor, Tycho Sleator, John Smolin, and Harald Weinfurter, Elementary
gates for quantum computation, March 31 1995.

[BCS03] S. Bettelli, T. Calarco, and L. Serafini, Toward an architecture for quantum
programming, The European Physical Journal D 25 (2003), 181–200.

115



116

[CEH+99] R. Cleve, A. Ekert, L. Henderson, C. Macchiavello, and M. Mosca, On quan-
tum algorithms, Complexity 4 (1999), 33–42.

[Cle99] Richard Cleve, An introduction to quantum complexity theory, June 28 1999,
Comment: 28 pages, LaTeX, 11 figures within the text, to appear in "Col-
lected Papers on Quantum Computation and Quantum Information The-
ory", edited by C. Macchiavello, G.M. Palma, and A. Zeilinger (World Sci-
entific).

[CW00] Richard Cleve and John Watrous, Fast parallel circuits for the quantum fourier
transform, FOCS: IEEE Symposium on Foundations of Computer Science
(FOCS), 2000.

[Deu85] D[avid] Deutsch, Quantum theory, the Church-Turing principle and the univer-
sal quantum computer, Proc. Royal Society of London A400 (1985), 97–117.

[Deu89] David Deutsch, Quantum computational networks, Proceedings of the Royal
Society of London Ser. A A425 (1989), 73–90.

[DeV96] David P. DeVincenzo, Quantum gates and circuits, Proceedings of the ITP
Conference on Quantum Coherence and Decoherence, December 1996,
arXiv:quant-ph/9705009 v1.

[Dra00] Thomas G. Draper, Addition on a quantum computer, 2000.

[EF] Bryan Eastin and Steven T. Flammia, Q-circuit Tutorial, Available at http:
//info.phys.unm.edu/Qcircuit.

[GA05a] Jonathan Grattage and Thorsten Altenkirch, A compiler for a functional quan-
tum programming language, submitted for publication, January 2005.

[GA05b] , Qml: Quantum data and control, submitted for publication, Febru-
ary 2005.

[Gos98] Phil Gossett, Quantum carry-save arithmetic, 1998.

[Kni96] E. Knill, Conventions for quantum pseudocode, 1996.

[KR88] Brian W. Kernighan and Dennis M. Ritchie, The C programming language,
second edition, Prentice Hall, Inc„ Cambridge, CB2 1RP, Great Britain, 1988,
ISBN 0-13-110362-8.

[Lan02] Serge Lang, Algebra, revised third edition ed., Springer-Verlag, Yale Uni-
versity, 2002, ISBN 0-387-95385-X.

[MA86] Ernest G. Manes and Michael A. Arbib, Algebraic approaches to program se-
mantics, Springer-Verlag New York, Inc., New York, NY, USA, 1986.



117

[Mac97] Saunders Mac Lane, Categories for the Working Mathematician, second ed.,
Springer Verlag, Berlin, Heidelberg, Germany, 1997, ISBN 0-387-98403-8.
Dewey QA169.M33 1998.

[MB01] Shin-Cheng Mu and Richard Bird, Functional quantum programming, Asian
Workshop on Programming Languages and Systems (KAIST, Dajeaon, Ko-
rea), December 2001.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson, Functional programming with ba-
nanas, lenses, envelopes and barbed wire, Proceedings of the Conference on
Functional Programming and Computer Architecture ’91 (New York, NY)
(R. J. M. Hughes, ed.), Springer-Verlag, 1991, Lecture Notes in Computer
Science 523.

[NC00] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quan-
tum Information, Cambridge University Press, The Edinburgh Building,
Cambridge CB2 2RU, UK, 2000, ISBN 0 521 63235 8.

[Öme00] Bernhard Ömer, Quantum programming in QCL, Master’s thesis, Depart-
ment of Computer Science, Technical University of Vienna, January 2000,
http://tph.tuwien.ac.at/ oemer/qcl.html.

[Pey03] Simon Peyton Jones (ed.), Haskell 98 language and libraries – the revised report,
Cambridge University Press, Cambridge, England, 2003.

[Rey98] John C. Reynolds, Theories of Programming Languages, Cambridge Univer-
sity Press, The Edinburgh Building, Cambridge, CB2 2RU, UK, 1998.

[Sab03] Amr Sabry, Modeling quantum computing in Haskell, Proceedings of the
ACM SIGPLAN workshop on Haskell (HASKELL-03) (New York), ACM
Press, August 28 2003, pp. 39–49.

[Sel04] Peter Selinger, Towards a quantum programming language, Mathematical
Structures in Computer Science 14 (2004), no. 4, 527–586.

[Sel05] , Dagger compact closed categories and completely positive maps, Pro-
ceedings of the 3rd International Workshop on Quantum Programming
Languages, Chicago, 2005.

[Str97] Bjarne Stroustrup, The C++ programming language, 3 ed., Addison Weskey,
Reading, MA, USA, 1997.

[SZ00] J. Sanders and P. Zuliani, Quantum programming, Mathematics of Program
Construction, LNCS, vol. 1837, Springer, 2000, pp. 80–99.

[VBE95] Vlatko Vedral, Adriano Barenco, and Artur Ekert, Quantum networks for
elementary arithmetic operations, Physical Review A 54 (1995), 147.



118

[vzGG99] Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra,
Cambridge University Press, The Edinburgh Building, Cambridge CB2
2RU, UK, 1999, ISBN 0 521 64176 4.

[Wat] John Watrous, Lecture notes for quantum computation, University of Calgary.

[Win93] Glynn Winskel, The formal semantics of programming languages: an introduc-
tion, MIT Press, Cambridge, MA, USA, 1993.



Appendix A

BNF description of the Linear Quantum Programming

Language

A.1 Program definition

L-QPL programs consist of a series of definitions at the global level. These are either

data definitions which give a description of an algebraic data type procedure definitions

which define executable code.

<Linearqplprogram> :: <global definitions>

<global_definitions> :: <global_definitions> <global_definition>

| empty

<global_definition> :: <data_definition>

| <procedure_definition>

A.2 Data definition

A data definition consists of declaring a type name, with an optional list of type vari-

ables and a list of constructors for that type. It is a semantic error to have different

types having the same constructor name, or to redeclare a type name.

Constructor definitions allow either fixed types or uses of the type variables men-

tioned in the type declaration.

<data_definition> :: <type_definition> ’=’

’{’ <constructor_list> ’}’

<type_definition> :: ’type’ <constructorid> <id_list>

<constructor_list>:: <constructor> <more_constructor_list>
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<more_constructor_list> ::

’|’ <constructor> <more_constructor_list>

| {- empty -}

<constructor> :: <constructorid> ’(’ <typevar_list> ’)’

| <constructorid>

<typevar_list> :: <typevar> <moretypevar_list>

<moretypevar_list> :: ’,’ typevar moretypevar_list

| {- empty -}

<typevar> :: <identifier>

| <identifier>

| <constructor>

| <constructor> ’(’ <typevar_list> ’)’

| <builtintype>

<builtintype>:: ’Qubit’ | ’Int’ | ’Bool’

A.3 Procedure definition

Procedures may only be defined at the global level in a L-QPL program. The definition

consists of a procedure name, its input and output formal parameters and a body of

code. Note that a procedure may have either no input, no outputs or neither.

The classical and quantum inputs are separated by a ’|’. Definitions with either no

parameters or no classical parameters are specific special cases.

<procedure_definition> :: <identifier> ’::’

’(’ <parameter_definitions> ’|’

<parameter_definitions> ’;’

<parameter_definitions> ’)’

’=’ <block>

| <identifier> ’::’

’(’ <parameter_definitions> ’;’

<parameter_definitions> ’)’

’=’ <block>

| <identifier> ’::’ ’(’ ’)’ ’=’ <block>

<parameter_definitions> :: <parameter_definition>

<more_parameter_definitions>

| {- empty -}

<more_parameter_definitions> :: ’,’ <parameter_definition>
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<more_parameter_definitions>

| {- empty -}

<parameter_definition> :: <identifier> ’:’ <constructorid>

’(’ <typevar_list> ’)’

| <identifier> ’:’ <constructorid>

| <identifier> ’:’ <builtintype>

A.4 Statements

Although L-QPL is a functional language, the language retains the concept of state-

ments which provide an execution flow for the program.

The valid collections of statements are blocks which are lists of statements.

<block> :: ’{’ <stmtlist> ’}’

<stmtlist>:: <stmtlist> ’;’ <stmt>

| <stmtlist> ’;’

| <stmt>

| {- empty -}

Statements are broadly grouped into a few classes.

A.4.1 Assignment

Variables are created by assigning to them. There is no ability to separately declare

them. Type unification will determine the appropriate type for the variable.

<stmt> :: <identifier> ’=’ <exp>

A.4.2 Case statements

These are measure, case, use, discard and the classical assign, :=. These statements give

the programmer the capability to specify different processing on the sub-stacks of a

quantum variable. This is done with dependant statements. For measure and case, the
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dependent statements are in the block specified in the statement. For use, they may be

specified explicitly, or they may be all the statements following the use to the end of

the enclosing block. The classical assign is syntactic sugar for an assignment followed

by a use with no explicit dependent statements.

The discard statement is grouped here due to the quantum effects. Doing a discard

of a qubit is equivalent to measuring the qubit and ignoring the results. This same

pattern is followed for discarding quantum variables of all types.

(<stmt> continued)

| ’case’ <exp> ’of’ <cases>

| ’measure’ <exp> ’of’ <zeroalt> <onealt>

| <identifier> ’:=’ <exp>

| ’use’ <identifier_list> <block>

| ’use’ <identifier_list>

A.4.3 Functions

This category includes procedures and transforms. A variety of calling syntax is avail-

able, however, there are no semantic differences between them.

(<stmt> continued)

| ’(’ <identifier_list> ’) ’=’

<callable> ’(’ <exp_list> ’)’

| ’(’ <identifier_list> ’) ’=’

<callable> ’(’ <exp_list> ’|’ <exp_list> ’)’

| <callable> <ids>

| <callable> ’(’ <exp_list> ’)’ <ids>

| <callable> ’(’ <exp_list> ’|’ <exp_list> ’;’

<ids> ’)’

A.4.4 Blocks

The block statement allows grouping of a series of statements by enclosing them with

{ and }. An empty statement is also valid.

(<stmt> continued)

| <block>

| {- empty -}
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A.4.5 Control

L-QPL provides a statement for classical control and one for quantum control. Note

that quantum control affects only the semantics of any transformations applied within

the control. Classical control requires the expressions in its guards (see below) to be

classical and not quantum.

(<stmt> continued)

| ’if’ guards

| <stmt> ’<=’ <control_list>

A.4.6 Divergence

This signifies that this portion of the program does not terminate. Statements after
this will have no effect.

