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Abstract
Semigroups with an additional unary operation called a (right) closure are inves-
tigated. These “closure semigroups” may be viewed as (not necessarily regular)
generalisations of inverse semigroups, and several powerful structural aspects
of inverse semigroup theory are shown to extend naturally to some important
classes of closure semigroups. These include representations as partial trans-
formations on sets, natural partial orders that are multiplication (and closure)
respecting, and simple descriptions of some important congruences.

1. Introduction

An important and fundamental concept in mathematics is that of an (algebraic)
closure operator on a set X , that is, an operator C : 2X → 2X satisfying (for
A,B ⊆ X ) C(C(A)) = C(A), A ⊆ C(A), A ⊆ B ⇒ C(A) ⊆ C(B) (see [4]
for example). This is easily generalised to partially ordered sets in the obvious
manner, and in particular to semilattices. It is this last case which we generalise
here. The generalisation is motivated in part by a number of examples, including
partial functions, direct products of monoids, and inverse semigroups, and we
can often characterise such families of examples algebraically.

Let S be a semigroup with an additional unary operation C satisfying

1. aC(a) = a ;

2. C(a)C(b) = C(b)C(a);

3. C(C(a)) = C(a); and

4. C(ab)C(b) = C(ab)

for all a, b ∈ S . Then C is a right closure on S and S is a right closure
semigroup, or an RC-semigroup.

Note that if S is a semilattice then the usual definition of a closure
operation on a semilattice is recovered.

Left closure semigroups, or LC-semigroups, are defined in a dual manner.
A semigroup which is both an LC- and an RC-semigroup is two-sided. All
definitions and results to follow have obvious left-sided analogs.



OF2 Jackson and Stokes

Let S be an RC-semigroup. Let C(S) = {C(a) | a ∈ S} , and let R(S) =
{b ∈ S | C(a)b = bC(a) for all a ∈ S} , the centralizer of S . Evidently R(S) is
a subsemigroup of S , and because C(S) ⊆ R(S), it is an RC-subsemigroup—a
subsemigroup closed under C and therefore itself an RC-semigroup. We say S
is central if R(S) = S . The class of central RC-semigroups is an RC-semigroup
variety, that is, a variety of unary semigroups in which the unary operation C
is a right closure.

Note that if S is central, the second rule in the definition is superfluous
and it follows from the fourth that

C(ab) = C(abC(a)) = C(abC(a))C(C(a)) = C(abC(a))C(a) = C(ab)C(a),

so central RC-semigroups may be viewed as being two-sided RC-semigroups in
which the left and right closures are the same. Indeed the converse holds, and
we have

Proposition 1.1. Let A be an RC-semigroup, with right closure C . Then
A is central if and only if C is also a left closure on A .

Proof. It remains to show that if C is both a left and right closure on A ,
then A is central. For all a, b ∈ A ,

C(a)b = C(a)bC(C(a)b) by axiom 1

= C(a)bC(C(a)b)C(C(a))C(b) by axiom 4 and its right dual

= C(a)bC(a)C(b) by axioms 1 and 3

= C(a)bC(b)C(a) by axiom 2

= C(a)bC(a) by axiom 1.

Similarly, bC(a) = C(a)bC(a), so in fact C(a)b = bC(a). Hence A is
central.

If the semigroup S has a right identity e then S can be given a RC-
semigroup structure: let C(a) = e for all a ∈ S . If S is a monoid then it is a
central RC-semigroup in the same way.

In any semilattice S , define a ≤ b whenever a = ab ; then ≤ is a partial
order (the natural partial order on S ) with ab = glb(a, b) for all a, b ∈ S .

Proposition 1.2. If S is an RC-semigroup, then C(S) is a subsemigroup
of S which is a semilattice, and C(a) = min{e ∈ C(S) | ae = a} under the
natural partial order on C(S) .

Proof. For a, b ∈ S ,

C(a)C(b) = C(a)C(b)C(C(a)C(b))
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= [C(C(a)C(b))C(C(b))]C(a)

= C(C(a)C(b))C(a)

= C(C(b)C(a))C(C(a))

= C(C(b)C(a))

= C(C(a)C(b)),

so C(S) is a subsemigroup of S . Moreover, for a ∈ S , C(a)C(a) = C(a)C
(C(a)) = C(a), and because C(a)C(b) = C(b)C(a) for all a, b ∈ S , it follows
that C(S) is a semilattice.

Finally, aC(a) = a , and therefore if ae = a for some e ∈ C(S), then
C(a)e = C(a)C(e) = C(ae)C(e) = C(ae) = C(a), and so C(a) = min{e ∈
C(S) | ae = a} .

It follows that the fourth rule in the RC-semigroup definition simply says
that C(ab) ≤ C(b) for all a, b ∈ S under the semilattice ordering of C(S). In
an LC-semigroup, C(ab) ≤ C(a); while in a two-sided C-semigroup in which
the two closures are equal, C(ab) ≤ C(a)C(b).

The natural converse to Proposition 1.2 is true also.

Proposition 1.3. Suppose the semigroup S has a subsemigroup L which is
a semilattice for which C(a) = min{e ∈ L|ae = a} exists for all a ∈ S . Then
C is a right closure on S for which C(S) = L .

Proof. All the axioms are immediate except the last one. If be = b for b ∈ S
and e ∈ L then (ab)e = a(be) = ab so e ≥ C(ab) for all a ∈ S ; in particular
C(b) ≥ C(ab) and so C(ab)C(b) = C(ab).

In view of these last two propositions, an RC-semigroup S is exactly a
right C(S)-semiadequate semigroup, in the terminology of [14] or a type SL
γ -semigroup in the terminology of [1].

Recall Green’s equivalence relations L , R , H and D , defined on any
semigroup S . La will denote the L-class containing a ∈ S , and similarly for
Ra , Ha and Da in terms of R , H and D respectively.

On any C-semigroup S we introduce a fifth relation L̃ , defined as follows:
for a, b ∈ S , a L̃ b if and only if C(a) = C(b). Evidently L̃ is an equivalence

relation; let L̃a denote the L̃-class containing a ∈ S .

We say that S satisfies the right congruence condition if L̃ is a right
congruence on the semigroup S .

Proposition 1.4. A (left or right) C-semigroup S satisfies the right con-
gruence condition if and only if C(C(a)b) = C(ab) for all a, b ∈ S .
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Proof. If C(C(a)b) = C(ab) for all a, b ∈ S and C(x) = C(y) then C(xz) =

C(C(x)z) = C(C(y)z) = C(yz), so L̃ is a right congruence. Conversely, if L̃ is

a right congruence then C(x) L̃x since C(C(x)) = C(x), so C(x)y L̃xy , that
is, C(C(x)y) = C(xy).

Thus the right congruence condition defines an RC-semigroup variety.

For all a, b in the RC-semigroup S , define a ≤r b to mean that a = bC(d)
for some d ∈ S . The proof that this is a partial order on S is straightforward.
Clearly it extends the natural semilattice partial order on C(S).

Proposition 1.5. For all a, b in the RC-semigroup S , a ≤r b if and only if
a = bC(a) .

Proof. If a ≤r b then a = be for some e ∈ C(S), so

bC(a) = bC(be)

= bC(be)C(e)

= beC(be)

= be

= a.

The converse is immediate.

Let S be an RC-semigroup. We say that a ∈ S is translucent if for all
e ∈ C(S) there exists f ∈ C(S) for which ea = af . Thus a is translucent if
and only if ea ≤r a , which by the previous result is equivalent to the condition
that ea = aC(ea). Thus every element of S is translucent if and only if S
satisfies the right ample condition in the sense of [9] (there x∗ is used instead of
C(x)). Hence the right ample condition also defines a variety of RC-semigroups,
given by {C(x)y = yC(C(x)y)} , and evidently containing the variety of central
RC-semigroups. In fact the class of structures studied in [9] satisfying the right
ample condition (called right type A semigroups) also satisfy the stronger law
C(x)y = yC(xy). This law will play a central role in Section 3. If an RC-
semigroup has all its elements translucent, we say it is translucent.

Much of the usefulness of the natural partial order on an inverse semi-
group stems from the fact that it respects multiplication. This is also true for
translucent RC-semigroups. Indeed the right closure is also respected in such
cases.

Proposition 1.6. If S is a translucent RC-semigroup, with a, b, a′, b′ ∈ S ,
such that a ≤ a′ and b ≤ b′ , then ab ≤ a′b′ and C(a) ≤ C(a′) .
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Proof. Suppose a = a′e and b = b′f for some e, f ∈ C(S). Then ab =
a′eb′f = a′b′gf for some g ∈ C(S), and so ab ≤ a′b′ . Further, aC(a′) =
a′eC(a′) = a′C(a′)e = a′e = a , so that C(a) ≤ C(a′) as required.

There are many other generalisations of the natural partial order on an
inverse semigroup to broader classes of semigroups but these rarely respect
multiplication (see Section 1.4 of [11] for a discussion of some of these).

Suppose S is a semigroup with a subsemigroup L which is also a semi-
lattice. It is easily checked that for all a ∈ S , the set Fa = {e ∈ L | ae = a} is
a filter of L (that is, a subsemilattice F of L in which a ∈ F and a ≤ b imply
b ∈ F ), and it is immediate from the above results that S is an RC-semigroup in
which C(S) = L if and only if Fa is principal for all a ∈ S (that is, Fa consists
of all e ∈ L greater than or equal to a given element, in this case C(a)).

We conclude this section with two important families of examples.

