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My goal in this talk is to provide a short introduction to some methods of
modern homotopy theory - modern meaning since Quillen (1967) [3].

1 Preliminaries

An object A of a category E is said to be a retract of an object B of E if there
are maps i : A→ B and r : B → A such that ri = idA. A map u : A→ B is a
retract of a map v : C → D if u is a retract of v in E2 - the category of arrows
of E - i.e. if there is a commutative diagram

A

u

²²

i // C

v

²²

r // A

u

²²
B

j
// D s

// B

such that ri = idA and sj = idB .
A class of mapsM in E is said to be closed under retracts if whenever v ∈M

and u is a retract of v then u ∈M.
A class of maps M in E is said to be closed under pushouts if whenever

u : A→ B is in M and f : A→ C is in E then in the pushout (when it exists)

A

u

²²

f // C

u′

²²
B // B +A C

the map u′ is in M. There is a dual concept of a class closed under pullbacks.
If i : A → B and f : X → Y are maps in E , the notation i t f means that

any commutative square
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A

i

²²

a // X

f

²²
B

b
// Y

has a diagonal filler d : B → X, with di = a and fd = b. We say i has the
left lifting property (LLP) with respect to f , and f has the right lifting property
(RLP) with respect to i, We denote by tM (respectively Mt) the class of all
maps which have the LLP (respectively RLP) with respect to each map in M.

Proposition 1.1 Mt contains the isomorphisms and is closed under compo-
sition, retracts, and pullbacks. Dually, tM contains the isomorphisms and is
closed under composition, retracts, and pushouts.

Proof: Excercise.

If E is cocomplete and α = {i < α} is an ordinal, a functor

C : α→ E
is called an α-sequence if the canonical map

lim−→
i<j

Ci → Cj

is an isomorphism for every limit ordinal j < α. The composite of an α-sequence
C is the canonical map

C0 → lim−→
i<α

Ci

A subcategory C of E is closed under transfinite composition if it contains
the composite of any α-sequence C : α→ C ⊆ E .

We call a class of maps M of E saturated if it contains the isomorphisms,
and is closed under composition, transfinite composition, pushouts and retracts.
For example, tM is saturated. Any classM of maps is contained in a smallest
saturated class M⊆ E called the saturated class generated byM.

Proposition 1.2 A saturated class M is closed under arbitrary coproducts.

Proof: Let I be a set and Ai → Bi a map in M for i ∈ I. We want to show
that the map

∑

i

Ai →
∑

i

Bi

is in M. We may assume I is an ordinal α since any set is isomorphic to an
ordinal. Then define an α-sequence C : α → E by C0 =

∑
i Ai. Ci+1 is the

pushout
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Ai

²²

// Ci

²²
Bi

// Ci+1

and Cj = lim−→
i<j

Ci for limit ordinals j < α. Then the composite C0 → lim−→
i<α

Ci is

isomorphic to
∑

i Ai →
∑

i Bi.

2 Weak factorization Systems

Definition 2.1 (Joyal [2]) A weak factorization system in a category E is a
pair (A,B) of classes of maps in E satisfying

(i)B = At and A =t B

(ii)Every map f : X → Y in E may be factored as f = pi with i ∈ A and p ∈ B.

Notice that each class of a weak factorization system determines the other.
Also, A⋂B = Iso(E) since a map having the LLP with respect to itself is an
isomorphism.

Proposition 2.1 Let A and B be two classes of maps in a category E. Suppose
the following conditions are satisfied

(i) A t B

(ii) Every map f : X → Y in E may be factored as f = pi with i ∈ A and p ∈ B.

(iii) A and B are closed under retracts.

Then (A,B) is a weak factorization system in E.

