Comonadic notions of computation

Tarmo Uustalul Varmo Vene?

Hnstitute of Cybernetics, Tallinn

2University of Tartu

FMCS 2006, Kananaskis, 8 June 2006

Motivation

@ Moggi and Wadler showed that effectful computations can be
structured with monads.

@ An effect-producing function from A to B is a map A — B in
the Kleisli category, i.e., a map A — TB in the base category.

@ Some examples applied in semantics:

TA
TA
TA
TA
TA

A+1

A+ E

AE

A = X1+ Ax X
(A x S)°

partiality
exceptions
environment
non-determinism
state

@ Are all impure features captured by monads?

@ What about comonads?

Comonads

Definition
A comonad on category C is given by
@ afunctor D:C — C
@ a natural transformation ¢4 : DA — A
e counit of the comonad
@ a natural transformation d4 : DA — D?A
e comultiplication of the comonad

s.t. following diagrams commute

)
DA —2> D24

N

D?A 5> DA<~ D?A DA~ D%

Comonads

Comonads model notions of value in a context;
@ DA is the type of contextually situated values of A.

A context-relying function from A to B
is a map A — B in the coKleisli category,

@ i.e., a map DA — B in the base category.

Product (environment) comonad
@ Functor: DA=AXE

o Counit:
ea : AxXE—-A

(a,e) — a

e Comultiplication:

oo + AXE—-(AXE)xE
(a,6) — ((a,e)€)

Comonads

Streams comonad
@ Functor:

o Counit:

e Comultiplication:

oA

[0, a1, a2, . .]

—

€A o AN—>
a — «af0)

AN — (AN

[[30, ai, daz, ..

DA =AY = uX.A x X

A

a — An(Am.a(n+ m))
.], [al, dap,as...

Comonads for stream functions

Dataflow computation = discrete-time signal transformations =
stream functions.

Example: simple dataflow programs

pos = 0 fby (pos+1)

sumx = x4+ (0 fby (sum x))
fact 1 fby (fact % (pos + 1))
fibo = 0 fby (fibo+ (1 fby fibo))

pos 0 1 2 3 4 5 6
sum pos | 0 1 3 6 10 15 21
fact 1 1 2 6 24 120 720
fibo 0 1 1 2 3 5 8

Stream functions AN — BY are naturally isomorfic to AN x N — B

Comonads for stream functions

General stream functions
@ Functor: DA = AN x N

@ Input streams with past/present/future:

a0, A1y - an—177 an+17 an+27 CREaE

o Counit:
ea : AVXN- A

(a,n) — a(n)
e Comultiplication:

6a AVXN - (ANx NN xN
(a,n) — (Am.(a, m), n)

Comonads for stream functions

Causal stream functions
e Functor: DA = At (2 A*x A)

@ Input streams with past and present but no future

e Counit:
ea : AT S A
[a0,.--,an] — an
e Comultiplication:
g At — (AN
[a0,---,an] +— [[a0],[a0,a1]s---,[a0,- -, an]]

Anticausal stream functions
@ Input streams with present and future but no past
e Functor: DA = AN (=2 Ax AN

Comonads for attribute grammars

An attribute grammar is a CF grammar augmented with attributes
and semantic equations.

Example: preorder numbering of the nodes

st — E

Sb — SfS,g
Sf.numin = Sbpumin+1
Slg.numin = S}_’.numout +1
St.numout = SY.numin
SP.numout = Sf{,.numout

Tree functions where the output at a position depends on the input
at that position and around it (synthesized, inherited attributes).

Comonads for attribute grammars

Purely synthesized AG-s
e Functor: DA = TreeA = pX.Ax (14+ X x X)

o Counit:
Ea : TreeA— A

(a,s) — a

o Comultiplication:

doa : Tree A — Tree(Tree A)
Salt) = { (t,inl(x)), if t = (a,inl(x))
A (t,inr(8a(ty), 0a(tn)), if t = (a,inr(ty,))

Comonads for attribute grammars

General AG-s
e Functor: DA = (2 x Tree A)* x Tree A

@ Path structure from the root to the focus and the local tree
below the focus

AN

Pre-[Cartesian closed] co-Kleisli categories

e Extending a pure language (the lambda calculus) with
coeffect-constructs, we want the old constructs to remain and
not to change their meaning too much.

@ If D is a comonad on a Cartesian closed category C, how
much of that structure carries over to CoKI(D)?

Products
AxPB =4 AxB
7T0D =df 7op©°¢&

7T1D —df 71°0¢&
(ko, k1)P =ar (ko, k1)

Pre-[Cartesian closed] co-Kleisli categories

For (pre-)exponents we need some extra structure on a comonad:

D((DA = B) x A) — 2™ __ p(pa = B)) x DA

evP l \L (exid)

B = (DA = B) x DA

D(Ax B)—*~C DAx DB—'>D(Ax B)—*~¢

AP (k) A(ko?)
DA—— DB = C DA——DB = C

Pre-[Cartesian closed] co-Kleisli categories

Definition
A comonad D on a [symmetric] [semi]monoidal cat. C is said to be
{lax/strong} [symmetric| [semi]lmonoidal, if it comes with

@ a nat. {transf./iso.} m: DA® DB — D(A ® B)
@ [and a nat. {transf./iso.} e : [— DlI|
behaving well wrt. a, [1,1,] [7,] €, d.