Example 1.7 Relations and closure operators. Let X be a set equipped with
a closure operator C . Then any intersection of closed subsets of X under C is
itself closed. The collection BX of all binary relations on X , here most con-
veniently viewed as multiply defined partial functions X → X , is a semigroup
under composition. We denote by fg the (generalised) map obtained by apply-
ing first f and then g . Define LX to be the set of restrictions of the identity
map to closed subsets of X : LX is clearly a semilattice and for all f ∈ BX ,
C(f) = min{e ∈ LX | fe = f} exists and is the restriction of the identity map
to the closure of the domain of definition of f , and so C is a right closure on
BX . (Similarly BX has a left closure where the closure of a given multiply
defined partial map f is the restriction of the identity map to closure of the
range of f .) Important RC-subsemigroups of BX include the collection PX of
all partial transformations on X and the collection IX of all one-to-one partial
transformations on X : clearly LX ⊆ IX ⊆ PX ⊆ BX .

Example 1.8 Direct products and closure operators. Let X be a set with
closure operator C . Let Sx , x ∈ X , be a collection of semigroups each having
distinguished right identity 1 and right zero 0, let S = Πx∈XSx and let L be all
elements of S which take the value 1 on a closed subset of X and 0 elsewhere.
Then L is a semilattice of idempotents in S , central if 0, 1 are two-sided, and
C(a) = min{e ∈ L | ae = a} exists for all a ∈ S and gives the “characteristic
function” of the closure of the support of a . Hence S equipped with C is an
RC-semigroup, with C(S) = L .

In connection with IX of Example 1.7, Section 2 concerns the relationship
between RC-semigroups and inverse semigroups. Several aspects of inverse semi-
group theory naturally extend to some quite general classes of RC-semigroups,
and a particularly well behaved example of such a class (motivated by PX of
Example 1.7) is introduced in Section 3. In Section 4 we turn to an examination
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of congruences on RC-semigroups and in Section 5 we describe all semigroup
varieties consisting of RC-semigroups with particular properties and briefly ex-
amine some RC-semigroup varieties.

2. Inverse C-semigroups

Let S be a semigroup, E(S) the collection of idempotents of S . An element
a ∈ S is regular if there exists b ∈ S for which aba = a . The semigroup S is
regular if every a ∈ S is regular, and is inverse if there is a unary operation −1

definable on S such that aa−1a = a , (a−1)−1 = a , and (aa−1)(bb−1) =
(bb−1)(aa−1) for all a, b ∈ S . Clearly any inverse semigroup is regular; indeed
a regular semigroup is inverse if and only if any two idempotents commute. If
S is inverse, the following can also be shown: a−1 is the inverse of a ∈ S ,
in the sense that aa−1a = a and a−1aa−1 = a−1 , and a−1 is unique with
these properties; E(S) = {aa−1 | a ∈ S} is a subsemigroup of S which is
a semilattice; e−1 = e for all e ∈ E(S); and semigroup congruences on S
automatically respect −1 . For these and other fundamental facts concerning
semigroups the reader is referred to [13].

Proposition 2.1. Every inverse semigroup S is an RC-semigroup if one
defines C(a) = a−1a for all a ∈ S .

Proof. For all a ∈ S , a−1a ∈ E(S) and a(a−1a) = a ; moreover if e ∈ E(S)
satisfies ae = a then (a−1a)e = a−1(ae) = a−1a , so a−1a = min{e ∈ E(S) |
ae = a} . Hence defining C(a) = a−1a makes C a right closure on S .

This also follows by noting that on a regular semigroup L̃ = L (see [8]
for example).

Let us call C as in Proposition 2.1 the standard right closure on the in-
verse semigroup S and the resulting RC-semigroup the standard RC-semigroup
structure on S .

In any inverse semigroup S , it is possible to define a partial order as
follows: a ≤ b means b = ae , where e is an idempotent. In other words if
C is the standard right closure on S then a ≤ b if and only if b = aC(d) for
some d ∈ S and so ≤ is exactly the partial order ≤r defined earlier. Thus
Proposition 1.5 generalises a familiar fact about inverse semigroups.

In an arbitrary inverse RC-semigroup S , the right closure is wholly
determined by its action on E(S), as we see in the following

Proposition 2.2. Let S be an inverse RC-semigroup. If C is a right closure
on S , then C(a) = C(a−1a) for all a ∈ S . Moreover any closure on E(S) can
be extended via this rule to a right closure on S .
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Proof. For an element a of an inverse RC-semigroup S , C(a) = C(aa−1a) ≤
C(a−1a) ≤ C(a), so C(a) = C(a−1a).

Now if S is an inverse semigroup and C is a right closure on E(S), let
C(a) = C(a−1a) for all a ∈ S . Then for all a, b ∈ S : aC(a) = aC(a−1a) =
aa−1aC(a−1a) = aa−1a = a ; C(a)C(b) = C(b)C(a) and C(C(a)) = C(a) are
immediate; finally, ((ab)−1ab)(b−1b) = b−1a−1abb−1b = b−1a−1ab = (ab)−1ab
so (ab)−1ab ≤ b−1b in E(S) and therefore

C(ab)C(b) = C((ab)−1ab)C(b−1b) = C((ab)−1ab) = C(ab)

since C is order-preserving on E(S).

The standard RC-semigroup structure on an inverse semigroup S arises
in this way by setting C(e) = e for all e ∈ E(S). If X is a set with C a closure
operator on X , then IX as defined in Example 1.7 is an inverse RC-semigroup
in which LX = C(IX); again, it is the action of C on E(IX), or equivalently
the action of the original closure operator on X itself, which determines the
action of C on the whole of IX .

Such an inverse RC-semigroup is generic, at least in the finite case.

Theorem 2.3. Every finite inverse RC-semigroup is embeddable in one of
the form IX (X a set equipped with a closure operator) as in Example 1.7 .

Proof. In the inverse RC-semigroup IX of all one-to-one partial maps on a
set X equipped with a closure operator as in Example 1.7, and for S ⊆ X , let
1S be the restriction of the identity map to S . Then LX = {1S | C(S) = S} ,
which is isomorphic as a semilattice under composition to the ∩-semilattice of
closed subsets of X .

Now let S be a finite inverse RC-semigroup. For any a ∈ S , define
ψa : a−1aS → aS , by setting ψa(x) = ax for all x ∈ a−1aS . Now define
θ : S → IS by setting θ(a) = ψa for all a ∈ S . We show θ is an RC-semigroup
embedding.

The usual Vagner-Preston representation establishes that θ is an inverse
semigroup embedding, in which the idempotent elements of S are mapped to
partial identity maps on X and the inverse of an element in S is mapped
to its inverse in IX . It remains to define an appropriate closure operator on
the subsets of S and to show that the induced RC-semigroup structure on IS
embeds that on S .

Note that if eS ⊆ fS for e, f ∈ E(S), then e2 = fx for some x ∈ S ,
and so fe = f(fx) = fx = e , so e ≤ f , and so if also fS ⊆ eS then f = e .
Thus we can define C1 on the subsets of S of the form eS (where e ∈ E(S))
by setting C1(eS) = C(e)S .
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Now if eS ⊆ fS then as just shown, e = ef and so

C1(eS) = C(e)S = C(ef)S = C(ef)C(f)S = C(f)C(ef)S ⊆ C(f)S = C1(fS),

C1(C1(eS)) = C1(C(e)S) = C(C(e))S = C(e)S = C1(eS),

and
eS = eC(e)S = C(e)eS ⊆ C(e)S = C1(eS).

Thus C1 is a closure operator.

Now it is easily shown that eS ∩ fS = efS , so the subsets of the form
eS are closed under finite intersections (hence arbitrary intersections, since
S is finite). Thus we can extend C1 to arbitrary subsets of S by setting
C1(T ) = C(∩{eS | e ∈ E(S), T ⊆ eS}), giving a closure operator on all subsets
of S which restricts to the original C1 . Hence we can define C2 on all of I(S)
using C1 as in the example. We now show that θ(C(a)) = C2(θ(a)) for all
a ∈ S , thereby completing the proof.

Now for any a ∈ S , θ(C(a)) = ψC(a) , which has domain C(a)−1C(a)S =
C(a)S , and ψC(a)(x) = C(a)x = x for all x ∈ C(a)S , so ψC(a) is a restriction
of the identity to C(a)S , By Proposition 2.2, C(a) = C(a−1a), and so

ψC(a) = 1C(a)S = 1C(a−1a)S = 1C1(a−1aS) = C2(ψa) = C2(θ(a)),

as required.

It is possible to extend this result to arbitrary inverse RC-semigroups,
although the closure operator C1 in the proof cannot be extended to arbitrary
subsets of S and the result loses much of its simplicity.

An important property possessed by an inverse semigroup S endowed
with its standard right closure is that for every a ∈ S there exists a−1 ∈ S for
which a−1a = C(a). In general if S is an RC-semigroup such that for every
a ∈ S there exists b ∈ S for which ba = C(a), then we say S is a strong
RC-semigroup. This condition implies regularity of S since for all a ∈ S there
exists b such that aba = aC(a) = a .

In the case of strong RC-semigroups, some of the RC-semigroup axioms
are redundant.

Proposition 2.4. Let S be a semigroup equipped with a unary operation C
satisfying the following rules:

1. aC(a) = a ;

2. C(a)C(b) = C(b)C(a) ; and

3. for all a ∈ S there exists b ∈ S for which ba = C(a) .

Then S is a (strong) RC-semigroup.



