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Abstract

The variety of guarded semigroups consists of all (S, ·, ) where (S, ·) is a semigroup
and x 7→ x is a unary operation subject to four additional equations relating it to mul-
tiplication. The semigroup Pfn(X) of all partial transformations on X is a guarded
semigroup if x f = x when xf is defined and is undefined otherwise. Every guarded
semigroup is a subalgebra of Pfn(X) for some X. A covering theorem of McAlister
type is obtained. Free guarded semigroups are constructed paralleling Scheiblich’s con-
struction of free inverse semigroups. The variety of banded semigroups has the same
signature but different equations. There is a canonical forgetful functor from guarded
semigroups to banded semigroups. A semigroup underlies a banded semigroup if and
only if it is a split strong semilattice of right zero semigroups. Each banded semigroup
S contains a canonical subsemilattice gg?(S). For any given semilattice L, a construction
to synthesize the general banded semigroup S with gg?(S) ∼= L is obtained.
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1 Introduction

Inverse semigroups have been generalized by dropping regularity. This has led to left ample semi-
groups (introduced in [8] where they are called left type A and subsequently studied in [9, 10, 11, 15]),
weakly left ample semigroups ([12, 13, 14]) and, in this paper, guarded semigroups.

Each of these structures can be characterized by how they embed in a semigroup of partial trans-
formations. Let Pfn(X) denote the monoid of partial transformations X → X with composition
x(fg) = (xf)g, (x ∈ X). Denote the submonoid of injective partial transformations by IX . For
f ∈ Pfn(X), let dom(f) = {x ∈ X : xf is defined}. For A ⊂ X the guard of A is ggA ∈ IX

with dom(ggA) = A, xggA = x, (x ∈ A). A subset S ⊂ Pfn(X) is closed under guards if
f ∈ S ⇒ ggdom(f) ∈ S and S is replete if f ∈ S and f2 = f ⇒ f is a guard. Note that IX is
replete.

The following results are well known.

Proposition 1.1 S is an inverse semigroup if and only if, for some X, S is isomorphic to a
subsemigroup of IX which is closed under inverses.

Proposition 1.2 S is a left ample semigroup if and only if, for some X, S is isomorphic to a
subsemigroup of IX which is closed under guards.

Proposition 1.3 S is a weakly left ample semigroup if and only if, for some X, S is isomorphic to
a replete subsemigroup of Pfn(X) which is closed under guards.
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Notice that in IX , ggdom(f) = ff−1. It follows that inverse ⇒ left ample ⇒ weakly left ample.

While repleteness is unavoidable in IX , it is a restrictive condition for subsemigroups of Pfn(X),
so it is natural to ask which semigroups are a guard-closed subsemigroup of Pfn(X) with no replete-
ness condition. At first glance, the question seems uninteresting since the endomorphism monoid of
X (of total transformations) is guard-closed (because each guard is the identity transformation) so
that every monoid can be so embedded.

But there is another way to look at this. Each weakly left ample semigroup admists a canonical
unary operation x 7→ x+ which abstracts the guard operator f 7→ ggdom(f) . Denote by V the variety
of universal algebras (S, ·, ) where (S, ·) is a semigroup and x 7→ x is an arbitrary unary operation.
With x = x+, left ample and weakly left ample constitute quasivarieties of V ([14, Lemmas 2.2, 2.3]).
The revised question is this: which algebras in V are isomorphic to a guard-closed subsemigroup of
Pfn(X) for some X?

This question we answer successfully: guarded semigroups, a variety in V determined by four
equations. The prototypical example is Pfn(X) with f = ggdom(f). Extremal examples are monoids
where x is constant and semilattices where x = x.

We show in Proposition 2.17 that a weakly left ample semigroup with x = x+ is a guarded
semigroup.

A V-morphism f is gg-idempotent-separating if x 6= y ⇒ x f 6= y f . For weakly left ample
semigroups, this is the same as idempotent-separating. The resulting theorem of McAlister type
(Theorem 4.6 below) is as follows: Every guarded semigroup S is a gg-idempotent-separating image
of a guarded subsemigroup H of a semidirect product of a monoid with a semilattice and such H
may be taken finite if S is. Say that a guarded semigroup is gg-proper if given x = y, e = e, ex = ey
then x = y. For left ample semigroups this coincides with proper. In the covering theorem just
given, H is gg-proper.

If S is a guarded semigroup then S1 with 1 = 1 is again a guarded semigroup, so it is fair to say
that guarded semigroups with a unit constitute a broad class. The even broader class of guarded
semigroups with a given left unit u can be axiomatized as a variety of algebras (S, ·, u, ?) with (S, ·, u)
a semigroup with left unit and (S, ?) a right normal band subject to three further axioms. This leads
to the concept of a banded semigroup which is part of the structure of any guarded semigroup.

Banded semigroups are semigroups with additional structure. In Theorem 8.10 below, we are
able to characterize those semigroups which admit a banded structure as precisely the split strong
semilattices of right zero semigroups.

Every guarded semigroup has a natural partial order. In Theorem 3.7 we show that, while a
semigroup can be a guarded semigroup in more than one way, an ordered semigroup admits at most
one guarded semigroup structure whose natural order coincides with the given order.

A banded semigroup B also has a natural partial order and a canonical subset gg ? (B) which is a
meet semilattice under this order. Given an arbitrary meet semilattice L, we show in Theorem 9.1
how to construct the general solution B of gg ? (B) ∼= L.

On an arbitrary semigroup S, Green’s R-order induces a topology by virtue of which S1 is a
left topological monoid. As does any left topological monoid, such S1 acts naturally on the union
semilattice of the closures of finite sets. Any semidirect product of a semilattice with a monoid has a
natural guard structure and the free guarded semigroup generated by S is a guarded subsemigroup
of the semidirect product resulting from the S1-action just given. In particular, the free guarded
semigroup generated by a set obtains by letting S be the free semigroup generated by X.

Many questions remain open. A few are discussed at the end of the paper.

We thank the referee for valuable advice.

Added in proof: We have recently learned that guarded semigroups were considered (without
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proofs) in a paper by Batbedat in Springer Lecture Notes in Mathematics 855, 1981, and that
Theorem 4.1 below was proved by Jackson and Stokes in this journal, 62, 2001. A forthcoming
paper with Robin Cockett will provide details.

2 Guarded Semigroups

The notion of a guarded semigroup arises by adapting the axioms for a restriction category of
Cockett and Lack [2]. Their axioms (R.1,...,R.4) are given below as (gg.1,...,gg.4), but note that we
have reversed the order of composition to be consistent with the literature that we have cited. Their
paper also develops the elementary consequences of the axioms. Other overlap between the two
papers is explicitly cited below.

The most powerful of the axioms is (gg.4). We believe the first occurrence in the semigroup
literature is in [8] where it appears in the weaker form ae = ae a when e is idempotent in a context
where necessarily e = e. In the category literature, the axiom first appears in [4].

Definition 2.1 A guard operator x 7→ x on a semigroup S satisfies the three equations

(gg.1) xx = x

(gg.2) x y = y x

(gg.3) x y = x y

The expected fourth axiom (gg.4) will be given shortly. The numbering (gg.5), (gg.6), ... will be
used for basic immediate consequences of the axioms.

We have favored the Cockett and Lack notation x rather than the x+ which is used in the
literature cited because of an anticipated interaction with the theory of lattice-ordered groups ([3])
where the notation x+ = x ∨ 1 is well-established. This work will appear elsewhere.

