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Abstract

We define the category of Kirchhoff relations to consist of those Lagrangian relations that conserve total

momentum – a condition that can also be interpreted as Kirchhoff’s current law. We study and characterize

different subcategories of Kirchhoff relations and present universal sets of generators of the different subcat-

egories of Kirchhoff relations. These generators can be interpreted as junctions of ideal wires, resistances,

voltage sources and current sources.
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Preface

This thesis includes work that has been submitted to Quantum Physics and Logic 2022, it has been also been

submitted for a talk at the Applied Category Theory 2022 Conference. Its available as a pre-print entitled

“Categories of Kirchhoff Relations” [1].
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Chapter 1

Introduction

1.1 Overview

The program of categorical quantum mechanics was first initiated in its modern form by Abramsky and

Coecke in [4]. Categorical methods have been used in the areas of quantum computation [5–7], quantum

information [8, 9] and quantum foundations [10, 11]. In particular these methods have been applied with

considerable success to give new insights into certain aspects of quantum error correction [12–14] and quantum

circuit simplification [15–17]. The most popular categorical framework used to model quantum computation

is called the ZX-Calculus, this calculus has been shown to be complete for stabilizer qubit quantum mechanics

[18] and more recently it was shown that a version of this calculus is complete for qudit stabilizer quantum

mechanics [19].

In a different direction categories of Lagrangian relations have been used to capture the behaviour of

resistive electrical networks [20,21]. In this framework circuits are regarded as morphisms with specific input

and output terminals, the symplectic structure of the category of Lagrangian relations is used to give a

natural grading of currents and voltages, this in turn is used to model resistor networks [20,21].

Graphical Linear Algebra (GLA) proposed by Zanasi in [22] gives a complete graphical calculus for

reasoning about linear relations, In this calculus the objects are natural numbers (n represents Fn) and

the maps are linear relations i.e linear subspaces (thus, R : n → m means R ⊆ Fn × Fm). GLA was used

in [23] to capture the behaviour of linear electrical networks with no sources. This graphical language was

then extended to deal with affine relations and the corresponding graphical language was called Graphical

Affine Algebra (GAA) [2]. The calculus uses the more general affine relations to model electrical circuits with

current and voltage sources. This provides a rigorous framework for reasoning about electrical circuits and
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has been used to re-derive several well known electrical network theorems completely graphically using the

rules of GAA [24].

More recently, in the work of Comfort and Kissinger [3], a functor between Lagrangian relations and

stabilizer quantum mechanics for qudits of odd prime dimensions was described. This functor was shown to

be an equivalence. In addition a universal set of generators were proposed for Lagrangian relations in [3]

and these generators were then interpreted in the context of stabilizer quantum mechanics. A graphical

description of these generators was also given using the graphical calculus of GAA.

The relationship between symplectic vector spaces and qudit quantum computation in odd prime dimen-

sions was developed in [25–29]. These papers discuss the relevant results on the mathematical structure

of the Clifford group for qudits of odd prime dimension. They also discuss the stabilizer formalism for

qudit quantum error correction and the phase space formalism of qudit quantum operations in odd prime

dimensions.

In the electrical network theory, work on using the concept of “through” and “across” variables to

model electrical networks was discussed in [30–34] and some connections to quantum computation were

also established. The through and across variables can be thought of as the X and Z grading in the

context of Lagrangian relations. Some graph theoretic methods were also discussed in the context of circuit

simplification strategies using state space methods where electrical network analysis was carried out using

matrices acting on vectors of currents and voltages [35,36].

Inspired by these results, in this thesis a subcategory of Lagrangian relations is defined with the goal of

making the connections between electrical networks and quantum circuits more transparent. To make the

connection to qudit quantum mechanics, a characterization of Lagrangian relations and important subcate-

gories thereof is made in terms of parity-check and generator matrices. Parity-check and generator matrices

are used in both classical and quantum error correction.

The subcategory, consisting of Kirchhoff relations, is defined as the category consisting of those La-

grangian relations that conserve total momentum or, equivalently, satisfy Kirchhoff’s current law. Maps in

this subcategory can be generated by electrical components (generalized for the field F ): namely resistors,

current dividers, current and voltage sources. The “source” electrical components deliver the affine nature of

the maps while current dividers add an interesting quasi-stochastic aspect. The fact that all the generators

in the category of Kirchhoff relations have natural interpretations as electrical elements is particularly useful

in establishing connections between electrical networks and stabilizer quantum mechanics: this was not true

for the set of universal generators given in the work of Comfort and Kissinger. These set of generators of

Kirchhoff relations have also been interpreted as quantum maps.
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Deterministic relations and, in particular, deterministic Kirchhoff relations, are also characterized and

using the structure of the parity-check matrices the category of deterministic Kirchhoff relations is isolated

as the category which corresponds to electrical circuits that are generated by resistors circuits.

Using the concept of “input power” two important subcategories: Lossless Lagrangian relations and

Lossless Kirchhoff relation are defined and their properties characterized.

A standard form of the parity-check matrix for each of these subcategories which correspond to different

types of electrical networks is studied. In addition to this a set of generators for all these categories is

provided and proofs for universality for each of these subcategories is given explicitly. Interpretation of these

generators in terms of quantum maps is also discussed in the last chapter of the thesis.

1.2 Outline of the Thesis

Chapter 2 contains a review of basic category theory, GAA and Lagrangian relations, Chapters 3 and 4

contain original results based on analyzing parity-check matrices. In the conclusion, the relationship of

Kirchhoff relations to qudit quantum mechanics is outlined and some potential future directions of work are

discussed.

An outline of the thesis is as follows:

Chapter 2 Preliminaries: This is an introductory chapter and is meant to provide the background ma-

terial required for the later chapters in thesis. In this chapter we review the basic theory of monoidal

categories, Graphical Affine Algebra (GAA) and the theory of Lagrangian relations. The results and

definitions in this chapter are available in the literature.

Chapter 3 Parity Check Matrices and Lagrangian Relations: In this chapter a novel characteriza-

tion of Lagrangian relations in terms of parity-check matrices is given, a new subcategory of Lagrangian

relations called Kirchhoff relations is introduced and its properties are characterized using parity check

matrices. Deterministic relations are then considered and deterministic Kirchhoff and Lagrangian re-

lations are characterized. Using the concept of “power input” the categories of lossless Lagrangian and

Kirchhoff relations are defined and characterized.

Chapter 4 Universality for Kirchhoff Relations: This chapter provides generating relations correspond-

ing to electrical components, for the different subcategories of Kirchhoff relations.

Chapter 5 Discussions and Conclusion: In the last chapter of the thesis the connection to qudit quan-

tum computation is discussed and the generators of the category of Kirchhoff relations are interpreted

as quantum maps.
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1.3 Contributions

The contributions of the thesis are as follows:

• A characterization of the parity-check matrix of a Lagrangian relation was made in Theorem 3.4.3.

• Kirchhoff relations are defined in Definition 3.5.1 and the properties of translational invariance and

Kirchhoff Current Law (KCL) are discussed in section Lemmas 3.5.5 and 3.5.6.

• Based on the concept of “power input” Lossless Lagrangian and Kirchhoff relations are defined using

parity-check matrices. It is shown that the category of lossless Lagrangian relation is isomorphic to a

particular subcategory (determined by the L functor) of Lagrangian relations in Lemma 3.8.7.

• Isolating different subcategories of Kirchhoff relations depending on the structure of parity check ma-

trices and showing how these subcategories correspond to different types of electrical networks.

• In particular Theorem 3.7.2 shows how graph states are related to resistor networks called “meshes”.

• In section 3.6 different deterministic relations are characterized, in particular it is explicitly shown that

the composition of deterministic relations is well-defined.

• Universality proofs for different subcategories of Kirchhoff Relations are given in Theorems 4.5.3, 4.6.1

and 4.7.1. These results are proven in Chapter 4.

• A translation from electrical components to qudit quantum computation explicitly given in chapter 5.
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Chapter 2

Graphical Affine Algebra and

Lagrangian Relations

2.1 Introduction

In the first half of this chapter we review the basics of monoidal categories, theory of linear and affine

relations. In the second half we review the basic theory of Lagrangian relations. All the results in this

chapter are well known and discussed in detail in [2, 3, 21, 22, 24]. In what follows let F be a field. We will

mainly focus our attention on finite fields, in which case |F | denotes the total number of elements in the

field and p denotes the characteristic.

2.2 Preliminaries

We begin with reviewing the basic notion of categories and functors. For more details one can consult

[7, 37–39].

Definition 2.2.1. (See definition 1.1.1 in [39]) A category C consists of the following data:

• A collection of objects and a collection of morphisms, every morphism f has an associated domain

and codomain, thus a morphism is f : A→ B, where A is the domain of f and B is the codomain of

f and, A and B are objects of C.

such that:

• For each pair of morphisms f : A → B and g : B → C which are composable in the sense that the
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codomain of f is the domain of g, there is a composite morphism: g ◦ f : A → C in C (we use

applicative notation).

• Each object A has an identity morphism 1A : A→ A.

The morphisms are subject to the following two laws:

Identity law: ∀ f : A→ B ∈ C, 1B ◦ f = f = f ◦ 1A

Associative law: For morphisms: f : A→ B, g : B → C and h : C → D the associative law holds, that is:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

The class of maps between objects A and B are denoted as C(A,B).

We now give a couple of examples of categories:

Example 2.2.2. The category of sets and functions, Set, consists of:

Objects: Sets.

Maps : Functions.

Composition: Function composition.

Identity: Identity function 1A : A→ A; a 7→ a.

Example 2.2.3. The category of sets and relations, Rel, consists of:

Objects: Sets

Maps : Relations R : A→ B which are subsets of A×B

Composition : Relational composition R : A→ B and R′ : B → C:

R′ ◦ R = {(a, c) | ∃ b ∈ B : (a, b) ∈ R and (b, c) ∈ R′}

Identity: The identity relation on a set A is:

1A : A→ A := {(a, a) ∈ A×A | a ∈ R}

For every category one can define the “dual category”, this is sometimes called the opposite category:

6



Definition 2.2.4. (See definition 2.1.7 in [37]) The opposite or dual category Cop of C is defined as

category with the same objects as C but with the arrows revered that is for a morphism f : A → B ∈ C

there is a morphism f : B → A ∈ Cop.

Definition 2.2.5. There are some special maps called isomorphisms which satisfy for a map f :

f−1 ◦ f = 1 = f ◦ f−1

In Set these maps are called bijections.

A functor, is a map between categories which respects the categorical structure:

Definition 2.2.6. (See definition 0.16 in [7] and definition 1.3.1 in [39]) Consider two categories C and D.

A functor F : C → D associates with every object A ∈ C, an object F (A) ∈ D and for every morphism

f : A→ B ∈ C, a morphism F (f) : F (A)→ F (C) ∈ D. such that the following is satisfied:

Preservation of identity: For all objects A ∈ C, the identities are mapped to identities that is: F (1A) =

1F (A).

Preservation of composition: For all composable maps f : A→ B and g : B → C F (g◦f) = F (g)◦F (f).

An equivalence of functors is defined as follows:

Definition 2.2.7. (See definition 0.17 in [7])

(i) A functor is full if the morphism FA,B : C(A,B)→ C′(F (A), F (B)) is surjective for every A,B ∈ C.

(ii) A functor is faithful if the morphism FA,B : C(A,B)→ C′(F (A), F (B)) is injective for every A,B ∈ C

(iii) A functor is essentially surjective if for every object B ∈ C′ there is an object A ∈ C such that there

is an isomorphism f : B → F (A).

A functor F : C→ C′ is an equivalence if it satisfies the above three properties.

Maps between functors are called natural transformations and are defined as follows:

Definition 2.2.8. (See definition 0.19 in [7] and definition 2.1.1 in [37] ) Given two functors F,G : A→ B,

a natural transformation α : F =⇒ G is a class of maps αA : F (A)→ G(A) for each object A ∈ A such

that for all morphisms f : A→ B ∈ A, FαB ◦ F (f) = G(f) ◦ αA that is the diagram below commutes:

F (A) F (B)

G(A) G(B)

αA

F (f)

αB

G(f)

7



If each component αA is an isomorphism then the natural transformation is called a natural isomorphism.

2.3 Monoidal Categories

The unitary group on n qubits, U(2n), is often considered to be the mathematical structure associated with

quantum computing. But, in many useful models of quantum computing, the total number of qubits is not

fixed – at any stage one can add ancilla qubits or discard them. One can also perform irreversible operations,

like measurement, or post-selection on a measurement outcome. In the context of fault-tolerant quantum

computing, there are usually various limitations imposed on the gate sets, the states one can prepare, or on

other classical operations. As emphasized in [6] strict symmetric monoidal categories, first introduced by

MacLane in [40]. are ideally suited to capture the behaviour of quantum processes.

We first review the theory of monoidal categories and then specialize to the case of a strict symmetric

monoidal category. For a complete discussion the reader can refer to [6, 7, 37].

Definition 2.3.1. (See definition 2.2.1 [37] and definition 1.1 in [7]) A monoidal category C is a category

equipped with the following data:

Tensor Product: A functor −⊗− : X ⊗X → X.

Tensor Unit: A unit object I ∈ C.

