Restriction for Semigroups and Categories
First afternoon talk of Calgary workshop
Ernie Manes, June 2, 2006

This handout includes axiom systems useful for the talk, a very small set of definitions in category
theory and a 12-step program to help semigroup theorists who have never studied category theory
to get up to speed. The references at the end will be mentioned in the talk.

Slogan: In the study of semigroups, it is sometimes useful to add some new objects to obtain a
category associated with that semigroup.

Tentative talk outline:

—_

. History of restriction in semigroups.

2. The unusual expressiveness of universal mapping properties.
3. Idempotents: monoids vs. categories.

4. The regular representation is the Yoneda embedding.

5

. Boolean restriction.

I apologize in advance that gf means X Ly 4. Zima category or in a semigroup.

Cockett-Lack axioms for restriction categories [3]. There is a unary restriction operator

f:X—=Y — f:X — X satisfying
(R1) For f: X =Y, ff=f.

(R.2) For f: X -Y,g: X —Z, fg=9f.
gf

(R.3) Forf:X—>Y,g:X—>Z,g__

(R4) For X LoV 2. 2, 5f=f9f.
For pre-restriction, replace (R.4) with
(PR.1) For X 1>V 2. 7, 97 =77.
Restriction = pre-restriction.

Cockett-Guo axioms on range [2]. Starting with a restriction category, add another unary
operator f: X —-Y +— f:Y — Y subject to

(RR.1) For f: X - Y, ?: f
(RR.2) For f: X =Y, ff=Ff.
(RR.3) For X 1oV 2. 7. 5f=3F

(RR.4) For X Lo 2. 7 ¢ f=gf.



Equivalent Schweizer-Sklar axioms for f, f on a semigroup (1967) [21]:

(SS.5) @b = bab.
Here, all but the fifth axiom is self-dual.

Freyd’s axioms on an allegory [7, Chapter 2]

From [7, Page 195] “Allegories...are to binary relations between sets as categories are to functions
between sets”.

An allegory is a category A in which A(X,Y) is a meet semilattice for which composition on either
side is monotone, together with order isomorphisms A(X,Y) — A(Y, X), R — R°, subject to the
modular law (SR)NT C S(RN S°T).

For R: X — Y, define R: X — X by R=1n (R°R). R is a map if R is total (R = 1) and

deterministic (RR° C 1). A is tabular if for every R: X — Y there exist maps X Aoz 9y
with R = gf°.

Axioms for a weakly left F-ample semigroup (see [8]). Given semigroup S with a semilattice
E of (not necessarily all) idempotents, write a R b to mean Ve € E ae = a < be = b.

(WLEA.1) Yae Sde€e FE aRe. Such e is provably unique; call it @.
(WLEA.2) Va,b,c € S aRb = acRbe.

(WLEA.3) Ya,b € S ba=aba.

For a semigroup S, F = {Z : z € S} establishes a bijection between T satisfying (R.1,...,R.4) and E
rendering S weakly left E-ample.

Some useful definitions in a category, universal mapping properties

The set of morphisms X — Y in a category C is denoted C(X,Y’). The dual or opposite category
C°P has the same objects but C°?(X,Y) = C(Y, X). When C has one object, C amounts to a monoid
and CP is the opposite monoid.

f: X — Y is an isomorphism if there exists (necessarily unique) g : ¥ — X with X Joy 2,

X =1x,Y ox Loy - ly. Isomorphism is self-dual and forms an equivalence relation on
objects. The next table establishes notation, and the definitions follow immediately after.

inC <« inC%?

terminal object 1 initial object 0
pry pry in iny
product X «—— X xY —Y coproduct X — X +Y «— Y
equalizer F x Py fg coequalizer X LU VA BN Qof f.g

pullback of X doz 9y pushout of X J oz 9y




1 is defined (uniquely up to isomorphism) by VX 3 unique X — 1. If 1’ is also terminal there exist
unique f:1—1,¢g:1" — 1. As1,gf : 1 — 1 whereas there exists but one map of this type, gf =1
(context distinguishes between the terminal object and the identity morphism). Similarly, fg = 1
so f is an isomorphism. By the same argument, the other seven concepts are unique up to unique
isomorphisms, as you should check.

The product is defined by the “universal property” that given X 1 W —“, Y there exists unique
[t,u] : W — X x Y such that prx[t,u] =t and pry[t, u] = u.

We say i is the equalizer of f, g, written ¢ = eq(f, g), if 7 satisfies the universal property that fi = gi
and, whenever t : W — X with ft = gt, there exists a unique v : W — E with v = ¢t. Dually, we
write ¢ = coeq(f, g).

The pullback is X «— P Y ¥ with the universal property that fa = gb and, whenever X —
W —5 Y with ft = gu, there exists unique v : W — P with av =t and bv = u.

These universal constructions can be described in any monoid (a monoid is just a one-object cate-
gory!) but rarely exist.

Cancellability is definable in a category. A right-cancellable f : X — Y (that is, Vt,u : W — X
if ft = fu then t = u) is called a monic. With composition in the reverse order, semigroup
theorists would call this left cancellable. A map f: X — Y is an equalizer if there exist g, h with
it =eq(g,h). Amap f: X — Y is split monic if there exists g : ¥ — X with gf = 1. Dually:
epic, a coequalizer, split epic.