Proposition 2.2 A guard operator satisfies the additional equations

(gg.5) x x = x

(gg.6) xy x = xy

(gg.7) x = x

(gg.8) x y = x y

Proof (gg.5) x x = x x (gg.3) = x (gg.1);

(gg.6) xy x = x xy (gg.2) = xxy (gg.3) = xy (gg.1)

(gg.7) x = x x (gg.5) = x x (gg.3) = x x (gg.2) = x (gg.1)

(gg.8) x y = x y (gg.3) = x y (gg.7) 2

By the preceding,
gg(S) = {x : x ∈ S} = {x ∈ S : x = x}

is a semilattice with infimum xy. Elements of gg(S) are guards.

Definition 2.3 For a guard operator on a semigroup, say that x is deterministic if for all y

x y = xy x
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Example 2.4 Let Rel(X) be the semigroup of all relations R ⊂ X ×X with the usual composition

RS = {(x, z) : (∃y) (x, y) ∈ R, (y, z) ∈ S}

Let xR denote {y : (x, y) ∈ R} and define

R = {(x, x) : xR 6= ∅}

It is routine to see that Rel(X) is a semigroup with guard operator R. R is deterministic if and
only if R is a partial transformation, that is, xR has at most one element for all x. To check this,
first assume that R is deterministic and that (x, y), (x, z) ∈ R. If S = {(y, y)}, (x, x) ∈ RS so that
(x, z) ∈ RS R = RS which gives that y = z. Conversely, if R is a partial transformation then, for
all S, (x, y) ∈ RS R ⇔ xRS 6= ∅ and y = xR ⇔ (x, y) ∈ RS.

Definition 2.5 Let S be a semigroup with guard operator. A subset A ⊂ S is gg-full if gg(S) ⊂ A.

Proposition 2.6 Let S be a semigroup with guard operator. Define

det(S) = {x ∈ S : x is deterministic}

Then det(S) is a gg-full subsemigroup of S.

Proof For x, y ∈ S, x y = x y x (semilattice) = x y x (gg.3), and this shows gg-full. For x, y, z ∈ S,

(xy) z = x(y z) = x(yz y) = xyz xy

shows xy ∈ det(S) if x, y ∈ det(S). 2

We are ready for the main definition of the paper.

Definition 2.7 A guarded semigroup, gg-semigroup for short, is a semigroup with guard oper-
ator for which every element is deterministic. Thus (gg.1,...,gg.4) axiomatize gg-semigroups, where

(gg.4) x y = xy x

If S, T are gg-semigroups, a semigroup homomorphism f : S → T is a gg-homomorphism if also
x f = xf . A gg-subsemigroup H of a gg-semigroup also satisfies x ∈ H ⇒ x ∈ H.

gg-semigroups and gg-homomorphisms constitute an equationally-definable class with one binary
operation and one unary operation. We hence denote this variety by GS. A gg-monoid is a gg-
semigroup with unit 1. The corresponding gg-monoid homomorphisms also satisfy 1f = 1, and
we denote this variety as GM.

Lemma 2.8 In any guarded semigroup, the following equation holds:

(gg.9) x y = xy

Proof By (gg.4, gg.3, gg.6), x y = xy x = xy x = xy. 2

Example 2.9 It is evident from Proposition 2.6 that for any semigroup S with guard operator,
det(S) is a gg-semigroup. In the context of Example 2.4 this gives the gg-semigroup Pfn(X) with
f = gg

Dom(f)
.
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We note that in a gg-monoid, 1 = 1 1 = 1.

The forgetful functor from monoids to semigroups has a left adjoint which maps S to S1. This is
obvious. The same construction produces the left adjoint of the forgetful functor from GM to GS :
if S is a guarded semigroup, S1 is a guarded monoid defining 1 = 1. Thus one can work with either
guarded semigroups or guarded monoids, depending on convenience.

Given a gg-semigroup in which x is constant, (∃u ∀x) x = u, u is necessarily a monoid unit as
follows. ux = xx = x, xu = xu = xux = ux = x.

Example 2.10 An arbitrary monoid is a gg-monoid under the definition x = 1, as is routinely
checked.

We say a gg-semigroup is a monoid if x is constant.

Example 2.11 An arbitrary commutative band is a gg-semigroup if x = x.

We say such a gg-semigroup is a semilattice. Clearly, a gg-semigroup is a semilattice if and only
if gg(S) = S.

Example 2.12 Every inverse semigroup is a guarded semigroup with x = xx−1.

A gg-semigroup is an inverse semigroup if its underlying semigroup is and x = xx−1.

Proposition 2.13 (cf. [2, Pages 239–240]) Let S be a gg-semigroup. Then S has a largest inverse
subsemigroup, namely

I(S) = {x ∈ S : (∃ a ∈ S) xax = x, xa, ax ∈ gg(S)}

and the set E(I(S)) of idempotents of I(S) coincides with g(S) so that I(S) is gg-full in particular.

Proof Let xax = x, yby = y, xa, ax, yb, by ∈ gg(S) so that x, y are typical elements of I(S). Then

xy(ba)xy = x(yb)(ax)y = x(ax)(yb)y = xy

and
xyba = x yb a = xyb xa = xyb xa ∈ gg(S)

Similarly, baxy ∈ gg(S). This shows I(S) is a subsemigroup. Let u2 = u ∈ I(S) and choose a with
uau = u, ua, au ∈ gg(S). Define b = aua, so that b, u are inverse. We have ub = uaua = ua ∈ gg(S)
and bu = auau = au ∈ gg(S). Thus b = aua = (au)(ua) ∈ gg(S). In particular, b2 = b so
u = (ub)(bu) ∈ gg(S). Thus I(S) as a semigroup is a regular semigroup in which idempotents (being
guards) commute, and hence is an inverse semigroup. For x ∈ S,

x = xx−1x = xx−1 x = xx−1 x = xxx−1 = xxx−1 = xx−1 = xx−1

so I(S) as a gg-semigroup is an inverse subsemigroup. As every idempotent of I(S) has form xx−1,
it follows E(I(S)) = gg(S). Finally, let H be an inverse subsemigroup of S. For x ∈ H, xx−1x = x
and xx−1 = x ∈ gg(S). Replacing x with x−1, x−1x ∈ gg(S). This shows H ⊂ I(X). 2

From the definition of I(S), it is clear that if the gg-semigroup S is a monoid, I(S) is the group
of units of S. On the other hand, if S is a semilattice then I(S) = S.

Proposition 2.14 Let S be a gg-semigroup. Then the semigroup center Z(S) is a gg-subsemigroup.
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Proof Let x ∈ Z(S). Then for all a ∈ S,

a x = axa (gg.4) = xa a (x ∈ Z(S))
= x aa (gg.9)
= a xa (x ∈ Z(S)) = a x a (gg.3)
= x aa (gg.2) = x a (gg.1)

so, having used all four axioms to show it, x ∈ Z(S) as well. 2

We conclude this section by characterizing weakly left ample semigroups as guarded semigroups.
Similar results for inverse semigroups and left ample semigroups will be provided as Propositions
3.8, 4.3.

Various characterizations of weakly left ample semigroups exist. We take [12, Page 723] as our
definition.

Definition 2.15 A semigroup equipped with a unary operation x is a weakly left ample semi-
group if the following equations and equational implications hold.