Associator: A natural isomorphism α with components αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

Left Unitor: A natural isomorphism λX : I ⊗X → X

Right Unitor: A natural isomorphism ρX : X ⊗ I → X

This data satisfies the following triangle and pentagon equations for all objects X,Y, Z,W ∈ C as follows:

(X ⊗ I)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

ρX⊗1

αX,I,Y

1⊗λY

((X ⊗ Y )⊗ Z)⊗W (X ⊗ (Y ⊗ Z))⊗W X ⊗ ((Y ⊗ Z)⊗W )

(X ⊗ Y )⊗ (Z ⊗W ) X ⊗ (Y ⊗ (Z ⊗W ))

αX⊗Y,Z,W

αX,Y,Z⊗1W αX,Y⊗Z,W

1X⊗αY,Z,W

αX,Y,Z⊗W

8



Definition 2.3.2. (See definition 2.2.1 in [37]) A monoidal category is symmetric if in addition to being

monoidal it is equipped with a natural isomorphism σ referred to as the “symmetry” such that σX,Y :

X ⊗ Y → Y ⊗X and the following diagrams commute:

X ⊗ Y

Y ⊗X X ⊗ Y

σX,Y
1X⊗Y

σY,X

X ⊗ I I ⊗X

X

ρX

σX,I

λX

(X ⊗ Y )⊗ Z (Y ⊗X)⊗ Z

X ⊗ (Y ⊗ Z) Y ⊗ (X ⊗ Z)

(Z ⊗ Y )⊗X Y ⊗ (Z ⊗X)

αX,Y,Z

σX,Y ⊗1Z

αY,X,Z

σX,Y⊗Z 1Y ⊗σX,Z

αZ,Y,X

The last diagram governs the interaction of the symmetry map with the associator.

Some examples of monoidal categories are:

Example 2.3.3. (See examples in [7]) The category of sets, Set, with a monoidal structure which is given

by the Cartesian product:

Tensor Product: Cartesian product that is given f : X → Y and g : V → W such that f × g : X × V →

Y ×W ; (x, v) 7→ (f(x), g(v)).

Unit: The unit object is given by the singleton set {∗}.

Left Unitor: λX : I ⊗X → A is given by functions (∗, x)→ x.

Right Unitor: ρX : X ⊗ I → X is given by functions (x, ∗)→ x.

Associator: αX,Y,Z : (X × Y )× Z → X × (Y × Z); ((x, y), z) 7→ (x, (y, z))

Example 2.3.4. (See examples in [7]) We now describe a monoidal structure on the category Rel induced

by the Cartesian product:

Tensor Product: Cartesian product given as R1 : X → Y and R2 : Z →W given by (x, z)(R1×R2)(y, w)

iff xR1y and zR2w.

Unit: The unit is given by the singleton set {∗}.

Left Unitor: λX : I ⊗X → X are given by relations (∗, x) ∼ x.
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Right Unitor: ρX : X ⊗ I → X are given by relations defined by (x, ∗) ∼ x.

Associator: αX,Y,Z : (X × Y )× Z → X × (Y × Z) is given by relations ((x, y), z) ∼ (x, (y, z)).

Now we will define a special symmetric monoidal category called a strict symmetric monoidal category:

Definition 2.3.5. A strict symmetric monoidal category is a monoidal category where the ρX , λX , αX,Y,Z

natural isomorphims are all required to be identity morphisms.

Note that every monoidal category is equivalent to a strict monoidal category by Maclane’s coherence

theorem [38].

2.4 Graphical Calculi, Props and Monoidal Functors

Maps in a monoidal category have an elegant graphical representation in terms of circuits, that is:

• A map f : X → Y can be represented as follows:

f

• The identity morphism has the following graphical representation (a single wire):

• The composition of morphism f : X → Y and g : Y → Z is graphically depicted as follows:

f g

• The tensor product or parallel composition of maps f : X → Y and g : Z → W is given by f ⊗ g :

X ⊗ Z → Y ⊗W which can be represented graphically as follows:

f

g

Graphical calculi associated with monoidal categories provides a mathematically rigorous framework to

reason about processes using diagrams [41–43]. A graphical calculus allows for an intuitive diagrammatic

reasoning for maps in a monoidal category. Since this diagrammatic reasoning is rigorous but intuitively
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clear, it helps in simplifying many proofs and in particular, has been used to provide a graphical syntax to

reason about quantum operations.

Examples of graphical calculi include the ZX [44, 45, 5], ZW [46] and ZH calculus [47], which are fre-

quently used in quantum computing as well as the graphical languages of GAA and GLA which have found

applications in modelling linear systems, signal flow graphs and electrical circuits [22,24].

We now define the concept of a “Product and Permutation” category (prop) as follows:

Definition 2.4.1. (See definition 2.2.4 in [37]) A strict symmetric monoidal category which is generated

by a single object X, where all objects are given by n fold tensor products X⊗n is called a “product and

permutation category” or a prop.

We will refer to a product and permutation category as a prop throughout the thesis. ZX calculus, ZH

calculus, Graphical Linear and Affine Algebra are all examples of props.

2.5 Monoidal Functors

We will now define monoidal functors, these functors are used to understand different graphical calculi and

their relationship with each other:

Definition 2.5.1. A monoidal functor between two categories A and B consists of:

• A functor F : A→ B

• A morphism mI : I → F (I)

• A natural transformation: m⊗ : F (X)⊗ F (Y )→ F (X ⊗ Y )

such that the following diagrams commute:

(F (X)⊗ F (Y ))⊗ F (Z) F (X)⊗ (F (Y )⊗ F (Z))

F (X ⊗ Y )⊗ F (Z) F (X)⊗ F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z))

α

m⊗⊗1 1⊗m⊗

m⊗ m⊗

F (α)

I ⊗ F (X) F (I)⊗ F (X)

F (X) F (I ⊗X)

mI⊗1

λX m⊗

F (λX)

11



F (X)⊗ I F (X)⊗ F (I)

F (X) F (I ⊗X)

1⊗mI

ρX m⊗

F (ρX)

A symmetric monoidal functor in addition has the following diagram which commutes:

F (X)⊗ F (Y ) F (Y )⊗ F (X)

F (X ⊗ Y ) F (Y ⊗X)

σ

m⊗ m⊗

σ

A strict monoidal functor is one in which mI and m⊗ are identities. We will now discuss some properties

of a graphical calculus with respect to the following interpretation map J−K : A → B which interprets the

category A in B.

Definition 2.5.2. (See [37]) An interpretation of a category A in B given by the functor J−K : A→ B is said

to be sound if the interpretation morphism is a strict symmetric monoidal functor, is said to be universal

if the functor is full and surjective on objects and, complete if the interpretation is surjective on objects

and faithful.

2.6 The Categories of Linear and Affine Relations

In this section we review the theory of linear and affine relations, some references which the author found

particularly useful are [2, 24]. We begin with defining the prop of relations over a field F LinRelF :

Definition 2.6.1. (See definition 2 in [2] ) Given a field F let LinRelF be the prop of relations over a field

F where:

Objects: n ∈ N, which maybe regarded as Fn

Arrows: R : m → n where R ⊆ Fm × Fn. The morphisms are linear subspaces. To see this note that if

(x, y) ∈ R and (x′, y′) ∈ R then (x+ x′, y + y′) ∈ R since R is a linear relation, similarly if (x, y) ∈ R

and c is a scalar then (cx, cy) ∈ R.

Composition : Given two relations R1 : m→ n and R2 : n→ p, the composite relation R2 ◦ R1 : m→ p

is given as follows:

R2 ◦ R1 := {(x, z) : x ∈ Fm, z ∈ F p | ∃ y (x, y) ∈ R1 and (y, z) ∈ R2}
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To see that composition is well-defined suppose (x, y), (x′, y′) ∈ R2 ◦ R1 then there are y and y′

with (x, y), (x′, y′) ∈ R1 and (y, z), (y′, z′) ∈ R2. As R1 and R2 are linear α(x, y) + β(x′, y′) =

(αx+βx′, αy+βy′) ∈ R1 and α(y, z)+β(y′, z′) = (αy+βy′, αz+βz′) ∈ R2 whence α(x, z)+β(x′, y′) =

(αx+ βx′, αy + βy′) ∈ R2 ◦ R1. Thus R1 ◦R2 is a linear subspace.

Monoidal Product: Given R : m→ n and R′ : m′ → n′, their monoidal product R⊕S : m+m′ → n+n′

is the relation:

{(((x1, x2), (y1, y2)) : x1 ∈ Fm x2 ∈ Fm
′
y1 ∈ Fn y2 ∈ Fn

′
| (x1, y1) ∈ R, (x2, y2) ∈ R′}

that is the direct sum of the relational subspaces defined by the relations.

Symmetry : σm,n : n+m→ m+ n is the subspace {(x, y), (y, x) | x ∈ Fn and y ∈ Fm}.

We will now define the prop of affine relations over a field F , AffRelF , by analogy to affine subspaces:

Definition 2.6.2 (See definition 3 and 4 in [2]). An affine subspace of F d is a (possibly empty) subset V ⊆ F d

for which there exists a vector c ∈ F d and a linear subspace V ′ of F d such that V := c+V ′ = {c+x | x ∈ V ′}.

An affine relation m→ n over a field F is defined to be a affine subspace of Fm × Fn.

Now to show AffRelF forms a prop, we need to show that the composition is well defined that is: the

composition of two affine relations is an affine relation.

Recall that one can associate to every affine relation a linear relation using homogenisation. Essentially

this is done by embedding an affine relation into a space with one extra dimension.

Definition 2.6.3 (See definition 5 in [2]). Let S : m → n be an affine relation given by (a, b) + S′, its

homogenisation is the linear relation Ŝ : m+ 1→ n defined as follows:

Ŝ = {((a, r), b) | (a, b) + r(a, b), (a, b) ∈ S}

Now using the homogenisation construction on affine relations R : m → n and S : n → p we associate

linear relations R̂ : m + 1 → n and Ŝ : n + 1 → p, but to compose these linear relations we interpret the

above construction in the co-Kleisli category [39] of the (−)+1 comonad which is equipped with the following

natural transformations:

δ : (n) + 1→ (n) + 2; (a, r) 7→ (a, r, r)

ε : (n) + 1→ n; (a, r) 7→ a
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For R̂ : m + 1 → n and Ŝ : n + 1 → p the co-Kleisli composition gives the relation Ŝ ◦ R̂ : m + 1 → p and

hence composition of two affine relations is well defined.

Lemma 2.6.4 (See proposition 6 in [2]). Composition of two affine relations is an affine relation

Proof. This is a consequence of the co-Kleisli construction discussed above.

2.7 Graphical Affine and Linear Algebras

In this section, we present a review of a graphical calculus for linear relations over a field F , known as Graph-

ical Linear Algebra (GLA) and a closely related graphical calculus for affine relations, known as Graphical

Affine Algebra (GAA). We closely follow the discussions in [2,48,49] which are summarized in [3], and read-

ers are encouraged to consult these references for more complete discussion. Our notation is intended to

resemble that of [2], however, like [49] we consider our diagrams flowing from down to up, rather than left

to right.

We will present a set of generators and equations for GAA, which form a universal, sound and complete

graphical calculus for AffRel [2]. Some of the generators and rewrite rules may be redundant – and in

this thesis, we make no claims about the minimality of either for any of the graphical calculi we consider.

By omitting some generators and equations, we also obtain various subcategories of GAA corresponding to

graphical calculi for linear relations GLA, as well as graphical calculi for linear functions and affine functions.

The generators of the GAA are presented in Table 2.1.
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Generator Symbol Interpretation as a Linear Relation

1. “copy” {x, (x, x) | x ∈ F}

2. “co-copy” {((x, x), x) | x ∈ F}

3. “anything” {(∗, x) | x ∈ F}

4. “delete” {(x, ∗) | x ∈ F}

5. “co-add” {(x, (x− y, y)) | x, y ∈ F}

6. “add” {((x, y), x+ y | x, y ∈ F )}

7. “zero” {(∗, 0)}

8. “post-select: zero” {(0, ∗)}

9. “multiply by k” k {(x, kx) | x ∈ F}

10. “multiply by k−1” k {(kx, x) | x ∈ F}

11. “affine unit” {(∗, 1)}

Table 2.1: Generators of the Graphical Affine Algebra. These generate all affine relations between

Fn and Fm. We regard the external wires at the bottom of the diagram as “input”, and external wires at

the top of the diagram as “output”. The variables x and y are assumed to take on values in F , so, e.g.,

“co–add” encodes the relation ∀x, y ∈ F, x ∼ (x− y, y).
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Graphical Affine Algebra (GAA) is a graphical algebra that captures the behaviour of affine relations

using only string diagrams. GAA is the prop generated by generators 1 − 9 in Table 2.1 modulo certain

equations. These rules, also known as the axioms of the affine interacting Hopf algebras [2,22] consist of the

following rules, note here we do not list all the rules as there is a dual symmetry given by vertically reflecting

the diagrams.

• The commutative and associativity rules for the monoid “add” (white) and “copy” (black).

=
=

=

=

= =

• Rules for interactions between the monoid “add”(white) and comonoid “copy” (black).

= = =

The generator “multiply by −1” is also sometimes known as the antipode. The antipode interacts with

the addition and copy monoid and co-monoid via the following rules:

−1

=
=

−1
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• The rules governing behaviour of scalars with respect to the monoid and comonoid are given as follows:

=

m m

m

=

m

m m

=m

=
m

= =
m

mm

m =0

=m n m+ n

• The commutative, associativity and Frobenius rules for the relation “co-add” and relation “co-copy”.

=
= =

=
=

• The rules that govern the affine unit are given below:
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= =

=

The generator number 9 in Table 2.1 can be interpreted as a multiplier which multiplies the input by

a scalar k. If k ∈ N, this generator can be interpreted as “syntactic sugar”, i.e., a notational device, for a

diagram consisting of k wires summed. However, in general, for instance, if one is working within a finite

field such as GF (p2) or R, k need not be a natural number, so it is necessary to regard the generator for

scalar multiplication being independent. In a field of characteristic p, the following equation holds:

p =

. . .
p wires = = 0

(2.1)

One can interpret the generators numbered 1 and 6 in Table 2.1 as the functions “copy” and “add”

respectively, and the generators 2 and 5 in Table 2.1 as the relations “co-copy” and “co-add”.