Proof: We use an important technique known as “the retract argument” to
show, say, tB ⊆ A. So let u ∈t B and factor u as u = pv with p ∈ B, and
v ∈ A. Then the square

A

u

²²

v // C

p

²²
B

id
//

d

>>~
~

~
~

B

has a diagonal filler d. Thus, u is a retract of v ∈ A, so u ∈ A. At ⊆ B is
similar.
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Definition 2.2 Let κ be a cardinal. An ordinal α is said to be κ-filtered if it is
a limit ordinal, and if S ⊆ α and | S |≤ κ then sup(S) < α.

Definition 2.3 Let E be cocomplete and A ∈ E. A is called κ-small if for all
κ-filtered ordinals α and all α-sequences X : α→ E, the canonical map

lim−→
i<α

E(A,Xi)→ E(A, lim−→
i<α

Xi)

is a bijection. A is called small if it is κ-small for some κ, and finite if it is
κ-small for a finite cardinal κ, in which case E(A, ) commutes with colimits
over any limit ordinal.

Exercise: Show any set is small.
The technique used in the following result is called the “small object argu-

ment”, so named by Quillen. It is ubiquitous in homotopy theory, see Hovey [1]
or Joyal [2].

Theorem 2.1 Let E be cocomplete and M a set of maps in E with small do-
mains. Then (M,Mt) is a weak factorization system in E. Furthermore, the
factorization of a map f can be chosen to be functorial in f .

Proof: Choose a cardinal κ such that the domain of each element of M is
κ-small, and let α be a κ-filtered ordinal. Let f : X → Y be a map in E . We
will define, by transfinite induction, a functorial α-sequence E : α → E and a
natural transformation p : E → Y factoring f . We begin by setting E0 = X,
and p0 = f . If we have defined Ei and pi for all i < j where j is a limit ordinal,
set Ej = lim−→

i<j

Ei and let pj be the map induced by the pi. Given Ei and pi, we

define Ei+1 and pi+1 as follows. Let S be the set of all commutative squares of
the form

A

u

²²

// Ei

pi

²²
B // Y

with u in M. For s ∈ S denote by us : As → Bs the corresponding map in M
and define Ei+1 as a pushout

∑
s∈S As

²²

// Ei

²²∑
s∈S Bs // Ei+1

Set pi+1 : Ei+1 → Y equal to the map induced by the maps Bs → Y and
pi : Ei → Y . Let E = lim−→

i<α

Ei and let p : E → Y be the map induced by the pi.

The canonical map X → E is in M, and we want to show p ∈Mt, so let
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A

u

²²

a // E

p

²²
B

b
// Y

be commutative with u inM. Since A is κ-small, a factors as A→ Ei → E for
some ai : A→ Ei. By construction then there is a commutative square

A

u

²²

ai // Ei

²²
B

bi+1

// Ei+1

such that pi+1bi+1 = b. Then the composite of bi+1 and the canonical map
Ei+1 → E gives the required diagonal filler.

3 Some Examples

The simplicial category ∆ has objects [n] = {0, . . . , n} for n ≥ 0 a nonnegative
integer. A map α : [n] → [m] is an order preserving function. A simplicial
set is a functor X : ∆op → Set. To conform with traditional notation, when
α : [n] → [m] we write α∗ : Xm → Xn instead of Xα : X[m] → X[n]. The
elements of Xn are called the n− simplices of X.
Remark: An α : [n] → [m] in ∆ can be decomposed uniquely as α = εη,
where ε : [p] → [m] is injective, and η : [n] → [p] is surjective. Moreover, if εi :
[n− 1]→ [n] is the injection which skips the value i ∈ [n], and ηj : [n+1]→ [n]
is the surjection covering j ∈ [n] twice, then ε = εis . . . εi1 and η = ηjt . . . ηj1

where m ≥ is > . . . > i1 ≥ 0, and 0 ≤ jt < . . . < j1 < n and m = n− t+ s. The
decomposition is unique, the i’s in [m] being the values not taken by α, and the
j’s being the elements of [m] such that α(j) = α(j + 1). The εi and ηj satisfy
the following relations:

εjεi = εiεj−1 i < j
ηjηi = ηiηj+1 i ≤ j

ηjεi =





εiηj−1

id
εi−1ηj

i < j
i = j or i = j + 1
i > j + 1

Thus, a simplicial set X can be considered to be a graded set (Xn)n≥0

together with functions di = εi∗ and sj = ηj∗ satisfying relations dual to those
satisfied by the εi’s and the ηj ’s. Namely,
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didj = dj−1di i < j
sisj = sj+1si i ≤ j

disj =





sj−1di

id
sjdi−1

i < j
i = j or i = j + 1
i > j + 1

This point of view is frequently adopted in the literature.
The category of simplicial sets is [∆op, Set], which we often denote simply by

S. Again for traditional reasons, the representable functor ∆( , [n]) is written
∆[n] and is called the standard (combinatorial) n-simplex. Conforming to this
usage, we use ∆ : ∆ → S for the Yoneda functor, though if α : [n] → [m], we
write simply α : ∆[n]→ ∆[m] instead of ∆α.

The boundary of ∆[n] is a simplicial (n-1)-sphere ∂∆[n] defined by

∂∆[n]m = {α : [m]→ [n]|α is not surjective}
∂∆[n] can also be described as the union of the (n-1)-faces of ∆[n]. That is,

∂∆[n] =
n⋃

i=0

∂i∆[n]

where ∆∂i[n] = im(εi : ∆[n − 1] → ∆[n]). Recall that the union is calculated
pointwise, as is any colimit (or limit) in [∆op, Set]. By convention, we set
∂∆[0] = 0.

The kth horn of ∆[n] is

Λk[n] =
⋃

i 6=k

∂i∆[n]

∆[n], ∂∆[n] and Λk[n] are finite, and any simplicial set is small. We write
S for the set of sphere inclusions {∂∆[n]→ ∆[n] | n ≥ 0}, and H for the set of
horn inclusions {Λk[n] → ∆[n] | 0 ≤ k ≤ n, n ≥ 1}. Then S is the class of all
monomorphisms of simplicial sets, and (S,St) is a weak factorization system in
S. A member of St is called a trivial fibration. H is called the class of anodyne
extensions and (H,Ht) is another weak factorization system in S. The members
of Ht are called Kan fibrations. Notice that the first weak factorization system
is easy to obtain in any topos, since a map which has the RLP with respect
to the monomorphisms is just an injective over its base, and any map can be
embedded in an injective. It is, however, also the case that the monomorphisms
in any Grothendieck topos have a set of generators, so this weak factorization
system can also be obtained in any Grothendieck topos as above.

4 Quillen Model Structures

Let E be a finitely complete and cocomplete category.
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Definition 4.1 A Quillen model structure on E consists of three classes of maps
(F , C,W) in E called fibrations, cofibrations, and weak equivalences respectively.
These are required to satisfy

(i) W has the “three for two” property: if any two of f , g or fg is in W, so is
the third.

(ii) (C⋂W,F) and (C,F ⋂W) are weak factorization systems in E.

The usual way of expressing the conditions on (F , C,W) is

(i) W satisfies “three for two”.

(ii) F , C and W are closed under retracts.

(iii) C⋂W t F and C t F ⋂W.

(iv) Every map f in E can be factored as f = pi in two ways: one in which
i ∈ C⋂W and p ∈ F and one in which i ∈ C and p ∈ F ⋂W.

As we have seen, these are the same except forW closed under retracts, and
this follows if (F , C,W) satisfy (i) and (ii) above.

An important aspect of the axioms for a Quillen model structure is that they
are self dual. That is, if E carrys a Quillen model structure then so does Eop.
The cofibrations of Eop are the fibrations of E , and the fibrations of Eop are the
cofibrations of E . The weak equivalences of Eop are the weak equivalences of E .
Thus, we need only prove results about cofibrations, say, since the dual results
are automatic.