Jackson and Stokes OF9

Proof. Let a, b ∈ S . Suppose a′, b′, c ∈ S are such that a′a = C(a),
b′b = C(b) and cab = C(ab). Then C(ab)C(b) = cabC(b) = cab = C(ab),
and so

C(b) = C(b)C(C(b)) = C(C(b))C(b) = C(b′b)C(b) = C(b′b) = C(C(b)).

Thus all the RC-semigroup rules are satisfied by S .

A second property possessed by an inverse semigroup with its standard
right closure is as follows. If the semigroup S is such that there is a right closure
C on S for which C(S) = E(S), we say S is right full or just full. (Similarly we
define left full and two-sided full semigroups.) Thus an inverse RC-semigroup
is full if and only if C is the standard right closure.

Proposition 2.5. If S is a regular full RC-semigroup then S is inverse with
the standard closure.

Proof. Suppose S is a regular full RC-semigroup. Then E(S) = C(S) and
so any two idempotents commute by Proposition 1.3. Hence S is inverse since
it is regular. Furthermore, Proposition 1.3 implies that the right closure on S
is the standard right closure.

The standard right closure on an inverse semigroup is both full and strong.
Conversely we have

Proposition 2.6. If the semigroup S is a full and strong RC-semigroup,
then S is inverse and the right closure on S is the standard right closure.

Proof. A strong RC-semigroup is regular and so Proposition 2.5 applies.

In particular every (right) full and strong RC-semigroup is two-sided, and indeed
left full and left strong.

Full semigroups need not be inverse: for instance, in the additive monoid
of non-negative integers N , E(N) = {0} , so N is a RC-semigroup in which
C(N) = {0} and is full. However N is not inverse and so cannot be strong
either. Likewise a left zero semigroup S (that is, a semigroup satisfying xy =
x) admits a strong right closure but is not inverse since idempotents do not
commute: select an element a ∈ S and define C(b) = a for all b ∈ S .

For RC-semigroups, any two of “full”, “strong” and “inverse” implies the
third. One case was dealt with in Proposition 2.6. If S is full and inverse
then C(a) = a−1a for all a ∈ S , so S is evidently strong. The third case is
established by the following
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Proposition 2.7. If an RC-semigroup is inverse and strong then it is full.

Proof. Suppose S is an inverse RC-semigroup. Then in E(A), C(a) ≥ a−1a
for all a ∈ S (since a−1a is the least e ∈ E(S) for which ae = a , and aC(a) = a
with C(a) ∈ E(S)). Now S is strong, so for all a ∈ S there exists b ∈ S for
which ba = C(a), so a−1a ≤ ba in E(S), and so a−1a = baa−1a = ba = C(a).
Thus S is full.

Proofs of the following useful facts concerning Green’s relations can be
found in most semigroup texts (see [13] for example).

Lemma 2.8. Let S be a semigroup.

1. Every H -class contains at most one idempotent.

2. If e is idempotent then the maximal subgroup of S containing e is He .

3. If a is a regular element of S then every element of Da is regular.

4. If every element of a D -class D is regular then every L-class and every
R-class of D contains at least one idempotent.

5. If D is a regular D -class of a semigroup S and a, b ∈ D then ab ∈ Ra∩Lb
if and only if La ∩Rb contains an idempotent.

In many of the cases we will be considering, the relations D and L coincide.

We now show that strong RC-semigroups are one-sided generalisations of
inverse semigroups.

Lemma 2.9. If S is a strong RC-semigroup then aLC(a) for all a ∈ S .

Proof. Since S is an RC-semigroup, aC(a) = a , and since the right closure
on S is strong, there is an element b such that ba = C(a).

Thus every L-class of a strong RC-semigroup S contains an element of
C(S). Note that the condition aLC(a) characterises strong RC-semigroups
since if aLC(a) then by definition there exists b such that ba = C(a).

If aL e and e2 = e then there exists b such that be = a and therefore
ae = bee = be = a , that is, e is a right identity for every element in Le . Thus
two L-related idempotents e and f commute if and only if e = f . By the dual
nature of the relations L and R we have the same for R-related idempotents.
Thus by the definition of C and Lemma 2.9 we have

Lemma 2.10. If S is a strong RC-semigroup then every L-class of S con-
tains exactly one element of C(S) and every R-class contains at most one
element of C(S) .
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Lemma 2.11. If S is a strong RC-semigroup then C(a) is the only idem-
potent in the R-class RC(a) .

Proof. Suppose C(a)R e for some idempotent e . Now eLC(e) by Lem-
ma 2.9 so LC(e) ∩ RC(a) contains the idempotent e . Thus by Lemma 2.8,
C(e)C(a) ∈ LC(a) ∩ RC(e) and so C(e)C(a)LC(a). Therefore by Lemma
2.10, C(e)C(a) = C(a), but then C(a) ∈ LC(a) ∩ RC(e) , and by Lemma 2.10,
C(a) = C(e)H e . Since C(a) is idempotent, C(a) = e .

Theorem 2.12. Let Cl and Cr be left and right closures on a semigroup.
If S is a strong LC- and RC-semigroup with respect to Cl and Cr respectively
then S is inverse with Cl(a) = aa−1 , Cr(a) = a−1a .

Proof. Combining Lemmas 2.10 and 2.11 with their left duals shows that
every L-class and every R-class of S contains exactly one idempotent. It
is well known that S must be inverse in this case (see [13] for example).
Now a−1a is an idempotent in the L-class La , so Cr(a) = a−1a . Likewise
Cl(a) = aa−1 .

Combining with Proposition 2.1, we have characterised inverse semi-
groups as strong LC- and RC-semigroups: fullness follows as a corollary. Note
that if S is a strong central RC-semigroup, then Proposition 1.1 and Theo-
rem 2.12 imply that a−1a = aa−1 and so D = L = R = H . In this case S is
known as a Clifford semigroup.

Let a true inverse of an element a in a RC-semigroup be an element
a′ such that a′a = C(a) and aa′ = C(a′). Clearly not every element in an
RC-semigroup need have a true inverse and in fact we have

Corollary 2.13. If S is an RC-semigroup in which every a ∈ S has a true
inverse a′ , then S is an inverse semigroup with C the standard right closure,
and a−1 = a′ for all a ∈ S .

Proof. Let S satisfy the conditions of the theorem and let a′ and a∗ be two
true inverses of an element a . Then a∗ = a∗aa∗ = C(a)a∗ = a′aa∗ = a′C(a∗).
That is a∗ ≤ a′ and by symmetry, a′ ≤ a∗ . Therefore it follows that a′ = a∗

and every element a in S has a unique true inverse a−1 . Define Cl(a) = aa−1 ,
Cr(a) = a−1a ; then Cl(a) = C(a−1) and Cr(a) = C(a). Then Cr is a strong
right closure on S . Furthermore, for a ∈ S , Cl(a)a = a−1a = aC(a) = a , and
Cl(a)Cl(b) = Cl(b)Cl(a), so Cl is a strong left closure on S by the left dual of
by Proposition 2.4. Hence by Theorem 2.12, S is an inverse RC-semigroup and
the unique true inverse a−1 of a is the unique inverse of a .
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Two of the many well-known generalisations of inverse semigroups within
the class of regular semigroups are the classes of orthodox semigroups (regu-
lar semigroups whose idempotents form a subsemigroup) and locally inverse
semigroups (regular semigroups S with the property that for any idempo-
tent e ∈ S , the subsemigroup eSe is inverse). As noted above a left zero
semigroup S always admits a strong right closure: for some fixed a ∈ S ,
let C(b) = a for all b ∈ S . On the other hand, a non-trivial right zero
semigroup (that is, a semigroup satisfying the identity xy = y ) never ad-
mits a strong right closure or even a right closure: if C were a right clo-
sure on such a semigroup, then a = aC(a) = C(a) and therefore for all a, b ,
a = C(a) = C(b)C(a) = C(a)C(b) = C(b) = b . Left and right zero semi-
groups are both orthodox and locally inverse, so neither of these classes is
contained in the class of semigroups on which a strong right closure can be
defined.

Conversely, the class of semigroups admitting a strong right closure is
not a subset of either of these two generalisations of inverse semigroups. Let
G be a group, I and Λ non-empty sets and P = (pλi) a Λ × I matrix over
G ∪ {0} for which every row and every column contains at least one non-zero
entry. We define a multiplication on the set (I × G × Λ) ∪ {0} by letting
(i, g, λ)(j, h, ν) = (i, gpλjh, ν) if pλj is not zero, with all other products zero.
Semigroups constructed in this way are called Rees matrix semigroups with 0
and are denoted by M0[G, I,Λ, P ] (see [13] for further details). If we exclude
the element 0 from this definition then the resulting semigroups are called
simply Rees matrix semigroups and are denoted by M[G, I,Λ, P ] for suitable
matrices P .

Example 2.14. The semigroup M1 given by adjoining an identity element
to the Rees matrix semigroup M0[{e}, I,Λ, P ] where {e} is the trivial group,
I and Λ are three and two element sets respectively and P is the matrix(
e 0 e
0 e e

)
admits a strong right closure but is neither locally inverse nor

orthodox.

The right closure can be defined on M1 as follows: C((i, e, λ)) = (λ, e, λ),
C(0) = 0 and C(1) = 1. It is not hard to verify that S is a strong RC-
semigroup. However M1 cannot be an orthodox semigroup since (1, e, 1) and
(3, e, 2) are idempotent but (1, e, 1)(3, e, 2) = (1, e, 2) is not. It cannot be
locally inverse either since clearly a monoid is locally inverse if and only if it is
inverse.