Using the associative rules, each of these can be used to define spiders, that take multiple inputs and

outputs, which we refer to as the “copy spider” and the “addition spider”.

It was shown in [2] that GAA forms a universal, sound and complete graphical calculus for AffRelR, where

R is a rig (which is a ring without negatives). In this thesis we will focus on the case of a finite field F .

When the affine unit (generator 10 in Table 2.1) and its associated identities are omitted, the theory becomes

the Graphical Linear Algebra (GLA). It was shown in [23] that GLA forms a universal, sound and complete

graphical calculus for LinRelR. See also [2, 3, 23,24] for more discussion.

Let us sketch the proof of universality. First, let us consider the case of linear and affine functions. Here,

we simply need to demonstrate the fact that any affine function,

y = Ax+B (2.2)
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can be written using the generators copy, addition and scalar multiplication. Let us list the components of

A and B explicitly,

A =



a11 a12 . . . a1n

a21 a22 . . . a1n
...

... . . .
...

am1 am2 . . . amn


B =

(
b1 b2 . . . bm

)T

The following diagram encodes equation (2.2):

. . .

. . .

. . .a12a11 a1n . . .a22a21 a2n . . .am2am1 amn

b1 b2 b3

To show that GAA is universal for affine relations, note that any affine relation can be expressed, non-uniquely,

as a linear relation, composed with a constant affine shifts applied to the output as shown in Figure 2.1.

Affine Relation = Linear RelationJ1 Jn

. . .

. . .

. . .

. . .

Figure 2.1: Any affine relation can be expressed (non-uniquely) in terms of a linear transformation, with
additional shifts on the outputs.
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2.8 Graphical Affine Algebra and Electrical Circuits

As discussed in [2] one can use the generators of GAA to capture the behaviour of electrical elements, this is

summarized in the Figure 2.2, where we give the representation of resistors, voltage sources, current sources

and current dividers in terms of the generators of the graphical affine algebra.

R

1

2

I1 V1

I2 V2

= ↑I

1

2 I2V2

I1V1

I

±V

1

2 V2 I2

V1 I1

V

==

V1 I1 V2 I2

V3 I3

(1− w) (1− w)−1 w−1w

〈〉w =

Resistor Current Source Voltage Source

Ideal Current Divider

R

Figure 2.2: GAA representation of electrical circuit elements [2]

2.9 Orthogonal Complementation

Inspection of the equations of GLA reveals that there is a symmetry [50]: the rules remain unchanged under

the combined operation of

• interchange of “copy” and “addition” spiders

• interchange of scalar multiplication by k with scalar multiplication by k−1. Note the scalar 0 maps to

itself.
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More precisely, there exists a functor from LinRel to itself, known as orthogonal complementation, defined

by its action on generators, shown in Figure 2.3, which is an involution on the category linear relations,

maps copy to addition spiders and vice versa. However, the equations under this functor remain unchanged.

We therefore regard orthogonal complementation as a conjugation or an covariant automorphism on the

category of linear relations.

Orthogonal complementation functor can be defined at the level of linear relations. We first need to

define two inner products. Let e( , ) denote the Euclidean inner product on the vector space Fn:

e(v, w) = vTw =

n∑
i=1

viwi, v, w ∈ Fn

Let ē( , ) denote the “anti-Euclidean” inner product on the vector space Fn::

ē(v, w) = −vTw = −
n∑
i=1

viwi, v, w ∈ Fn.

Definition 2.9.1. Consider a linear relation R, which is a subspace of F a ⊕ F b. We define the orthogonal

complement of R, denoted as R⊥, to be the set of all vectors in F a ⊕ F b that are orthogonal to all vectors

in R, under the inner product ē⊕ e.

By direct computation, one can check that the action of ( )⊥ on the generators of GLA obtained via

definition 2.9.1 gives rise to the functor depicted in Figure 2.3.

The orthogonal complement of a state V is another state V ⊥. Observe that there is an inclusion

functor ι : MatF → LinRelF ; M 7→ {(x, y) | y = Mx}

Lemma 2.9.2. If M : m→ n ∈ MatF then the orthogonal complement of ι(M) is:

ι(M)⊥ = {(x, y) | x = MT y}

Proof. First note that dim ι(M)⊥ = n, so we need construct a subspace V of Fm ⊕Fn of dimension n. The

subspace encoded by ι(M) is: (x,Mx) for all x ∈ Fm. Define V as (MT y, y) for all y ∈ Fn. V has dimension

n. The inner product of any vector in V with any vector in ι(M), computed as:

xTMT y − xTMT y = 0.

Therefore ι(M)⊥ = V .

21



When we include the affine generator, this symmetry of the orthogonal functor is no longer present –

the equations for interactions with the affine unit with copy spiders and addition spiders are not symmetric

under interchange of black and white.

7→ 7→

k 7→ k k7→k

Figure 2.3: Functor of orthogonal complementation ()⊥ [3].

2.10 Lagrangian Relations

In this section we will review the theory of Lagrangian relations, we will closely be following [3,21]. We start

by briefly reviewing the theory of symplectic vector spaces, for more details the reader should consult [51].

Definition 2.10.1 (See definition 2.1 in [3] and definition 6.32 in [21]). A symplectic form is a bilinear

map 〈 , 〉 : V ⊗ V → F which satisfies:

• 〈x, x〉 = 0 for every x ∈ V ;

• Any x such that 〈x, y〉 = 0 for every y ∈ V implies x = 0.

A vector space V equipped with a symplectic form ω( , ) is called a symplectic vector space.

One can always express a bilinear form in matrix form as ω(x, y) := xTSy. For a symplectic form one

always has S−1 = −S = ST . Furthermore, a symplectic vector space always has a Darboux basis: this is a

basis q1, ..., qn, p1, ..., pn for which ω(qi, pj) = −ω(pj , qi) = δij and ω(qi, qj) = ω(pi, pj) = 0 (where δi,j = 1

when i = j and zero otherwise). In particular, this means that a symplectic vector space always has even

dimension. In the special case when the canonical basis of the vector space is a Darboux basis, the symplectic

form can be expressed using the 2n× 2n block matrix J :

〈x, y〉 :=

(
qT pT

)
J

q
p

 where J =

 0 1n

−1n 0


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When a symplectic vector space has its canonical basis a Darboux basis, its vectors are naturally graded. In

classical physics one regards qT = (q1 . . . , qn) as position and pT = (p1 . . . pn) as momenta coordinates.

Definition 2.10.2. (See Definition 2.1, 2.3 in [3] and Definition 6.32 in [21])

(i) A symplectomorphism is a linear map which preserves the symplectic form and is also an isomor-

phism.

(ii) The symplectic dual of a linear subspace U ⊆ V of a symplectic vector space V is the linear subspace

Uω := {u′ ∈ V | ∀u ∈ U, ω(u′, u) = 0} ⊆ V .

(iii) A Lagrangian subspace U of a symplectic vector space V is linear subspace which is its own sym-

plectic dual, so that U = Uω.

Definition 2.10.3. (See definition 2.5 in [3]) The prop of Lagrangian relations over a field F LagRelF is

defined as the follows:

Objects n ∈ N: correspond to the graded vector spaces Fn ⊕ Fn equipped with the cannonical symplectic

form given by J , described above.

Maps L : n→ m: are relations R ⊆ Fn+m ⊕ Fn+m where the state L = {((q, p), (q′,−p′))|(p, q), (p′, q′)) ∈

R} is Lagrangian.

Tensor: Given by addition on objects and the (graded) direct sum on maps.

An alternate way to define Lagrangian relations is to use the double construction which is discussed

below:

For a symmetric monoidal category X, the category Double(X) is defined as follows:

Objects: X ∈ X

Maps: For maps f : X → Y in X we have maps: f : X ⊗X → Y ⊗ Y ∈ X.

Composition: As in X

Tensor: Given maps f : X → X ′ and maps g : Y → Y ′ in Double(X) we have maps f : X ⊗X → X ′ ⊗X ′

and g : Y ⊗ Y → Y ′ ⊗ Y ′ in X the map f ⊗ g is given by the following commuting square:

X ⊗X ⊗ Y ⊗ Y X ′ ⊗X ′ ⊗ Y ′ ⊗ Y ′

X ⊗ Y ⊗X ⊗ Y X ′ ⊗ Y ′ ⊗X ′ ⊗ Y ′

f⊗g

exex

f⊗g

This then gives a map f⊗g : X⊗Y → X ′⊗Y ′ in Double(X) where ⊗ is the tensor product in Double(X).
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Given Double(X), we can define the Lagrangian relations as a subcategory where X = LinRelF of which maps

satisfy:

V = V ⊥

−1

−1

(2.3)

One can use the above formulation to prove the following:

Lemma 2.10.4. The composition of two Lagrangian relations is Lagrangian.

Proof. Consider two composable Lagrangian relations V and W both of which satisfy the following equation:

V = V ⊥

−1

−1

W = W⊥

−1

−1

The composite relation W ◦V is given as follows, note that the −1’s in the dotted red box cancel out to give

the following equality:

W ◦ V =

V ⊥

−1

−1

W⊥

−1

−1

(W ◦ V )⊥

−1

−1

=
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The last equality implies the composite relation W ◦ V is Lagrangian.

As shown in [3] there exists a functor L from linear relations to Lagrangian relations. This functor takes

a linear relation V and “doubles” it, that is it pair the relation V with its orthogonal complement V ⊥.

Lemma 2.10.5. (See lemma 2.7 in [3]) There is a symmetric strong monoidal functor L : LinRelF → LagRelF

given graphically by the following diagram:

V 7→ V ⊥ V

Proof. See [3]

Lagrangian relations are closely connected to electrical circuits and this connection was explored in detail

in [3]. In particular here we explicitly show that resistors and current dividers are examples of Lagrangian

relations:

Lemma 2.10.6. Resistance (as shown in Figure 2.2) is a Lagrangian Relation.

Proof. The representation of a resistance using the white and black dot generators of graphical affine algebra

is the following:

r

To show that this relation is Lagrangian we need to show that it satisfies Equation 2.3. For this we need to

show that:

r

−1

r

=
−1
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To show this we begin on the LHS and straighten wires to get the following diagram:

r
−1

r=

−1

=

−1

r

−1

Finally when we simplifying the above diagram by pushing the black dot up by using a cap, this induces a

−1 and we get the following equality:

−1

−1

r

−1
=

r

This shows that the resistance is a Lagrangian relation.

Lemma 2.10.7. The ideal current divider (as shown in Figure 2.2) is a Lagrangian relation.

Proof. To show that the current divider is a Lagrangian relation it should satisfy equation 2.3, in the case
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of the current divider this will take the following form:

V1 I1 V2 I2

(1− w)−1
(1− w) w

w−1

−1

(1− w) (1− w)−1 w−1w

=

−1 −1

Starting from the RHS we push the −1 through and straightening the wires to get the following diagram:

(1− w) (1− w)−1 w−1w

V1 I1 V2 I2

(1− w)−1
(1− w) w

w−1

=

which shows that the current divider is a Lagrangian relation as it satisfies 2.3.

To conclude this section we mention the relation between affine Lagrangian relations and stabilizer qudit

quantum mechanics which was explored and made precise in great detail in [3].

Definition 2.10.8. (See definition 4.4 in [3]) The prop of AffLagRelF of affine Lagrangian relations over a

field F is defined as follows:

Objects: Symplectic vector spaces
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Maps: Generated by the image of LagRelF
E−→ LinRelF → AffRelF .

Tensor: Direct Sum

Note that E : LagRelF → LinRelF is a strong symmetric faithful functor described in [3].

Recall that the category of stabilizers is defined as follows:

Definition 2.10.9. (See definition 4.14 in [3]) The category of Stabp is a subcategory of MatC which is

generated upto scalars by p-dimensional qudit Clifford group, |0〉 and 〈0|.

The precise relationship between AffLagRelF and Stabp was proven in [3] and is stated as follows:

Lemma 2.10.10. (See lemma 4.15 in [3]) There is an isomorphism G : AffLagRelF → Stabp where p is an

odd prime.

We discuss this relationship in more detail in Chapter 5.
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Chapter 3

Parity-Check Matrices of Linear,

Affine and Lagrangian Relations

3.1 Introduction

In this chapter linear, affine and Lagrangian relations are viewed through the lens of parity-check and

generator matrices, we classify various subcategories of Lagrangian relations based on the parity-check matrix

structure. In particular a momentum conserving subcategory of Lagrangian relations is studied and its

properties are characterized based on the structure of the parity-check matrices. Deterministic relations are

characterized and their properties studied. Furthermore the concept of power input is defined and based on

this concept the categories of lossless Kirchhoff and Lagrangian relations are studied. This chapter is based

on the paper [1].

3.2 Linear and Affine Relations and Parity-Check Matrices

Let F be a field. Our attention will be focused on finite fields, in which case |F | denotes the total number

of elements in the field and p denotes the characteristic. Recall that a linear relation R : m→ n between

the vector spaces Fm and Fn is a linear subspace of Fm ⊕ Fn, R ⊆ Fn ⊕ Fm. Two special cases in LinRelF

are states, for which m = 0, and effects, for which n = 0.

A special case of a linear relation is a linear function, in which each x ∈ Fm is related to exactly one

y ∈ Fn. A linear function from Fm to Fn can be written as an n×m matrix A such that y = Ax. Linear

functions form a prop by themselves, which is given by ι : MatF → LinRelF .
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Unlike linear functions, a general linear relation between R : Fm → Fn cannot be represented as an

n × m matrix. However, it is possible to represent an arbitrary linear relation using larger matrices with

n+m columns, as is now reviewed.