(<stmt> continued)

| ’zero’

A.5 Parts of statements

The portions of statements are explained below. First is callable which can be either a

procedure name or a particular unitary transformation.

<callable> :: <identifer> | <transform>

The alternatives of a measure statement consist of choice indicators for the base of

the measure followed by a block of statements.

<zeroalt> :: ’|0>’ ’=>’ <block>

<onealt> :: ’|1>’ ’=>’ <block>

The if statement requires a list of guards following it. Each guard is composed of a

classical expression that will evaluate to true or false , followed by a block of guarded

statements. The statements guarded by the expression will be executed only when
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the expression in the guard is true. The list of guards must end with a default guard

called else. Semantically, this is equivalent to putting a guard of true.

<guards> :: <freeguards> <owguard>

<freeguards> :: <freeguard> <freeguards>

| {- empty -}

<freeguard> :: <exp> ’=>’ <block>

<owguard> :: ’else’ ’=>’ <block>

When deconstructing a data type with a case statement, a pattern match is used to

determine which set of dependent statements are executed. The patterns allow the

programmer to either throw away the data element (using the ’_’ special pattern), or

assign it to a new identifier.

<cases> :: <case> <more_cases>

<more_cases> :: {- empty -}

| <case> <more_cases>

<case> :: <caseclause> ’=>’ <block>

<caseclause> :: <constructorid> ’(’ <pattern_list> ’)’

| <constructorid>

<pattern_list>:: <pattern> <more_patterns>

<more_patterns> :: ’,’ <pattern> <more_patterns>

| {- empty -}

<pattern> :: <identifier> | ’_’

A.6 Expressions

L-QPL provides standard expressions, with the restriction that arithmetic expressions

may be done only on classical values. That is, they must be on the classical stack or a

constant.
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The results of comparisons are Boolean values that will be held on the classical

stack.

<exp>:: <exp0>

<exp0>:: <exp0> <or_op> <exp1> | <exp1>

<exp1>:: <exp1> ’&&’ <exp2> | <exp2>

<exp2>:: ’~’ <exp2> | <exp3> | <exp3> <compare_op> <exp3>

<exp3>:: <exp3> <add_op> <exp4> | <exp4>

<exp4>:: <exp4> <mul_op> <exp5> | <exp5>

<exp5>:: <exp5> <shift_op> <exp6> | <exp6>

<exp6>:: <identifier> | <number> | ’true’ | ’false’

| ’(’ <exp> ’)’

| <constructorid> ’(’ <exp_list> ’)’

| <constructorid>

| <identifier> ’(’ ’)’

| <identifier> ’(’ <exp_list> ’)’

| <identifier> ’(’ <exp_list> ’;’ ids ’)’

| ’|0>’ | ’|1>’

<exp_list>:: <exp> <more_exp_list>

<more_exp_list>:: ’,’ <exp> <more_exp_list>

| {- empty -}

A.7 Miscellaneous and lexical

These are the basic elements of the language as used above. Many of these items are

differentiated at the lexing stage of the compiler.

<idlist> :: <identifier> more_ids

| {- empty -}

<more_ids> :: <identifier> more_ids

| {- empty -}

<control_list>:: <control> <more_control_list>
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<more_control_list>:: ’,’ <control> <more_control_list>

| {- empty -}

<control>:: <identifer> | ’~’ <identifer>

<opt_identifier_list>:: <identifier_list>

| {- empty -}

<identifier_list>:: <identifier> <more_idlist>

<more_idlist>:: ’,’ <identifier> <more_idlist>

| {- empty -}

<or_op>:: ’||’ | ’^’

<compare_op>:: ’==’ | ’<’ | ’>’ | ’=<’ | ’>=’ | ’=/=’

<add_op>::’+’ | ’-’

<mul_op>::’*’ | ’div’ | ’rem’

<shift_op>::’>>’ | ’<<’

<transform>:: <gate>

| <transform> *o* transform

<gate> :: ’Had’ | ’T’ | ’Phase’ | ’Not’ | ’RhoX’

| ’Swap’ | ’Rot ’| ’RhoY ’ | ’ RhoZ ’ | ’Inv-’<gate>

<identifier> :: <lower> | <identifier><letterOrDigit>

<constructorid :: <upper> | <constructorid><letterOrDigit>

<letterOrDigit> :: <upper>|<lower>|<digit>

<number> :: [’+’|’-’] <digit>+

<lower> :: ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’

| ’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’

| ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’

| ’x’ | ’y’ | ’z’

<upper> :: ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’

| ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ | ’O’

| ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’

| ’X’ | ’Y’ | ’Z’

<digit> :: ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’

| ’7’ | ’8’ | ’9’



Appendix B

Quantum stack machine additional details

B.1 Instructions

Creation of reasonable set of instructions, balancing brevity and usefulness has been

an interesting task. The list of instructions and brief descriptions of them are presented

in table B.1. The transitions of these are presented formally in section 5.4 on page 96.
Table B.1: QSM instruction list

Instruction Arguments Description

QLoad nm:Name,
k::qubit

Creates qubit named nm and sets the value to |k〉.

QMove nm:Name Creates an integer or Boolean named nm and sets
its value to the top of the classical stack.

QCons nm:Name,
c::constructor

Creates a data type element with the value c. Note
that if the constructor requires sub-elements, this
will need to be followed by QBind instructions.

QBind nm:Name Binds the node [nm] to the data element currently
on the top of the stack.

QDelete ∅ Deletes the top node and any bound nodes in the
quantum stack.

QDiscard ∅ Discards the node on top of the quantum stack.

QUnbind nm:Name Unbinds the first bound node from the data ele-
ment at the top of the stack and assigns it as nm.

QPullup nm::name Pulls the node named nm to the top of the quantum
stack.

Continued on next page
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Instruction Arguments Description
QName nm1::name,

nm2::name
Renames the node named nm1 to nm2.

AddCtrl ∅ Marks the start of a control point in the control
stack. Any following QCtrl instructions will add
the top node to this control point.

QCtrl ∅ Moves the top element of the quantum stack to
the control stack. Recursively moves any bound
nodes to the control stack when the element is a
constructed data type.

UnCtrl ∅ Moves all items in the control stack at the current
control point back to the quantum stack.

QApply i::Int,t:Transform Parametrizes the transform T with the top i ele-
ments of the classical stack and applies it to the
quantum stack.

Measure l0::Label,
l1::Label

Measures the qubit on top of the quantum stack
and sets up the dump for execution of the code at
l0 for the 00 sub-branch and the code at l1 for the
11 sub-branch.

Split cls::[(constructor,
Label)]

Splits the data node at the top of the quantum stack
and sets up the dump for execution of the code at
the i-th label for the i-th sub-branch.

Use lbl::Label Uses the classical (integer or Boolean) node on top
of the quantum stack and sets up the dump to for
execution of the code at lbl for each of the sub-
branches.

EndQC ∅ Merges the current quantum stack with the results
stack of the dump, activates the next partial stack
to be processed and jumps to the code at the cor-
responding label. When there are no more par-
tial stacks, the instruction merges the current stack
with the the results stack and sets that as the new
quantum stack.

Continued on next page
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Instruction Arguments Description

Call i::Int,
ep::EntryPoint

For the first element of the infinite list of states, sets
the values at the leaves of the quantum stack to 0.
For the remainder of the list, the instruction jumps
to the subroutine at ep, saving the return location
and classical stack on the dump. It copies the top i
elements of the classical stack for the subroutine.

Return i::Int Restores the location and classical stack from the
dump, copies the top i items of the current classical
stack to the top of the restored classical stack.

Jump lbl::Label Jumps forward to the label lbl.

CondJump lbl::Label If the top of the classical stack is the value false,
jumps forward to the label lbl.

NoOp ∅ Does nothing.
CGet i::Int Copies the i-th element of the classical stack to the

top of the classical stack. A negative value for i
indicates the instruction should copy the |i|th value
from the bottom of the classical stack.

CPut i::Int Copies the top of the classical stack to the i-th el-
ement of the classical stack. A negative value for
i indicates the instruction should place the value
into the |i|th location from the bottom of the classi-
cal stack.

CPop ∅ Pops off (and discards) the top element of the clas-
sical stack.

CLoad v::Either Int Bool Pushes v onto the classical stack.

CApply op::Classical Op Applies op to the top elements of the classical stack,
replacing them with the result of the operation.
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B.2 Translation of L-QPL to stack machine code

This section will discuss the code produced by the various statements and expressions

in an L-QPL program. An L-QPL program consists of a collection of data definitions

and procedures. Data definitions do not generate any direct code but do affect the

code generation of statements and expressions.

Each procedure will generate code. A procedure consists of a collection of state-

ments each of which will generate code. Some statements may have other statements

of expressions as dependent pieces, which again will generate code.

The code generation in the compiler, and the description here, follows a standard

recursive descent method.

B.2.1 Code generation of procedures

The code generated for each procedure follows a standard pattern of: procedure en-

try; procedure statements; procedure exit. The procedure statements portion is the

code generated for the list of statements of the procedure, each of which is detailed

in appendix B.2.2 on the following page.

Procedure entry

Each procedure is identified in QSM by an entry point, using an assembler directive.

This directive is a mangled name of the procedure, followed by the keyword Start.

The only exception to this is the special procedure main which is generated without

mangling. main is always the starting entry point for a QSM program.

Procedure exit

The end of all procedures is denoted by another assembler directive, EndProc. For all

procedures except main, the code generation determines how many classical variables
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are being returned by the procedure and emits a Return n instruction, where n is that

count1.

Procedure body

The code for each statement in the list of statements is generated and used as the

body of the procedure. As an example, see the coin flip code and the corresponding

1 qdata Coin = { Heads | T a i l s }
2 c f l i p : : ( ; c : Coin ) =

3 { q = |0> ;
4 Had q ;
5 measure q of
6 |0> => { c = Heads }
7 |1> => { c = T a i l s }
8 }
9 main : : ( ) =

10 { c = c f l i p ( ) }

(a) Coin flip code

1 C F l i p _ f c d l b l 0 S t a r t
2 QLoad q |0>

3 QApply 0 !Had
4 Measure l 0 l 1
5 Jump l 3
6 l 0 QDiscard
7 QCons b # Fa lse
8 EndQC
9 l 1 QDiscard

10 QCons b #True
11 EndQC
12 l 3 QPullup b
13 Return 0
14 EndProc
15

16 main S t a r t
17 Ca l l 0 C F l i p _ f c d l b l 0
18 NoOp
19 EndProc

(b) Generated code

Figure B.1: L-QPL and QSM coin flip programs

generated QSM code in figure B.1.