If E is a Quillen model category, we say an object X ∈ E is cofibrant if 0→ X
is a cofibration, and fibrant if X → 1 is a fibration.

Examples:
(1) Three trivial ones. For any E , take for F , C or W the isomorphisms and let
the other two classes be all maps.

(2) Take E = S. Let X ∈ S, and define the set of connected components of X to
be the set π0(X) in the coequalizer

X1

d0
//

d1
// X0

// π0(X)

For X,Y ∈ S, put Sπ0(X, Y ) = π0(Y X). It is easy to see that π0 preserves
finite products, so we obtain a composition law

Sπ0(Y, Z)× Sπ0(X, Y )→ Sπ0(X, Z)
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by applying π0 to the composition map ZY ×Y X → ZX . The resulting category
Sπ0 is called the category of simplicial sets and homotopy classes of maps. A
map f : X → Y is called a homotopy equivalence if it becomes an isomorphism
in Sπ0 . f is called a weak homotopy equivalence if

Sπ0(f, Z) : Sπ0(Y,Z)→ Sπ0(X, Z)

is a bijection for each Kan complex Z. (Z is a Kan complex when Z → 1 is
a Kan fibration.) Let W be the class of weak homotopy equivalences. Take C
to be the class of all monomorphisms, and let F be the class of Kan fibrations.
Then (F , C,W) is a Quillen model structure on S. We call it the classical model
structure on S.

This is probably the most central example, and it is difficult to establish. (i)
is easy, and we have the two weak factorization systems. But, we do not know
that C⋂W is the class of anodyne extensions, and we do not know F ⋂W is
the class of trivial fibrations. If we knew, say, the latter, then the former is
easy. So that leaves us only one thing to show. This takes roughly the first four
chapters of the book André Joyal and I are writing.

(3) Take E = Topc, the category of compactly generated spaces. The classW of
weak equivalences consists of maps f : X → Y such that π0(f) : π0(X)→ π0(Y )
is a bijection, and for n ≥ 1 and x ∈ X, πn(f) : πn(X, x) → πn(Y, fx) is an
isomorphism. The class F is the class of Serre fibrations, i.e. maps p : E → X
with the covering homotopy property (CHP) for each n-simplex ∆n, n ≥ 0. This
means that if h : ∆n × I → X is a homotopy (I = [0, 1]), and f : ∆n → E is
such that pf = h0, then there is a “covering homotopy” h̄ : ∆n × I → E such
that h̄0 = f , and ph̄ = h. C =t (F ⋂W).

Once example (2) is established, this one is fairly easy.

(4)(Joyal 1984) Let E be a Grothendieck topos, and consider S(E) - the category
of simplicial sheaves. Given X ∈ S(E) we can construct homotopy sheaves
πn(X) → X0 and we say f : X → Y is a weak equivalence if π0(f) : π0(X) →
π0(Y ) is a bijection, and

πn(X)

²²

πn(f) // πn(Y )

²²
X0

f0

// Y0

is a pullback for n ≥ 1. C is the class of monomorphisms, and F = (C⋂W)t.
This example is very fundamental. It was the beginning of the homotopy theory
of sheaves. The main difficulty in establishing it is showing that C⋂W has a
set of generators.

(5) (Joyal - T) Again, let E be a Grothendieck topos, and denote by Gpd(E) the
category of groupoids in E . W is the class of categorical equicalences, where a
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categorical equivalence is a functor f : G → H which is full and faithful and
essentially surjective in the internal sense, i.e.

G1

(s,t)

²²

f1 // H1

(s,t)

²²
G0 ×G0

f0×f0

// H0 ×H0

is a pullback, and in

H∗

²²

// H1

(s,t)

²²
G0 ×H0

π2

²²

f0×id
// H0 ×H0

H0

the composite H∗ → H0 is surjective. C is the class of functors injective on
objects, and F = (C⋂W)t. The fibrant objects in this structure are called
strong stacks, since they represent a strenghtening of the notion of stack due to
Grothendieck and Giraud.