The definitions of orthodox and locally inverse semigroups do not have
the one-sided nature of the strong RC-semigroup definition. However there are
generalisations of inverse semigroups which do: a regular semigroup S is said
to be R -unipotent if efe = ef for all idempotents e, f ∈ S (or equivalently if
every R-class of S contains exactly one idempotent).[1. ] Example 2.14 is not
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R -unipotent since (1, e, 1) and (3, e, 2) are idempotent but (1, e, 1)(3, e, 2) =
(1, e, 2) 6= 0 = (1, e, 1)(3, e, 2)(1, e, 1). Furthermore we have

Example 2.15. The four element band (that is, idempotent semigroup)
defined by the Cayley table:

· 1 2 3 4
1 1 1 1 1
2 2 2 2 2
3 1 1 3 1
4 2 2 2 4

is R-unipotent but does not admit a right closure.

The first claim follows since the product of any two distinct idempotents
e and f is a left zero element and so efe = ef . It has no right closure
since the property aC(a) = a implies that C(3) = 3 and C(4) = 4 whence
C(3)C(4) 6= C(4)C(3), contradicting the commutativity of closed elements.

3. Twisted C-semigroups

We have seen that RC-semigroups can be viewed as generalisations of inverse
semigroups. In this section we refine our RC-semigroup definition to a smaller
class, still containing all inverse semigroups with the standard right closure but
also containing many non-regular members. Several important tools associated
with inverse semigroup theory extend to this class. While there are many well
known generalisations of inverse semigroups within the class of regular semi-
groups (we discussed some in the previous section), there have been noticeably
fewer attempts to generalise inverse semigroup theory outside of regular semi-
groups (some examples are the adequate semigroups of Fountain [7] as well as
the examples mentioned above: the semiabundant semigroups of Lawson [14];
the right type A semigroups of [9]; and the SL γ -semigroups of [1]).

Let S be an RC-semigroup and suppose a, b ∈ S are such that C(b)a = ae
for some e ∈ C(S). Thus bae = bC(b)a = ba , so e ≥ C(ba), although in general
C(b)a 6= aC(ba).

Definition 3.1. If C(b)a = aC(ba) for all elements a, b in an RC-semigroup
S then we say S is a twisted RC-semigroup.

Thus the class of twisted RC-semigroups is a variety of RC-semigroups,
contained within the variety of translucent RC-semigroups (since every element
of a twisted RC-semigroup is plainly translucent).

Recall that an RC-semigroup S is exactly a C(S)-semiadequate semi-
group.
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Proposition 3.2. A twisted RC-semigroup S is exactly a right C(S)-semi-
adequate semigroup, satisfying the right congruence condition and the right
ample condition.

Proof. Let S be right C(S)-semiadequate with L̃ a right congruence and
the right ample condition holding. Let a, b ∈ S . Then C(b)a = aC(C(b)a)
from the right ample condition. By the right congruence condition, C(C(b)a) =
C(ba), so that C(b)a = aC(ba) and S is twisted.

Conversely, suppose S is twisted. Let a, b, c ∈ S with C(a) = C(b).
Then by the twisted condition,

C(ac) = C(aC(a)c) = C(aC(b)c) = C(acC(bc)) = C(acC(bc))C(bc).

Thus C(ac) ≤ C(bc), and similarly we obtain the reverse inequality, so that
C(ac) = C(bc), so that the right congruence condition holds. Now for any
a ∈ S and e ∈ C(S), ea = C(e)a = aC(ea) so that the right ample condition
holds.

Hence from Proposition 1.4, we have

Corollary 3.3. The variety of twisted RC-semigroups is defined within the
variety of RC-semigroups by the equations {C(x)y = yC(C(x)y), C(xy) =
C(C(x)y)} .

Every monoid M is a twisted RC-semigroup if one defines C(a) = 1 for all
a ∈M . Indeed we can characterise monoids in terms of twisted RC-semigroups.

Proposition 3.4. Suppose S is an RC-semigroup. Then S is a twisted
RC-semigroup with |C(S)| = 1 if and only if S is a monoid with C(a) = 1 for
all a .

Proof. If C(S) = {e} then ea = ae = aC(a) = a for all a ∈ S . The other
direction is trivial.

We have the following immediate

Corollary 3.5. The class of monoids (viewed as RC-semigroups by setting
C(a) = 1 for all a) is a subvariety of the variety of twisted RC-semigroups,
specified by the equation C(x) = C(y) .

Standard RC-semigroup structures may be characterised amongst twisted
RC-semigroups by the strong property.

Theorem 3.6. An RC-semigroup is the standard RC-semigroup structure on
an inverse semigroup if and only if it is strong and twisted.
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Proof. Suppose S is an inverse semigroup, C the standard right closure on
S . Then for all a, b ∈ S ,

bC(ab) = b(ab)−1(ab) = bb−1a−1ab = a−1abb−1b = a−1ab = C(a)b,

so S is twisted; moreover S is strong.

Conversely, assume that the RC-semigroup S is strong and twisted. We
show that the right closure on S is full. Let e be an idempotent. Since S is
strong, there exists e′ such that e′e = C(e). Therefore

e = eC(e) = eC(ee) = C(e)e = e′ee = e′e = C(e).

By Proposition 2.6, S is an inverse RC-semigroup with the standard right
closure.

Clearly the set C(S) of closed elements of an RC-semigroup is a subsemi-
lattice of S which is an inverse RC-semigroup, and by the comments preceding
Proposition 2.5, it has the standard right closure. In a twisted RC-semigroup
this idea can be extended further.

If S is twisted, let I(S) = {s ∈ S | s has a true inverse in S} .

Theorem 3.7. If S is a twisted RC-semigroup then I(S) is the maximum
inverse RC-subsemigroup of S with the standard right closure.

Proof. Clearly for all s ∈ S , C(s) ∈ I(S) since C(s)C(s) = C(s) = C(C(s))
and therefore C(S) ⊆ I(S). Also if s ∈ I(S) then every true inverse of s is
contained in I(S). Now if s, t ∈ I(S) have true inverses s′ and t′ respectively
then

t′s′st = t′C(s)t = t′tC(st) = C(t)C(st) = C(st)

and likewise

stt′s′ = sC(t′)s′ = ss′C(t′s′) = C(s′)C(t′s′) = C(t′s′),

so I(S) is an RC-subsemigroup. It is inverse with the standard right closure by
Corollary 2.13.

That I(S) is the maximum inverse RC-subsemigroup of S with the
standard right closure follows immediately from the fact that every element in
an inverse RC-semigroup with the standard right closure has a true
inverse.

An immediate corollary is that the twisted RC-semigroup S is inverse
with the standard right closure if and only if I(S) = S .
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As a special case, if S is a monoid equipped with the right closure C
given by C(a) = 1 for all a ∈ S (a subvariety of the variety of twisted RC-
semigroups given by the identity xC(y) = C(y)x = x), then I(S) is the group
of all invertible elements in S .

This idea can be extended to a more general class using the following
lemma.

Lemma 3.8. If S is an RC-semigroup satisfying the right congruence con-
dition, then W (S) = {x ∈ S | C(a)x = xC(C(a)x) for all C(a) ∈ C(S)} is the
maximum twisted RC-subsemigroup of S containing C(S) .

Proof. First, any RC-subsemigroup W containing C(S) but which is not
contained in W (S) cannot be a twisted RC-subsemigroup since the identity
C(a)x = xC(C(a)x) must fail on it. This means W (S) contains all twisted
RC-subsemigroups of S that contain C(S). Now we show that W (S) is an
RC-semigroup.

Consider a , b ∈ W (S). Now for all x ∈ S , we have from Proposi-
tion 1.4 that C(x)ab = aC(C(x)a)b = aC(xa)b = abC(C(xa)b) = abC(xab) =
abC(C(x)ab); that is, ab ∈ W (S). Finally, clearly C(S) ⊆ W (S) so W (S) is
closed under taking right closures.

For example, if we take C(x) to be x∗ (in the notation of [7]) the right ad-
equate semigroups of [7] are full RC-semigroups satisfying the right congruence
condition ([7], Proposition 1.6). Thus every right adequate semigroup contains
a maximal right type A subsemigroup which in turn contains a maximal inverse
subsemigroup, all sharing the same idempotents.

A further useful property of twisted RC-semigroups is that they admit a
simple representation that is a natural variant of the Vagner-Preston represen-
tation of inverse semigroups. Let PX be the semigroup under composition of all
partial maps X → X , one-to-one or not, with C(f) defined to be the restric-
tion of the identity map to the domain of f ∈ PX . This is a RC-subsemigroup
of BX as in Example 1.7 in the case where the closure operator on X is the
identity. Moreover, restricting the range of g to dom(f) gives the same as re-
stricting the domain of g to dom(fg). Thus PX is twisted: C(f)g = gC(fg)
for all f, g ∈ PX . As an example of Theorem 3.7, note that the maximal inverse
RC-subsemigroup with the standard right closure is IX , as is easily seen.

The twisted RC-semigroup PX turns out to be generic.

Theorem 3.9. Every twisted RC-semigroup S is embeddable as a RC-sub-
semigroup of PS with S given the identity closure operator. Moreover I(S)
consists of exactly those elements corresponding to maps with inverses contained
in this embedding.
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Proof. The approach is a generalisation of the Vagner-Preston representa-
tion of inverse semigroups.

With any a ∈ S associate the partial mapping ψa : C(a)S → aS , defined
by setting ψa(x) = ax for all x ∈ C(a)S = {c ∈ S | C(a)c = c} . Now define
θ : S → PS by setting θ(a) = ψa for all a ∈ S . We show θ isan RC-semigroup
embedding.