B.2.2 Code generation of statements

Each statement in L-QPL generates code. The details of the code generation for each

statement are given in the following pages, together with examples of actual generated

code.
1This functionality is currently not available in L-QPL, but may be re-introduced at a later date.
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Assignment statements

The sub-section describes code generation for quantum assignment statements and

assignments to variables on the classical stack. The classical assignment (:=) statement

is described with the use statement below, as it is syntactic sugar for that statement.

An assignment of the form i = 〈expr〉 is actually broken down into 5 special cases.

The first is when the left hand side is an in-scope variable that is on the classical stack.

The other four all deal with the case of a quantum variable, which is either introduced

or overwritten. The four cases depend on the type of expression on the right hand

side. Each paragraph below will identify which case is being considered and then

describe the code generation for that case.

Left hand side is a classical variable. In this case, generate the code for the expres-

sion on the right hand side (which will be classical in nature). This leaves the expres-

sion value at the top of the classical stack. Now, emit a CPut instruction which will

copy that value into the location of the classical variable.

1 i = 5 ; =⇒ 1 CLoad 5
2 CPut −2

Right hand side is a classical expression. First, generate the expression code, which

leaves the value on the top of the classical stack. Then emit a QMove instruction with

the name of the left hand side. This will create a new classical node, which will be set

to the value of the top of the classical stack.

1 i = 5 ; =⇒ 1 CLoad 5
2 QMove i
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Right hand side is a constant qubit. Emit the QLoad instruction with the qubit value

and the left hand side variable name.

1 q = |1> ; =⇒ 1 QLoad q |1>

Right hand side is an expression call. First, emit the code for the expression call.

This will leave the result quantum value on the top of the quantum stack. If the formal

name given by the procedure definition is the same as the left hand side name, do

nothing else, as the variable is already created with the proper name. If not, emit

a QName instruction to rename the last formal parameter name to the left hand side

name.

1 random : : ( maxval : In t ;
2 rand : In t ) =

{ . . . }
3 . . .
4 x = random ( 1 5 ) ;

=⇒
1 CLoad 15
2 QMove c18
3 QName c18 maxval // In
4 Ca l l 0 random_fcdlbl0
5 QName rand x //Out

Right hand side is some other expression. Generate the code for the expression.

Check the name on the top of the stack. If it is the same as the left hand side name, do

nothing else, otherwise emit a QName instruction.

1 outqs = Cons ( q , inqs ’ ) ;
=⇒

1 QCons c4 #Cons
2 QBind inqs ’
3 QBind q
4 QName c4 outqs
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Measurement code generation

Measurement will always have two subordinate sets of statements, respectively for

the |0〉 and |1〉 cases. The generation for the actual statement will handle the requisite

branching.

The code generation first acquires three new labels, m0, m1 and mf. It will then

emit a Measurem0 m1 statement, followed by a Jumpmf. Recall from the transitions

in sub-section 5.4.1 on page 96 that when the machine executes the Measure instruc-

tion, it then generates and executes a EndQC instruction. The Jumpwill be executed when

all branches of the qubit have been executed.

Then, for each of the two sub blocks (i ∈ {0, 1}), I emit a Discard labelled with mi.

This is followed by the code generated from the corresponding block of statements.

Finally a EndQC is emitted.

The last instruction generated is a NoOp which is labelled with mf.

1 measure q of
2 |0> => { n1 = 0 }
3 |1> => { n1 = 1 } ;

=⇒
1 QPullup q
2 Measure l 7 l 8
3 Jump l 9
4 l 7 QDiscard
5 CLoad 0
6 QMove n1
7 EndQC
8 l 8 QDiscard
9 CLoad 1

10 QMove n1
11 EndQC
12 l 9 NoOp

Case statement code generation

Case statement generation is conceptually similar to that of measurement. The dif-

ferences are primarily due to the variable number of case clauses and the need to

instantiate the variables of the patterns on the case clauses.
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As before, the expression will have its code generated first. Then, the compiler will

use a function to return a list of triples of a constructor, its generated label and the

corresponding code for each of the case clauses. The code generation done by that

function is detailed below.

At this point, the code generation resembles measurement generation. The com-

piler generates a label cf and emits a Splitwith a list of constructor / code label pairs

which have been returned by the case clause generation. This is followed by emitting

a Jump cf. After the Jump has been emitted, the code generated by the case clause

generation is emitted.

The final instruction generated is a NoOp which is labelled with cf.

Case clause code generation. The code generation for a case clause has a rather com-

plex prologue which ensures the assignment of any bound variables to the patterns in

the clause.

First, the code generator gets a new label cl and then calculates the unbinding

code as follows: For each don’t care pattern in the clause, code is generated to delete

the corresponding bound node. This is done by first getting a new stack name nm,

then adding the instructions QUnbind nm, Pullup nm and QDelete nm. This ac-

complishes the unbinding of that node and removes it from the quantum stack. Note

that QDelete is used here to ensure that all subordinate nodes are removed and that

no spurious data is added to the classical stack in the case of the don’t care node being

a classical value.

For each named pattern p, only the instruction QUnbind p is added.

The program now has a list of instructions that will accomplish unbinding of the

variables. Note this list may be empty, e.g., the Nil constructor for List.

The clause generation now creates its own return list. When the unbinding list is
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not empty, these instructions are added first, with the first one of them being labelled

with cl.This is followed by a Discard which discards the decomposed data node.

When the unbind list is empty, the first instruction is the Discard labelled by cl.

Then, the code generated by the statements in the case clause block are added to

the list. Finally, a EndQC is added at the end.

The lists from all the case clauses are combined and this is returned to the case code

generation.

The example at the end of the use clause will illustrate both the case clause and the

use statement code generation.

Use and classical assign code generation

As described earlier in sub-section 4.3.5 on page 75, the classical assignment, v :=exp

is syntactic sugar for a variable assignment followed by a use statement. The code

generation for each is handled the same way.

There are two different cases to consider when generating this code. The use state-

ment may or may not have subordinate statements. In the case where it does not have

any subordinate statements, (a classical assign or a use with no block), the scope of

the classical variables in the use extends to the end of the enclosing block.

The case of a use with a subordinate block is presented first.

Use with subordinate block code generation. While similar to the generation for

the measure and case statements, there are differences. The two main differences are

that there is only one subordinate body of statements and that multiple variables may

be used.

In the case where there is a single use variable nu, the generator gets the body

label ub and end label ue. It then emits a Pullup nu, a Use ub and a Jump ue.
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This is followed by emitting a Discard labelled by ub and the code generated by

the subordinate body of statements and a EndQC instruction. This is terminated by a

NoOp labelled by ue.

When there are multiple names n1, n2, . . . , nj, the generator first recursively gener-

ates code assuming the same body of statements but with a use statement that only

has the variables n2, . . . , nj. This is then used as the body of code for a use statement

with only one variable n1, which is generated in the same manner as in the above

paragraph.

Use with no subordinate block. To properly generate the code for this, including

the EndQC and end label, the generator uses the concept of delayed code. The pro-

logue (Use, Jump and Discard) and epilogue (EndQC, NoOp) are created in the same

manner as the use with the subordinate block. The prologue is emitted at the time of

its generation. The epilogue, however, is added to a push-down stack of delayed code

which is emitted at the end of a block. See the description of the block code generation

for more details on this. These items are illustrated in figure B.2 on the following page.

Conditional statements

The if ... else statement allows the programmer to specify an unlimited number of

classical expressions to control blocks of code. Typically, this is done within a use

statement based upon the variables used.

The statement code generation is done by first requesting a new label, ge. This

label is used in the next step, generating the code for all of the guard clauses. The

generation is completed by emitting a NoOp instruction labelled by ge.

Guard clauses. Each guard clause consists of an expression and list of statements.

The code generator first emits the code to evaluate the expression. Then, a new label
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1 case l of
2 Nil => { i = 0 }
3 Cons ( _ , l 1 ) => {
4 n= len ( l 1 ) ;
5 use n ;
6 i = 1 + n ;
7 }

=⇒ 1 S p l i t (# Nil , l 0 ) (# Cons , l 1 )
2 Jump l 4
3 l 0 QDiscard
4 CLoad 0
5 QMove i
6 EndQC
7 l 1 QUnbind c0
8 QUnbind l 1
9 QDiscard

10 QPullup c0
11 QDiscard
12 QPullup l 1
13 QName l 1 l
14 Ca l l 0 l e n _ f c d l 0
15 QName i n
16 QPullup n
17 Use l 2
18 Jump l 3
19 l 2 QDiscard
20 CLoad 1
21 CGet 0
22 CApply +

23 QMove i
24 EndQC //For Use
25 l 3 NoOp
26 EndQC //For S p l i t
27 l 4 NoOp

Figure B.2: QSM code generated for a case and use statement.
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gl is requested and the instruction CondJump gl is emitted. The subordinate state-

ments are generated and emitted, considering them as a single block. The concluding

instruction is a Jump ge.

At this point, if there are no more guard clauses, a NoOp instruction, labelled by gl

is emitted, otherwise the code generated by the remaining guard clauses is labelled by

gl and emitted.

1 i f b == 0 => {
2 theGcd = a ;
3 } e l se => {
4 ( theGcd ) =

5 gcd ( b , a mod b ) ;
6 }

=⇒
1 CGet −2
2 CLoad 0
3 CApply ==

4 CondJump l b l 2
5 CGet −1
6 QMove theGcd
7 Jump l b l 1
8 l b l 2 CLoad True // e lse
9 CondJump l b l 3

10 CGet −1
11 CGet −2
12 CApply %
13 QMove c0
14 CGet −2
15 QMove c1
16 QName c1 a
17 QName c0 b
18 Ca l l 0 gcd_ fcd lb l0
19 Jump l b l 1
20 l b l 3 NoOp
21 l b l 1 NoOp

Function calling and unitary transforms

The code generation of these two statements is practically the same, with the only

difference being that built in transformations have a special instruction in QSM, while

executing a defined function requires the Call instruction.

In each case, the statement allows for input classical and quantum expressions and

output quantum identifiers.
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The first step is the generation of the code for the input classical expressions. These

are generated in reverse order so that the first parameter is on the top of the classical

stack, the second is next and so forth. Then, the input quantum expressions are gen-

erated, with names of these expressions being saved. Note that it is possible to use

expressions which are innately classical (e.g., constants and variables on the classical

stack) as a quantum expression. The compiler will generate the code needed to lift it

to a quantum expression. See appendix B.2.4 on page 144 for the details.