(wla.1) xx = x

(wla.2) xx = x

(wla.3) idempotents commute

(wla.4) x2 = x, xy = y ⇒ x y = y

(wla.5) x = y ⇒ zx = zy

(wla.6) x2 = x ⇒ yx = yx y

Although not obvious from the above definition, a semigroup can be weakly left ample in at most
one way. If a R̃ b means (∀ e ∈ E(S)) ea = a ⇔ eb = b then R̃ is an equivalence relation and x is
the unique idempotent in the R̃-class of x. Note, however, that we prove the next proposition using
only (wla.1,...,wla.6).

Definition 2.16 A gg-semigroup is replete if E(S) = gg(S), that is, if every idempotent is a guard.

Proposition 2.17 Let S be a semigroup with unary operation x. Then S is weakly left ample if
and only if S is a replete gg-semigroup.

Proof First assume (wla.1,...,wla.6) hold. Let e ∈ E(S). As e2 = e, e e = e, so e = e e = e e = e.
In particular, x = x. We can now check the gg-semigroup axioms. (gg.1) is (wla.2), (gg.2) follows from
(wla.1, wla.3) and (gg.4) is immediate from (wla.1, wla6). For (gg.3), x = x ⇒ x y = x y (by (wla.5))
and this is x y because (wla.3) implies that the product of idempotents is idempotent. Conversely,
let S be a gg-semigroup with E(S) = gg(S). (wla.1, wla.2, wla.3, wla.6) are clear. For (wla.4), if
xy = y with x = x, x y = xy = x y = xy = y. For (wla.5), if x = y then zx = z x = z y = zy. 2

3 The Natural Order

A semigroup can be a gg-semigroup in more than one way. For example, Pfn(X) admits f = gg
Dom(f)

and f = idX as distinct guarded semigroup structures. We show in this section, however, that
gg-semigroups are a class of ordered semigroups.
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Definition 3.1 Let S be a gg-semigroup. The natural order on S is

x ≤ y ⇔ x y = x

Restricted to I(S), the natural order is the usual one for inverse semigroups. Restricted to gg(S)
it is also the usual order on idempotents.

Proposition 3.2 ([2, Section 2.1.4]) The natural order is a compatible partial order and gg-homomorphisms
are monotone.

Proof x ≤ x by (gg.1). If x ≤ y ≤ x then

x = x y = x y x = y x x = y x = y

which gives antisymmetry. If x ≤ y ≤ z then

x z = x y z = x y z = x y = x

so x ≤ z. Fix a and let x ≤ y. Then

xa ya = xaxya (gg.6) = xaxa = xa

shows xa ≤ ya. Further,
ax ay = a xy = ay

so ax ≤ ay. This completes the proof that ≤ is a compatible partial order. If f : S → T is a
gg-homomorphism and x ≤ y in S then xf yf = (x y)f = xf so xf ≤ yf and f is monotone. 2

Mitsch [24] defines a partial order ≤M on an arbitrary semigroup by

x ≤M y ⇔ (∃ t, u ∈ S1) x = ty = yu, tx = x

If x ≤ y, set t = x to get x = ty = tx. This begs for a comparison of the two orders. For a monoid as
in Example 2.10, x ≤ y ⇔ x = y whereas x ≤M y is often nontrivial. In Pfn(X), if g is a constant
total transformation and if ∅ 6= f < g, no h exists with f = gh so f 6≤M g. In general, ≤M is not
a compatible partial order. Note, also, that ≤M is determined by the semigroup structure alone
whereas ≤ is not. So, one concludes in the main, that ≤ and ≤M behave quite differently.

Observe that (gg.6) asserts that xy ≤ x.

Generalizing the terminology of [23], we have

Proposition 3.3 The natural order on a gg-semigroup is amenable, that is, x ≤ y ⇒ x ≤ y.

Proof x y = x y = x y = x. 2

Proposition 3.4 Let S be a semigroup, e ∈ gg(S), A = {x : x = e}. Then A is discretely ordered
under the natural order.

Proof Let x, y ∈ A, x ≤ y. Then x = x y = y y = y. 2

Definition 3.5 Let (X,≤) be a poset, A ⊂ X. A is a lower set if x ≤ a with a ∈ A implies x ∈ A.
Dually, A is an upper set if a ≤ x with a ∈ A implies x ∈ A.

Proposition 3.6 Let S be a gg-semigroup, H a gg-full gg-subsemigroup of S. Then H is a lower set.
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Proof Let x ≤ h with h ∈ H. Then as x = xh and x ∈ H, x ∈ H. 2

Recall that the negative cone of a partially ordered semigroup is {x : ∀ y xy ≤ y, yx ≤ y}.

Theorem 3.7 Let S be a gg-semigroup. Then gg(S) is the negative cone of S. Moreover,

x = Min{e ∈ gg(S) : ex = x}

so the guard operator is determined by its natural order.

Proof Because x y y = x y y = x y, x y ≤ y. Also, y x ≤ y because y x y = yx y (gg.9) = y x.
Conversely, if x is in the negative cone then x = xx ≤ x so, by Proposition 3.4, x = x. This shows
that the negative cone is precisely gg(S). If e ∈ gg(S) with ex = x then e x = e x = e x = ex = x, so
x ≤ e. 2

The preceding theorem establishes GS as a subcategory of the category of partially ordered
semigroups and monotone homomorphisms, although it is not a full subcategory.

Notice that in any guarded semigroup, gg(S) is a lower set. For this is true of the negative cone
in any partially ordered semigroup.

We next apply the natural order to characterize inverse semigroups within guarded semigroups.

Proposition 3.8 Let S be a gg-semigroup. Then S is an inverse semigroup if and only if S is regular
and replete.

Proof That an inverse semigroup is regular is clear and, since all idempotents have form xx−1 = x
for some x, it is replete as well. Conversely, if S is regular and E(S) = gg(S), idempotents commute
so that the underlying semigroup of S is inverse, but we must also prove that x = xx−1. To that
end, as x =

∧
{e : e2 = e, ex = x}, as xx−1x = x, and as xx−1 is idempotent, x ≤ xx−1. Further,

xx−1 x = xx−1x−1 = x(xx)−1 = xx−1

gives xx−1 ≤ x. 2

4 Fundamental Structure Theorems

The following Wagner/Preston theorem (at least for gg-monoids) appears in [2, Theorem 3.9] as a
corollary of a much more extensive theorem for categories. We offer here a straightforward proof in
the style of the usual theorem for inverse semigroups.

Theorem 4.1 Every gg-semigroup S is isomorphic to a gg-subsemigroup of Pfn(S).

Proof Define ρ : S → Pfn(S), a 7→ ρa by

x ρa =
{
xa if x ∈ Da

⊥ otherwise

where ⊥ means “undefined” and Da = Dom(ρa) is yet to be determined. As ρ is to preserve guards,
ρa must be the same as ρa. Thus xρa is xa for x ∈ Da and xρa is x for x ∈ Da. This strongly
suggests that we define

Da = {x : x a = x}
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and we do so. Then Da = {x : x a = x} = Da and so ρ preserves guards. Since x(ab) = (xa)b,
ρab = ρa ρb providing both transformations have the same domain. Now

x ρab is defined ⇔ x ab = x

x ρa ρb is defined ⇔ x a = x and x a b = xa

First suppose that x ρab is defined. Then x a = x ab a = x ab = x and x a b = x aba = xa, so x ρa ρb

is defined. Conversely, suppose that x ρa ρb is defined. Then

x ab = xabx = xa b x = xax = x ax = xx = x

Thus ρ is a gg-homomorphism and it remains only to show ρ is injective. Let ρa = ρb so that Da = Db

and xa = xb for x ∈ Da. As a a = a, a ∈ Da. Thus a = a a = a b which shows a ≤ b. Symmetrically,
b ≤ a. 2

For inverse semigroups, the proof of the above theorem is similar, using Da = Sa−1. Noting that
a = aa−1, it is routine to check that Sa−1 = {x : x a = x}. Thus for a guarded semigroup that
happens to be an inverse semigroup, the usual proof of the Wagner/Preston theorem is obtained
from the proof above, although one has to further check closure under inverses.