Clearly ψC(a) is the identity map on its domain, and dom(ψa)=dom(ψC(a)),
so C(ψa) = ψC(a) , that is, θ(C(a)) = C(θ(a)). Thus θ respects C .

For a, b ∈ S , if (ψa ◦ψb)(x) and ψab(x) are both defined for some x ∈ S ,
then each is equal to abx . We need to show that one is defined if and only if
the other is. Now ψab(x) exists if and only if x = C(ab)x , while (ψa ◦ ψb)(x)
exists if and only if x = C(b)x and bx = C(a)bx .

Suppose x = C(ab)x . Then

C(b)x = C(b)C(ab)x = C(ab)x = x, bx = bC(ab)x = C(a)bx.

Thus dom(ψab) ⊆ dom(ψa ◦ ψb).
Conversely, suppose x = C(b)x and bx = C(a)bx . Then since S is

twisted, x = xC(bx) and bx = bxC(abx). Hence by Proposition 1.2, C(bx) ≥
C(x) and C(abx) ≥ C(bx), so C(abx) ≥ C(x) and so x = xC(abx), that is,
x = C(ab)x . Hence dom(ψa ◦ ψb) ⊆ dom(ψab), and so the two sets are equal.

Thus θ(ab) = θ(a)θ(b), so θ respects multiplication. All that remains is
to show that θ is one-to-one.

Suppose ψa = ψb . Then dom(ψa) = dom(ψb). Obviously C(a) ∈
dom(ψa), so C(a) ∈ dom(ψb), and so C(a) = C(b)C(a) so C(a) ≤ C(b).
Similarly we obtain the opposite inequality, so C(a) = C(b). Hence a =
aC(a) = ψa(C(a)) = ψb(C(a)) = bC(a) = bC(b) = b as required.

Finally, if a ∈ I(S) then for all C(a)x ∈ C(a)S , ψa−1(ψa(C(a)x)) =
a−1aC(a)x = a−1ax = C(a)x , and similarly ψa(ψa−1(C(a−1)x)) = C(a−1)x
for all C(a−1)x ∈ C(a−1)S , so ψa has inverse ψa−1 . Conversely, if ψa has
inverse ψb , then ψb(ψa(C(a)x)) = C(a)x , so bax = C(a)x for all x , and
letting x = C(a), we have ba = C(a); similarly, ab = C(b), and it follows that
b must be the unique true inverse a−1 of a . Thus a ∈ I(S) if and only if ψa
has an inverse map of the same form.

The case in which I(S) = S gives the usual Vagner-Preston representa-
tion for inverse semigroups. On the other hand, the case in which |C(S)| = 1
leads to a representation in which every ψa is a full mapping, and the usual left
regular representation of a monoid is recovered. In general, the bigger C(S) is,
the smaller and more varied the domains can be.

It is obvious that not all twisted RC-semigroups are central (consider for
example any inverse semigroup not satisfying xx−1x = x−1xx). To show the
converse, let S = Z4 under multiplication, with C defined by setting C(0) = 0
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and C(a) = 1 if a 6= 0; then C(2)2 = 1 × 2 = 2 6= 0 = 2C(0) = 2C(2 × 2), so
S is not twisted although it is obviously central.

The following result leads to a representation theorem along the lines of
Theorem 3.9 for twisted RC-semigroups which are also central.

Proposition 3.10. Consider the following three RC-semigroup equations.

1. C(x)C(y) = C(xy) .

2. C(x)y = yC(xy) (twisted property).

3. C(x)y = yC(x) (central property).

If any two hold on an RC-semigroup S , so does the third.

Proof. If the first two equations hold, then C(x)y = yC(xy) = yC(x)C(y) =
yC(x), so the third holds. If the second and third hold, then by Corollary 3.3,

C(x)C(y) = C(y)C(x) = C(x)C(yC(x)) = C(yC(x)) = C(C(x)y) = C(xy),

and so the first holds. Finally, if the first and third equations hold, then
yC(xy) = yC(x)C(y) = yC(x) = C(x)y and the second holds.

Let X be a set equipped with an equivalence relation ρ . Let P ρX be all
partial maps on X that are defined on entire ρ -classes and are such that a ρ f(a)
whenever f(a) is defined. (Thus “modulo ρ” these maps are just restrictions
of the identity, and if ρ is the universal relation then P ρX is all maps on X .)
For any f ∈ P ρX , define C(f) to be the identity map restricted to the domain
of f ; clearly C(f) ∈ P ρX . Now P ρX is an RC-subsemigroup of the twisted RC-
semigroup PX of all partial maps on X , and hence is itself twisted; moreover
it is central as is easily seen.

Conversely, we have

Corollary 3.11. Every twisted central RC-semigroup S is embeddable as an
RC-subsemigroup of P ρS , where ρ = L̃ .

Proof. Using the same mapping θ as in Theorem 3.9, we need only show
that S maps into P ρS . Suppose a ∈ S . Assume ψa(b) exists for some b ∈ S .
Then b = C(a)b and so, using the previous proposition, C(ψa(b)) = C(ab) =
C(a)C(b) = C(C(a)b) = C(b) so b ρψa(b). Moreover if b ρ c then C(b) = C(c),
and so, using the just established fact that C(b) = C(a)C(b), it follows that
c = cC(c) = C(c)c = C(b)c = C(a)C(b)c = C(a)C(c)c = C(a)c , so ψa(c) exists
also. Hence ψa ∈ P ρS .
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The case in which S is a monoid with C(x) = 1 is central as well as
twisted, and corresponds to the case in which ρ is the universal relation. At the
other extreme, in which ρ is equality, C(x) = x holds, and S is (isomorphic
to) a semigroup of restrictions of the identity, or equivalently a semilattice of
sets under intersection.

4. Congruences on C-semigroups

In the case of groups it is well known that every congruence is determined by
a corresponding normal subgroup, that is, the set of elements congruent to the
identity element. This situation generalises to inverse semigroups where every
congruence is determined by a corresponding congruence on the idempotents
and the set of elements congruent to an idempotent (see [13] for example). A
description in this style does not appear possible for RC-semigroups in general—
for example it is easily verified that any semigroup congruence θ on a semigroup
S can be extended with no significant changes to an RC-semigroup congruence
on the (twisted and central) RC-semigroup obtained from S by adjoining a new
identity element 1 and letting C(x) = 1 for all x ∈ S ∪ {1} . Thus an RC-
semigroup congruence on S∪{1} is not determined at all by the set of elements
of S ∪{1} which are congruent to an element in C(S ∪{1}). In this section we
show that despite this, two particularly important kinds of inverse semigroup
congruences carry over to twisted RC-semigroups. On the other hand we show
that the class of finite congruence free RC-semigroups is likely to be significantly
more complicated than for the corresponding class of semigroups.

Following standard notation for similar inverse semigroup concepts (see
[13] for example), we say that if S is a twisted RC-semigroup and ρ is a
congruence on C(S) then ρ is a normal congruence on C(S) if C(a) ρC(b)⇒
C(ax) ρC(bx) for all x ∈ S . The trace of a congruence θ on a RC-semigroup
S is the restriction of θ to C(S), a congruence on C(S).

Note that if S is a twisted RC-semigroup and θ is a RC-semigroup
congruence on S then the trace of θ is a normal congruence on C(S), since if
C(a) θ C(b) then for all x , C(a)x θ C(b)x and so C(ax)=C(C(a)x) θ C(C(b)x)
= C(bx). The following two propositions provide converses to this fact and
generalise two well known and powerful descriptions from inverse semigroup
theory.

In the RC-semigroup S , define

ρmin = {(a, b) | C(a) ρC(b)

and there exists e ∈ C(S) ∩ C(a)/ρ such that ae = be}.

In [9], Fountain defines this relation for right type A semigroups.

Proposition 4.1. Let S be a twisted RC-semigroup and let ρ be a normal
congruence on C(S) . Then ρmin is the minimum congruence on S with trace ρ .
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Proof. First, ρmin is clearly symmetric and reflexive. Now suppose (a, b),
(b, d) ∈ ρmin . Then C(a) ρC(b) ρC(d) and there are e ∈ C(S) ∩ C(a)/ρ and
f ∈ C(S) ∩ C(b)/ρ for which ae = be and bf = df . Therefore aef = bef =
bfe = dfe = def and since e ρC(a) ρC(b) ρ f the relation ρmin is transitive
too. Hence ρmin is an equivalence relation.

Now we show that ρmin is a congruence. By definition if (a, b) ∈ ρmin

then there is e ∈ C(S)∩C(a)/ρ such that ae = be . Thus C(a)e = C(C(a)e) =
C(ae) = C(be) = C(C(b)e) = C(b)e by Corollary 3.3, so C(a) ρmin C(b) and
ρmin respects C .

Now suppose (a, b) ∈ ρmin , and let e ∈ C(S) be such that e ∈ C(a)/ρ
and ae = be . Now by the normality of ρ , C(ex) ρC(C(a)x) = C(ax) for
all x ∈ S , by Corollary 3.3, so C(ex) ∈ C(ax)/ρ . However we also have
that axC(ex) = aC(e)x = aex = bex = bC(e)x = bxC(ex). Therefore
(ax, bx) ∈ ρmin . Furthermore, for all x ∈ S , C(xa) = C(xa)C(a) ρC(xa)e =
eC(xae), and similarly C(xb) ρ eC(xbe), which equals eC(xae) since ae = be ,
so C(xa) ρC(xb). Also, xaeC(xa) = xbeC(xa) where eC(xa) ρC(a)C(xa) =
C(xa)C(a) = C(xa), so (xa, xb) ∈ ρmin . Hence ρmin is a congruence.