At this stage, the two types differ slightly. For the unitary transformation case,

the code “QApply n !t” is emitted, where n is the number of classical arguments and

t is the name of the built in transform. The exclamation mark is part of the QSM

assembler syntax for transform names. In a defined function, renames of the input

quantum expressions to the names of the input formal ids are generated, by emitting

a series of QName instructions. This is followed by emitting a Call n f, where n is

again the number of classical arguments and f is the internally generated name of the

function.

In both cases, the code checks the formal return parameter names against the list

of return value names. For each one that is different, a QName frml retnm is emitted.

See the previous code list between the CondJump lbl3 and lbl3 NoOp for an

example of this.

B.2.3 Code generation of expressions

In the previous sub-section, a number of examples of code generation were given.

These also illustrated most of the different aspects of expression code generation. A

few additional examples are given below.
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Generation of constants

There are three possible types of constants, a Boolean, an integer or a qubit. Note that

constructors are considered a different class of expression.

For both Boolean and integers, the compiler emits a CLoad val instruction. For a

qubit, it creates a new name q and emits a QLoad q qbv instruction.

Examples of these may be seen in the sub-sub-section on assignments.

Generation of classical arithmetic and Boolean expressions

In all cases, these types of expressions are calculated solely on the classical stack.

Whenever the generator encounters an expression of the form

e1 op e2

it first emits the code to generate e2, followed by the code to generate e1. This will

leave the result of e1 on top of the stack with e2’s value right below it. It then emits

the instruction CApply op, which will apply the operation to the two top elements,

replacing them with the result.

The Boolean not operation is the only operation of arity 1. Code generation is done

in the same manner. The generator emits code for the expression first, followed by

CApply ¬.

See under Guard clauses, appendix B.2.2 on page 137 for examples.

Generation of variables

The semantic analysis of the program will split this into two cases; classical variables

and quantum variables. Each are handled differently.

Classical variables. These variables are on the classical stack at a specific offset. The

use of them in an expression means that they are to be copied to the top of the classical
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stack. The code emitted is CGet offset, where offset is the offset of the variable in the

classical stack.

Quantum variables. In this case, the variables are at a specific address of the quan-

tum stack. These variables are not allowed to be copied, so the effect of this code is

to rotate the quantum stack until the desired variable is at the top. The other con-

sideration is that these variables have a linearity implicitly defined in their usage. In

the compiler, this is handled by the semantic analysis phase, but the code generation

needs to also consider this. The compiler will add this variable to a delayed deletion list.

After completion of the statement with this variable expression, the variable will be

deleted unless:

• The statement has deleted it. (Measure of a qubit, for example, will directly

generate the deletion code.)

• It is recreated as the result of an assignment, function call or transformation.

Code generation for expression calls

Each expression call is generated in substantially the same way as the code for a call

statement as in appendix B.2.2. The only difference is that the name of the final return

variable will not be known and is therefore set to the same name as the name of the

last output formal parameter. As an example, consider:

1 gcd : : ( a : Int , b : In t ; theGcd : In t )=
2 { use a , b in
3 { i f b == 0 => { theGcd = a }
4 e lse => { ( theGcd ) = gcd ( b , a mod b ) }
5 }
6 }
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Suppose this is defined in a program, and at some point, it is called as an expression

in the program : gcd(5,n). The code generated for this expression will then leave the

integer node named theGcd on the top of the quantum stack.

Generation of constructor expressions

These expressions are used to create new data type nodes, such as lists, trees etc. Con-

structors are similar to functions in that they expect an expression list as input and

will return a new quantum variable of a specific type. In L-QPL they are somewhat

simpler as the input expressions are all expected to be quantum and there is a single

input only. Just as in function calls, any classical expressions input to the constructor

will be lifted to a quantum expression.

The first step is for the compiler to emit code that will evaluate and lift any of the

input expressions. The names of each of these expressions is saved. Then, it creates a

new name dc and emits the code QCons dc #cid.

The final stage is to emit a QBind nmei
for each of the input expression, in reverse

order to what was input. The next example illustrates this.

1 l t = Cons (|0> ,
2 Cons ( |0> ,
3 iTZQList (2×n ) ) ) ;

=⇒
1 QLoad c22 |0>
2 QLoad c23 |0>
3 CLoad 2 // f o r the c a l l
4 CGet −1
5 CApply ×
6 QMove c24
7 QName c24 n
8 Ca l l 0 iTZQLis t_ fcd lb l5
9 QCons c25 #Cons

10 QBind nq
11 QBind c23 // c23 : nq
12 QCons c26 #Cons
13 QBind c25
14 QBind c22 // c22 : c23 : nq
15 QName c26 l t
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B.2.4 Lifting of classical expressions to quantum expressions.

When the compiler requires a quantum expression, but has been given a classical one,

it first generates the classical expression. This leaves the expression value on top of

the classical stack. The compiler will now generate a new unique name lc and emit

the instruction QMove lc. This now moves the value from the classical stack to the

quantum stack.



Appendix C

Example L-QPL programs

C.1 Basic examples

This section covers a number of the standard examples of quantum algorithms cov-

ered in most introductions to the subject.

C.1.1 Quantum teleportation function

The L-QPL program shown in figure C.1 is an implementation of a function that will

accomplish quantum teleportation as per the circuit shown previously in figure 2.9 on

page 22. (See also [Wat] or [NC00]). It also provides a separate function to place two

qubits into the EPR state.

Note that the teleport function, similarly to the circuit, does not check the precon-

dition that qubits a and b are in the EPR state, which is required to actually have

teleportation work.

1 prepare : : ( ; a : Qubit , b : Qubit )=
2 { a = |0> ; b = |0> ;
3 Had a ;
4 Not b ⇐ a ;
5 }
6 t e l e p o r t : : ( n : Qubit , a : Qubit , b : Qubit ; b : Qubit ) =

7 { Not a ⇐ n ;
8 Had n ;
9 measure a of

10 |0> => { } |1> => { Not b } ;
11 measure n of
12 |0> => { } |1> => {RhoZ b }
13 }

Figure C.1: L-QPL code for a teleport routine

145
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C.1.2 Quantum Fourier transform

The L-QPL program to implement the quantum Fourier transform in figure C.2 uses

two recursive routines, qft and rotate. These functions assume the qubits to transform

are in a List. (See also [Sel04] and either [Wat] or [NC00]).

The routine qft first applies the Hadamard transform to the qubit at the head of the

list, then uses the rotate routine to recursively apply the correct Rot transforms con-

trolled by the other qubits in the list. qft then recursively calls itself on the remaining

qubits in the list.

1 # Import Prelude . qpl
2 r o t a t e : : ( n : In t | h : Qubit , qbsIn : L i s t ( Qubit ) ;
3 h : Qubit , qbsOut : L i s t ( Qubit ) )=
4 { case qbsIn of
5 Nil => { qbsOut = Nil }
6 Cons ( hd , t l ) =>

7 { Rot ( n ) h ⇐ hd ;
8 r o t a t e ( n+1 ) h t l ;
9 qbsOut = Cons ( hd , t l ) }

10 }
11 q f t : : ( qsIn : L i s t ( Qubit ) ; qsOut : L i s t ( Qubit ) ) =

12 { case qsIn of
13 Nil => { l = Nil }
14 Cons (hd , t l ) =>

15 { Had hd ;
16 r o t a t e ( 2 ) hd t l ;
17 q f t t l ;
18 qsOut = Cons ( hd , t l ) }
19 }

Figure C.2: L-QPL code for a quantum Fourier transform

C.1.3 Deutsch-Jozsa algorithm

The L-QPL program to implement the Deutsch-Jozsa algorithm is in figure C.3 on

the following page with supporting routines in figure C.5, figure C.4, figure C.6. The

hadList function is defined in figure C.31 on page 170.
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The algorithm decides if a function is balanced or constant on n bits. This imple-

mentation requires supplying the number of bits / qubits used by the function, so that

the input can be prepared. Additionally, it currently requires hand-writing the oracle

for this function, shown in figure C.7. The oracle in this example is for a balanced

function. (See also [Wat] or [NC00]).

The function dj creates an input list for the function, applies the Hadamard trans-

form to all the elements of that list and then applies the oracle. When that is com-

pleted, the initial segment of the list is transformed again by Hadamard and then

measured.

1 # Import i n i t L i s t . qpl
2 # Import prependnzeros . qpl
3 # Import hadList . qpl
4 # Import measureInps . qpl
5 # Import d j o r a c l e . qpl
6

7 dj : : ( s i z e : In t | ; resultType : Ftype )=
8 { i n l i s t = prependNZeroqbs ( s i z e | |1> ) ;
9 hadList i n l i s t ;

10 d j o r a c l e i n l i s t ;
11 inputs = i n i t i a l L i s t ( i n l i s t ) ;
12 hadList inputs ;
13 resultType = measureInputs ( inputs ) ;
14 }

Figure C.3: L-QPL code for the Deutsch-Jozsa algorithm

The function prependNZeroqbs creates a list of qubits when given a length and the

last value. Assuming the parameters passed to the function were 3 and |1〉, this would

return the list:

[|0〉 , |0〉 , |0〉 , |1〉]

The initList function removes the last element of a list.

The measureInputs function recursively measures the qubits in a list. If any of them
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1 # Import Prelude . qpl
2 prependNZeroqbs : : ( s i z e : In t | l a s t : Qubit ;
3 r e s u l t L i s t : L i s t ( Qubit ) )=
4 { i f ( s i z e == 0 ) => { r e s u l t L i s t = Cons ( l a s t , Nil ) }
5 e lse => { l a s t ’ = addNZeroqbs ( s i z e − 1 | l a s t ) ;
6 r e s u l t L i s t = Cons ( |0> , l a s t ’ ) }
7 }

Figure C.4: L-QPL code to prepend n |0〉’s to a qubit

1 # Import Prelude . qpl
2 i n i t i a l L i s t : : ( i n l i s t : L i s t ( a ) ; o u t l i s t : L i s t ( a ) ) =

3 { case i n l i s t of
4 Nil =>

5 { o u t l i s t = Nil }
6 Cons ( hd , t a i l ) =>

7 { o u t l i s t = i n i t i a l ( hd , t a i l ) }
8 }
9 i n i t i a l : : ( head : a , i n l i s t : L i s t ( a ) ;

10 o u t l i s t : L i s t ( a ) )=
11 { i n i t = i n i t i a l L i s t ( i n l i s t ) ;
12 o u t l i s t = Cons ( head , i n i t )
13 }

Figure C.5: L-QPL code accessing initial part of list
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measure to 1, it returns the value Balanced. If all of them measure to 0, it returns the

value Constant.