Definition 4.2 A left ample semigroup is a gg-semigroup isomorphic to a gg-subsemigroup of the
gg-semigroup IX of injective partial transformations.

Proposition 4.3 A gg-semigroup is left ample if and only if it satisfies the equational implication

x a = x, y a = y, xa = ya ⇒ x = y

Proof Suppose f, g, h ∈ IX with f h = f, g h = g, fh = gh. Let xf be defined. As f h = f ,
xfh is defined so that xfh = xgh. As h is injective, xf = xg. This shows f ≤ g. Symmetrically,
g ≤ f , so f = g. Thus the equational implication holds for IX , hence for any left ample semigroup.
Conversely, consider the embedding ρ of Theorem 4.1. Let xρa, yρa be defined and equal so that
x a = a, y a = y, xa = ya. By hypothesis, x = y. Thus ρ takes values in IX . 2

A similar description of left ample semigroups as a quasivariety appears in [14, Lemma 2.2].

Semidirect products of appropriate monoids with semilattices have played a role on several fronts:
free inverse semigroups [25], proper inverse semigroups [21, 22] and other proper semigroups ([7, 9]
to cite but two). The same will be true for gg-semigroups. We begin with the basic construction.

Let L be a commutative band so that L is an inf semilattice with respect to x ≤ y ⇔ xy = x and
a sup semilattice with respect to x ≤ y ⇔ xy = y. Both interpretations will arise naturally later.
Let S be a monoid acting on L on the left via

τ : S × L → L, (s, e) 7→ s · e

that is, the following equations hold.

(act.1) (st) · e = s · (t · e)

(act.2) 1 · e = e

(act.3) s · (ef) = (s · e)(s · f)

The resulting semidirect product of L with S is the semigroup structure on L × S given by

(e, s)(f, t) = (e(s · f), st)

It is well known that this is a semigroup, and we denote it as L×τ S, dropping the subscript when
it is clear from context or irrelevant.
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Proposition 4.4 A semidirect product L× S is a gg-semigroup if (e, s) = (e, 1).

Proof (gg.1) (e, s) (e, s) = (e, 1)(e, s) = (e(1 · e), 1 s) = (e, s).

(gg.2) (e, 1)(f, 1) = (ef, 1) = (fe, 1) = (f, 1)(e, 1).

(gg.3) (e, s) (f, t) = (e, 1) (f, t) = (ef, 1) = (e, s) (e, t).

(gg.4) (e, s) (f, t) = (e, s)(f, 1) = (e(s·f), s) = (e(s·f)(1·e), s) = (e(s·f), 1) (e, x) = (e, s) (f, t) (e, s).
2

Definition 4.5 A gg-homomorphism ψ : S → T is gg-idempotent separating if e 6= f ∈ gg(S) ⇒
eψ 6= fψ. If ψ even induces an isomorphism gg(S) ∼= gg(T ) then ψ is strong gg-idempotent separating.

The following is a covering theorem of McAlister type for guarded semigroups. It asserts that ar-
bitrary gg-semigroups can be built from the extremal cases, monoids (only one guard) and semilattices
(every element is a guard).

Theorem 4.6 Every gg-semigroup S is the image under a strong gg-idempotent separating gg-homomorphism
of a full gg-subsemigroup H of a semidirect product of a monoid with a semilattice. Moreover, H can
be taken finite if S is.

Proof If S is a gg-semigroup, S1 acts on the semilattice gg(S) by (s, e)τ = s · e = se. We check the
action equations (act.1, act.2, act.3). (st) · e = ste = ste = s · (t · e); 1 · e = 1e = e; s · (ef) = sef
whereas (s · e)(s · f) = se sf . The two expressions are equal in Pfn(X) because if e = ggB , f = ggC ,
and A = {x : xs is defined, xs ∈ B∩C}, both sides are ggA. But if the equation holds in all Pfn(X)
it must hold in all gg-semigroups. Define

H = {(e, x) ∈ gg(S) ×τ S
1 : e ≤ s}

(more precisely, if s ∈ S, s is the original guard whereas if s = 1, 1 = 1. Hence we use S1 as a monoid,
ignoring the guard structure, to construct the semidirect product but use the guard structure to
define the subset H). If e ≤ s, f ≤ t then (e, s)(f, t) = (esf , st) and, using the amenable property
and (gg.9),

esf ≤ sst = s st ≤ st

so H is a subsemigroup. For e ∈ gg(S), e ≤ 1 = 1 since e1 = e, so (e, 1) ∈ H and H is a full
gg-subsemigroup, finite if S is. Define γ : H → S by

(e, s)γ = es

Then
((e, s)(f, t))γ = (esf , st)γ = e sf st = esft = esft = (e, s)γ (f, t)γ

Also, as e ≤ s,
(e, s)γ = es = es = e = e = (e, 1)γ = (e, s) γ

This shows so far that γ is a gg-homomorphism. Given s, (s, s)γ = s, so γ is surjective. As
(1, e)(1, f) = (1, ef), γ induces an isomorphism gg(H) ∼= gg(S). 2

Corollary 4.7 The class of semidirect products L×τ S, for τ a left action of the monoid S on
the semilattice L, satisfies no equations in the operations xy, x which are not satisfied by all gg-
semigroups. 2
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It is well known that groups constitute a full reflective subcategory of inverse semigroups where
the group reflection of a semigroup S is S/σ for the congruence σ is given by

xσy ⇔ (∃ e) e2 = e, ex = ey

It is obvious that all idempotents are in a single σ-class, so that S/σ is an inverse semigroup with
one idempotent, hence a group. The construction works as well for guarded semigroups, save that
a guarded semigroup with one idempotent is a monoid. The formal statement is as follows, where
a gg-congruence on a gg-semigroup S is a gg-subsemigroup of S × S which is also an equivalence
relation.

Proposition 4.8 Let S be a guarded semigroup. Write xσy if there exists e ∈ g(S) with ex = ey.
Then σ is a gg-congruence and S/σ is the reflection of S in the full subcategory of monoids in GS .

Proof xx = xx shows σ is reflexive, and symmetric is obvious. If e, f ∈ gg(S) and ex = ey,
fy = fz, efx = fex = fey = efy = efz, so σ is an equivalence relation. If xσy choose e ∈ gg(S)
with ex = ey. Let z ∈ S. Then exz = eyz. Also, ze zx = z e x = zex = zey = zey. Thus σ
is a semigroup congruence. Since gg(S) is a subsemilattice, all guards are in one σ-class so σ is a
gg-congruence and S/σ is a monoid. Now consider a gg-homomorphism f : S → M where M is a
monoid. We must show there exists a unique gg-homomorphism ψ in the triangle

S S/σ-θ

M

f
@

@
@
@R

ψ
�

�
�

�	

It is necessary and sufficient to show that if xσy then xf = yf . To that end, if e ∈ gg(S) and ex = ey
then as ef = x f = ef is the unit of M ,

xf = xf ef = (xe)f = (ye)f = yf

2

Example 4.9 Let L be a semilattice and let S be a monoid. For any semidirect product L× S,
(e, s)σ (f, t) ⇔ s = t. Thus the monoid reflection is the projection map L× S → S.