Any linear subspace R : m → n can be expressed as the span of a set of k independent vectors, that is

as the set of all (x, y) ∈ Fm ⊕ Fn that x
y

 = GT t (3.1)

for some t ∈ F k, where GT : k → m + n has rank k. In the terminology of linear error-correcting codes, G

is a generator matrix of the linear relation R [52].

Alternatively, we can specify a linear relation as a set of vectors (x, y) ∈ Fm ⊕ Fn satisfying a linear

equation of the form:

H

x
y

 = 0. (3.2)

where H : n+m→ n+m− k has entries in F , and rank (n+m− k). In other words, R is the kernel of H.

Adopting terminology from the theory of linear error-correcting codes, H is referred to as the parity-check

matrix of the linear relation [52]. Its important to emphasize again that any linear relation can be expressed

using a parity-check matrix or a generator matrix – and one does not require the relation to be a function.

Example 3.2.1. Consider the relation R between F 2 and F 2, defined by {((x, x), (x, x)) ∈ F 2⊕F 2 | x ∈ F},

(which can be represented by a copy spider with 2 inputs and 2 outputs, as shown in Figure 3.2.) This can

alternatively be specified via a parity-check matrix as the set ((x1, x2), (y1, y2)) ∈ F 2 ⊕ F 2 that satisfies


1 −1 0 0

0 1 −1 0

0 0 1 −1





x1

x2

y1

y2


= 0.

It can also be specified via a generator matrix as



x1

x2

y1

y2


=



1

1

1

1


(
t

)
.
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From these expressions one can see that the dimension of R is 1.

Figure 3.1: Black spider with 2 inputs and 2 outputs

Example 3.2.2. Consider a function from F 2 → F 2 shown below:

y1 y2

x1 x2 (3.3)

This diagram encodes the following relation {(x1, x2), (y1, y2)|x1 +x2 = y1 , y1 = y2} A parity-check matrix

H for this function is given below:

1 1 −1 0

0 0 1 −1




x1

x2

y1

y2


=

0

0



and the generator matrix GT is:

GT =



1 0

0 1

1 1

0 0


One can also check that HGT = 0 is satisfied using the above matrix expressions.

Note that H is not uniquely specified. Any vector x ⊕ y that satisfies equation (3.2), also satisfies the

equation (3.2) with H replaced by H ′ = SH, where S is any invertible matrix with appropriate dimensions.

Similarly, one can replace GT by GTS in equation (3.1). More precisely if H and H ′ are parity-check matrices
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for R then there exists a unique isomorphism α such that the following diagram commutes:

R Fm ⊕ Fn Fn+m−k

Fn+m−k

⊆

0

H

H′
α

This is because, in MatF , a parity-check matrix for R is a universal coequalizer with kernel R and all such

coequalizers are uniquely comparable as above.

Finally, note that H is a parity-check matrix and G is a generator matrix for the same subspace if

and only if HGT = 0 and this is an exact composite in the sense that the image of GT is the kernel

of H (both of which are the subspace being classified). Exactness of the composite is assured provided

Rank(H) + Rank(G) = m+ n, which is always the case for generator and parity-check matrices for the same

subspace.

As mentioned above, the parity-check and generator matrices for a relation are not unique. The rows of G

are linearly independent and form a basis for the linear subspace R. Changing the order of rows, or making

elementary row operations, such as adding one row to another row, does not change the linear subspace

specified by G or H. One can see this by starting with the equation Hx = 0 and multiplying this equation

by a matrix e on both sides of the equation, this corresponds to the row operations performed. One then

gets the equation eHx = e0 now since e is invertible we can multiply by e−1 on both sides to get back to

Hx = 0, this shows that under elementary row operations given by a matrix e the parity-check matrix does

not change. Using this freedom one gets the following standard forms for H and G:

H =

(
1m+n−k A

)
σ : m+ n→ m+ n− k, (3.4)

where σ is a permutation matrix. Corresponding to this is a generator matrix in the standard form:

G =

(
−AT 1k

)
σ : m+ n→ k (3.5)

where the same matrix A and permutation σ appear in equations (3.4) and (3.5). One can see that this G

is a generator matrix as (using the fact that σT = σ−1):

HGT =

(
1m+n−k A

)
σσT

−A
1k

 =

(
1m+n−k A

)−A
1k

 = A−A = 0

and the ranks make this composite exact. The standard form for a generator parity-check pair is, thus
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determined by (A, σ).

While standard forms for characterizing a given R are not unique, the choice of σ completely determines

the pair (A, σ). This can be seen from the commuting diagram:

m+ n− k

m+ n m+ n− k

N

m+ n m+ n− k

P
1m+n−k

H

α

σ′

σ

H′

where P :=

0

1

. This shows that the isomorphism α between parity-check matrices σH and σ′H ′ for a

relation R is α = H ′σ′σ−1P . Thus, for a fixed σH, an α which produces σ′H ′ is completely determined by

the permutation σ′. Suppose two relations R1 and R2 between the same vector spaces are described by the

parity-check and generator matrices H1, G1 and H2, G2 respectively, then it is easy to see that R1 ⊂ R2 if

and only if H2G1 = 0.

An affine relation between the vector spaces Fm and Fn can be specified as the subset of vectors

(x, y) ∈ Fm ⊕ Fn satisfying a linear equation of the form:

H

x
y

 = χ.

Note that a linear relation always contains the zero vector; so the empty set is not a linear relation. However,

the empty set is an affine relation because Equation (3.2) may not have any solution, e.g. if H has rank

zero, but χ 6= 0. For the affine relation to be non-empty, one requires that the length of χ equals the rank

of H. Borrowing terminology from the theory of error-correcting codes again, χ is called the syndrome of

the affine relation. If the affine relation is not empty, it can alternatively be expressed as

H

x− x0
y − y0

 = 0,

or via an analogous formula in terms of the generator matrix G, for some constant vectors x0 and y0, which
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are non-uniquely determined from the syndrome χ such that:

H

x0
y0

 = χ

Two relations which can be used to convert inputs into outputs, and vice versa are respectively the cup and

the cap:

cap := {(0, (x, x)) | x ∈ F )} and cup := {((x, x), 0) | x ∈ F}

One may use cups and caps to convert any relation from Fm to Fn into a state (where m = 0) or an effect

(where n = 0), or indeed into a relation between Fm
′

and Fn
′
, where m′ + n′ = m+ n. In particular, these

relations allows one to recover a relation from its parity matrix and from its generator matrix as shown

below:

R

n wires

. . .

. . .

m wires

=
H

n+m-k wires

. . .

. . .

n wires m cups

. . .

GT

k wires

. . .

. . .

m wires n caps

. . .

=

The monoidal sum of two linear relations described by generator matrices G and G′ respectively can be

described by a generator matrix Gsum which is the direct sum of generator matrices:

Gsum =

G 0

0 G′

 : n+m→ k1 + k2

Similarly for a parity-check matrix for the monoidal sum of relations is the direct sum of the parity-check

matrices for the relation.

Hsum =

H 0

0 H ′

 : n+m→ n− k1 +m− k2

However, the generator matrix for the composition of two linear relations, is not the matrix product of their

generator matrices. Nor is the parity-check matrix for the composition of the two linear relations, the matrix

product of their parity-check matrices.
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3.3 Orthogonal Complement and Parity-Check Matrices

In the previous chapter the functor (−)⊥ : LinRelF → LinRelF is described. Here the behaviour of the functor

will be captured using parity-check matrices:

Theorem 3.3.1. Let the orthogonal complement of a state R be denoted as R⊥. The parity-check matrix

of R⊥ can be chosen to be the generator matrix of R; and the generator matrix of R⊥ can be chosen to be

the parity-check matrix of R.

Proof. Let R be a rank k state described by generator matrix G. Then, for all x ∈ R⊥, and for all u ∈ F k

one have xTGTu = 0, by definition of R⊥. This means x ∈ R⊥ iff Gx = 0. This result means R⊥ is the

nullspace of G – which is another way of saying that G serves as a parity-check matrix for R⊥.

This is a well known result in theory of linear error-correcting codes [52]. An immediate corollary of the

above theorem is as follows. Suppose a state R is described by parity-check matrix H =

(
1 A

)
σ. Then

the state R⊥ is described by the parity-check matrix H⊥ =

(
−AT 1

)
σ. A special case of the above

Theorem 3.3 is the Lemma 2.9.2.

3.4 Lagrangian Relations and Parity-Check Matrices

In this section Lagrangian relations and their properties are studied in terms of parity-check matrices,

recalling the definition of a symplectic dual:

Definition 3.4.1. The symplectic dual of a linear subspace U ⊆ V of a symplectic vector space V is the

linear subspace U ′ := {u′ ∈ V | ∀u ∈ U, 〈u′, u〉 = 0} ⊆ V .

To see what this means in terms of parity-check and generator matrices, Suppose a linear subspace U ⊆ V

is specified by the generator matrix G then a vector u′ ∈ V is in U ′ if and only if it satisfies u′SGt = 0 for

all t ∈ F k. This means that U ′ can be specified using the parity-check matrix H ′ := GST , which means

H ′S = G. Similarly, letting H be a parity-check matrix matrix for U then one obtains a generator matrix

G′ for U ′ as G′ := HS. Thus, similar to the situation for orthogonal subspaces, for symplectic duals one can

flip between generating and parity-checking.

Definition 3.4.2. A Lagrangian subspace U of a symplectic vector space V is linear subspace which is

its own symplectic dual, so that U = U ′.
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When a subspace U ⊆ V of a symplectic vector space is Lagrangian one can obtain from a parity-check

matrix H a generator matrix G, using the above observations, as G = HS. In fact, it is clear that a subspace

is Lagrangian if and only if a parity-check and generator matrices can be chosen to satisfy G = HS. This

has the consequence that the codomain of G and H must have the same dimension, so if V has dimension

2n a Lagrangian relation must have dimension n. If one specializes to J = S, when the canonical basis is a

Darboux basis one can write,

H =

(
Hq | Hp

)
and the generator matrix G as:

G =

(
Gq | Gp

)
so that: (

Hq | Hp

) 0 1

−1 0

 =

Gq
Gp


implies that

Hp = −Gq, Hq = Gp. (3.6)

Note that an arbitrary permutation of the coordinates viewed as a relation will not in general be a Lagrangian

relation. For a permutation to be a Lagrangian relation it must preserve the symplectic form and so be a

symplectomorphism or a symplectic permutation. Thus, it must not only respect the grading but also permute

the two grades in the same manner. This means a symplectic permutation can be written as:

σS =

σ 0

0 σ

 .

Earlier it was shown that parity-check and generator matrices of a linear relation can be brought into

a standard form. One can attempt to do the same for Lagrangian states, however, one will also want the

permutation matrix σ in (3.4) and (3.5) that permutes the columns of G and H to be Lagrangian. Taking

this into account one can state the theorem:

Theorem 3.4.3. The parity-check matrix H for a Lagrangian subspace R ⊆ (Fn)2 can be put into the

following standard form:

H =

 Y 0 1np AT

−A 1nq
0 0

σS (3.7)

where np + nq = n (the dimension of R), σS is a symplectic permutation, A has dimensions nq × np, and
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Y = Y T .

Proof. First note that H = (Hq | Hp) and HJHT = 0 this implies that

0 = HJHT =

(
Hq | Hp

) 0 1

−1 0


HT

q

HT
p

 = −HpH
T
q +HqH

T
p =⇒ HpH

T
q = HqH

T
p

This implies that HpH
T
q is self-transpose. Consider H = (Hq | Hp) and putting Hq in standard form that is:

Hq =

1 AT

0 0

σq

Adjusting Hp to be Hp = H ′pσq where H ′p =

B1 B2

B3 B4

 Hence HpH
T
q is:

HpH
T
q =

B1 B2

B3 B4

σqσ
T
q

1 0

A 0


Now since σTq = σ−1q one has the following:

HpH
T
q =

B1 +B2A 0

B3 +B4A 0


Now since HpH

T
q is self-transpose, it follows that:

B3 +B4A = 0

and

B1 +B2A = BT1 +ATBT2

But note that

(Hq|Hp) =

1 A B1 B2

0 0 B3 B4

σS

has rank n and so

rank

(
0 0 B2 B4

)
= np
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Note that B2 depends on B4 so B4 has rank np and hence is invertible. This means one can use row

operations to reduce B4 to the identity which results in the following form for Hp

Hp =

B′1 B′2

B′3 B′4

 :=

Y 0

A′ 1


where the same equations hold so A′ = −1A = −A and Y = Y + 0A = Y T +AT 0 = Y T . Hence, finally, one

gets the desired form:

H =

 Y 0 1np
AT

−A 1nq 0 0

σS

where σS is a symplectic permutation.

Again, this standard form is not unique but is determined by (Y,A, σ) where σS =

σ 0

0 σ

. This

standard form is for states, for Lagrangian relations one can convert the relation to a state using cups and

then this standard form can apply.

In terms of parity-check matrices one can define affine Lagrangian relation as follows:

Definition 3.4.4. An affine Lagrangian relation between two symplectic vector spaces Fm and Fn is either

the empty set, or a subset of Fm ⊕ Fn specified by an equation of the form:

H(u− U) = 0

where HU = χ

also H is the parity-check matrix of a Lagrangian relation between Fm and Fn.

Note that an affine Lagrangian relation does not satisfy R = R′, as this would force U to be zero. This

condition can also be written as Hu = χ, where χ = HU . Note that, for a given choice of H, different

choices of U could give rise to the same affine relation. However, for a given H, different choices for χ give

rise to different affine relations.

As defined in the previous chapter there is functor L, from the category of linear relations to the category

of Lagrangian relations. Here one views this functor as follows:

Definition 3.4.5. If R is a linear subspace of Fn, then L(R) can be defined as follows:

L(R) := R⊕q,p R⊥
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Here, R⊥ denotes the orthogonal complement of R.