1 # Import Prelude . qpl
2 qdata Ftype = { Balanced | Constant }
3 measureInputs : : ( inputs : L i s t ( Qubit ) ; r e s u l t : Ftype ) =

4 { case inputs of
5 Nil => { r e s u l t = Constant } // All were zero
6 Cons ( hd , t a i l ) =>

7 { measure hd of
8 |0> => { r e s u l t = measureInputs ( t a i l ) }
9 |1> => { r e s u l t = Balanced } }

10 }

Figure C.6: L-QPL code to measure a list of qubits

The oracle for the Deutsch-Jozsa algorithm is normally assumed to be a given. An

actual implementation such as this requires an actual function to be provided. The

function djoracle effects a transformation on the qubits in the input list by delegating

to the function bal.

1 balanced : : ( c t l q b : Qubit , i n l i s t : L i s t ( Qubit ) ;
2 c t l q b : Qubit , o u t l i s t : L i s t ( Qubit ) )=
3 { case i n l i s t of
4 Nil => { o u t l i s t = Nil }
5 Cons (hd , t l ) =>

6 { case t l of
7 Nil => { Not hd ⇐ c t l q b ;
8 o u t l i s t = Cons (hd , Nil ) }
9 Cons ( h , t ) =>

10 { balanced ( c t lqb , t ; c t lqb , out t ) ;
11 o u t l i s t = Cons ( hd , Cons ( h , out t ) ) } }
12 }
13 d j o r a c l e : : ( i n l : L i s t ( Qubit ) ; o u t l : L i s t ( Qubit ) )=
14 { case i n l of
15 Nil => { o u t l = Nil }
16 Cons (hd , t l )=> { balanced hd t l ;
17 o u t l = Cons ( hd , t l ) }
18 }

Figure C.7: L-QPL code for Deutsch-Jozsa oracle
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C.2 Hidden subgroup algorithms

The two algorithms presented in this section, the Grover search and Simons, are ex-

amples of the hidden subgroup problem.

C.2.1 Grover search algorithm

The L-QPL program to implement the Grover search algorithm is in figure C.8 on the

following page with supporting routines in figure C.10, figure C.9, figure C.11. The

hadList function is defined in figure C.31 on page 170 and the oracle for this implemen-

tation in figure C.12 on page 153.

For a specific function f : bitn → bit, the algorithm probabalistically determines

the solution to f(x) = 1. Classically, this would require 2n applications of f. The

quantum algorithm requires O(
√

2n) applications. For the algorithm, first define

Uf |x〉 = (−1)f(x) |x〉 and U0 |x〉 =















|x〉 if any x 6= 0

− |x〉 if x = 0n

then:

• Start with n zeroed qubits and apply Hadamard to them.

• Apply G = −H⊗nU0H
⊗nUf approximately

√
2n times.

• Measure the qubits, forming an integer and check the result.

In the implementation that follows, U0 is given by the function phase, Uf is the

function oracle and G is given by gtrans.

For a complete description and analysis of the algorithm, see [Wat] or [NC00].
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The function main creates a zeroed qubit list for the function, applies the Hadamard

transform to all the elements of that list and then applies the G transformation 4 times

as this example is for a 4-bit function.

1 # Import intL is tConvers ion . qpl
2 # Import gtra ns . qpl
3 main : : ( )=
4 { dataqbs = intToZeroQubitLis t (1 5 | ) ;
5 hadList dataqbs ;
6 doNGrovers ( 4 ) dataqbs ;
7 i = q u b i t L i s t T o I n t ( dataqbs ) ;
8 }

Figure C.8: L-QPL code to call the grover search algorithm

The function intToZeroQubitList creates a list of zeroed qubits as long as the standard

binary representation of the input number. For example, if it were passed the value 3,

it would return a list of length 2. If it were passed the value 21 it would return a list of

length 5.

The function qubitListToInt creates a probabilistic integer based on the values of the

qubits in the list. Note that the list is assumed to be least significant digit first.

1 # Import Prelude . qpl
2 intToZeroQubi tList : : ( n : In t | ; nq : L i s t ( Qubit ) )=
3 { i f n == 0 => { nq = Nil }
4 e lse => { nq ’ = intToZeroQubitLis t ( n ≫ 1 | ) ;
5 nq = Cons (|0> , nq ’ ) }
6 }
7 q u b i t L i s t T o I n t : : ( nq : L i s t ( Qubit ) ; n : In t )=
8 { case nq of
9 Nil => { n = 0 }

10 Cons ( q , nq ’ ) =>

11 { n ’ = q u b i t L i s t T o I n t ( nq ’ ) ;
12 measure q of
13 |0> => { n1 = 0 }
14 |1> => { n1 = 1 } ;
15 use n1 , n ’ in { n = n1 + ( n ’ ≪ 1 ) } }
16 }

Figure C.9: L-QPL code to convert integers from or to lists of qubits
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The phase uses phase kickback to implement the U0 transformation. Note this is an

excellent example of the utility of both 0-based quantum control and quantum control

by a data structure.

1 # Import Prelude . qpl
2

3 phase : : ( inqs : L i s t ( Qubit ) ; outqs : L i s t ( Qubit ) )=
4 { a=|1> ; Had a ;
5 Not a ⇐ ~inqs ; //Not a when a l l e l t s of inqs are |0>
6 Had a ; Not a ; discard a ;
7 outqs=inqs
8 }

Figure C.10: L-QPL code using phase kickback to transform the list

The function doNGrovers calls the function gtrans repeatedly, based on the input n.

The gtrans function implements the G transform above. Note that we may ignore

the minus sign in G’s definition as we are using density matrices.

1 # Import o r a c l e . qpl
2 # Import hadList . qpl
3 # Import phase . qpl
4

5 gtra ns : : ( dataqbs : L i s t ( Qubit ) ;
6 dataqbs : L i s t ( Qubit ) )=
7 { hadList dataqbs ;
8 phase dataqbs ;
9 hadList dataqbs ;

10 o r a c l e dataqbs ;
11 }
12

13

14 doNGrovers : : ( n : In t | dataqbs : L i s t ( Qubit ) ;
15 dataqbs : L i s t ( Qubit ) )=
16 { i f ( n==0 ) => { } //Done
17 e lse =>

18 { gtra ns dataqbs ;
19 doNGrovers ( n−1 ) dataqbs }
20 }

Figure C.11: L-QPL code to do the grover transformation

The oracle for the grover algorithm is normally assumed to be a given. We provide
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a specific implementation where f(12) = 1.

1 # Import Prelude . qpl
2

3 o r a c l e : : ( dataqbs : L i s t ( Qubit ) ;
4 dataqbs : L i s t ( Qubit ) )=
5 { a = |1> ; Had a ;
6 case dataqbs of
7 Nil =>

8 { dataqbs = Nil ;
9 Had a ; Not a ; discard a }

10 Cons ( hd , t l ) =>

11 { case t l of
12 Nil =>

13 { dataqbs = Nil ;
14 Had a ; Not a ; discard a ; discard hd ; }
15 Cons ( hd ’ , t l ’ ) =>

16 { Not a ⇐ ~hd , ~hd ’ , t l ’ ; // Search f o r 0 0 1 1 ( 1 2 )
17 dataqbs = Cons ( hd , ( Cons ( hd ’ , t l ’ ) ) ) ;
18 Had a ; Not a ; discard a }
19 }
20 }

Figure C.12: L-QPL code using phase kickback when f(12) = 1

C.2.2 Simon’s algorithm

Simon’s algorithm determines a global property of a given function, f, provided it is

guaranteed to follow some rules. The function f, from n bits to n bits, must either be

one-to-one, or when for any vectors of bits x, y with f(x1, . . . , xn) = f(y1, . . . , yn) then

(x1⊕y1, . . . , xn⊕yn) = (s1, . . . , sn) where⊕ is exclusive-or and the vector s is the same

for any choices of x or y.

The L-QPL program to implement Simon’s algorithm is in figure C.13 on the next

page with supporting routines in figure C.14. The hadList function is defined in fig-

ure C.31 on page 170 and the oracle and “blackboxes” for this implementation in fig-

ure C.15 on page 156 and figure C.16.

For a specific function f : bitn → bitn, the quantum portion of the algorithm
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returns a value r such that r · s = 0. The classical remainder of the algorithm usually

runs the quantum portion a number of times to obtain different values of r and then

performs Guassian elimintion on the series of linear equations to determine s. We

present only the quantum portion in this example.

The quantum portion first creates a list of length n of qubits initialized to |0〉. The

Hadamard transform is applied to the list, followed by the oracle for f followed by

another Hadamard. The qubits are then measured and the result is r.

For a complete description and analysis of the algorithm, see [Wat] or [NC00].

In figure C.13, the type ZorO represents bits. The function qubToBitList converts a list

of qubits to elements of type ZorO by repeated measures.

1 # Import o r a c l e . qpl
2 # Import hadList . qpl
3

4 main : : ( )=
5 { dqs=Cons ( |0> , Cons ( |0> , Cons (|0> , Nil ) ) ) ;
6 hadList dqs ;
7 o r a c l e dqs ;
8 hadList dqs ;
9 qubToBitList ( dqs ; b i t s )

10 }
11

12 qdata ZorO = { Z | O }
13

14 qubToBitList : : ( i n q u b i t s : L i s t ( Qubit ) ;
15 out : L i s t ( ZorO ) )=
16 { case i n q u b i t s of
17 Nil => { out = Nil }
18 Cons (hd , t l ) =>

19 { o u t t l = qubToBitList ( t l ) ;
20 measure hd of
21 |0> => { out = Cons (Z , o u t t l ) }
22 |1> => { out = Cons (O, o u t t l ) } }
23 }

Figure C.13: L-QPL code to do Simon’s algorithm

The function ndestLength is a non-destructive measure of the length of a list. The

function makeZeroQubitList creates a list of zeroed qubits when given a length.
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1 # Import Prelude . qpl
2

3 ndestLength : : ( i n L i s : L i s t ( a ) ;
4 len : Int , outLis : L i s t ( a ) )=
5 { case i n L i s of
6 Nil => { len = 0 ; outLis = Nil }
7 Cons ( hd , t l ) =>

8 { ndestLength ( t l ; t l en , t a i l ) ;
9 use t l e n in { len = 1 + t l e n } ;

10 outLis = Cons ( hd , t a i l ) }
11 }
12

13 makeZeroQubitList : : ( len : In t | ; outLis : L i s t ( Qubit ) )=
14 { i f ( len =< 0 ) => { outLis = Nil }
15 e lse => { o u t L i s t T a i l = makeZeroQubitList ( len−1 | ) ;
16 outLis = Cons (|0> , o u t L i s t T a i l ) }
17 }

Figure C.14: L-QPL list functions

The oracle for Simon’s algorithm is one of the more complex in the examples given

in this thesis. It makes use of the decomposition of f : bit3 → bit3 into three functions,

fi : bit3 → bit where fi gives the i-th component of f. These are represented by the

functions bbox1, bbox2 and bbox3.