Definition 4.2 Let (F , C,W) be a Quillen model structure on a category E.
We say the model structure is left proper if the pushout of a weak equivalence
along a cofibration is a weak equivalence, and right proper if the pullback of a
weak equivalence along a fibration is a weak equivalence. The model structure
is called proper if it is left proper and right proper.

All of the examples above are proper.
In some sense the most basic ingredient in a model structure is the class of

weak equivalences. The cofibrations and fibrations are sort of auxilary notions
which enable us to keep the weak equivalences under control. In fact it is not
unusual for a category to have several model structures with the same weak
equivalences, but different fibrations and cofibrations. For example, if A is a
small category there are (at least) two model structures on SA for the obvious
notion of pointwise weak equivalence. One in which the fibrations are pointwise,
and one in which the cofibrations are pointwise.

Since the weak equivalences are “the isomorphisms of homotopy theory”,
we would like to “pass to homotopy” and have them become real isomorphisms.
Thus, let E be a finitely complete and cocomplete category equiped with a model
srtucture (F , C,W). The homotopy category of E is

Ho(E) = E [W−1]

The problem with this is that, apriori, Ho(E) may not be locally small, i.e.
the maps between two objects may not form a set. In fact, in the presence
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of a model structure, this problem does not arise. We sketch how this works,
refering to, say, Hovey [1] for details.

Definition 4.3 Let f, g : X → Y be two maps of E.

(i) A cylinder object for X is a factorization of the codiagonal ∇ : X + X → X
into a cofibration (i0, i1) : X +X → X ′ followed by a weak equivalence s : X ′ →
X.

(ii) A path object for Y is a factorization of the diagonal ∆ : Y → Y × Y as a
weak equivalence t : Y → Y ′ followed by a fibration (p0, p1) : Y ′ → Y × Y .

(iii) A left homotopy from f to g is a map h : X ′ → Y for some cylinder
object X ′ for X such that hi0 = f and hi1 = g. We say f and g are left homo-
topic if there is a left homotopy from f to g, and we write f

l∼ g for this relation.

(iv) A right homotopy from f to g is a map k : X → Y ′ for some path object
Y ′ for Y such that p0k = f and p1k = g. We say f and g are right homotopic
if there is a right homotopy from f to g, and we write f

r∼ g for this relation.

(v) We say f and g are homotopic if they are both left homotopic and right
homotopic, and we write f ∼ g for this relation.

(vi) We say f is a homotopy equivalence if there is a map f ′ : Y → X such that
ff ′ ∼ idY and f ′f ∼ idX .

We denote by Ec, Ef and Ecf the full subcategories of cofibrant, fibrant, or
cofibrant and fibrant objects, respectively, of E .
Proposition 4.1 Let A be a cofibrant object of E and X a fibrant object. Then
on E(A,X) the left and right homotopy relations coincide, and they are equiva-
lence relations which are compatible with composition.

Proposition 4.2 A map of Ecf is a weak equivalence iff it is a homotopy equiv-
alence.

Thus the canonical functor Ecf → Ecf/ ∼ inverts the weak equivalences.

Proposition 4.3 The canonical functor Ecf → Ecf/ ∼ has the same universal
property as the functor Ecf → Ho(Ecf ) = Ecf [W−1

cf ], so there is an isomorphism
of categories Ecf/ ∼→ Ho(Ecf ). In particular, Ho(Ecf ) is locally small.