Consider L(R) where R is a state: to see that L(R) is a Lagrangian subspace, observe that one can

choose the generator matrix of L(R) to be of the form

GL(R) =

G 0

0 −H

 , HL(R) =

H 0

0 G


where G and H are generator and parity-check matrices of R. Then observe that GL(R) = HL(R)J verifying

this is a (non-standard) parity-check generator pair for a Lagrangian relation.

A useful lemma, which follows immediately from the definition of L is the following.

Lemma 3.4.6. Let M : m → n be a matrix. Then L(ι(M)) : F 2m → F 2n is the following Lagrangian

relation:

L(ι(M)) = {(q, p), (q′, p′) ∈ F 2n ⊕ Fm | q′ = Mq p = MT p′}

Proof. This follows immediately from Lemma 2.9.2 in the previous section.

3.5 Kirchhoff Relations

In this section the category of Kirchhoff relations is described as a subcategory of LagRel. While similar

categorical structures have been investigated in [21,53], Our approach of using parity-check matrices, besides

being novel, brings some new subcategories to the fore. As remarked earlier objects in LagRel are graded

vector spaces with the grading in classic physics being interpreted as position and momentum. However,

we wish now to switching interpretation so the grading represents voltage and current: to achieve this some

additional structure seems necessary. The word “current” implies the flow of some conserved quantity, while

the word “voltage” implies a sort of gauge-invariance, which gives the freedom to shift all voltages by a

constant. Kirchhoff relations, which is now introduced, interprets these intuitions.

Definition 3.5.1. A Lagrangian relation R : m→ n in LagRel satisfies:

(i) Kirchhoff’s Current Law if, for all ((q, p), (q′, p′)) ∈ R, the following equality holds:

m∑
j=1

pj =

n∑
k=1

p′k
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(ii) Translation invariance if, whenever λ ∈ F and ((q, p), (q′, p′)) ∈ R, then ((q+~λm, p), (q
′+~λn, p

′)) ∈

R, where ~λn is a vector of dimension n all of whose components are the same λ ∈ F .

Hence one can define Kirchhoff relation as follows:

Definition 3.5.2. A Kirchhoff relation is a Lagrangian relation that obeys Kirchhoff’s Current Law.

Lemma 3.5.3. Resistors, Spiders, Current Dividers are Kirchoff relations.

Proof. To see this observe we can interpret the graphical representation of each shown in Figure 2.2, as linear

relations (see Tables 4.1, 4.2, 4.3, 4.4 in Chapter 4). One then checks that sum of input currents equals the

sum of output currents which is KCL.

Affine Kirchhoff relations are defined as below:

Remark 3.5.4. An affine Kirchhoff relation is an affine Lagrangian relation that obeys Kirchhoff’s

Current Law.

From the perspective of classical physics, Kirchhoff’s Current Law asks for conservation of momentum.

Translation invariance is the sort of gauge-invariance expected in electrical circuits: it provides the freedom

to shift all voltages by a constant reference voltage.

Kirchhoff’s Current Law may be equivalently expressed as the requirement that pT~1n = p′
T~1m while

translation invariance amounts to insisting that ((~1m, 0), (~1n, 0)) is a member of the relation.

The following lemma shows that Kirchhoff’s current law implies translation invariance for Lagrangian

relations. This result is essentially a version of Noether’s theorem that applies even when F is an arbitrary

field.

Lemma 3.5.5. For a state R in LagRelF the following are equivalent:

(i) R satisfies the Kirchhoff current law;

(ii) R satisfies translation invariance.

Proof. Let R be specified by a generator matrix G and a parity-check matrix H which satisfy G = HJ .

(ii) ⇒ (i): If R is translationally invariant then if u ∈ R this implies (u + λε) ∈ R where u :=

q
p

 and

εn :=

~1n
0

. This implies that H(u+ λεn) = H(u) + λH(ε) = 0 as H(u) = 0 this means, in turn that
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H(εn) = 0, and so εn ∈ R by substituting λ = 1. Now the symplectic product of εn with any u ∈ R

must be zero so

0 = 〈u, εn〉 = uTJε =

(
qT pT

) 0 1

−1 0


~1

0

 = −pT~1

implying that pT~1 = 0 which is Kirchhoff current law.

(i) ⇒ (ii): Conversely suppose one has conservation of momentum then 0 = pT~1 = uTJεn ∀u ∈ R however

uTJε = 0 implies ε ∈ R which in turn implies translational invariance, thereby concluding the proof.

For affine Lagrangian relations the situation is a bit more complicated. Suppose an affine Lagrangian

relation R is invariant under u → u + λε, i.e., H(u − U) = 0 =⇒ H(u − U + λε) = 0 This again implies

Hε = 0. Then, using the generator matrix to calculate εT · Su, one finds that:

εTSu = εTSU

Thus, one must also require that εTSU to arrive at the result εTSu = 0. Translation invariance, therefore,

does not imply conservation of momentum for affine Kirchhoff relations. However, it is easy to modify the

above argument to show that momentum conservation εTSu = 0 does imply translation invariance for affine

Lagrangian relations.

When ε =

~1
0

 then εTSU translates into the requirement that

U =

Q
P

 , where ~1TP = 0, or,
∑
i

Pi = 0

In other words, affine Kirchhoff relations are Linear Kirchhoff relations, composed with a constant affine

translation. The affine translation can involve an arbitrary constant shift in the positions of particles, but

shifts in momenta must conserve total momentum.

In the language of electrical circuits, this tells us that two-terminal devices which increment the voltage

by a constant (i.e., voltage sources) are allowed, but two-terminal devices that increment the current by

a constant are not allowed in our category. Note that a device with increments the current is not what

is conventionally defined as current source. Current sources are defined as devices that fix the input and

output current to a specified value, and these are present in Affine (but not linear) Kirchhoff Relations.
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A linear relation L : m→ n in LinRelR is a quasi-stochastic whenever it relates ~1m to ~1n. Similarly, a

matrix A : m→ n in MatR is quasi-stochastic matrix if A~1m = ~1n. Thus, for a quasi-stochastic relation,

the most disordered input quasi-probabilistic distribution must be related to the most disordered output

distribution.

The following lemma deals with the structure of the parity-check matrix for a Kirchhoff relation:

Lemma 3.5.6. A Lagrangian relation is translation invariant that is a Kirchhoff relation if and only if

every standard parity-check matrix has A quasi-stochastic and Y~1 = 0.

Proof.

(⇒) As εn ∈ R one has 0 = HRεn =

 Y 0 1 AT

−A 1 0 0


~1n

0

 =

 Y~1

−A~1nq +~1np

 So AT~1nq
= ~1np

(thus

AT is quasi-stochastic) and Y~1 = 0.

(⇐) Conversely, if A is quasi-stochastic and Y~1 = 0 then HRεn = 0 and εn ∈ R showing translation

invariance.

Kirchhoff relations form a prop, this is encapsulated in the following lemma:

Proposition 3.5.7. The category of all Kirchhoff relations forms a prop which is denoted as KirRel.

To complete the proof one needs to show that Kirchhoff relations are closed under tensor product and

sequential composition, this is shown in the following lemma:

Lemma 3.5.8. Let R1 : a→ b and let R2 : c→ d be Lagrangian relations which satisfy KCL then:

(i) R2 ⊕R1 : a+ c→ b+ d also satisfies KCL.

(ii) R2 ◦ R1 : a→ c satisfies KCL.

Proof.

(i): If ((qa, pa), (qb, pb)) ∈ R1 and ((qc, pc), (qd, pd)) ∈ R2 then ((qa, qc, pa, pc), (qb, qd, pb, pd)) ∈ R1 ⊕ R2.

To show that R1 ⊕R2 satisfies KCL one has:

(
pTa pTc

)
~1a+c = pTa~1 + pTc ~1 = pTb ~1 + pTd~1 =

(
pTb pTd

)
~1b+d

where the middle step follows as the individual relations satisfy KCL.
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(ii): Suppose ((qa, pa), (qb, pb)) ∈ R1 and ((qb, pb), (qc, pc)) ∈ R2 one needs to show that the composite

((qa, pa), (qc, pc)) ∈ R2 ◦ R1 obeys KCL. To show this first note that since R1 satisfies KCL one has

pTa~1 = pTb ~1 and since R2 satisfies KCL one has pTb ~1 = pTc ~1 so that pTa~1 = pTc ~1 which shows that R2 ◦R1

satisfies KCL.

This shows that KirRelF forms a subprop of LagRelF . Significantly, while Kirchhoff relations include

resistor circuits, they also allow additional new components: namely ideal current dividers as shown in

lemma 3.5.3.

3.6 Deterministic Relations

Consider Lagrangian relations which have a parity-check matrix determined by (Y,A, σ) such that A is not

only quasi-stochastic but also is deterministic, in the sense that each row of A has only one non-zero entry

(which must be 1). Of course, this is not a well-defined notion unless when one parity-check matrix has this

form all will have this form:

Lemma 3.6.1. If a Lagrangian relationR has a standard parity-check matrix, (Y,A, σ), with A deterministic

then every standard parity-check matrix of R, (Y ′, A′, σ′) has A′ deterministic.

Proof. Consider the submatrix

(
−A 1nq

)
of the standard parity-check matrix which is deterministic. This

matrix has the property that each row has exactly one 1 and one −1 to complete the proof one needs to

show that this property is invariant under the action of any permutation σ which produces an alternative

standard parity-check matrix. The action of a σ on this matrix maintains the property as σ only permutes

the columns. However, one needs to show that when such a shuffled parity check-matrix is put back into

standard form using Gaussian elimination that this deterministic property is still maintained. To show this

consider the following cases of Gaussian elimination:

Permute rows: In this case the property is maintained since changing the rows does not change the entries

in the rows at all.

Negating a row: This switches the −1 to a 1 and a 1 to a −1 and hence the property is still maintained.

Eliminating an entry: This replaces a row by adding another rows to it with 1, −1 in the same column. In

this case P is maintained only if the off-elimination non-zero entries are in different columns. However,

notice if these off-elimination values are in the same column the rows are linearly dependent but this

is not the case since the matrix has full rank.
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This shows that Lagrangian relations which have a parity-check matrix (Y,A, σ), in which A is determin-

istic is a well-defined notion so one can make the following definition:

Definition 3.6.2. A Lagrangian relation is deterministic in case any or all of its standard parity-check

matrices, determined by (Y,A, σ), has A deterministic.

Our objective, in this section is to explore these deterministic relations. To do so one starts with an

alternative rather different description of them which allows us to develop their properties.

Definition 3.6.3. A Lagrangian relation R : n → m is position-partitioned if there is an equivalence

relation ∼ on n+m = {1, ..., n+m} such that

• For every

q
p

 ∈ R if i ∼ j then qi = qj (the relation is position-constant over equivalence classes);

• For each i ∈ n+m, there is an

q
p

 ∈ R with qj = 1 when i ∼ j and qj = 0 when j 6∼ i (thus, the

equivalence classes are position-separated).

Observe that a Lagrangian relation cannot be position-partitioned in two different ways as, on the one

hand, it must be position-constant over equivalence classes and, on the other hand, position-separated on

non-equivalent components. One way to think about these position-partitioned relations is that they are

capturing the voltage behaviour at the nodes of the electrical circuit. So if different wires are incident on

the same node they have the same voltage and hence are in the same equivalence class, if this is not the case

then the equivalence classes are different. This is shown in the picture below:

ya

yc yb

q1 p1 q3 p3

p2 q2

q5p5

p4 q4

q6p6

Figure 3.2: An example of a position-partitioned electrical network relation. The wires within the same

black boxes belong to an equivalence class.

Our first observation on position-paritioned relations is:
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Lemma 3.6.4. Position-partitioned relations form a subprop of LagRel

Proof. One must show these relations are closed to composition and to direct sums. For the latter, observe

that when one takes a direct sum one takes the disjoint union of the entries: this means the partitions

induced by the equivalence relation on each component induce a partition on the disjoint union. This is

clearly position-constant on partitions and can be separated by pairing the separating elements in each

component with a zero in the other component.

For the composite R2 ◦ R1 of two position-partitioned relations consider the composition of jointly epic

cospans induced by the equivalence relations. Two entries are related, i1 ∼ in if and only if there is a sequence

ii ∼δ1 ... ∼δn−1
in where δk = 1 or 2. If ∼1 and ∼2 are position-constant then for each

q
p

 ∈ R2 ◦ R1 one

has qj = qj+1 so q1 = qn and R2 ◦ R1 is position-constant over ∼ .

Separation is given by taking the sum of the separators for all the partitions amalgamated by the com-

posite relation.

Using this definition one can prove the following lemma:

Lemma 3.6.5. A Lagrangian relation R is deterministic if and only if it is position-partitioned.

Proof.

(⇒) If one parity check matrix has A deterministic then every parity check matrix has A is deterministic.

Consider H to be a parity check matrix for a deterministic Kirchhoff relation recall:

 Y 0 1 AT

−A 1 0 0




q0

q1

p0

p1


=

Y q0 + p0 +AT p

−Aq0 + q1

 = 0

which happens if and only if q1 = Aq0 and p0 = −Y q0 − AT p1. But this means q0 (and p1) can be

freely chosen.

AsA is deterministic, there is a surjective function f : nq1 → nq0 where f : nq → nq0 where nq1+nq0 = n

such that qi = qf(i) this defines an equivalence relation defined by i ∼ f(i) and i ∼ i′ when f(i) =

f(i′) for which the relation is position-constant. The equation Aq0 = q1 allows for separation of the

equivalence, as one can then choose p1 freely to determine p0. Thus, one has position-separation as

required.
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(⇐) Assuming the relation is position-partitoned, and that one has a parity-check matrix for the relation

H =

 Y 0 1 AT

−A 1 0 0

. Then, by assumption exists an equivalence relation ∼ (on n), for which

R is position-constant and separating. Notice that q0 can be arbitrary but this means each component

of qi0 is in a separate equivalence class. The characteristic relation of the equivalence class determined

by qi0 provides a column in A. The fact that one has an equivalence relation now guarantees each row

has at most one 1 and so A is deterministic.