The oracle function creates a list of ancilla qubits which are then used in each of

the bboxn functions, with the ancilla’s being exclusive-or’ed with the results of the

functions.

The code for the black boxes simply applies various combinations of controlled

Nots to create the desired boolean functions. The code in figure C.16 only shows the

first component. The code for the second and third components is similar.
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1 # Import blackboxes . qpl
2

3 o r a c l e : : ( dataqbs : L i s t ( Qubit ) ;
4 dataqbs : L i s t ( Qubit ) )=
5 { ndestLength ( dataqbs ; len , dataqbs ) ;
6 use len ;
7 makeZeroQubitList ( len | ; a n c i l l a s ) ;
8 bboxfRecurse ( 1 , len ) dataqbs a n c i l l a s ;
9 discard a n c i l l a s ;

10 }
11

12 bboxfRecurse : : ( s t a r t : Int , len : In t | dqs : L i s t ( Qubit ) , anc : L i s t ( Qubit ) ;
13 dqs : L i s t ( Qubit ) , anc : L i s t ( Qubit ) )=
14 { i f ( len < s t a r t ) => { }
15 e lse => { bbox ( s t a r t ) dqs anc ;
16 bboxfRecurse ( ( s t a r t +1 ) , len ) dqs anc }
17 }
18

19 //Assumption of three qubi ts − customize f o r each funct ion
20 bbox : : ( index : In t | dqs : L i s t ( Qubit ) , anc : L i s t ( Qubit ) ;
21 dqs : L i s t ( Qubit ) , anc : L i s t ( Qubit ) )=
22 { i f ( index == 1 ) => { bbox1 dqs anc }
23 ( index == 2 ) => { bbox2 dqs anc }
24 e lse => { bbox3 dqs anc }
25 }

Figure C.15: L-QPL code implementing oracle for Simon’s algorithm
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1 # Import L i s t U t i l s . qpl
2 // bb1 r e s u l t s in 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 when applied to combos of x , y , z
3 bbox1 : : ( dqs : L i s t ( Qubit ) , anc : L i s t ( Qubit ) ;
4 dqs : L i s t ( Qubit ) , anc : L i s t ( Qubit ) )=
5 { case anc of
6 Nil => { anc = Nil }
7 Cons ( hAnc , a t a i l ) =>

8 { case dqs of
9 Nil => { anc = Cons ( hAnc , a t a i l ) ;

10 dqs = Nil }
11 Cons ( x , t l 1 )=>

12 { case t l 1 of
13 Nil =>{ anc = Cons (hAnc , a t a i l ) ;
14 dqs = Cons ( x , Nil ) }
15 Cons ( y , t l 2 )=>

16 { case t l 2 of
17 Nil => { anc = Cons ( hAnc , a t a i l ) ;
18 dqs = Cons ( x , ( Cons ( y , Nil ) ) ) }
19 Cons ( z , t l 3 )=>

20 { // Now have x , y and z to work with .
21 cq = |0> ; Not cq ⇐ y , z ;
22 Not cq ⇐ ~y ,~ z ;
23 Not cq ⇐ x ;
24 Not hAnc ⇐ cq ; discard cq ;
25 anc = Cons ( hAnc , a t a i l ) ;
26 dqs = Cons ( x , Cons ( y , Cons ( z , t l 3 ) ) ) }
27 }
28 }
29 }
30 }

Figure C.16: L-QPL code implementing first black box for Simon’s algorithm
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C.3 Quantum arithmetic

This section provides examples of functions that will do arithmetic on quantum val-

ues. The primary source of these algorithms is [VBE95], although the algorithms and

types used in modular arithmetic are not ones I have encountered yet in the literature.

C.3.1 Quantum adder

This section provides subroutines that perform carry-save arithmetic on qubits. The

carry and sum routines in figure C.17 function as gates on four qubits and three qubits

respectively.

1 ca rry : : ( c0 : Qubit , a : Qubit , b : Qubit , c1 : Qubit ;
2 c0 : Qubit , a : Qubit , b : Qubit , c1 : Qubit ) =

3 { Not c1 ⇐ b , a ;
4 Not b ⇐ a ;
5 Not c1 ⇐ b , c0
6 }
7 sum : : ( c : Qubit , a : Qubit , b : Qubit ;
8 c : Qubit , a : Qubit , b : Qubit ) =

9 { Not b ⇐ a ;
10 Not b ⇐ c ;
11 }
12 carryRev : : ( c0 : Qubit , a : Qubit , b : Qubit , c1 : Qubit ;
13 c0 : Qubit , a : Qubit , b : Qubit , c1 : Qubit ) =

14 { Not c1 ⇐ b , c0 ;
15 Not b ⇐ a ;
16 Not c1 ⇐ b , a
17 }

Figure C.17: L-QPL code to implement carry and sum gates

Additionally, the reverse of the carry is also defined in the same figure. In order

to define a subtraction, which can be defined as the reverse of the add function, we

would also need to define the reverse of the sum function.

The addition algorithm adds two lists of qubits and an input carried qubit. The

first list is unchanged by the algorithm and the second list is changed to hold the sum
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of the lists, as shown in figure C.18.

1 # Import carrysave . qpl
2 adder : : ( c0 : Qubit , a s in : L i s t ( Qubit ) , bsin : L i s t ( Qubit ) ;
3 c0 : Qubit , asout : L i s t ( Qubit ) , aplusbout : L i s t ( Qubit ) ) =

4 { case a s in of
5 Nil => { asout = Nil ; aplusbout = Nil }
6 Cons ( a , t a i l a ) =>

7 { case bsin of
8 Nil => { asout = Nil ; aplusbout = Nil ; }
9 Cons ( b , t a i l b ) =>

10 { c1 = |0> ;
11 ca rry c0 a b c1 ;
12 case t a i l b of
13 Nil => { Not b ⇐ a ;
14 sum c0 a b ;
15 t a i l b = Cons ( c1 , Nil ) }
16 Cons ( t , t lb ’ ) =>

17 { t a i l b = Cons ( t , t lb ’ ) ;
18 adder c1 t a i l a t a i l b ;
19 carryRev c0 a b c1 ;
20 sum c0 a b ;
21 discard c1 } ;
22 asout = Cons ( a , t a i l a ) ;
23 aplusbout = Cons ( b , t a i l b ) } }
24 }

Figure C.18: L-QPL code to add two lists of qubits

The program proceeds down the lists A and B of input qubits, first applying the

carry to the input carried qubit, the heads of A and B and a new zeroed qubit, c1. When

the ends of the lists are reached, a controlled not and the sum are applied. The output

A+B list is then started with c1. Otherwise, the program recurses, calling itself with c1

and the tails of the input lists. When that returns, carry and sum are applied, the results

are “Consed” to the existing tails of the lists, c1 is discarded and the program returns.

C.3.2 Modular arithmetic

Most treatments of quantum modular arithmetic assume the program / algorithm

will work with a quantum register with a sufficiently large number of qubits, as in
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[VBE95]. In L-QPL, we define a new datatype for quantum modular integers, called

QuintMod. A QuintMod consists of a triple of two integers and a list of qubits. The first

integer is the maximum size of the list and the second integer is the modulus.

1 # Import ModFunctions . qpl
2 # Import L i s t F u n c t i o n s . qpl
3 # Import quints . qpl
4 qdata QuintMod = { QuintMod ( Int , Int , L i s t ( Qubit ) ) }
5

6 //Convert a p r o b a b a l i s t i c i n t to a QuintMod
7 intToQuintMod : : ( ra d ix : Int , n : In t ; nq : QuintMod )=
8 { use n , ra d ix ;
9 determineIntS iz e ( ra d ix ; s i z e ) ;

10 cintToQuintMod ( n , ra d ix | s i z e ; nq )
11 }
12

13 //Convert a c l a s s i c a l i n t to a QuintMod
14 cintToQuintMod : : ( n : Int , ra d ix : In t | s i z e : In t ; nq : QuintMod )=
15 { i f n == 0 => { nq = QuintMod ( s iz e , radix , Nil ) }
16 e lse => { nmr := n mod ra d ix ;
17 q l i s t = in tToQubi tL is t (nmr | ) ;
18 nq = QuintMod ( s iz e , radix , q l i s t ) }
19 }
20

21 //Convert a QuintMod to a p r o b a b a l i s t i c i n t e g e r
22 quintModToInt : : ( nq : QuintMod ; n : In t )=
23 { case nq of
24 QuintMod ( _ , radix , d i g i t s ) =>

25 { n ’ := q u b i t L i s t T o I n t ( d i g i t s ) ;
26 use ra d ix in { n = n ’ mod ra d ix } }
27 }

Figure C.19: L-QPL definitions of QuintMod

The code for the type definition and conversion from and to integers is given in

figure C.19.

Given these definitions and code for adding and subtracting lists of qubits(as in

appendix C.3.1), it is now possible to define a smart constructor for a QuintMod.

A QuintMod triplet has only one invariant that must be maintained. That is the list

of qubits must have length less than or equal to the first number of the triplet. Note

this implies that the number represented by a qubit list may be outside the range of
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the modulus. For example, assume a modulus of 5. This implies a length of 3 qubits.

The (qu)bit sequences of 101, 011, 111, representing 5, 6 and 7 are allowed. When

converting back to a viewable integer, these would be converted to 0, 1, 2 respectively.

1 # Import Prelude . qpl
2 # Import carrysave . qpl
3 # Import QuintMods . qpl
4

5 // Needs to s u b t r a c t the modulus 0 ,1 or 2 times to
6 // get the c o r r e c t range f o r the numbers .
7 makeQuint : : ( s i z e : Int , ra d ix : Int , d i g i t s : L i s t ( Qubit ) ;
8 res : QuintMod )=
9 { getLength ( d i g i t s ; d i g i t s , length ) ;

10 use s iz e , length in
11 { i f length > s i z e =>

12 { // Two c o n t r o l l e d subs
13 use ra d ix ;
14 csubModulus ( ra d ix | d i g i t s ; d i g i t s ) ;
15 takeOnly ( s i z e+1 | d i g i t s ; d i g i t s ) ; // Last i s |0>

16 csubModulus ( ra d ix | d i g i t s ; d i g i t s ) ;
17 takeOnly ( s i z e | d i g i t s ; d i g i t s ) ; // Last i s |0>
18 res = QuintMod ( s iz e , radix , d i g i t s ) }
19 e lse =>

20 { res = QuintMod ( s iz e , radix , d i g i t s ) }
21 }
22 }
23

24 csubModulus : : ( modulus : In t | d i g i t s : L i s t ( Qubit ) ;
25 digs : L i s t ( Qubit ) )=
26 { s p l i t L a s t ( d i g i t s , |0> ; d i g i t s , l a s t ) ;
27 c t l d i n t T o Q u b i t L i s t ( modulus | l a s t ; l a s t , subRad ) ;
28 digs = append ( d i g i t s , Cons ( l a s t , Nil ) ) ;
29 c0 = |0> ;
30 s u b L i s t s c0 subRad digs ;
31 discard c0 , subRad ;
32 }

Figure C.20: Semi-Smart constructor for QuintMod

The function makeQuint defined in figure C.20 maintains the length invariant, as-

suming that the length is no more than 1 greater than allowed. That is, if working with

QuintMod numbers of length n, the List (Qubit) argument has length at most n + 1.