Next, we show that the trace of ρmin is ρ . If C(a) ρC(b) then

C(a)[C(a)C(b)] = C(a)C(b) = C(a)C(b)C(b) = C(b)[C(a)C(b)]

so that C(a) ρmin C(b). Conversely if C(a) ρmin C(b) then by definition C(a) ρC(b)
as required.

To complete the proof it remains to show that ρmin is the minimal
congruence with trace ρ . Let θ be a congruence with trace ρ and let a ρmin b .
Then C(a) ρmin C(b), and since ρmin and θ share the same trace, C(a) θ C(b).
Also there is an element e ∈ C(a)/ρ for which ae = be , so a = aC(a) θ ae =
be θ bC(b) = b , that is, a θ b .

Likewise we have the following result (which does not depend on the right
ample condition).

Proposition 4.2. If S is an RC-semigroup satisfying the right congruence
condition and ρ is a normal congruence on C(S) then

ρmax = {(a, b) | C(a) ρC(b) and C(ea) ρC(eb) for all e ∈ C(S)}

is the maximum congruence on S with trace ρ .

Proof. That ρmax is an equivalence relation respecting the right closure
follows immediately from its definition.

Now suppose (a, b) ∈ ρmax . Since C(ea) ρC(eb) for all e ∈ C(S), by
the normality of ρ we have that for every x ∈ S , C(eax) = C(ebx), so
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(ax, bx) ∈ ρmax if C(ax) ρC(bx), which is immediate from the normality of ρ .
Also by the right congruence condition, we have that for all e ∈ C(S) and x ∈ S ,
C(exa) = C(C(ex)a) ρC(C(ex)b) = C(exb) as required, so (xa, xb) ∈ ρmax

follows if C(xa) ρC(xb). Now C(xa) = C(C(x)a) ρC(C(x)b) = C(xb) since
a ρmax b . Therefore ρmax is a congruence.

Now we must show that the trace of ρmax is ρ . If C(a) ρC(b) then for
all e ∈ C(S), eC(a) ρ eC(b) since ρ is a congruence on C(S), so certainly
C(a) ρmax C(b). Conversely by the first condition in the definition of ρmax , it
follows that the trace of ρmax is contained in ρ , so the trace of ρmax is ρ .

Finally we show that if θ is a congruence with trace equal to ρ then
a θ b implies a ρmax b . Now a θ b implies that C(a) θ C(b) or equivalently
that C(a) ρC(b). Furthermore for every e ∈ C(S), ea θ eb and therefore
C(ea) ρC(eb), and so a ρmax b . Thus θ ⊆ ρmax .

By the definitions of ρmin and ρmax we also have the following.

Corollary 4.3. If T is a subsemigroup of a twisted RC-semigroup S with
C(S) = C(T ) and ρ is a normal congruence on C(S) then the restrictions of
ρmin and ρmax to T are the minimum and maximum congruences respectively
on T with trace ρ .

Two of the most important congruences on C(S), the universal (∇)
and diagonal (∆) relations, are obviously normal congruences on C(S). The
corresponding congruences on the twisted RC-semigroup S obtained from the
above two propositions are

σ = ∇min = {(a, b) | ae = be for some e ∈ C(S)}

and

µ = ∆max = {(a, b) | C(a) = C(b) and for all x,C(xa) = C(xb)},

giving the minimum congruence σ for which S/σ lies in the RC-semigroup vari-
ety given by C(x) = C(y) (in the case of inverse semigroups with the standard
right closure, this is the minimum group congruence) and the maximum con-
gruence, µ , separating C(S). The existence of the congruence µ generalises a
corresponding result of [7] (see Proposition 2.3 of that paper) relating to right
adequate semigroups (which necessarily satisfy the right congruence condition).

For example, Corollary 4.3 implies the following

Corollary 4.4. If µ is trivial on the twisted RC-semigroup S , then µ is
trivial on the inverse semigroup I(S) .

An inverse RC-semigroup S with the standard right closure for which µ
is trivial is called fundamental. A famous result due to Munn [16] shows that
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an inverse semigroup with idempotents E is fundamental if and only if it is
isomorphic to a subsemigroup of the so-called Munn semigroup TE for E (for
details see [13]). The existence of such an inverse semigroup establishes an upper
bound on the cardinality of a fundamental inverse semigroup with idempotents
E : it follows using the description of the Munn semigroup in [13] for example
that TE is a subinverse semigroup of IE , the inverse semigroup of all partial
one to one functions on the set E . We now show a similar bound exists for the
more general class of twisted RC-semigroups.

Let a twisted RC-semigroup S be called fundamental if µ is trivial.

Proposition 4.5. If S is a fundamental twisted RC-semigroup then |S| ≤
|C(S)| 2|C(S)| .

Proof. We first show that there is a semigroup homomorphism from S into
the semigroup TC(S) of all transformations of the set C(S) and then obtain a
bound on the cardinality of the corresponding congruence classes of S . (Note
that TC(S) is different from the Munn semigroup TC(S) of the semilattice C(S).)

For s ∈ S , let αs : E → E be the map defined by xαs = C(xs).
Therefore for s, t ∈ S we have xαsαt = C(xs)αt = C(C(xs)t) = C(xst) = xαst .
Then the map ι : S → TE defined by ι(s) = αs is a semigroup homomorphism
since for s, t ∈ S , ι(s)ι(t) = αsαt = αst = ι(st). Note that this homomorphism
is essentially the same as that used in the proof of Lemma 2.1 of [7] for right
type A semigroups.

For s, t ∈ S , if ι(s) = ι(t), then for all x ∈ C(S) it must be the case that
C(xs) = C(xt). It follows from the above description of the congruence µ and
the assumption that S is fundamental that s 6= t implies that C(s) 6= C(t).
Now for any element s ∈ S there are at most |C(S)| choices for the value
of C(S) and therefore there is a bound of |C(S)| on the cardinality of each
congruence class of S with respect to the congruence ker(ι) associated with ι .
Since |TC(S)| = 2|C(S)| the result follows.

Next we obtain further characterisations of central twisted RC-semigroups,
generalising a well known result of Howie concerning inverse semigroups with
central idempotents [12] and of Fountain concerning right type A semigroups
with central idempotents [7].

Corollary 4.6. Let S be a twisted RC-semigroup. The following are equiv-
alent.

1 . S is central;

2 . S/µ ∼= C(S) ;

3 . for every b ∈ S , L̃b is a subsemigroup of S .
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Proof. If a twisted RC-semigroup S is central then for all x ∈ S , C(xa) =
C(x)C(a) = C(C(x)C(a)) = C(xC(a)) by Proposition 3.10, and since C(a) =
C(C(a)), we have that aµC(a). Since µ is C(S)-separating, it follows that
S/µ ∼= C(S). Conversely if S/µ ∼= C(S) then because C(x)µC(y) only if
C(x) = C(y) and C(a) is the minimum element in C(S) for which aC(a) = a ,
we must have aµC(a) for all a ∈ S , and therefore C(xa) = C(xC(a)) =
C(xC(a))C(a) = C(a)C(xC(a)) = C(x)C(a) for every x ∈ S . It now follows
from Proposition 3.10 that S is central.

Equivalence of the second and third conditions follows immediately since
every element in C(S) is idempotent and a congruence class is idempotent if
and only if its elements form a subsemigroup. Clearly such subsemigroups are
also RC-subsemigroups satisfying C(x) = C(y).

Of course µ here is just L̃ as in Corollary 3.11.

We now examine the class of finite congruence free RC-semigroups. Aside
from the finite simple groups, there are in fact relatively few different forms of
finite congruence free semigroups. There are, up to isomorphism, four non-group
two element semigroups, each of which is a congruence free semigroup. All other
finite congruence free semigroups are isomorphic to a Rees matrix semigroup
with zero of the form M0[{e}, I,Λ, P ] where P is a matrix whose entries are
either 0 or e and has the property that no two columns and no two rows are
identical (see [13] for example). Given this description it is easy to describe
which finite congruence free semigroups are congruence free RC-semigroups.

Proposition 4.7. If S is a finite congruence free semigroup and also a con-
gruence free RC-semigroup, then S is isomorphic to either a finite simple group,
a two element semilattice with closure C(x) = 1 , a two element semilattice with
closure x = C(x) , a two element left zero semigroup or for some n and m ≥ n
a Rees matrix semigroup over the trivial group with an n×m sandwich matrix
consisting of an n×n identity submatrix and then the remaining columns such
that no two columns are identical and each has at least two non-zero entries.
All these semigroups admit strong right closures.

Proof. Since the two element null semigroup and the two element right zero
semigroup do not admit right closures, these cannot be congruence free RC-
semigroups. On the other hand, all simple groups and all other two element
semigroups admit right closures as described above and so must be congruence
free as RC-semigroups. Now consider a congruence free Rees matrix semigroup
M with zero that admits a right closure and let a be a non-zero element of M .
Assume further that the sandwich matrix P of M is an n×m matrix, that is
that M contains n non-zero L-classes and m non-zero R-classes. Now since
aC(a) = a , the element C(a) cannot be 0. It now follows from the structure
of a Rees matrix semigroup with zero and from the fact that aC(a) = a that
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aLC(a) (which implies that the right closure on M is strong). It is clear that
two distinct D -related idempotents commute in a Rees matrix semigroup if and
only if their product is zero. Since every L-class contains a closed element and
closed elements commute, it follows that there is an n × n submatrix of P in
which every row and every column contains exactly one non-zero element. Up
to isomorphism, rearranging the columns (or the rows) of the matrix P leaves
the original Rees matrix semigroup with zero unchanged and so we may assume
that there is a submatrix of P that is an n × n identity matrix. Since every
row and every column of P must be different, M is of the described form.