5 Proper Guarded Semigroups

Lemma 5.1 Let S be a gg-semigroup, x, y ∈ S. Then

((∀ e ∈ gg(S)) ex = x ⇔ ey = y) ⇔ x = y

Proof The left side implies the right because x =
∧
{e ∈ gg(S) : ex = x}. Conversely, if x = y and

ex = x then x ≤ e so y ≤ e and ey ≤ y = yy ≤ ey shows ey = y. 2

Definition 5.2 A guarded semigroup is gg-proper if whenever x = y and (∃ e ∈ gg(S)) ex = ey, then
necessarily x = y. S is gg-unitary if gg(S) is an upper set.

gg-proper and gg-unitary coincide with proper and E-unitary for weakly left ample semigroups,
left ample semigroups and inverse semigroups since these are replete. It is known [7, Example 3]
that gg-unitary does not imply gg-proper.
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Proposition 5.3 A gg-proper guarded semigroup is gg-unitary.

Proof Let e ∈ gg(S), e ≤ s. Then s = s and es = es = e. As e ≤ s, e = e ≤ s so, similarly, es = e.
Thus es = es. By gg-proper, s = s. 2

Extremal guarded semigroups are gg-proper. If S is a monoid, gg(S) = {1} so if ex = ey for some
guard e, x = y. If S is a semilattice, x = y ⇔ x = y because x = x. More generally we have

Example 5.4 L× S (L a semilattice, S a monoid) is gg-proper. For (e, s) = (f, t) ⇔ e = f and
∃(g, 1) with (g, 1)(e, s) = (g, 1)(f, t) ⇒ s = t.

It is clear from the definition that gg-proper guarded semigroups form a quasivariety, so any gg-
subsemigroup of a gg-proper semigroup is gg-proper. In particular, Theorem 4.6 shows that every
guarded semigroup is a gg-idempotent separating image of a gg-proper guarded semigroup.

Example 5.5 Let G be a lattice-ordered group. Let S be a submonoid of G and let H be a convex
subgroup of G. By [3, Theorem 8.2], the left coset space G/H is an inf-semilattice with xH ∧ yH =
(x ∧ y)H. S acts on G/H by g · (xH) = (gx)H, as is well known. The resulting semidirect product
S × (G/H) is then a proper gg-semigroup. It is, in fact, left ample because S is right cancellative, as
is easy to check.

6 Free Guarded Semigroups

Cockett and Lack [2] constructed the free restriction category generated by a category, influenced by
Scheiblich’s construction of the free inverse semigroup in [25]. We use the same proof to construct
the free gg-semigroup generated by a semigroup, but present it to show the use of some topological
ideas and to highlight a connection with Green’s R order. Of course, the free gg-semigroup generated
by a set X is just the free gg-semigroup generated by the free semigroup generated by X.

If A is a subset of a topological space, we denote the closure of A by A•. It is well known that
a function f between topological spaces is continuous if and only if A•f ⊂ (Af)• . We pause to
establish two other versions of this which we need.

Lemma 6.1 Let f : X → Y be a function between topological spaces. Then the following conditions
are equivalent to the continuity of f .

(cont.1) A•f ⊂ (Af)•

(cont.2) A• = B• ⇒ (Af)• = (Bf)•

(cont.3) (A•f)• = (Af)•

Proof (cont.1) ⇒ (cont.2): IfA• = B• then (Af)• ⊃ (A•)f = (B•)f ⊃ Bf so that (Bf)• ⊂ (Af)•,
and the reverse inequality symmetrically. (cont.2) ⇒ (cont.3): A• = A•• ⇒ (Af)• = (A•f)•.
(cont.3) ⇒ (cont.1): A•f ⊂ (A•f)• = (Af)•. 2

Example 6.2 Let S be a left topological monoid with unit 1, that is, a monoid equipped with a
topology (no separation axioms assumed!) for which all left multiplications λa, xλa = ax, are
continuous. Let C be the sup semilattice of closed subsets of X, the join being union. Then S acts
on C on the left by

s ·A = (sA)•, where sA = {sa : a ∈ A}
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We check the action axioms. Since λa is continuous it follows from (cont.3) that (s(tA)•)• = (stA)•,
and this is precisely (act.1). Since elements of C are closed, (act.2) is obvious, and (act.3) amounts
to the Kuratowski axiom (A ∪ B)• = A• ∪ B•.

Definition 6.3 Let PO be the category of preordered sets (X,≤) (i.e., ≤ is reflexive and transitive)
and monotone maps (x ≤ y ⇒ fx ≤ fy). Let TOP be the category of topological spaces and
continuous maps. It is known ([19]) that PO is the full subcategory of TOP of all spaces with the
property that every intersection of open sets is open –we call such spaces pospaces.

We review the constructions. Given preordered (X,≤), the pospace topology of (X,≤) has as
its open sets precisely all the lower sets. Conversely, if X is a pospace the corresponding preorder,
called the specialization preorder, is defined by

x ≤ y ⇔ y ∈ {x}• ⇔ x ∈ Uy

where Uy is the intersection of all open neighborhoods of y. As is easily checked, the closed subsets
are just the upper sets. More generally, A• = {x : (∃a ∈ A) x ≥ a}. Note that ≤ is antisymmetric if
and only if the corresponding pospace is T0. While many nontrivial results appear in [19], the facts
stated here are easily established by the reader.

Green’s R order is reflexive and transitive and so induces a pospace as follows.

Proposition 6.4 Let S be an arbitrary semigroup. Then

A• = {y : (∃x ∈ S1), yx ∈ A}

is a Kuratowski closure operator on S. With this topology, S is a left topological semigroup.

Proof The Green order y ≤R z if (∃x ∈ S1) yx = z is reflexive and transitive and satisfies
∀w, y ≤R z ⇒ wy ≤R wz. The given closure formula above is just the closure operator of the
pospace topology. The left multiplications are monotone, as already noted, and so are continuous.
2

We apply the previous proposition to the construction of free guarded semigroups.

Theorem 6.5 ([2, Pages 232–235] Let S be a semigroup. Regard S1 as a left topological monoid via
the green R-order as in Proposition 6.4. Let C × S1 be the semidirect product gg-semigroup resulting
from Proposition 4.4 using the action of Example 6.2. Define

HS = {(A, x) ∈ C × S1 : x ∈ A ∪ {1}, A = F • for some finite F}

Then HS is a gg-subsemigroup and, via the inclusion of the generators η : S → HS, x 7→ ({x}•, x),
HS is the free guarded semigroup generated by the semigroup S.