This will imply the represented number passed in is at most 2n+1 − 1. As the mod-
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ulus is at least 2n−1, at most two subtractions of the modulus will ensure the passed

in list represents a number in the range 0 – 2n − 1. The subtractions are controlled by

the n + 1st qubit in the list.

The reason the numbers may take on the full range is due to the representation. For

example, if we are working in mod 4, which requires 3 qubits for representation we

may attempt to add 7 to itself. This will result in 14, requiring 4 qubits. The final qubit,

recalling we store numbers with least significant qubit first, will be |1〉. Subtracting 4

once leaves us with 10, still requiring 4 qubits. Subtracting 4 once more gives us 6

which brings us back to the correct range.

1 # Import smartConstructor . qpl
2

3 addM : : ( a s in : QuintMod , bsin : QuintMod ;
4 asout : QuintMod , aplusbout : QuintMod ) =

5 { case a s in of QuintMod ( sizeA ,mA, a D i g i t s ) => {
6 case bsin of QuintMod ( sizeB ,mB, bDigi t s ) =>

7 { use s iz eB ;
8 normalize ( s iz eB| bDigi t s ; bDigi t s ) ;
9 c0 = |0> ;

10 addLists c0 a D i g i t s bDigi t s ;
11 discard c0 ;
12 asout = QuintMod ( sizeA ,mA, a D i g i t s ) ;
13 aplusbout = makeQuint ( sizeB ,mB, bDigi t s ) } }
14 }
15

16 addListToQuint : : ( inc : L i s t ( Qubit ) , dest : QuintMod ;
17 dest : QuintMod )=
18 { case dest of QuintMod ( sizeD ,mdD, dDigi t s ) =>

19 { use sizeD ,mdD;
20 a = QuintMod ( sizeD ,mdD, inc ) ;
21 dest = QuintMod ( sizeD ,mdD, dDigi t s ) ;
22 addM a dest ;
23 discard a }
24 }

Figure C.21: Quantum modular addition

Figure C.21 shows the L-QPL code for implementing modular addition. The func-

tion addM takes in two QuintMod elements and adds the first to the second. Note the
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use of the smart constructor makeQuint to produce the result.

1 # Import b a s i c A r i t h . qpl
2

3 ctlCopy : : ( c t l : Qubit , s r c : QuintMod ;
4 c t l : Qubit , s r c : QuintMod , dest : QuintMod )=
5 { case s r c of QuintMod ( s iz e , modulus , srcDig )=>

6 { use s iz e , modulus ;
7 c t lCopyLis t ( c t l , srcDig ; c t l , srcDig , destDig ) ;
8 dest = QuintMod ( s iz e , modulus , destDig ) ;
9 s r c = QuintMod ( s iz e , modulus , srcDig ) }

10 }
11

12 ct lDouble : : ( c t l : Qubit , s r c : QuintMod ;
13 c t l : Qubit , s r c : QuintMod , dest : QuintMod )=
14 { case s r c of QuintMod ( s iz e , modulus , srcDig )=>

15 { use s iz e , modulus ;
16 c t lCopyLis t ( c t l , srcDig ; c t l , srcDig , destDig ’ ) ;
17 destDig = Cons ( |0> , destDig ’ ) ;
18 dest = makeQuint ( s iz e , modulus , destDig ) ;
19 s r c = QuintMod ( s iz e , modulus , srcDig ) }
20 }
21

22 c t lCopyLis t : : ( c t l : Qubit , s r c L i s t : L i s t ( Qubit ) ;
23 c t l : Qubit , s r c L i s t : L i s t ( Qubit ) , d e s t L i s t : L i s t ( Qubit ) )=
24 { case s r c L i s t of
25 Nil => { s r c L i s t = Nil ; d e s t L i s t = Nil }
26 Cons (hd , t l ) =>

27 { c t lCopyLis t ( c t l , t l ; c t l , t l , d e s t t l ) ;
28 desthd = |0> ;
29 Not desthd ⇐ c t l , hd ;
30 s r c L i s t = Cons ( hd , t l ) ;
31 d e s t L i s t = Cons ( desthd , d e s t t l ) }
32 }

Figure C.22: Support functions for Quantum modular multiplication

At this stage modular multiplication is straightforward to write. First, the support

functions ctlCopy and ctlDouble are defined in figure C.22. The ctlCopy function creates

a “copy” of a QuintMod. Note that the qubitsare all created by controlled-Nots of the

original list, so the “copy” is entangled with the original. If the control qubit is |0〉, the

resulting QuintMod is zero. The ctlDouble function uses the controlled copying and in-

troduces a new |0〉 at the beginning of the list of qubits in the QuintMod. This effectively
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doubles the number by shifting it one position to the right. The resulting QuintMod is

created using the smart constructor defined previously.

1 # Import multSupport . qpl
2

3 multiplyM : : ( cor : QuintMod , cand : QuintMod ;
4 cor : QuintMod , res : QuintMod )=
5 { case cand of QuintMod ( sizeA ,modA, aDig ) =>

6 { use sizeA ,modA;
7 res = cintToQuintMod ( 0 ,modA | sizeA ) ;
8 case aDig of Nil => { }
9 Cons (hdA, tlA )=>

10 { ctlCopy (hdA, cor ; hdA, cor , corcopy ) ;
11 discard hdA ;
12 addM corcopy res ;
13 discard corcopy ;
14 c t l = |1> ;
15 ct lDouble ( c t l , cor ; c t l , cor , cordouble ) ;
16 discard c t l ;
17 res1 = QuintMod ( sizeA , modA, tlA ) ;
18 multiplyM cordouble res1 ; discard cordouble ;
19 addM res1 res ; discard res1 }
20 }
21 }

Figure C.23: Quantum modular multiplication

The function multiplyM is then defined as a recursive function in figure C.23. The

algorithm used is the standard grade school multiplication method.

Modular exponentiation is written in a similar manner. First the support functions

ctlCopyOne and square are defined in figure C.24. ctlCopyOne uses ctlCopy defined above

to create a copy of a QuintMod, but adds 1 to the resulting QuintMod when the con-

trol qubit is |0〉, resulting in the identity for multiplication rather than the identity for

addition. The function square corresponds to ctlDouble in the multiplication case.

The code for the actual powerM function is in figure C.25.
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1 # Import mult iply . qpl
2

3 ctlCopyOne : : ( c t l : Qubit , s r c : QuintMod ;
4 c t l : Qubit , s r c : QuintMod , dest : QuintMod )=
5 { ctlCopy ( c t l , s r c ; c t l , src , dest ) ; // dest == 0 i f c t l == 0
6 c t l o n e = |0> ;
7 Not c t l o n e ⇐ ~ c t l ;
8 addListToQuint ( Cons ( c t lone , Nil ) , dest ; dest ) ;
9 }

10

11 square : : ( s r c : QuintMod ; dest : QuintMod )=
12 { c t l = |1> ;
13 ctlCopy ( c t l , s r c ; c t l , dest , cpy ) ; discard c t l ;
14 multiplyM cpy dest ; discard cpy
15 }

Figure C.24: Quantum modular exponentiation support

1 # Import powerSupport . qpl
2

3 powerM : : ( base : QuintMod , pow : QuintMod ;
4 res : QuintMod )=
5 { case pow of QuintMod ( sizeA ,modA, aDig ) =>

6 { use sizeA ,modA;
7 res = cintToQuintMod ( 1 ,modA|sizeA ) ;
8 case aDig of Nil => { discard base } // base^0 i s 1
9 Cons (hdA, tlA )=>

10 { ctlCopyOne (hdA, base ; hdA, base , basecopy ) ;
11 discard hdA ;
12 multiplyM basecopy res ; discard basecopy ;
13 square ( base ; basesqd ) ;
14 pow’ = QuintMod ( sizeA , modA, tlA ) ;
15 powerM( basesqd , pow ’ ; res1 ) ;
16 multiplyM res1 res ; discard res1 } }
17 }

Figure C.25: Quantum modular exponentiation
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C.4 Order finding

Shor’s algorithm for factoring depends on the quantum algorithm for order finding.

Shor’s algorithm may be summarized by the following three steps:

• Setup;

• Call order finding (a quantum algorithm);

• Check to see if an answer has been found, repeat if not.

In this section, we concentrate on the quantum portion, order finding. Theoretical

details may be found in [NC00].

The code for the main order finding function, OrderFind is shown in figure C.26

1 # Import powerFind . qpl
2 # Import inverseQf t . qpl
3

4 orderFind : : ( n : Int , x : In t | ; order : In t )=
5 {
6 s i z e := determineIntS iz e ( n ) ;
7 s iz eT := 2 × s i z e + 1 + 2 ;
8 makeZeroQubitList ( s iz eT | ; t L i s t ) ;
9 hadList t L i s t ;

10 xQm = intToQuintMod ( x ) ;
11 powList xQm t L i s t ;
12 discard xQm;
13 inverseQf t t L i s t ;
14 r e s u l t = q u b i t L i s t T o I n t ( t L i s t ) ;
15 gcdrs := gcd ( r e s u l t , ( 2 ≪ s iz eT ) ) ;
16 order = s iz eT mod gcdrs ;
17 }

Figure C.26: L-QPL function for order finding.

Beginning at lines 1 and 2, the program imports files which provide various other

functions. At line 4, the function is declared to take two classical integers as input

and return one probabalistic integer. The first two lines of code, 6 and 7 compute
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the number of qubits required for the algorithm to work with a maximum error of 1
4 .

Increasing sizeT will reduce the error.

Lines 8 through 10 complete the initial setup for the algorithm. These include:

Creating tList , a list of sizeT qubits initialized to zero; applying the Hadamard trans-

form to each qubit; creating xQm, a QuintMod with the value of the input parameter x.

See appendix C.3.2 on page 159 for the details of modular arithmetic.