In Lagrangian relations, whenever one has a position oriented notion, one expects a corresponding mo-

mentum oriented notion. This is described for states as follows:

Definition 3.6.6. A Lagrangian state R : 0 → n is momentum-grouped if there is an equivalence

relation, ∼ , on n such that:

• For every S ⊆ n, which is ∼-closed (that is if i ∈ S and i ∼ j then j ∈ S), every

0

p

 ∈ R has

∑
i∈S pi = 0 (i.e. has zero average momentum at position zero on every set closed to the equivalence);

• For each S ⊆ n for which there are i, j ∈ n+m with i ∼ j and i ∈ S and j 6∈ S there is a

0

p

 ∈ R
such that

∑
j∈S pj 6= 0 (i.e. has non-zero average momentum at position zero on every set which is not

closed to the equivalence).

Lemma 3.6.7. A Langrangian state is position-partitioned if and only if it is momentum-grouped.

Proof. It suffices show that for any parity-check matrix, determined by (Y,A, σ), of a relation R which is

momentum grouped hasA is deterministic. The parity-check matrix implies the equation Y q0+p0+AT p1 = 0.

However, one is interested in the case when q0 = 0 this gives the equation p0 = −AT p1. Asking for A to be

deterministic is precisely to demand that R is momentum grouped. Note that p1 can be arbitrarily chosen,

when A is deterministic composition with AT causes equivalent entries of q1 to be summed to determine the

entry of p0 (which is an entry in the same equivalence class). Notice that all the entries of q0 are, therefore,

in distinct equivalence classes. This guarantees the first condition of being momentum grouped. The second

condition is guaranteed as one may choose q1 freely.

This shows that the deterministic Kirchhoff relations form a prop which will be denote by ResRelF . This

will be identified in the next chapter as the prop studied in [20, 21, 53] of resistor circuits. Using the above
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properties of deterministic relations and matrices one can make the following remark about the structure of

parity-check matrices for deterministic Kirchhoff relations:

Corollary 3.6.8. A deterministic Kirchhoff relation over F , can be described by a parity-check matrix in

standard Lagrangian form, equation (3.7), where Y and A must also satisfy the additional constraints:

Y~1kp = 0, A~1kp = ~1kq . (3.8)

and in addition, A is deterministic.

3.7 Graph States

Although standard forms for both linear relations and Lagrangian relations were defined, these standard

forms are not unique. There is a special class of Kirchhoff relations, for which one can define a canonical

form, and this will be useful in demonstrating universality.

Definition 3.7.1. Any Kirchhoff relation R with kp = k (i.e “no extra wires”) is known as a graph state.

A graph state is specified by a parity-check matrix of the following form:

H =

(
Y 1k×k

)
σS

The name ”graph state” is given since this coincides with the notion of a quantum graph state. The following

theorem will show that the σS can be removed making the parity-check matrix form in the case of graph

states unique:

Theorem 3.7.2. A graph state is uniquely specified by a parity-check matrix of the following canonical

form:

H =

(
Y 1k×k

)
where the matrix Y satisfies: Y = Y T and Y~1 = 0.

Proof. First, observe that any symplectic permutation leaves

~1
0

 invariant:

σS

~1
0

 =

~1
0


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Let us apply the constraint

H

~1
0

 = 0,

to a parity-check matrix H that is in standard form for a Lagrangian relation. (This is a necessary and

sufficient condition for the relation defined by H to be Kirchhoff.) By assumption, kq = 0. Then Y~1 = 0,

and so one has:

H =

(
Y 1k×k

)σ 0

0 σ

 .

Note that one can choose σ = 1k×k. Absorbing σS into the normal form for a Lagrangian relation one

has the following has:

H =

(
Y σ σ.

)
By row operations alone, one can convert σ into 1k×k. This is equivalent to left-multiplying by σ−1 = σT .

The final expression is:

H =

(
σTY σ 1k×k

)
.

Note that Ỹ = σTY σ satisfies the same conditions as Y . These conditions allow us to interpret the off-

diagonal parts of Y and Ỹ as adjacency matrices of weighted graphs, with weights in F . (The diagonal

parts are determined by Y~1 = 0.) The weighted graphs described by Y and Ỹ differ only by a relabeling

of vertices. Hence the graph state is uniquely determined by the weighted graph whose adjacency matrix is

the off-diagonal part of Y .

Using that standard form for parity-check matrices in the equation Hu = 0, one has:

p = −Y q

Therefore note that any graph relation defines a function from the space of positions to momenta. Since it is

a well known fact that canonical forms exist for linear functions, this gives another explanation of Theorem

3.7.2.

3.8 Power input

Let us define the concept of the power input to a Lagrangian relation. Power input is usually used to

distinguish between passive and active components in electrical networks. The power input, [20, 21, 53], of

an electrical circuit is determined by the product of voltage (difference) times the current. Similarly the
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product of momentum and velocity determines the energy of a physical system. In the generalization to

finite fields, the distinction between passive and active can no longer be made. However, one can restrict

to the lossless case when the power input is zero. This give a series of subprops given by intersecting with

lossless Lagrangian relations.

LosLagRelF LagRelF

LosKirRelF KirRelF

Spiders ResRelF

Power input is formally defined as:

Definition 3.8.1. Given any Lagrangian relation, R : m→ n,the associated power input is a function

PR : R ⊆ (Fm)2 ⊗ (Fn)2 → F ; ((q, p), (q′, p′)) 7→
n∑
j=1

qjpj −
m∑
k=1

q′kp
′
k.

A relation, R is said to be lossless in case PR is everywhere zero.

Spiders, symplectic permutations, and (ideal) current dividers are all lossless. Notice, using spiders one

can convert any relation to a state; because the cup changes the sign of output positions, a relation in LagRel

has the same power input function as its corresponding state.

The physical motivation behind this definition is most clear if q is replaced by a voltage V or a velocity

q̇, and p is replaced by a current I, or a force, ṗ, in which case the above quantity has the dimensions of

power. An example of a power calculation of a spider with 2 inputs and 2 outputs is shown below:

Example 3.8.2. The power input of any spider is identically zero.

(I1, v) (I2, v)

(I ′1, v) (I ′2, v)

Figure 3.3: Spider
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The above relation can be encoded:

{



I1

I2

I ′1

I ′2

v

v

v

v



| I1 + I2 = I ′1 + I ′2}

The expression for power for the above spider is as follows:

P = (I1 + I2)v − (I ′1 + I ′2)v

One can simplify to show P = 0 as I1 + I2 = I ′1 + I ′2.

Notice also that PR(αq, αp) = α2PR(q, p). Using this concept of power input one can define the following

lossless relations:

Definition 3.8.3. The prop of lossless Lagrangian relations over a field F , denoted as LosLagRelF ,

consists of those Lagrangian relations for which the power input is exactly zero.

Definition 3.8.4. The prop of lossless Kirchhoff relations over a field F , denoted as LosKirRelF , consists

of those Kirchhoff relations for which the power input is exactly zero.

An explicit expression for the power input for the state R can be calculated as follows: Consider the

standard form for a parity-check matrix for a Lagrangian state:

 Y 0 I AT

−A I 0 0




q0

q1

p0

p1


= 0

This gives the following relations:

q1 = Aq0 and p0 = −Y q0 −AT p1 (3.9)
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The expression for power input using the above relations is then:

qT0 p0 + qT1 p1 = −qT0 (Y q0 +AT p1) + (Aq0)T p1 = −qT0 Y q0

For R to be lossless qT0 Y q0 must vanish. To derive the conditions for R to be lossless one has the following

lemma:

Lemma 3.8.5. In any field F with char(F ) 6= 2 when Y = Y T then qTY q = 0 ∀ q if and only if Y = 0.

Proof.

(⇒) Use the standard basis ei then 0 = eTi Y ei = Yi,i this shows that the diagonal is all zeros. Now

consider:

0 = (ei + ej)
TY (ei + ej) = eTi Y ei + eTi Y ej + eTj Y ei + eTj Y ej

This is further equal to the following equation because the diagonal elements are zero Yii = 0

0 = Yi,j + Yj,i = 2Yi,j

as Y = Y T . The fields of interest in our case are those of characteristic odd prime and hence division

by 2 is well defined which implies that Yi,j = 0

(⇐) For the other direction If Y = 0 this implies that qTY q = 0, for all q this completes the proof.

This implies that if R is lossless then Y must be equal to zero, this gives us the following lemma:

Corollary 3.8.6. Any state in LosLagRel over F , can be described by a parity-check matrix in standard

Lagrangian form with Y = 0.

Thus lossless Lagrangian relations are specified by

p0 = −AT p1 q1 = Aq0 (3.10)

for some matrix A. This gives:

Lemma 3.8.7. The category of Lossless Lagrangian Relations is isomorphic to the subcategory of linear

relations determined by L : LinRelF → LagRelF .
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Proof. Consider the triangle shown below:

LosLagRel LagRel

LinRel

⊂

(2)

(1)
L

Recall that a functor L : LinRel→ LagRel is faithful and bijective on objects. For direction (1) one needs to

show that L(L) is lossless. To show this note that because of (3.4):

L = {(q, q′) | q = Aq′}

Now by applying the functor L to this relation one gets the following:

L(L) = {(q, p) (q′, p′) | q′ = Aq, p = AT p′}

but this is lossless as:

qT p− q′T p′T = qTAT p′ − (Aq)T p′ = qTAT p′ − qTAT p′ = 0

For direction (2) one projects onto the q coordinate. This gives the condition q′ = Aq which is the required

condition on q as shown in Equation 3.10 for the relation to be lossless.

Turning now to LosKirRel, the category of lossless Kirchhoff relations one has the following remark has

the following characterization in terms of parity-check matrices:

Corollary 3.8.8. Any state in LosKirRel can be described by a parity-check matrix in standard Lagrangian

form (3.7) such that Y = 0 and A~1np = ~1nq .

Corollary 3.8.9. A lossless deterministic Kirchhoff relation is a spider.

Proof. If the relation is deterministic Kirchhoff this constrains A to be deterministic and hence the relation

contains no current dividers, furthermore the relation is lossless, this implies that no resistors are allowed.

This only leaves Spiders as elements of LosKirRel if it is deterministic, thereby completeing the proof.

Remark 3.8.10. From this result, it follows that GLA forms a universal, sound and complete graphical

calculus for LosLagRel. This is a corresponds to a fragment of the graphical calculus for lagrangian relations,

generated by L(copy spiders), L(addition spiders), and L(multiply by k), with the same equations as those

of GLA.
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Remark 3.8.11. The definition of power input makes sense for an arbitrary Lagrangian relation. So one

can also define the categories of passive Lagrangian relations over R, denoted as PasLagRel which is defined

as those Lagrangian relations R for which the power input PR(q, p) ≥ 0 for (q, p) ∈ R. Similarly one can

define the prop of passive Kirchhoff relations over R, denoted as PasKirRel(R), are those relations R for

which the power input PR(q, p) ≥ 0 for (q, p) ∈ R.

Physically, these correspond to elements that dissipate or conserve, but do not generate energy.

Remark 3.8.12. Resistors with negative resistances are not present in the prop of passive Kirchhoff relations

over R, but they are present in Kirchhoff relations over R.
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Chapter 4

Universality for Kirchhoff Relations

In this chapter, we give universal sets of generators for several of the subcategories discussed in the previous

chapter, these universality proofs provide the interpretation of different subcategories of Kirchhoff relations

as categories of electrical networks. The generators for Kirchhoff relations are built up in a series of steps.

First the “spiders” which give the basic hyper-graphical structure are discussed, to these resistors are added,

and then it is shown that graph states can be obtained by a mesh of resistors. Finally current dividers

are added to give a set of generators for an arbitrary map in KirRel. Also considered are the generators of

LosKirRel and ResRel.

4.1 A Universal Set of Generators for Spiders

The generators for the category of spiders Spider are shown in Table 4.1. These are obtained by applying

the functor L : LinRelF → LagRelF to the generators of LinRel associated with the copy spider.

54



Name Generator Definition in terms of

GAA

Relation:

pi, qi ∈ F s.t.

Unit

p1 q1

p1 = 0

Counit

p1 q1

p1 = 0

Monoid

p1 q1 p2 q2

p3 q3

p3 = p1 + p2

q3 = q1 = q2

Comonoid

p3 q3 p3 q3

p1 q1

p1 = p2 + p3

q3 = q1 = q2

Table 4.1: These are a universal set of generators for Spiders.

Note the category of Lagrangian relations contains two inequivalent spiders, L(copy spider) and L(addition

spider). Only one of these spiders is in the category of Kirchhoff relations, L(copy spider) – which copies

positions and adds momenta. We represent it by a red spider as shown in Table 4.1. That these generators

are universal follows immediately from the fact that L is a functor and copy spiders form a universal set

of generators for the sub-prop copy of LinRel where the copy is the category generated by the copy spiders

in LinRelF . One can use these spiders to define cups and caps for the category of Kirchhoff relations, this

allows relation in Kirchhoff relations to be converted into a state (or an effect). Borrowing terminology from
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electrical engineering, we sometimes refer to any relation R : F 2n → F 2m as an (n+m)-terminal device.

4.2 A Universal Set of Generators for KirRel

For Kirchhoff relations, we supplemented the generators in Tables 4.1 with resistors shown in Table 4.2, and

ideal current dividers as shown in Table 4.3.

Name Generator Definition in terms of

GAA

Relation: pi, qi ∈ F s.t.