Proof (A, x) ∈ HS ⇒ (A, 1) ∈ HS so HS is closed under guards. We must check that HS is a
subsemigroup. Composition is given by

(F •, x)(G•, y) = (F • ∪ (xG•)•), xy) = (F • ∪ (xG)•, xy) (cont.3) = ((F ∪ xG)•, xy)

and F ∪ xG is finite. If xy 6= 1 we must prove xy ∈ F • ∪ (xG)•. If x 6= 1 = y, xy = x ∈ F •.
Otherwise, y ∈ G• so xy ∈ xG•. So far, we have shown that HS is a guarded semigroup. We next
show that η is a semigroup homomorphism. For convenience we start writing a• instead of the more
cumbersome {a}•. Since x ∈ (xy)•,

(xη)(yη) = (x• ∪ (xy)•, xy) = ((xy)•, xy) = (xy)η

To complete the proof, we must establish the universal property
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S HS-η

T

f
@

@
@@R

ψ
�

�
��	

that for each guarded semigroup T and semigroup homomorphism f : S → T there exists a unique
gg-homomoprhism ψ : HS → T with η ψ = f . To this end, let F = {x1, . . . , xn} ⊂ S so that a
typical element of HS has form (F •, x). If x 6= 1,

(F •, x) = ({x, x1, . . . , xn}•, x) (as x ∈ F •)
= (x• ∪ x•1 ∪ · · · ∪ x•n, x)
= x1η · · ·xnη (xη)

Similarly, (F •, 1) = x1η · · ·xnη. We are thus forced to define

(F •, x)ψ = x1f . . . xnf (xf)
(F •, 1)ψ = x1f . . . xnf

which establishes uniqueness. We must show that such a definition of ψ is independent of the choice
of F and results in a homomorphism of guarded semigroups which extends f .

If y ∈ F • with y /∈ F = {x1, . . . , xn} ⊂ S, it follows from the definition of the closure operator
that there exist t ∈ S, 1 ≤ i ≤ n with yt = xi ∈ F . As (yt)f = (yf)(tf) ≤ yf , x1f . . . xnf yf =
x1f . . . xnf . Hence if G = {y1, . . . ym} with G• = F • then x1f . . . xnf y1f . . . ymf = x1f . . . xnf .
Arguing symmetrically,

y1f . . . ymf = x1f . . . xnf y1f . . . ymf = x1f . . . xnf

so ψ is well defined.

ψ extends f since xηψ = (x•, x)ψ = xf xf = xf . ψ preserves guards since if x 6= 1, (F •, x)ψ =
(F •, 1)ψ = x1f . . . xnf = x1f . . . xnf xf (as x ∈ F •) = x1f . . . xnf (xf) (gg.3) = (F •, x)ψ. Simi-
larly, (F •, 1)ψ = x1f . . . xnf = x1f . . . xnf = (F •, 1)ψ.

It remains to show ψ is a semigroup homomorphism. If x 6= 1 6= y, F = {a1, . . . , am}, G =
{b1, . . . , bn},

((F •, x)(G•, y))ψ = ((F ∪ xG)•, xy)ψ
= a1f · · ·amf xb1f · · ·xbnf (xy)f

whereas n uses of (gg.4) give

(F •, x)ψ (G•, y)ψ = a1f · · ·amf (xf)b1f · · ·bnf (yf)
= a1f · · ·amf xb1f (xf) b2f · · ·bnf (yf)
. . .

= a1f · · ·amf xb1f · · ·xbnf (xf)(yf)

and these results are the same because f is a semigroup homomorphism. The other cases x = 1 6= y,
x 6= 1 = y, x = 1 = y are similar. 2

For X a set, let X+ be the free semigroup generated by X and let X∗ = (X+)1 denote the free
monoid generated by X.



7 AN ALTERNATE EQUATIONAL DESCRIPTION 15

Corollary 6.6 The free gg-semigroup generated by a set X is the set of all (Q,w) with Q ⊂ X+ finite
and prefix-closed and w ∈ X∗ such that w ∈ Q∪{1} with multiplication (Q,w)(R, v) = (Q∪wR,wv),
guard (Q, r) = (Q, 1) and inclusion of the generators x 7→ ({x}, x).

2

7 An Alternate Equational Description

Recall that a right normal band is a band satisfying xya = yxa.

Definition 7.1 Let GS lu be the variety of guarded semigroups with specified left unit u, ux = x for
all x. Homomorphisms must preserve u.

Because S1 has 1 as left unit for any gg-semigroup S, a characterization of this variety is very nearly
a characterization of guarded semigroups. We now determine GS lu entirely with semigroups and no
explicit guard. The trick is to use two semigroup structures!

Proposition 7.2 GS lu may be presented as the variety of all (S, ·, u, ?) where (S, ·) is a semigroup
(write xy for x · y), u is a left unit for (S, ·) and (S, ?) is a right normal band subject to the three
equations

(g?.1) u ? x = x

(g?.2) (y ? z)x = y ? (zx)

(g?.3) x(y ? u) = (xy) ? x

Proof First let S be a gg-semigroup and define

x ? y = x y

Then (x ? y) ? z = xyz = xy z = x ? (y ? z); x ? x = xx = x; x ? y ? a = xy a = y x a = y ? x ? a, so
(S, ?) is a right normal band. Observe

x = ux = uxu = xu

Setting x = u, u = uu = u. We check (gg?.1, gg?.1, gg?.3). u ? x = uy = uy = y; (y ? z)x = yzx =
y ? (zx); x(y ? u) = xyu = xy = xyx = (xy) ? x. Conversely, consider (S, ·, u, ?) with (S, ?) a right
normal band such that (gg?.1, gg?.1, gg?.3) hold. Define

x = x ? u

and check (gg.1,...,gg.4). xx = (x ? u)x = x ? (ux) = x ? x = x; xy = (x ? u)(y ? u) = x ? (u(y ? u)) =
x ? y ? u = y ? x ? u (right normal) = . . . = y x; x y = ((x ? u)y) ? u = x ? (uy) ? u = x ? y ? u = (as
above) x y; xy = x(y ?u) = (xy)?x = (xy)? (ux) = (xy ?u)x = xy x. To conclude the proof we must
show these passages are inverse. If (S, ·, u, (-) 7→ (S, ·, u, ?) 7→ (S, ·, u, (̂-)) then x̂ = x ? u = xu = x.
If (S, ·, u, ?) 7→ (S, ·, u, (-)) 7→ (S, ·, u, ??) then x??y = xy = (x ? u)y = x ? u ? y = x ? y. 2



8 BANDED SEMIGROUPS 16

8 Banded Semigroups

As we have seen in the previous section, if a gg-semigroup has a left unit u, the auxiliary operation
x ? y = xy is a right normal band with x = x ? u. Even without a left unit, we can consider the
variety in binary x ? y and unary x satisfying all equations in these operations which hold in all
gg-semigroups. The algebras in this variety are called banded semigroups. We begin with a formal
definition in terms of four equations which, it turns out, entail all the others. Later in the section we
provide a characterization of those bands (S, ?) which admit a the structure of a banded semigroup.

Definition 8.1 A banded semigroup, gg?-band for short, is (S, ?, ) where (S, ?) is a semigroup
and x 7→ x is a unary operation subject to the previous equations (gg.1, gg.2, gg.3) as well as

(gg?.1) x ? y = x ? y

The variety of all gg?-bands will be denoted G?B. Homomorphisms here preserve x ? y and x and we
call them gg?-homomorphisms. A gg?subband of a gg?-band is a subsemigroup closed under x and
such is gg?-full is it contains x for arbitrary x.

Every guarded semigroup induces a canonical banded semigroup structure on the same set as
follows.

Proposition 8.2 ? : GS → G?B defined by

?(S, ·, ) = (S, ?, ), x ? y = xy

is a well-defined functor.