Line 11 performs the modular exponentiation and is shown in figure C.27. This

is similar to the exponentiation function in figure C.25 on page 165 and has just been

modified to work with an exponent in list form and to retain the exponent.

1 # Import power . qpl
2

3 powList : : ( base : QuintMod , pow : L i s t ( Qubit ) ;
4 res : QuintMod , pow : L i s t ( Qubit ) )=
5 { case base of QuintMod ( sizeA ,modA, baseDig ) =>

6 { use sizeA ,modA;
7 res = cintToQuintMod ( 1 ,modA|sizeA ) ;
8 base = QuintMod ( sizeA ,modA, baseDig ) ;
9 case pow of

10 Nil => {pow=Nil ; discard base } // base ^0 i s 1
11 Cons (hdA, tlA ) =>

12 { ctlCopyOne (hdA, base ; hdA, base , basecopy ) ;
13 multiplyM basecopy res ;
14 discard basecopy ;
15 square ( base ; basesqd ) ;
16 powList basesqd tlA ;
17 multiplyM basesqd res ; discard basesqd ;
18 pow = Cons (hdA, tlA ) } }
19 }

Figure C.27: L-QPL code for modular power by a list

On completion of the exponentiation, the actual result is discarded as it has no

further effect on the algorithm. Then, the inverse quantum Fourier transform (shown

in figure C.28 and figure C.29) is applied to tList and it is measured to produce a

probabalistic integer in line 14.
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1 # Import inverseRota te . qpl
2 # Import U t i l s . qpl
3

4 inverseQf t : : ( inqs : L i s t ( Qubit ) ; outqs : L i s t ( Qubit ) ) =

5 { reverse inqs ;
6 inverseQft ’ inqs ;
7 outqs = reverse ( inqs ) ;
8 }
9

10 inverseQft ’ : : ( inqs : L i s t ( Qubit ) ; outqs : L i s t ( Qubit ) ) =

11 { case inqs of
12 Nil => { outqs = Nil }
13 Cons ( h , inqs ’ ) =>

14 { inverseQft ’ inqs ’ ;
15 inverseRota te ( 2 ) h inqs ’ ;
16 Had h ;
17 outqs = Cons ( h , inqs ’ ) }
18 }

Figure C.28: Function to apply the inverse quantum Fourier transform

1 # Import Prelude . qpl
2

3 inverseRota te : : ( n : In t| h : Qubit , inqs : L i s t ( Qubit ) ;
4 h : Qubit , outqs : L i s t ( Qubit ) )=
5 { case inqs of
6 Nil => { outqs = Nil }
7 Cons ( q , inqs ’ ) =>

8 { use n ;
9 m := n+1 ;

10 inverseRota te (m) q inqs ’ ;
11 Inv−Rot ( n ) h ⇐ q ;
12 outqs = Cons ( q , inqs ’ ) }
13 }

Figure C.29: Function to apply inverse rotations as part of the inverse QFT
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The final part of the algorithm is normally described as using a continued fraction

algorithm to compute the potential order. This is the same as dividing 2sizeT by the

greatest common division of itself and the result.

At this point, since this is a probabilistic algorithm, the calling function would need

to check whether the result is correct. If so, it may then be used in the completion of

the factoring algorithm.

Various other support functions for this algorithm are shown in figure C.30 and

figure C.31.

1 # Import inverseQf t . qpl
2 # Import L i s t U t i l s . qpl
3

4 gcd : : ( a : Int , b : In t ; ans : In t ) =

5 { use a , b in {
6 i f b == 0 => { ans = a }
7 a == 0 => { ans = b }
8 a > b => { ans = gcd ( b , a mod b ) }
9 e lse => { ans = gcd ( a , b mod a ) } }

10 }

Figure C.30: GCD and import of other ulitlties
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1 # Import Prelude . qpl
2

3 ndestLength : : ( i n L i s : L i s t ( a ) ;
4 len : Int , outLis : L i s t ( a ) )=
5 { case i n L i s of
6 Nil => { len = 0 ; outLis = Nil }
7 Cons ( hd , t l ) =>

8 { ndestLength ( t l ; t l en , t a i l ) ;
9 use t l e n in { len = 1 + t l e n } ;

10 outLis = Cons ( hd , t a i l ) }
11 }
12

13 makeZeroQubitList : : ( len : In t | ; outLis : L i s t ( Qubit ) )=
14 { i f ( len =< 0 ) => { outLis = Nil }
15 e lse => { o u t L i s t T a i l = makeZeroQubitList ( len−1 | ) ;
16 outLis = Cons (|0> , o u t L i s t T a i l ) }
17 }
18

19

20 hadList : : ( inhqs : L i s t ( Qubit ) ; outhqs : L i s t ( Qubit ) )=
21 { case inhqs of
22 Nil => { outhqs = Nil }
23 Cons ( q , h a d t a i l ) =>

24 { Had q ;
25 hadList h a d t a i l ;
26 outhqs = Cons ( q , h a d t a i l ) }
27 }
28

29 append : : ( l i s t 1 : L i s t ( a ) , l i s t 2 : L i s t ( a ) ; app : L i s t ( a ) )=
30 { case l i s t 1 of
31 Nil => { app = l i s t 2 }
32 Cons ( a , subl1 ) =>

33 { app = Cons ( a , append ( subl1 , l i s t 2 ) ) }
34 }
35

36 reverse : : ( i n l i s : L i s t ( a ) ; r v l i s : L i s t ( a ) )=
37 { r v l i s = rev ’ ( i n l i s , Nil ) }
38

39 rev ’ : : ( i n l i s t : L i s t ( a ) , a cc in : L i s t ( a ) ; r e v l i s t : L i s t ( a ) ) =

40 { case i n l i s t of
41 Nil => { r e v l i s t = a cc in }
42 Cons ( a , s u b l i s t ) =>

43 { acc = Cons ( a , a cc in ) ;
44 r e v l i s t = rev ’ ( s u b l i s t , acc ) }
45 }

Figure C.31: Various list ulitlties
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Using the system

D.1 Running the L-QPL compiler

The compiler is run from the command line as:

lqplc <options> <infiles>

This will run the compiler on each of the input files infiles which are expected to

have a suffix ’.qpl’. The compiled files will be written with the suffix ’.qpo’.

The options allowed for the compiler are:

-e, --echo_code Echo the input files to stderr.

-s, --syntactic This option will cause the compiler to print a syntax parse tree

on stderr.

-r, --ir_print This compiler option will force the printing of the intermediate

representation generated during the semantic analysis phase.

-h, --help This prints a help message describing these options on stderr.

-V, -?, --version This option prints the version information of the compiler on

stderr.

-o[FILE], --output[=FILE] This will cause the compiler to write the compiled

QSM code to FILE.

171



172

-i[DIRLIST], --includes=DIRLIST For this option, DIRLIST is expected to

be a list of semi-colon separated directories. The compiler will use the directory

list when searching for any import files.

D.2 Running the QSM Emulator

D.2.1 Window layout

When starting the simulator with the command qsmemul, The first thing seen is fig-

ure D.1

Figure D.1: The emulator window

The emulator window is composed of three main sections. On the left is the quan-

tum stack display area. On the right is a tabbed display of the emulator assembly/-
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machine code.

The middle section is divided into four parts. At the top is an execution and dis-

play control area followed by a view control area. Beneath these is the classical stack

display area with the dump display area at the bottom.

D.2.2 Loading a file

The first required step is to actually load a program into the emulator, using the File

--> Open dialog in figure D.2.

Figure D.2: Emulator file open dialog

Opening a QSM assembly file will check the compiler version used to create it and

translate it to machine code. If the compiler and emulator versions do not match,

a warning dialog, as in figure D.3 will appear. It is suggested that one ensures the

version of the compiler and emulator are the same.

After a successful assemble, the assembled code will appear in the right hand side.

In a program, each function will appear as a separate tab in the tabbed code window.
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Figure D.3: Version mis-match warning

The currently executing code will be in the top tab, which is labelled with a “(C)” and

the name of the currently executing function. Clicking on a tab will show the code

associated with that tab.

D.2.3 Setting preferences

Figure D.4: Preferences dialog

Prior to executing the program, various display and execution options may be set

by using the Edit --> Preferences dialog, shown in figure D.4. The top third of

the dialog controls the spacing and size of nodes and their labels. The middle controls
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the font used and the font size choices for various labels. Typically, the defaults for

these are sufficient for general execution.

The final section, with the single item Call Depth is used to control the actual

depth of recursion multiplied by the depth in the stream. In figure D.4 the call depth

is 1000, meaning that at stream depth 0, we will perform 1000 calls before signalling

non-termination, at stream depth 5, 6000 calls and so on.

D.2.4 Running the program

Figure D.5: Execution control section of the main window

The program execution is controlled by the elements of the Execution/Display

section of the main window. As shown in figure D.5, there are two buttons (Step and

Execute), a spin control (Step Count) and a checkbox (Show Trace).

For each click of the Step button, the emulator will execute Step Count instruc-

tions and then redisplay the components of the quantum stack machine. The spin

control may be set to any positive number.

The Execute button will run the program until it completes. Completion may

either be due to non-termination (e.g., exceeding the call depth number of calls at the

current stream depth), or actual completion. See the description of Stream Depth
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below. As well, while executing, the program will display a progress bar below the

Show Trace area. After completion, the machine components will be re-displayed.

Figure D.6: View controls section of the main window

The other component that affects execution in both step mode and execute mode

is the Stream Depth, shown in figure D.6. Essentially, if one encounters a non-

termination (a zero quantum stack) after executing, just increase the Stream Depth

and continue.

D.2.5 Result interpretation

Obviously, the first step is to visually examine the quantum stack. In case where a

simple final result is produced, this is often enough.

However, in cases where there are a significant number of nodes with multiple

branches, it can be difficult to determine what the results actually are.

For example, consider the end result of running Simon’s algorithm, as shown in

figure D.7. The important result is “What are the resulting bit-strings?”1. Using the

menu item File --> Simulate, we bring up a simulation dialog, which does the

“roll the dice” and shows us what our end result would be when transferred to a

classical computer. For example, for three invocation of simulation, we get sub-figures

(a), (b), and (c) as shown in figure D.8.

Note that the bit string can simply be read from the top three entries in the simu-

lation results. It should also be noted that the additional simulations do not require

1Obviously, it is possible to determine the results solely by examination of the quantum stack as
displayed. The method shown here becomes more relevant the more complicated the result stack.
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Figure D.7: Quantum stack at end of Simon’s algorithm

re-execution by the emulator. Instead, a new random value is generated and used to

determine a single path down the quantum stack for the values.
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(a) First simulation (b) Second simulation

(c) Third simulation

Figure D.8: Simulation of Simon’s algorithm