Conversely, let M be a Rees matrix semigroup of the described form and
Q an n×n identity submatrix of the n×m matrix P . It is then easily verified
that the unary operation defined by C(0) = 0 and C((i, e, j)) = (j, e, j) is a
(strong) right closure as required.

The path from congruence free semigroups to congruence free RC-semi-
groups is simplified by the fact that an RC-semigroup congruence on an RC-
semigroup defines a semigroup congruence on the underlying semigroup. How-
ever the converse is certainly not true and in general the situation for finite
congruence free RC-semigroups appears to be much more complicated than the
corresponding semigroup case. In particular while every congruence free semi-
group consists of just one non-zero J -class, for any n there exists a (finite)
congruence free RC-semigroup with n distinct J -classes. We describe such an
example for any even natural number n but it is obvious that an analogous
construction exists for odd numbers as well.

Proposition 4.8. Let n be an even natural number and let D be the set

{(i, j)k | i, j ∈ {1, 2}, 1 ≤ k ≤ n} ∪ {0, 1}

with the multiplication 0a = a0 = 0 , 1a = a1 = a for every a , and

(i, j)k(i
′, j′)k′ =

{
(i, j′)min(k,k′), if j = i′,
0, otherwise.

Define a right closure on D by the following rules: C(0) = 0 , C(1) = 1 ,

C((j, 1)i) =

 (1, 1)i+1, if i is even and i < n,
(1, 1)i, if i is odd,
1, if i = n,

and

C((j, 2)i) =

{
(2, 2)i, if i is even,
(2, 2)i+1, if i is odd.

Then D is a finite congruence free RC-semigroup with a chain of n+2 distinct
J -classes.
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Proof. It is convenient to first introduce some notation. Let the index of an
element (i, j)k be the number k and let the indices of 0 and 1 be 0 and n+ 1
respectively. Let the left (or right) coefficient of (i, j)k be the number i (or j ,
respectively).

First, we show D is a semigroup. It is clear that (i1, j1)k1
[(i2, j2)k2

(i3, j3)k3
] = 0 if and only if [(i1, j1)k1

(i2, j2)k2
](i3, j3)k3

= 0. Consider the case
when these products are non-zero. Then j1 = i2 , j2 = i3 and both sides equal
(i1, j3)min(k1,k2,k3) , so the multiplication is associative and D is a semigroup.

Secondly, we show that D is an RC-semigroup. The closed elements are
easily seen to form a subsemilattice of D . Furthermore for any element x , the
element C(x) is the smallest element of C(D) for which xC(x) = x and so by
Proposition 1.3, D is an RC-semigroup.

Thirdly, we show that D is a congruence-free RC-semigroup with n+ 2
J -classes. It is easy to verify that the J -classes of D are the sets of equal
index and therefore that there are exactly n+ 2 of them. Now consider an RC-
semigroup congruence θ on D that is neither the diagonal nor the universal
relation. If (i1, j1)k θ (i2, j2)k (where (i1, j1) 6= (i2, j2)) with k maximal, then
it follows from the semigroup properties of D that (1, 1)k θ (2, 2)k . However,
(1, 1)k(2, 2)k = 0 and (1, 1)k(1, 1)k = (1, 1)k . Therefore, for any i, j ∈ {1, 2} ,
(i, j)k θ 0. This is not an RC-semigroup congruence since we may assume with-
out serious loss of generality that either C((1, 1)k) = (1, 1)k+1 or C((1, 1)k) = 1
(the remaining case is when C((1, 1)k) = (1, 1)k , in which case the same argu-
ments apply except using (2, 2)k instead of (1, 1)k ). In the first case we then
have (1, 1)k+1 θ 0 and therefore (i, j)k+1 θ 0 for all i, j ∈ {1, 2} , contradicting
the maximality of k . In the second case we have that 1 θ 0 and θ is the uni-
versal relation. Thus the congruence classes of θ contain at most one element
of each index.

Now let k be the maximum index of any element (i, j)k in a given non-
trivial congruence class of θ . Since R and L are left and right congruences
respectively it follows that any element R-related to (i, j)k also lies in a non-
trivial congruence class of θ . As above we can assume without loss of generality
that C((1, 1)k) has index k + 1. Then by the above arguments (1, 1)k θ (i, j)k′
for some k′ < k . Hence C((i, j)k′) has index at most k and therefore the
fact that C((1, 1)k) and C((i, j)k′) must be θ -related either contradicts the
maximality of k or implies that 1 θ C((i, j)k′). In this second case, since
C((i, j)k′) 6= 1, it easily follows that θ is the universal relation, contradicting
the choice of θ . Thus no such congruence exists, that is, D is congruence
free.

This example depends on the fact that the right closure of an element x
is capable of lying in a separate J -class to that of x . In the case of strong RC-
semigroups however, C(x) is L-related to x , meaning that the usual notions
of semigroup ideal and Rees quotient apply. In particular this means that if a
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strong RC-semigroup S has a proper nonzero ideal I then the Rees congruence
on the multiplicative part of S also respects the closure operation and so S/I
is a proper RC-semigroup quotient of S . Thus a strong, congruence free finite
RC-semigroup is isomorphic to a Rees matrix semigroup with or without zero
element and with a strong right closure operation. As well as more complicated
examples, this class includes all the finite simple abelian groups with the identity
element as the unique closed element (which are isomorphic as semigroups to
Rees matrix semigroups over themselves with a 1 × 1 sandwich matrix) the
two element semilattice with every element closed (which is isomorphic as a
semigroup to a Rees matrix semigroup with zero over the trivial group and with
1 × 1 sandwich matrix) and the two element left zero semigroup with a single
closed element. The two element semilattice with only one closed element is not
a strong RC-semigroup since a zero element, 0 say, cannot be L-related to any
other element, while every element is L-related to its closure in a strong RC-
semigroup. Descriptions of the possible semigroup congruences on Rees matrix
semigroup (with or without a zero element) are well known (see [13] for example)
and it is easily seen that all respect any possible right closure operation. Thus
we have the following corollary to Proposition 4.7.

Corollary 4.9. An RC-semigroup is a strong congruence free RC-semigroup
if and only if it is of one of the forms described in Proposition 4.7 other than
the semilattice with C(x) = 1 .

5. C-semigroups and varieties

It is of interest to determine all semigroup varieties consisting of semigroups
admitting an RC-semigroup structure.

Theorem 5.1. Let V be a semigroup variety. The following are equivalent:

1 . every semigroup in V admits a right closure;

2 . every semigroup in V admits a strong right closure;

3 . for some n , V is a subvariety of either the semigroup variety defined
by {x = xn+1, xnyn = ynxn} or the semigroup variety defined by {x =
xn+1, xnyn = xn} .

Proof. Suppose V satisfies (1). If V does not satisfy an identity of the
form xn+p = xn then the V -free semigroup generated by one element must
be infinite and so is isomorphic to the natural numbers (without zero) under
addition. However since the additive semigroup of natural numbers without zero
does not admit a right closure (for example there is no positive number x such
that 1 + x = 1) this contradicts (1). Similarly if the number n in the identity
xn+m = xn cannot be chosen to be 1 then V contains a semigroup S in which
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a 6= am+1 for some element a ∈ S . In the subsemigroup A of S generated
by a (which is contained in V ) there is no element b such that ab = a . Thus
no closure operation can be defined on A , again contradicting (1). Therefore
V satisfies x = xn+1 for some n and it follows that every semigroup in V is
a union of periodic groups of exponent dividing n , that is, V is a subvariety
of the completely regular variety given by x = xn+1 . By a famous theorem of
Clifford, every semigroup in V is a semilattice of completely simple semigroups
(see [13] for example).

Now it is evident that the variety V cannot contain a right zero semi-
group since we have seen earlier that such a semigroup does not admit a right
closure. Furthermore, on any completely simple semigroup the H relation is
a congruence which collapses each individual subgroup to an idempotent. The
corresponding quotient is a completely simple band. The only such bands which
do not contain right zero semigroups as subsemigroups are left zero semigroups.
Therefore each completely simple semigroup in the variety V is a left zero semi-
group of groups, called a left group. It is easily verified that the R relation in
such a semigroup is equal to the H relation and also that L = J = D . Thus
every semigroup in V is a semilattice of left groups.

Now we show that for some n , V is a subvariety of the variety given by
{x = xn+1, (xy)n(yx)n = (xy)n} . Let S be a semigroup in V and let a, b be
elements of S . Now since S is a semilattice of completely simple semigroups,
ab and ba lie within the same completely simple subsemigroup of S (the J -
class containing ab). By the above arguments, this is a left group. Now (ab)n

and (ba)n are idempotents in this same left group and since (by the above
arguments) (ab)n L (ba)n we have that (ab)n(ba)n = (ab)n as required.

This enables us to show that the idempotents in any semigroup in V form
a band (that is, V is a variety of orthodox semigroups). Let S be a semigroup
from V . Any idempotent in S is of the form an for some a ∈ S . Now

anbn = anbn(anbn)n

= anbn(anbn)n(bnan)n

= an(bnan)nbn(bnan)n

= an(bnan)n(bnan)n

= an(bnan)n

= an(bnan)n(anbn)n

= (anbn)nan(anbn)n

= (anbn)n(anbn)n

= (anbn)n,

which is an idempotent as required.