Resistor

R

p1 q1

p2 q2

R

p1 = p2

p1R = (q2 − q1)

Table 4.2: Resistor: In addition to the generators for Spiders, we must include resistors, defined above, to

obtain a universal set of generators for ResRel.

A resistor defines the following relationship between current and voltage:

V2 − V1 = I1R, I1 = I2

This is sometimes known as the Ohm’s law.

The power input of a resistor is given by:

P = I2R

A positive resistor (in the case F = R) is usually considered to be a power dissipating (passive) electrical

element, but if the resistor takes on negative values then it is an active element. Sometimes its more

convenient to use conductance instead of resistance the conductance is just the inverse of resistance, that
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Generator Definition in terms of GAA generators Interpretation as a Kirchhoff
Relation

〈〉w

V1 I1 V2 I2

V3 I3

(1− w) (1− w)−1 w−1w

V3 = V1(1− w) + V2w

I3 = (1− w)−1I1 = w−1I2

〈〉w

V1
I1 V2 I2

V3 I3

(1− w)−1 (1− w) ww−1

V1(1− w)−1 + V2w
−1 = V3

I3 = I1(1− w) = I2w

Table 4.3: Ideal Current Dividers A universal set of generators for LosKirRel require, in addition to the
spiders in Table 4.1, the above “ideal current divider” as defined in this table.
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is:

y =
1

R
.

Note that when the resistance across a wire is 0 it is said to be “short circuited”, in that case the conductance

is not defined, although we can informally regard it as y = ∞. In the case when conductance y = 0 then

the value of resistance is undefined, although we can be informally regard it as R = ∞, and the relation is

a disconnection. In electrical engineering this is said to be an “open circuit”: I1 = I2 = 0, with V1 and V2

arbitrary.

Ideal Current Dividers

While the resistors and junctions of ideal wires are familiar from electrical engineering, the ideal current

divider may seem unfamiliar. Let us discuss the physical interpretation of this generator.

One can view an ideal current divider as a limiting case of the following relation in Kirchhoff Relations

over R. Consider a three-terminal device, constructed from three resistors, R12 = − 1
wR, R13 = R, and

R23 = 1−w
w R. Then, in the limit R→ 0, one can check that this describes the relation:

I1 = wI3

I2 = (1− w)I3

V3 = wV1 + (1− w)V2

which is that of a ideal current divider. Thus in practice current dividers are constructed using resistors, note

at least one of these resistances must be negative, so in practice, a ideal divider requires active components

to be constructed; although the power input can be made arbitrarily close to zero.

By virtue of the above construction, we could choose not to regard the ideal current divider as an

independent generator for the theory of Kirchhoff relations over R. However, for Kirchhoff relations over an

arbitrary, possibly-finite field, the above limiting procedure does not make sense, so we have no choice but

to consider the ideal current divider as an independent generator.

4.3 A Universal Set of Generators for LosKirRel

The category of LosKirRel generators include the generators of Spiders in Table 4.1, supplemented with ideal

current dividers as shown in Table 4.3.
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4.4 A universal set of generators for AffKirRel

To obtain the category of Affine Kirchhoff relations, we need two additional generators, shown in Table 4.4.

Name Generator Definition in terms of

GAA

Relation:

pi, qi ∈ F s.t.

Voltage Source:

±V

1

2
q2 p2

q1 p1

V

q2 = q1 + V

p2 = p1

Current Source:

↑I

1

2 p2q2

p1q1

I

p2 = I + p1

Table 4.4: Affine Kirchhoff Relations: In addition to the generators of KirRel we must add the voltage

and current source generators to obtain a universal set of generators for AffKirRel

The Tables 4.1, 4.2, 4.3 and 4.4 give the generators for affine Kirchhoff relations AffKirRel. This is discussed

briefly in section 4.7.

Voltage Sources and Current Sources

The current source “forces” the current to take on a certain value, while the voltage source, forces a specific

voltage difference across two terminals.
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Any affine shift in position and momenta that obeys KCL can clearly be written in terms of these

generators as shown in section 4.7. Therefore, if one has a universal set of generators for KirRel, then one can

obtain any relation in AffKirRel, by precomposing or post-composing with a direct sum of current sources,

and a direct sum of voltage sources.

4.5 Universality for Graph States

We now argue that the resistor and the junction, allow one to obtain any graph state as defined in section

3.7. Observe that a resistor is not “directional”, in the sense that the diagrams of lemma 4.5.1 are equal

and so can be thought of as a weighted connection between two wires: we refer to the component as being

“horizontal”. The following lemma shows that a resistor is horizontal in KirRel and discusses the matrix

representation:

Lemma 4.5.1.

y = y

Proof. The proof is by direct calculation, as shown below the constraints of the horizontal resistor are given

as follows:

I1 + yV1 − yV2 − I3 = 0 − yV1 + I2 + yV2 = I4

V1 = V3 V2 = V4

This matrix can be written functionally as shown below, note that this relation is actually an isomorphism

M(y) : (F 2)2 → (F 2)2: 

1 0 0 0

0 1 0 0

y −y 1 0

−y y 0 1





V1

V1

I1

I2


=



V3

V4

I3

I4


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The concept of a “mesh of resistors” is defined as follows:

Definition 4.5.2. A mesh of resistors is defined to be a weighted non-reflexive undirected graph where

the weights are given by the values of the conductance y ∈ F between pair of nodes. Each node is connected

by convention to a unique output. This makes a mesh a state.

An example for a mesh with 3 conductance is given below:

yc yb

yaI1, V1 I2, V2

I3, V3

1 2

3

Figure 4.1: A mesh with 3 resistors.

Theorem 4.5.3. A graph state with the following parity-check matrix:

(
Y I

)Vin
Iin

 =

0

0


can be realized by a mesh of resistors.

Proof. To prove this theorem consider a mesh of n resistors. For each layer in the mesh we define a function

Cij(y) : F 2n → F 2n, and any graph state can be then drawn as a composition of resistors. For the case of 3

resistors this is shown below:

To define Cij(y) we first define the matrix Yij(y) to be an n×n matrix whose entries are all zeroes except:

(Yij(y))ii = y (Yij(y))ij = −y = (Yij(y))ji (Yij(y))jj = y

Using this structure one can write down Cij(y) as follows:

Cij(y) =

 1 0

Yij(y) 1


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yc

ya

yb

1 2 3

C13(ya)

C23(yb)

C12(yc)

Figure 4.2: A graph state expressed as a composition of resistors

The properties of Cij(y) are captured in the following lemma:

Lemma 4.5.4. The matrices Cij(y) satisfy the following properties:

(i) Cij(y1)Ckl(y2) = Ckl(y2)Cij(y1), these matrices commute.

(ii) Yij(y) is a symmetric matrix and Y Tij (y)~1 = 0, that is the rows sum to zero

(iii)
∏
i 6=j Cij(y) =

 1 0∑
i6=j Yij(y) 1


(iv) (

∑
i 6=j Yij(y)) is symmetric and (

∑
i6=j Yij(y))T~1 = 0

Proof.

(i) To show that the C’s commutes one first writes the matrix structure explicitly as follows:

Cij(y1) =

 1 0

Yij(y1) 1

 Ckl(y2) =

 1 0

Yij(y2) 1


The product Cij(y1)Ckl(y2) is:

Cij(y1)Ckl(y2) =

 1 0

Yij(y1) 1


 1 0

Yij(y2) 1

 =

 1 0

Yij(y1) + Ykl(y2) 1

 = Ckl(y2)Cij(y1)

which completes the proof.
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(ii) Recall, the structure of Yij(y) is:

(Yij)(y))ii = y (Yij(y))ij = −y = (Yij(y))ji (Yij(y))jj = y

and therefore its symmetric. Y Tij (y)~1 sums the entries in each row and hence is always equal to zero

given the structure defined above.

(iii) One can show this by direct calculation, this essentially relies on the fact that when lower triangular

matrices of the following form are multiplied, the entries in the lower block add so we get the following

result: ∏
i 6=j

Cij(yij) =

 1 0∑
i 6=j Yij(yij) 1


(iv)

∑
i6=j Yij(yij) is a symmetric matrix since its a sum of symmetric matrices. To show this (

∑
i 6=j Yij(y))T~1 =

0, note that (
∑
i 6=j Yij(y)))T~1 =

∑
i 6=j Y

T
ij (y)~1 = 0, where the last equality follows from (ii).

The resistors for each layer are composed by multiplying the matrices Cij , as shown in the lemma above

Cij(y)’s commute with each other and the product of Cij(y)’s can then be written:

∏
i6=j

Cij(yij) =

 1 0∑
i 6=j Yij(yij) 1


where Y =

∑
i 6=j

Yij(yij) is a symmetric matrix, whose off-diagonal components are the adjacency matrix of a

graph with weights defined by (minus) of the value of the conductance between wires i and j, Yij = −yij , and

whose diagonal components are defined via Yii = −
∑
j 6=i Yij(yij). The function encoded the composition of

the horizontal resistances, then has the following form:

 1 0

Y 1


Vin
Iin

 =

Vout
Iout


The last layer consists of the effect, to Vout and Iout. The resulting relation allows each component of Vout

can be anything although each component of Iout must be zero. The parity-check matrix can then be written

in the following form: (
Y 1

)Vin
Iin

 =

0

0


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Notice that every graph state can be obtained from a mesh of resistors by choosing appropriate conductance

values and hence this completes the proof.

To give an intuitive understanding of the steps used in the proof above, consider the following example:

Example 4.5.5. Consider a weighted graph, with weights in F . We convert this into a relation by associating

each vertex of the graph with a spider, and each edge of the graph with a resistor, with non-zero resistance.

The conductance associated with each resistance is the weight of the edge yij , which could be zero. An

example, for a graph 3 vertices is shown in Figure 4.3.

yc yb

yaI1, V1 I2, V2

I3, V3

1 2

3

Figure 4.3: Graph State with 3 resistors.

This graph state, can be redrawn as a sequence of isomorphisms, each consisting of a single horizontal

resistor acting on each pair of wires. For the example the Figure 4.3 can be redrawn as Figure 4.4.

yc

ya

yb

1 2 3

C13(yc)

C23(yb)

C12(ya)

Figure 4.4: The diagram of Figure 4.3 expressed as the composition of a series of resistors, followed by a
direct sum of units.
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Each layer, highlighted in a red box in the example in Figure 4.4, defines a function Cij(y) : F 2n → F 2n:

V ′
I ′

 = Cij(y)

V
I

 .

where:

Cij(y) =

 1 0

Yij(y) 1

 .

Explicitly, for the example in Figure 4.3, n = 3 and

C12 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

ya −ya 0 1 0 0

−ya ya 0 0 1 0

0 0 0 0 0 1


, C23 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 yb −yb 0 1 0

0 −yb yb 0 0 1


,

and,

C31 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

yc 0 −yc 1 0 0

0 0 0 0 1 0

−yc 0 yc 0 0 1


.

The product of the Cij , can be written as

C12C23C31 =

 1 0

Y12(yA) + Y23(yB) + Y31(yC) 1

 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

ya + yc −ya −yc 1 0 0

−ya ya + yb −yb 0 1 0

−yc −yb yb + yc 0 0 1


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The above matrix can be written as a block matrix in the following way:

 1 0

Y 1


Vin
Iin

 =

Vout
Iout


We now apply the unit to Vout and Iout, as shown in the last layer of Figure 4.4, this results in the following

parity-check matrix (
Y 1

)Vin
Iin

 =

0

0


4.6 Universality for Kirchhoff Relations

In this section we wish to show that any Kirchhoff relation can be specified as a composition or direct sum

of the generators described in Tables 4.1, 4.2, 4.3 and 4.4. Since any relation can be converted to a state

using spiders, it suffices to show that any state can be expressed in terms of the generators listed above.

Furthermore, the parity-check matrix of any Kirchhoff state can be written in standard form, so, to prove

universality, we only need to provide an explicit construction of this standard form using our generators.

Theorem 4.6.1. Kirchhoff spiders, resistances and ideal current dividers form a universal set of generators

for KirRel.

Proof. We first note that any Kirchhoff relation can be converted into a state using spiders. We showed that

the parity-check matrix for any state can be put into the standard form described in the previous chapter.

This depends on two matrices, the matrix Y which satisfies Y = Y T and Y~1 = ~1, and the matrix A which is

quasi-stochastic matrix. Our aim is to show one realizes a state with a parity-check matrix in this standard

form using spiders, resistances and ideal current dividers. Let us choose M to be the following matrix:

M =

1

A


where A is the quasti-stochastic matrix appearing in the standard form of the state. Then M is clearly also

quasi-stochastic. The relation L(M) can be realized using a layer of current-dividers composed with a layer

of spiders.

Consider the composition of a graph state with L(M) as shown in Figure 4.5. The relation encoded by
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L(M)

Graph State

. . .

. . . (I ′, V ′)

(I, V )

Figure 4.5: Any state in KirRel can be realized as a graph state, composed with a relation of the form L(M)
where M is an appropriately chosen quasi-stochastic matrix.

the graph state is:

W = {(V ′, I ′) |
(
Y 1

)V ′
I ′

 = 0} = {(V ′, I ′) | Y V ′ = −I ′}

The relation L(M) is the following:

L(M) = {((V, V ′) (I, I ′)) | V = MV ′ and I ′ = MT I}

We compose these relations as follows:

L(M)(1⊕W) = {(V, I) | ∃V ′, I ′ . V = MV ′, I ′ = MT I, Y V ′ = −I ′}

= {

V1
V2

 ,

I1
I2

 | ∃ V ′, I ′ . V1 = V ′, V2 = AV ′, I ′ = I1 +AT I2, Y V
′ = −I ′}

= {

V1
V2

 ,

I1
I2

 |V2 = AV1, Y V
′ = −I1 +AT I2}

Where the last step removes the existential quantification We claim to have the following parity-check matrix

for this relation:  Y 0 MT

−A 1 0


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As for any


V1
V2

 ,

I1
I2


 ∈ L(M)(1⊕W) we have:

 Y 0 I AT

−A 1 0 0




V1

V2

I1

I2


=

Y V1 + I1 −AT I2

−AV1 + V2

 =

0

0



This is the standard form for a parity-check matrix for a state in KirRel. This concludes the proof.