Here is a small list of useful categories.

Set Sets and total functions

Pfn Sets and partial functions

Rel Sets and relations
Sem Semigroups and semigroup homomorphisms
Mon Monoids and monoid homomorphisms

Grp Groups and group homomorphisms

Top Topological spaces and continuous maps

T2 Hausdorff spaces and continuous maps

Ban Banach spaces and norm-decreasing linear maps

The Twelve Steps

1. Show that isomorphism is an equivalence relation on the objects of a category. Determine
isomorphism in the categories listed above. What are the isomorphisms of the category of
Banach spaces and continuous linear maps?

2. Explain what is meant by “products, equalizers, pullbacks are unique up to isomorphism”. By
duality, the same thing holds for initial objects, coproducts, coequalizers and pushouts.

3. Show that a split epic is a coequalizer and that an coequalizer is epic. State the dual result.

4. Show that a category with a terminal object and pullbacks also has products and equalizers.

5. Given X Ly —% Z, show that f, g monic = ¢f monic, and ¢gf monic = f monic. State
the dual results.

6. In Set, X XY = {(z,y) : v € X, y € Y} withprx(z,y) = z, pry(z,y) = y. Verify the universal
property. Show the following: In Pfn, the product of X, Y exists and is X+ (X xY)+Y where
x is the product in Set and + is disjoint union. In Rel the product exists and is X +Y (hint:



10.

11.

12.

show first that this is the coproduct and then observe that mapping a relation to its converse
is an isomorphism of categories Rel 2 Rel”). The usual products work as the categorical
product for Sem, Mon, Grp, Top and T2. The product in Ban is the usual vector space
product with norm ||(z, )| = ||z]| A ||yl

Show the following. Disjoint union provides coproduct in Set, Pfn and Rel. In Set, Sem,
Mon, Grp, for f,g: X — Y, eq(f, g) is the subset of X (a subalgebra!) on which f, g agree and
coeq(f, g) obtains by dividing out by the smallest congruence containing {(fxz, gx) : x € X}.

An object that is simultaneously terminal and initial is a zero object. In that case there
exists, for each X,Y a distinguished zero map 0 : X — Y, namely X — 0 — Y. As for
semigroups, such zero maps are unique and satisfy fO = 0 = 0g. Verify the following table,
where 1 denotes a one-element set:

Category Terminal Object Initial Object Zero Object
Set 1 0
Pfn
Rel
Sem 1
Mon
Grp
Top 1
T2 1
Ban 1

Show that the category of rings with unit (with 0 # 1) has Z, as initial object and that
this remains true even if 0 = 1 is allowed. Combining exercises 4, 6, 7 construct equalizers,
pullbacks and coequalizers in the example categories.

0
0

=
—_ =

==

Show that, in Top, equalizers are constructed as in Set, giving the subset the subspace topol-
ogy whereas coequalizers are constructed as in Set, giving the quotient set the quotient topol-
ogy. In Top, epics are the continuous surjections and monics are the continuous injections.
Show, however, that in T2, f : X — Y is epic if and only if f(X) is dense in Y. In Sem, show
that the inclusion of the nonnegative integers in the group of additive integers is epic, though
not surjective. In any category, show that a morphism which is both monic and a coequalizer
is an isomorphism.

If you work the following, you will see it is the type of calculation common in semigroup theory,
even though its conclusion is of a different sort. In any category, consider the commutative
square

P—B
il
A “m X
(“commutative” means that mj = ni). Write k for the common value mj = k = ni and assume

that n, m, k are split monic, pm = 1, gn = 1, rk = 1. Assume, further, that kr = mpng. Show
that the square is a pullback.

Label a square as in 10 and assume that it is a pullback. Show that if m is monic then i is
monic. Show that, in general, 7 need not be split monic if m is, even in Set.

Read the book Categories, Allegories referenced below as follows: Read in Chapter 1 until you
get perplexed, then jump to Chapter 2 and read until you need more help from Chapter 1. See
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how many cycles you can go, then contrast with Schein’s survey on relation algebras referenced
below. Then read the Cockett and Lack paper referenced below, ignoring all parts requiring
category theory that goes beyond that discussed here. You'll see it’s a lot like semigroup
theory!

Axioms for abelian and Boolean categories

In a category with zero maps, for f: X — Y, eq(f,0), if it exists, is called the kernel of f. Dually,
coeq(f,0) is the cokernel of f. Say that i : P — X is a coproduct injection if there exists a

coproduct P X P

Abelian Category Axiom Boolean Category Axiom

3 zero object 0 3 initial object 0

VX, Y X+Y, X xY exist VXY, X +Y exists

Every map has a kernel and a cokernel Every X Ly I @ with j a coproduct injection has

a pullback X —~p— @ with ¢ a coproduct injection;
moreover, if f is a coproduct injection, it pulls back a

coproduct @ iy Lo Q' to a coproduct P X P

Every monic is a kernel X 5 X< Xisa coproduct, X =0
Every epic is a cokernel

In both cases, the third axiom is about special types of pullback, noting that a kernel is the same
thing as the pullback of the zero object. Notice that the abelian category axioms are self-dual.
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