A band in the variety defined by {(xy)n(yx)n = (xy)n, x = xn+1} satisfies
xyyx = xy which for bands is equal to xyx = xy . The lattice of all band



OF28 Jackson and Stokes

varieties has been completely described by several authors ([3], [6], and [10])
and this variety of bands has exactly four proper subvarieties: the trivial variety,
the variety SL of semilattices, the variety LZ of left zero semigroups and the
variety LN of left normal bands (defined within the variety of bands by the
identity xyz = xzy or equivalently by taking the join LZ ∨ SL). However it
is easily verified that the semigroup in Example 2.15 is contained in the variety
LN . Since this semigroup does not admit any right closure, every band in the
variety V must be contained in one of the varieties SL or LZ . In the first case
it follows that for some n , V is a subvariety of the variety given by the first set
of identities in point (3) of Theorem 5.1 (the variety of semilattices of groups of
exponent dividing n) and in the second case it follows that for some n , V is a
subvariety of the variety defined by the second set of identities (the variety of
left groups of exponent dividing n). Thus we have shown (1)⇒(3).

For (3)⇒(1), it is easy to define a right closure on any semigroup from
one of the varieties in (3). For the first case we may let the right closure of an
element a be the element an . In the second case we can choose an arbitrary
idempotent e and define C(x) = e for all x .

The equivalence of conditions (2) and (3) follows immediately since in
both of the cases the right closures we defined were strong.

Note that this result means that taking the join of two semigroup varieties
of RC-semigroups does not necessarily result in a semigroup variety of RC-
semigroups.

The simplicity of the varieties described in this theorem also leads to
similar descriptions for restricted classes of RC-semigroups. For example, the
two element left zero semigroup does not admit a right closure that is full, or
twisted, or central (or indeed translucent). It also is not an inverse semigroup.
On the other hand any subvariety of the semigroup variety defined by the first
set of identities is a variety of Clifford semigroups – inverse semigroups which are
semilattices of groups. The standard right closure on any such inverse semigroup
satisfies all of the properties just described and therefore we have the following

Corollary 5.2. Let V be a variety of semigroups. The following are equiv-
alent:

1 . for some n , V is contained in the semigroup variety defined by {xn+1 =
x, xnyn = ynxn} ;

2 . every member of V is a Clifford semigroup (that is, a semilattice of
groups);

3 . every semigroup in V admits a full RC-semigroup structure;

4 . every semigroup in V admits a full twisted RC-semigroup structure;
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5 . every semigroup in V admits a twisted RC-semigroup structure;

6 . every semigroup in V admits a translucent RC-semigroup structure;

7 . every semigroup in V admits a central RC-semigroup structure;

8 . every semigroup in V is an inverse semigroup.

We note that a description of the semigroup varieties admitting a full (in the
same sense as a full right closure) unary operation I satisfying the identi-
ties

{I(x)I(y) = I(y)I(x), xI(x) = I(x), I(I(x)) = I(x), I(xy)I(y) = I(x)I(y)}

was obtained in [15]. Here I(a) = max{e ∈ LS | ae = e} , where LS is the
semilattice {I(a) | a ∈ S} – analogs of Propositions 1.2 and 1.3 apply. The
corresponding semigroup varieties are all subvarieties of the semigroup varieties
given by the identities {xn+1 = xn, xnyn = ynxn} for some n , an almost “dual”
set of identities to that of Corollary 5.2!

Theorem 5.1 and Corollary 5.2 show that the classification of RC-semi-
groups by semigroup varieties is unlikely to be useful. An alternative approach is
to view RC-semigroups as algebras having one unary and one binary operation.
As we have noted, the classes of translucent, central and twisted RC-semigroups
are all subvarieties in this sense. Note that the free twisted RC-semigroups have
been described in [1] and [9]. Indeed, the variety of RC-semigroups is exactly
the variety generated by the quasivariety of all right type A semigroups (see [9]
and [2]).

The atoms in the lattice of semigroup varieties are all varieties generated
by a cyclic group of prime order, the varieties generated by the two element
left and right zero semigroups, the variety generated by the two element null
semigroup and the variety generated by the two element semilattice (see [5] for
example). We now give a description of the atoms in the lattice of RC-semigroup
varieties.

Theorem 5.3. The atoms in the lattice of RC-semigroup varieties are: all
varieties generated by a cyclic group of prime order with C(x) = 1 ; the variety
generated by the two element left zero RC-semigroup (satisfying C(x) = C(y));
the variety generated by the two element semilattice with right closure satisfying
x = C(x) ; the variety generated by the two element semilattice with right closure
satisfying C(x) = C(y) .

Proof. If an RC-semigroup S contains more than one closed element then
the variety generated by the subsemilattice of closed elements contains the two
element semilattice satisfying x = C(x). Otherwise, consider the case in which
there is only one closed element. Suppose there is another idempotent e in
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S . Then C(e)eC(e)e = C(e)ee = C(e)e . If C(e)e ∈ {e, C(e)} , then the RC-
subsemigroup {e, C(e)} is either the two element left zero RC-semigroup or the
two element semilattice with one closed element. Otherwise, {C(e), C(e)e} is
the two element semilattice with one closed element. Thus the variety generated
by S is one of those in the statement of the theorem.

Now suppose that C(b) is the unique idempotent in S . Let a be any
other element. If some power of a is equal to C(a) then since aC(a) = a , a
generates a cyclic group with right closure. In this case a cyclic group of prime
order is contained in the variety generated by the RC-subsemigroup generated
by a . Thus assume that no power of a equals C(a) and consider the RC-
subsemigroup 〈a〉 generated by a and C(a). Since C(a)aiC(a)aj = C(a)ai+j ,
C(a)2 = C(a) and aiC(a) = ai , every element in this subsemigroup can be
written in the form ai , or C(a)aj , for i > 0 and j ≥ 0 (here a0 denotes the
empty word). Since C(a) is the unique idempotent in 〈a〉 , there is no number
i > 0 such that C(a)ai = C(a) (for otherwise ai+1 = aC(a)ai = aC(a) = a ,
contradicting the assumption that no power of a is C(a)). Thus the equivalence
on 〈a〉 with equivalence classes {C(a)} and 〈a〉\{C(a)} is a congruence and
the resulting quotient is isomorphic to the two element semilattice with right
closure satisfying C(x) = C(y).

Thus every RC-semigroup variety contains one of the RC-semigroups
described in the theorem and it is easily established that no one of them is
contained in the variety generated by any of the others. It follows that these
are the atoms in the lattice of RC-semigroup varieties.

We note that while there is a single semigroup variety of semilattices,
the above theorem shows that there are two distinct atoms in the variety of
RC-semigroups consisting of semilattices, both of which are twisted. However,
while a C-semilattice is obviously central, it need not be twisted: if we take the
Boolean algebra of subsets of a two element set {a, b} with closed sets {a, b}
and ∅ then C({a}){b} = {b} while {b}C({a}{b}) = {b}∅ = ∅ .

Acknowledgements

We would like to thank the referee for a very thorough and helpful review of
the article, which has gained much in clarity as a result.

References

[1] Batbedat, A., γ -demi-groups, demi-modules, produit demi-directs, Semi-
groups, Proceedings, Oberwolfalch, Germany 1978, Lecture Notes in Math-
ematics 855, Springer-Verlag 1981, 1–18.

[2] Batbedat, A. and J. B. Fountain, Connections between left adequate semi-
groups and γ -semigroups, Semigroup Forum 22 (1981), 59–65.



Jackson and Stokes OF31

[3] Birjukov, A. P., Varieties of idempotent semigroups, Algebra i Logika 9
(1970), 255–273 (Russian).

[4] Burris, S. and H. P. Sankappanavar, “A Course in Universal Algebra”,
Graduate Texts in Mathematics 78, Springer Verlag, 1980.

[5] Evans, T., The lattice of semigroup varieties, Semigroup Forum 2 (1971),
1–43.

[6] Fennemore, C. F., All varieties of bands I, II, Math. Nachr. 48 (1971),
237–252.

[7] Fountain, J., Adequate semigroups, Proc. Edinburgh Math Soc. 22 (1979),
113–125.

[8] Fountain, J., Abundant semigroups, Proc. London Math. Soc. 44 (1982),
103–129.

[9] Fountain, J., Free right type A semigroups, Glasgow Math. Journal 33
(1991), 135–148.

[10] Gerhard, J. A., The lattice of equational classes of idempotent semigroups,
J. Algebra 15 (1970), 195–224.

[11] Higgins, P. M., “Techniques of Semigroup Theory”, Oxford University
Press, 1992.

[12] Howie, J. M., The maximum idempotent-separating congruence on an in-
verse semigroup, Proc. Edinburgh Math. Soc. 14 (1964), 71–79.

[13] Howie, J. M., “Fundamentals of Semigroup Theory”, London Mathematical
Society Monographs, Oxford University Press, 2nd ed., 1995.

[14] Lawson, M. V., Semigroups of ordered categories I. The reduced case, J.
Algebra 141 (1991), 422–462.

[15] Kelarev, A. V. and Stokes, T., Interior algebras and varieties to appear in
Comm. Alg.

[16] Munn, W. D., Uniform semilattices and bisimple inverse semigroups Quart.
J. Math. Oxford 17(2) (1966), 151–159.



OF32 Jackson and Stokes

Department of Mathematics
University of Tasmania,
GPO Box 252-37,
Hobart 7001
Australia
EMAIL: Marcel.Jackson@utas.edu.au

Department of Mathematics and Statistics
Murdoch University
Perth
Australia
EMAIL: stokes@prodigal.murdoch.edu.au

Received May 6, 1999
and in final form May 6, 1999