Proof For (gg.1, gg.2, gg.3), x ? x = xx = xx = x; x ? y = x y = x y = y x = · · · = y ? x;
x ? y = xy = xy = x y = x?y. (gg?.1) is trivial as x?y = xy = xy = x?y. If f is a gg-homomorphism,
(x ? y)f = (xy)f = xf (yf) = xf ? yf . 2

Proposition 8.3 A gg?-band is a right normal band and the following hold:

(gg?.2) x = x

(gg?.3) x ? y = x ? y

(gg?.4) x ? y = y ? x

Proof x ? x = x ? x = x; x ? y ? a = x ? y ? a = x ? y ? a = y ? x ? a = · · · = y ? x ? a, so S
is a right normal band. (gg?.2) is the same as (gg.7) which follows from (gg.1,gg.2,gg.3). For (gg?.3),
x ? y = x ? y = x ? y; For (gg?.4), x ? y = x ? y = y ? x = y ? x. 2

If S, T are gg?-bands, the set [S, T ] of all gg?-homomorphisms from S to T is a banded semigroup
with the pointwise operations, as is routine to check. It follows from the theorem of Linton [18]
that G?B is a closed category with the appropriate tensor product and that the left and right inner
translations of S as well as x 7→ x are gg?-endomorphisms.

For S a gg?-band, denote

gg?(S) = {x : x = x} = {x : x ∈ S}

By the preceding proposition, gg?(S) is a semilattice with infimum x ? y. The semilattice gg?(?S) of
?S coincides with gg(S).
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Proposition 8.4 Let (S, ?, ) be a gg?-band. Then

x ≤ y ⇔ x ? y = x

is a compatible partial order on S satisfying

(gg?.5) a ? x ≤ x

(gg?.6) x = y and x ≤ y ⇔ x = y

With respect to this order, every semigroup homomorphism between gg?-bands is monotone. More-
over, the negative cone N satisfies

N = Z(S, ?) ⊂ gg?(S)

where Z(S, ?) is the semigroup center.

Proof Since x ≤ y ⇔ xy = x, the proof that ≤ is a partial order and that x ≤ y ⇔ a ? x ≤ a ? y
from Proposition 3.2 works here as well since (gg.4) is not used there. To see x ? a ≤ y ? a use
right normality: x ? a ? y ? a = x ? y ? a = x ? a. (gg?.5) is trivial: a ? x ? x = a ? x. For
(gg ? .6), x = x ? y = x ? y = y ? y = y. If f is a semigroup homomorphism and x ≤ y then
x ? y = x ⇒ xf = (x ? y)f = (xf) ? (yf) so that xf ≤ yf . By (gg?.5), N = {a : ∀x, x ? a ≤ x}.
If a ∈ N then a = a ? a ≤ a so a = a by (gg?.6) and this shows N ⊂ gg?(S). For a ∈ N , x ∈ S, as
x ? a ≤ x we have

x ? a = x ? a ? x = a ? x ? x = a ? x

so a ∈ Z(S, ?). If a ∈ Z(S, ?), x ∈ S, then x ? a ? x = x ?x ? a = x ? a so x ? a ≤ x and a ∈ N . 2

Example 8.5 If the gg-semigroup S is a semilattice then ?S = S, that is, x ? y = xy = xy. Thus
a semilattice satisfies all five equations (gg.1,...,gg.4, gg?.1). Conversely, if (S, ?, ) satisfies all five
equations then it is a semilattice.

To see this, first observe

x ? y ? x = x ? y ? x = x ? y = x ? y = y ? x = · · · = y ? x ? y

But then,
x ? y = x ? y ? y = y ? x ? y = x ? y ? x = y ? x ? x = y ? x

and S is a commutative band. Moreover,

x = x ? x = x ? x = x ? x = x

so S is a semilattice.

Example 8.6 Let S a any monoid qua gg-semigroup with x = 1. Then ?S is a right zero semigroup
since x ? y = xy = 1 y = y

Indeed, for any set S with x0 ∈ S, x ? y = y, x = x0 gives a gg?-band. If a gg?-band is right zero then
x must be constant since

x = y ? x = x ? y = y

Semilattices and right zero gg?-bands generate the variety of all gg?-bands. This is an immediate
corollary of the construction of the free gg?-band in the proof of the next proposition.
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Proposition 8.7 Let X be a set and set X⊥ = X ∪{⊥} where ⊥/∈ X. Regard X⊥ as the right zero
gg?-band with x =⊥. Let P0(X) be the semilattice of finite subsets of X under union. Then

J(X) = {(A, x) ∈ P0(X) ×X⊥ : x ∈ A ∪ {⊥}}

is a gg?-subband of the product band. Further, with respect to the inclusion

η : X → J(X), x 7→ ({x}, x)

J(X) is the free gg?-band generated by X.

Proof If (A, x), (B, y) ∈ J(X) then

(A, x)(B, y) = (A ∪B, y)

As y ∈ B ∪ {⊥}, y ∈ A ∪B ∪ {⊥}. Also, (A, x) = (A, x) = (A,⊥) with ⊥∈ A ∪ {⊥}. Thus, J(X)
is a full gg?-subband of P0(X) ×X⊥. Now, let S be an arbitrary gg?-band and let f : X → S be any
function. We must show that there exists unique gg?-homomorphism ψ : J(X) → S with ηψ = f .
Consider (A, x) ∈ J(X). If x ∈ A write A = {a1, . . . , an−1, x} and observe that

(A, x) = ({a1},⊥) · · · ({an−1},⊥) ({x}, x) = a1 η · · · an−1 η (xη)

which forces
(A, x)ψ = a1 f · · · an−1 f (xf)

Similarly, if x =⊥, necessarily
(A,⊥)ψ = a1 f · · · an f

where A = {a1, . . . , an}. It is routine to check that such ψ is a gg?-homomorphism. 2

We are now able to prove the promised theorem connecting the equational theory of gg?-bands
to guarded semigroups.

Theorem 8.8 Let E be the set of all equations in the operations x ? y and x which hold for ?S as S
ranges over all guarded semigroups. Let F be the set of all equations in x ? y and x which hold for
all gg?-bands. Then E = F .

Proof F ⊂ E by Proposition 8.2. For the converse it suffices to show J(X) has form ?S since then
all equations in E hold for all free gg?-bands and hence for all gg?-bands. Let X have any semigroup
structure, left or right zero for example. Form the monoid X1 and let X⊥ = X1 with ⊥= 1. As
is true for any monoid, X1 acts on P0(x) (the finite subsets of X, recall) by x · A = xA, where
xA = {xa : a ∈ A}, as is routine to check. This gives rise to the semidirect product gg-semigroup
P0(X) × X1 with operations

(A, x)(B, y) = (A ∪ xB, xy)
(A, x) = (A, 1)

But observe that ?(P0(X) × X1) has multiplication

(A, x) ? (B, y) = (A, 1)(B, y) = (A ∪B, y)

which is the product gg?-band structure as in Proposition 8.7. Moreover, J(X) is a gg-subsemigroup
of P0(X) × X1 because if y ∈ B then xy ∈ xB. 2

The semigroups that underlie gg-semigroups do not have very special structure since all monoids
are in this class. It is more interesting to ask which right normal bands can be a gg?-band for
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some x. The theorem of Yamada and Kimura [26] gives that a band is a strong semilattice of
rectangular bands if and only if axya = ayxa. It is known (See [16, Corollary 5.18]) that the right
normal bands are precisely the strong semilattices of right zero semigroups. See [1, Pages 402 ff]
for information about semilattices of right zero semigroups. The next theorem gives necessary and
sufficient conditions in this style for the semigroups at hand.