Pre-exponents

Let D be a comonad on a Cartesian closed cat. C. Assuming that
D that is a {lax/strong} [symmetric] [semi]monoidal wrt. the
(1, x) symmetric monoidal structure on C, define this structure on
CoKI(D): A=PB =4 DA=B

evP =4 evo(eo Dmg, Dmy)

AP(k) =g A(kom)

Pre-[Cartesian closed] co-Kleisli categories

If D is strong monoidal, then C =P — is right adjoint to — xP C
and hence =P is an exponent functor:

D(Ax C)— B

DA x DC — B
DA— DC =B

However, this seems rare in computational applications, DA = AN
being an atypical example.

Strong symmetric monoidal structure on streams
m : AVxBY - (Ax BN
(@, 8) = An.(a(n), 5(n))

Pre-[Cartesian closed] co-Kleisli categories

More common is that a comonad is lax symmetric semimonoidal,
eg DA= AT, DA= AY x N.

Lax symmetric semimonoidal structure on — x N
m : (AYxN)x(BYxN)— (AxBNxN
((a,kl),(ﬂ, k2) = (/\n' (a(n)7 6("))7 kl)

Then it suffices to have m satisfying m o A = D A, where
A = (id,id) : A — A x A is the semicomonoid structure on the
objects of C, to get that = is a weak exponent functor.

Comonadic semantics

Comonadic semantics is obtained by interpreting the
lambda-calculus into CoKI(D) in the standard way.

Comonadic semantics

[AxB]® =4 [A]? x°[B]° [A]° x [B]°
[A=B]? =4 [A]I°=°[B]° = DIA]° = [B]°

[[(x)x,]]D =4t 71',-D T o€

[()fst(D)]® =ar 7&? PL()t]° = mo[(x)t]?
[()snd()]® =ar 77 o [[(X)f]]D = mo[(x)t]°
()0)P =ar ()], [(x)]°)°
= ([(x)t]®, [(x)ts]°)
[(tul® =4 evP ol ([(x)t]°, [(x)u]®)

I
=
=

[)Axt]® =ar AP([(x, x)t]°)

Coeffect-specific constructs are interpreted specifically.

Comonadic semantics

o x: CFt:Aimplies [(x)t]P : [C]P —P [A]P, but not all
equations of the lambda-calculus are validated.

o Closed terms: Type soundness for - t : A says that
[t]P : 1 =P [A]P, ie., D1 — [A]P, so closed terms are
evaluated relative to a coeffect over 1.

In case of general or causal stream functions, this is a list over
1, the time from the start.

If D is properly (symmetric) monoidal (e.g., (—)), we have a
canonical choice e : 1 — D1.

@ Comonadic dataflow language semantics: The first-order
language agrees perfectly with Lucid and Lustre by its
semantics.

The meaning of higher-order dataflow computation has been
unclear. We get a neat semantics from mathematical
considerations (cf. Colaco, Pouzet's design with two flavors of
function spaces).

Distributive laws

Definition
A distributive law of a monad (T, 7, 1) over a comonad (D, €, 9) is
a natural transformation Ay : DTA — TDA st.

DTA—>~TDA DTA A TDA

NG |7

TA p27a-2 DTDA-2> TD2A

DA DT2A—2> TDTA—2> T2paA

e T

DTA—>~TDA DTA TDA

Distributive laws

Clocked dataflow computation (partial-stream functions)

TA
DA
A

as

1+A

AT

(1+ AT —1+A"

{

inl(x)

inr([a; | inr(a;) < as])

if last (as) = inl(x)
otherwise

Distributive laws

BiKleisli category

Given a monad T and comonad D with a distributive law
A : DTA — TDA, the biKleisli category BiKI(T, D) is defined as:

[BiKI(T, D) =ar |C|
BiKI(T,D)(A,B) =q C(DA, TB)
id® " =df mMoe

o0 T k =gq¢ C*oXokt

Distributive laws

If C is Cartesian closed, T is strong, D is lax symmetric
semimonoidal, BiKI(D, T) carries a pre-[Cartesian closed]

structure:

Pre-[Cartesian closed] structure

AxDTB =i AxB
D,T _
o =df MNOTp©oE
D,T _
7T1 =df 1N OomOoE
(ko, ki)PT =4t 0F 0 ag 0 (ko, k1)
A éD’T B =d4f DA = TB
evPT =4 evo(eo Dm, Dmy)
AP T(k) =4 noAMA(kom)

Future work
@ Dual computational lambda-calculus / comonadic
metalanguage.
General recursion in coKleisli categories.
Structured recursion/corecursion for dataflow computation.

Dualization of call-by-name.

Compilation of comonadic code to automata (cf. Hansen,
Costa, Rutten).

	Introduction
	Comonads
	Stream functions
	Tree functions
	Co-Kleisli categories
	Comonadic semantics

	Distributive laws
	Conclusions