Corollary 4.6.2. If A is deterministic as shown in section 3.6 corollary 3.6.8 then only resistors and spiders

are sufficient to generate all the maps in the category ResRel.

Example 4.6.3. Consider the relation encoded by Figure 4.6. This is an example of a state in ResRel and

we will now study how to write a parity-check matrix for such a relation:

ya

yc yb

V1 I1 V3 I3

I2 V2

V5I5

I4 V4

V6I6

Figure 4.6: An example of a state in ResRel. This state can be thought of as a graph state, composed with

L(M), where M is a deterministic matrix.

The relation is easily seen to be encoded by the following equations, relating Ii and Vi for i = 1 to 6:

(
Y 1

)



V1

V2

V3

I1

I2 + I4

I3 + I5 + I6


= ~0 V4 = V2 V5 = V3 V6 = V3
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We can encode these equations into the following parity-check matrix:

 Y3×3 03×3 I3×3 A3×3

−AT3×3 I3×3 0m×n 03×3


V
I


where V is the vector of 6 voltages and I is the vector of 6 currents in the above figure 4.6 where A is the

following matrix:

A =


0 0 0

1 0 0

0 1 1

 −AT =


0 −1 0

0 0 −1

0 0 −1


Y is adjacency matrix of the network shown in 4.6.

4.7 Kirchhoff Relations to Affine Kirchhoff Relations

We first observe that any affine Kirchhoff transformation can be obtained from a linear Kirchhoff relation,

by composing voltage and current sources to the inputs and outputs. Assume without loss of generality that

the linear relation is a state. Then we only need to show that any affine relation of the form

∀~q, ~p ∈ Fn,

q
p

 ∼
q
p

+

q0
p0

 , where q0, p0 ∈ F k, and ~1T · p0 = 0

can be realized using our generators.

We first see that any shift in position can be realized using the voltage sources and any shift in currents

that satisfies conservation of momentum can be obtained from current sources. This is true since the current

and voltage sources obey KCL as shown in Table 4.4.

Notice that the current source can only realize shifts in momentum that satisfy conservation of momen-

tum. Using these properties of current and voltage sources we have the following theorem:

Theorem 4.7.1. Spiders, resistances, ideal current divders, voltage and current sources form a universal

set of generators for AffKirRel.

Proof. To extend the earlier proof for the universality of KirRel to AffKirRel, we compose the diagram shown

in figure 4.5 with voltage and current sources to realize general affine shifts as shown in the figure below:
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L(M)

Graph State

. . .

. . . (I ′, V ′)

(I, V )

Affine Shift

. . .

Figure 4.7: Universality for AffKirRel

Since any arbitrary affine shift in AffKirRel can be realized using a voltage and a current source, this

completes the proof of universality for AffKirRel.
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Chapter 5

Discussions and Conclusion

5.1 Discussions

In this section the relationship of the category of Lagrangian relations and Kirchhoff relations to qudit

quantum mechanics is discussed. We begin with a review of qudit quantum mechanics and its relationship

to Lagrangian relations.

5.2 Qudit Quantum Mechanics

Here we review the basic definitions and properties of the Pauli and Clifford group for qudits, for more detail

the reader can refer to [3, 54–57]. Recall that the X and Z gates for qudits are defined as follows:

Definition 5.2.1. (See definition 4.8 in [3]) The p-dimensional qudit X and Z gates in MatC are defined as

follows:

X =

p−1∑
k=0

|k + 1〉 〈k| Z =

p−1∑
k=0

ωk |k〉 〈k|

where ω = e2πi/p, p is a prime number and k is a natural number mod p.

For p = 3 (qutrits), for example the X and Z matrices are given as follows:

X =


0 0 1

1 0 0

0 1 0

 Z =


1 0 0

0 ω 0

0 0 ω2


Definition 5.2.2. (See definition 4.11 in [3] and definition 1 in [58]) The p dimensional Pauli group on n
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qudits Pnp is generated by X, Z, scalar eπi/p and identity I under matrix multiplication and tensor product.

Observe that ZX = ωXZ. Thus Pnp upto global phase consists of elements XnZm. Thus Pnp consists of

p1 ⊗ p2 . . .⊗ pn where pi ∈ Pp. Elements of the Pauli group are sometimes referred to as Pauli operators.

Definition 5.2.3. (See definition 4.1.1 in [3]) The p dimensional Clifford group on n qudit Cnp is defined to

be the group of unitary operators that map p-dimensional Pauli operators to p-dimensional Pauli operators.

That is:

Cpn = {C | ∀p ∈ Pnp . CpC† ∈ Pnp }

Definition 5.2.4. (See definition 4.1.1 in [3]) A stabilizer state on n-qudits is state of the form C |0〉⊗n

where C is an element of the Clifford group.

Definition 5.2.5. (See definition 4.1.1 in [3]) Given an n qudit stabilizer state |φ〉 the group of Pauli

operators that satisfy U |φ〉 = |φ〉 forms a group called the stabilizer group of |φ〉. This is an Abelian

subgroup of the Pauli group.

Lemma 5.2.6. (See lemma 4.13 in [3]) The odd prime dimensional Clifford group Cpn upto scalars is generated

by the following operators:

C =

p−1∑
k,l=0

|k, k + l〉 〈k, l| H =
1
√
p

p−1∑
k,l=0

|l〉 〈k| S =

p−1∑
k=0

eπik(k+p)/p |k〉 〈k|

Definition 5.2.7. (See definition 4.14 in [3]) The Stabp is a generated upto scalars by |0〉, 〈0| and the

Clifford group in prime dimensions.

In [3] it was shown that the generators for the category LagRelF are given as follows:

Lemma 5.2.8. (See theorem 3.1 in [3]) The generators of LagRelF are given by L(LinRelF), F and Ra.

where:

F =

0 −1

1 0

 Ra =

1 a

0 1


To establish the isomorphism G : AffLagRelFp

→ Stabp. First note that:

Lemma 5.2.9. (See definition 4.4 in [3]) The category of AffLagRelF is generated by Lagrangian relations

and an additional generator given as follows:

=X
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Then following lemma proven in [3] determines the isomorphism:

Lemma 5.2.10. (See lemma 4.15 in [3]) There is an isomorphism G : AffLagRelFp
→ Stabp for every odd

prime p characterized the following mapping of the generators upto scalars:

X ↔ X F ↔ H Ra ↔ S C ↔ C

where:

C =



1 −a 0 0

0 1 0 0

0 0 1 0

0 0 a 1


5.3 Kirchhoff Quantum Mechanics

Using the isomorphism G : AffLagRelFp
→ Stabp described above one can interpret the generators of AffKirRel

as quantum maps on a Hilbert space as shown in the Tables 5.1 and 5.2. Note that we denote the eigenstates

of X with an overbar:

X |k̃〉 = ωk |k̃〉 ,

These formulas are essentially derived using the phase space formalism. One can show that a pure density

matrix ρ is a pure state (see [25]) – and therefore must equal |ψn〉 〈ψn|. We can interpret this correspondence

as follows: A Lagrangian subspace can be thought of as a possibility distribution, the set of points in the

subspace correspond to events that are possible, and the set of points not in the subspace correspond to

events that are impossible. In quantum mechanics, we convert this into a quasi-probability distribution,

given by a Wigner function in which all possible events are equally probable.

A general quantum map ε : Hnd → Hmd can be converted to a state ρε via the cups and caps. If the

resulting state is a pure stabilizer state, then we consider ε to be a stabilizer map. The Lagrangian subspace

corresponding to ρε can be converted to a Lagrangian relation using the appropriate spider resulting in a

Lagrangian relation associated with ε.
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Generator Qudit Quantum Mechanics Interpretation

〈〉w

∑
k

|k〉
〈
w−1k

∣∣ 〈(1− w)−1k|

〈〉w

∑
k

|w−1k〉 |(1− w)−1k〉 〈k|

m

1

2 ∑
k

ωmk
2

|k〉 〈k|

±V

1

2 ∑
k

ωV k |k〉 〈k|

↑I

1

2 |I〉 〈I|

Table 5.1: Qudit Gates
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Name Generator Quantum
Interpretation

Unit

1

|0〉

Counit

1

〈0|

Monoid

1 2

3 ∑
k̃

|k̃〉 〈k̃| 〈k̃|

Kirchhoff Co-monoid
2 3

1

∑
k̃

|k̃〉 |k̃〉 〈k̃|

Table 5.2: Representation of Spiders as quantum maps
.
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LossLagRel LagRel AffLagRel

LossKirRel KirRel AffKirRel

Spiders ResRel AffResRel

Figure 5.1: A web of inter-relations of the categories involved in the thesis

5.4 Conclusion

The goal of the thesis was to investigate the connection between electrical circuits and quantum circuits.

Stabilizer quantum circuits correspond to affine Lagrangian relations over a field of odd prime character-

istic. These relations have components that do not have a direct electrical analogue: in particular the

Fourier/Hadamard transform does not have a electrical analogue. To capture just the electrical circuits,

Lagrangian relations satisfying the special property of Kirchhoff’s current law were considered. However

even this allowed, in addition to resistor circuits, (ideal) current dividers. To isolate exactly the subcategory

of resistors the additional constraint of being deterministic was applied.

Parity check matrices were used to characterize KirRel and its subcategories. First a standard form for

Lagrangian relations was derived. Using this standard form a characterization of Kirchhoff relations was

given by adding the effect of Kirchhoff’s current law to the Lagrangian parity-check standard form. Using

these standard forms deterministic Lagrangian and Kirchhoff relations were defined and their properties

studied. Using the standard form for Kirchhoff relations a special class of states called graph states were

also isolated and their parity-check matrices studied. Further subcategories of LagRel and KirRel namely

LosLagRel and LosKirRel were classified using the property of “power input”.

These categories and subcategories were then interpreted in terms of electrical networks of different

types, explicitly the category of KirRel corresponded to those circuits with resistors, junctions and current

dividers, the category of ResRel corresponded to electrical networks built from resistors and junctions, while

graph states were interpreted as resistive networks with “no extra wires” and lastly the category of AffKirRel

corresponded to electrical networks built from current, voltage sources, junctions and resistors.

The intersection of categories and subcategories studied in the thesis and their interrelationships are

pictorially shown in 5.1.

The second half of the thesis explicitly proves that the maps in the categories KirRel are generated by

electrical elements namely, resistors, current dividers and spiders and the maps in AffKirRel are generated
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by these elements supplemented by voltage and current sources. Furthermore the maps in the category of

lossless Kirchhoff relations LosKirRel were generated by spiders and current dividers and the maps in ResRel

were resistor circuits generated by resistors and junctions. In the process of these proofs we also discuss how

to write parity-check matrices for different types of electrical networks. The generators of these categories

and their relationship with one another is shown in 5.2.

Current Dividers and Junctions Current Divider and Resistor Circuits Current Divider, Resistor Circuits and Sources

Junctions Resistor Circuits Resistor Circuits and Sources

Figure 5.2: The first row in 5.1 has no natural interpretation in terms of electrical networks. This figure

explains the interpretation of row 2 and row 3 in 5.1 as electrical networks.

In the end of the thesis a connection to qudit quantum mechanics was discussed and the generators of

Kirchhoff relations were interpreted in terms of quantum maps on Hilbert spaces.

5.5 Future Work

There are several potential directions of future work. The various forms of the parity-check matrices which

we investigated suggested a relation to normal forms for their corresponding electrical networks. It would

be interesting to make this relation precise. From the point of view of rewriting theory it would be useful

to design a minimal set of rewrite rules for the category of KirRel and ResRel, this would essentially consist

of understanding the rules that govern the interaction of current dividers, resistors and sources with each

other. This could in principal help in simplifying circuits designed using the generators of KirRel. In the

context of the ResRel one would like to precisely answer the question if the series, parallel and star-mesh

rule allows one to convert an arbitary resistor network to a mesh of resistor networks in all case. It would be

interesting if this work leads to a ZX calculus styled calculus for electrical circuits using the normal forms

suggested by the various forms of parity-check matrices studied in the thesis. This would lead to another

graphical calculus to understand the behaviour of electrical circuits.

In the current formalism to show composition of maps is well-defined one always has to go to the underline

definition of the category and have a special argument. In our results we do not have an explicit parity-check

formula for composition. It would have been useful to have had a formula for composition at the level

of parity-check matrices as this would have provided a characterization of the subcategories of Lagrangian

relations, purely using the formalism of parity-check matrices.
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On the qudit quantum computation front it would be interesting to see if simplification strategies used in

electrical circuits could be imported to qudit quantum circuits via the formalism of the category of Kirchhoff

relations. So for example is there some equivalent of well known network theorems like Thevenin and Norton’s

theorems for Clifford circuits? This would help in simplifying Clifford circuits and understanding stabilizer

circuits using connections to electrical network theory. As discussed earlier there is an equivalence functor

between AffLagRelFp
and Stapp which implies that a quantum computer built out of generators of Lagrangian

relations is as powerful as one built from the stabilizer fragment of qudit quantum mechanics, one can think

of a similar question for the AffKirRel and ask what is the power of a quantum computer built solely out of

the generators of the category AffKirRel? The first step towards answering this question has been discussed

in the thesis where we interpreted the generators of AffKirRel in terms of quantum maps on a Hilbert spaces.
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