Definition 8.9 Let the semigroup S be a semilattice of semigroups via a semilattice-valued surjective
homomorphism ψ : S → L. Say that such S is a split semilattice of semigroups if there exists a
homomorphism i : L → S with i ψ = idL.

Up to isomorphism, we may replace L by its image under i so that L is a subsemigroup of S and ψ
is a surjective homomorphism with xψ = x for x ∈ L.

Theorem 8.10 For a semigroup (S, ?), equivalent are

(1) There exists a unary operation x on S making (S, ?, ) a gg?-band.

(2) S is a split strong semilattice of right zero semigroups.

Proof (1)⇒(2): Let L = gg?(S), a semilattice with multiplication as infimum whose partial order
is the restriction of the partial order of Proposition 8.4. Define ψ : S → L by xψ = x. By (gg?.2,
gg?.3), ψ is a semigroup homomorphism and x ∈ L ⇒ xψ = x. For e ∈ L let Se = {x : x = e}.
For x, y ∈ Se, x ? y = x ? y = y ? y = y, so Se is a right zero semigroup. So far, S is
a split semilattice of right zero semigroups. For e ≥ f define ψef : Se → Sf by xψef = f ? x.
As f ? x = f ? x = f ? e = f , this is well-defined. If e ≥ f ≥ g then ψef ψfg = ψeg because
xψef ψfg = (f ? x)ψfg = g ? f ? x = g ? x = xψeg. Each ψef is a semigroup homomorphism because
any function between right zero semigroups is. For x ∈ Se, y ∈ Sf , we evaluate the the Se?f product

(xψe,e?f ) ? (y ψf,e?f ) = y ψf,e?f (right zero) = e ? f ? y = e ? y ? y = e ? y = x ? y = x ? y

This shows that S is a split strong semilattice of right zero semigroups.

(2)⇒(1): Define x = xψ. For x ∈ Se, y ∈ Sf ,

x ? y = (xψe,e?f ) ? (y ψf,e?f ) = (xψe,e?f ) ? (y ψf,e?f ) (right zero) = x ? y

so (gg?.1) holds. As x, x ∈ Sx, x ? x = x by right zero. By semilattice, x ? y = y ? x. Finally, as ψ is
a semigroup homomorphism, x ? y = x ? y = x ? y. 2

Proposition 8.11 Let D be the class of all semigroups (S, ?) characterized in the previous theorem,
that is, for which there exists x 7→ x making S a gg?-band. Then D is not a variety, but the variety
it generates is that of all right normal bands.

Proof The lattice of varieties of bands is well-understood ([5]). The immediate predecessors of
the variety of right normal bands are the right zero semigroups and semilattices. Since clearly D is
contained in neither of these (consider ?S for, say, S = Pfn(X)), D generates all right normal bands.
An example of a right normal band not in D is the free one on two generators, S = {a, b, a ? b, b ?a}.
For if S were a gg?-band with respect to x, for x = a, b, a?b, b?a, x?a is, respectively, a, b?a, b?a, b?a
so the only solution of x ? a = a is x = a and a = a. Similarly, b = b. But as a ? b 6= b ? a whereas
a ? b = b ? a, we have a contradiction.
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9 Banded Semigroups with Given Semilattice

Let L be a fixed meet semilattice. In this section we show how to construct the general banded
semigroup S with gg?(S) ∼= L. We begin with some generalities.

Consider (C, 1) where C is a category and 1 is a chosen terminal object of C. For X an object
of C, we write x ∈ X to abbreviate that x is a morphism x : 1 → X. Such x is called a global
element ofX. The category (C, 1)? has as objects all pairs (X,x) with x ∈ X and has as morphisms
f : (X,x) → (Y, y) all morphisms f : X → Y in C such that xf = y.

Lop is the category whose objects are the elements of L and for which there is at most one
morphism x → y with such existing precisely when x ≥ y. Reflexivity gives identity morphisms
and transitivity gives the composition. For S the category of sets and total transformations, let
SLop

be the usual functor category with functors Lop → S as objects and natural transformations as
morphisms.

Let 1 be a chosen singleton set in S and then choose the functor constantly 1 as a terminal object
of SLop

, also denoted 1. We now show that objects in (SLop

, 1)? construct banded semigroups. For
F ∈ SLop

and e ≥ f ∈ L denote the corresponding function as Fe,f : eF → fF . A a global element
τ ∈ F amounts to a family τe ∈ eF such that whenever e ≥ f , τe Fe,f = τf .

Theorem 9.1 Let (F, τ ) ∈ (SLop

, 1)?. Let S be the disjoint union

S =
∐

(eF : e ∈ L)

and for x ∈ eF define x = τe ∈ eF ⊂ S. For x ∈ eF , y ∈ fF , define

x ? y = y Ff,ef ∈ (ef)F ⊂ S

Then S = (S, ?, ) is a gg?-band with gg?(S) ∼= L and every such gg?-band arises this way.

Proof Let x ∈ eF , y ∈ fF , z ∈ gF . To show associativity,

(x ? y) ? z = (y Ff,ef ) ? z = z Fg,efg

= z Fg,fg Ffg,efg (functor)
= x ? z Fg,fg = x ? (y ? z)

For (gg.1),

x ? x = τe ? x = xFe,e

= x ideF (functor)
= x

For (gg.2),

x ? y = τe ? τf = τf Ff,ef

= τef (τ is natural)
= τfe = y ? x

For (gg.3),

x ? y = x ? y

= τef (as x ? y ∈ (ef)F )
= x ? y (by (gg.2) proof)
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For (gg?.1),

x ? y = y Ff,ef

= τe ? y (as τe ∈ eF )
= x ? y

By construction, L → gg?(S), e 7→ τe is bijective. The proof of (gg.2) showed τe ? τf = τe?f , so this
map is an order isomorphism. Now let S be a gg?-band with gg ? (S) = L. Define eF = {x : x = e}
and, for e ≥ f , Fe,f : eF → fF , x 7→ f ? x. As f ? x = f ? x = f ? e = f , this is well defined.
If e ≥ f ≥ g, xFe?f Ff?g = (f ? x)Ff?g = g ? (f ? x) = (g ? f) ? x = g ? x (as f ≥ g) = xFe,g

so F preserves composition. xFe,e = e ? x = x ? x = x so F is a functor. τe = e is natural as
τeFe,g = f ? e = f = τf . 2

We leave it as an exercise for the reader to show that the above construction establishes an
equivalence of categories between (SLop

, 1)? and the category of banded semigroups S with g ? (S) =
L, where the morphisms of the latter are gg?-homomorphisms which restrict to the identity on L.

10 Open Questions

1. Characterize gg-proper guarded semigroups.

2. Determine for which guarded semigroups, the gg-semigroup natural order coincides with the
Mitsch partial order.

3. Forgetful functors between quasivarieties must have left adjoints. What are explicit construc-
tions for the left adjoints, for example, of the functors ? : GS−→G ? B, gg-proper−→GS ,
GS lu−→GS , Inverse−→GS? What are the surjective reflections for Left Ample−→GS ,
Weakly Left Ample−→GS?

4. Characterize guarded semigroups as a class of partially ordered semigroups.

5. Is there a banded semigroup which is not the underlying banded semigroup of a guarded
semigroup?
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[1] M. Ćirić and S. Bogdanović, Theory of greatest decompositions of semigroups (a survey),
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