Proposition 4.4 The inclusion Ecf → E induces an equivalence of categories
Ho(Ecf )→ Ho(E).
Proposition 4.5 The canonical functor E → Ho(E) identifies left or right ho-
motopic maps, and if a map f becomes an isomorphism in Ho(E) then f is a
weak equivalence.
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5 Quillen Functors and Equivalences

Let U and V be model categories. A functor F : U → V is called a left Quillen
functor if F preserves cofibrations and acyclic cofibrations, i.e. cofibration weak
equivalences. By a result of Ken Brown’s, F then preserves any weak equivalence
between cofibrant objects. Dually, G : V → U is called a right Quillen functor
if G preserves fibrations and acyclic fibrations. G then preserves any weak
equivalence between fibrant objects. If F : U ←→ V : G, then F is a left Quillen
functor iff G is a right Quillen functor, in which case we call the adjoint pair
(F,G) a Quillen pair.

A left Quillen functor F : U → V has a left derived functor

FL : Ho(U)→ Ho(V)

computed as follows: For A ∈ U choose a cofibrant replacement λA : LA → A,
i.e. an acyclic fibration λA with LA cofibrant. Then if u : A → B, we can
choose a map L(u) : LA→ LB such that

LA

L(u)

²²

λA // A

u

²²
LB

λB

// B

commutes. Then

FL([u]) = [FL(u)] : FLA→ FLB

Dually, a right Quillen functor G : V → U has a right derived functor

GR : Ho(V)→ Ho(U)

Furthermore, if F : U ←→ V : G is a Quillen pair, then

FL : Ho(U)←→ Ho(V) : GR

If A is cofibrant, the unit A→ GRFLA of the above adjunction is given by the
composite A→ GFA→ GRFA where FA→ RFA is a fibrant replacement of
FA. If X ∈ V is fibrant, the counit FLGRX → X is given by the composite
FLGX → FGX → X where LGX → GX is a cofibrant replacement of GX.

A Quillen pair (F, G) is said to be a Quillen equivalence if (FL, GR) is an
equivalence of categories.

Theorem 5.1 (Hovey [1]) Suppose F : U ←→ V : G is a Quillen pair. Then
the following are equivalent.

(i)(F,G) is a Quillen equivalence
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(ii)F reflects weak equivalences between cofibrant objects, and for each fibrant
X ∈ V the counit FLGRX → X is a weak equivalence.

(iii))G reflects weak equivalences between fibrant objects, and for each cofibrant
A ∈ U the unit A→ GRFLA is a weak equivalence.

The existence of a Quillen equivalence between two model categories means that
the two model categories should be viewed as alternate models of the same ho-
motopy theory.

Example:
Geometrically, an n-simplex is the convex closure of n + 1 points in general
position in a euclidean space of dimension at least n. The standard, geometric
n-simplex ∆n is the convex closure of the standard basis e0, . . . , en of Rn+1.
Thus, the points of ∆n consists of all combinations

p =
n∑

i=0

tiei

with ti ≥ 0, and
∑n

i=0 ti = 1. We can identify the elements of [n] with the
vertices e0, . . . , en of ∆n. In this way a map α : [n] → [m] can be linearly
extended to a map ∆α : ∆n → ∆m. That is,

∆α(p) =
n∑

i=0

tieα(i)

Clearly, this defines a functor r : ∆ → Top. The functor r can be extended to
a functor | | : S → Top, called the geometric realization. The functor | | is
determined by the commutative triangle

∆

r
!!CC

CC
CC

CC
∆ // S

| |~~||
||

||
||

Top

where
|X| = lim−→∆n

∆[n]→X

| | has a right adjoint S. For any topological space T , ST is the singular
complex of T

(ST )n = Top(∆n, T )

Since a left adjoint preserves colimits , we see that the geometric realization
| | : S→ Top is colimit preserving. A consequence of this is that |X| is a CW-
complex. Furthermore, if Top is replaced by Topc - the category of compactly
generated spaces - then | | is also left-exact, i.e. preserves all finite limits.
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The adjoint pair | | : S ←→ Top : S is a Quillen equivalence. Thus we
should think of Top and S as being alternate models of the same homotopy
theory, since any homotopy theoretic result in one model gives rise to a similar
result in the other.
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