

Constructing Linear Bicategories

Rose Kudzman-Blais ¹

Rick Blute ¹ Susan Niefield ²

¹University of Ottawa

²Union College

29th Foundational Methods in Computer Science Workshop
July 1, 2022

Presentation Overview

1 Motivation

\mathbb{Z}_∞ -relations

Linear Bicategories

Girard quantales and quantaloids

2 Q-Rel

When Q is a Girard quantale

LD-quantales and Linear quantaloids

When Q is a LD-quantale

3 Q -Mod

When Q is a Girard quantaloid

When Q is a linear quantaloid

4 Non-locally posetal examples

Girard Bicategories

Examples

\mathbb{Z}_∞ -relations

Consider two ordered structures on $\mathbb{Z}_\infty = \mathbb{Z} \cup \{+\infty, -\infty\}$:

Tropical Semiring

$$x \times_1 y = x + y$$

$$-\infty \times_1 \infty = -\infty = \infty \times_1 -\infty$$

$$x + y = \max\{x, y\}$$

Usual order

Artic Semiring

$$x \times_2 y = x + y$$

$$-\infty \times_2 \infty = \infty = \infty \times_2 -\infty$$

$$x + y = \min\{x, y\}$$

Opposite order

Both \mathbb{Z}_∞ and \mathbb{Z}_∞^{op} are not just semirings, but are in fact *quantales*.

They are of great use in the theory of synchronization. For more information about how these structures arise:

- M. Droste, W. Kuich. Semirings and Formal Power Series (2009).
- M. Droste, W. Kuich, H. Vogler. Handbook of Weighted Automata (2009).

\mathbb{Z}_∞ -relations (cont'd)

Definition

If X and Y are sets, define a \mathbb{Z}_∞ -relation $R: X \multimap Y$ to be a function $R: X \times Y \rightarrow \mathbb{Z}_\infty$. Then the two semiring constructions above define two distinct relational compositions.

Given $X \xrightarrow{A} Y \xrightarrow{B} Z$, define

$$A \otimes B(x, z) = \max_{y \in Y} (A(x, y) \times_1 B(y, z)),$$

$$A \oplus B(x, z) = \min_{y \in Y} (A(x, y) \times_2 B(y, z)).$$

Remark

These two compositions are related by a linear distribution and determine a locally posetal linear bicategory.

Further, \mathbb{Z}_∞ with the above operations is a Girard quantale and the two structures are related by the Girard duality.

Linear Bicategories

Definition (Cockett, Koslowski, and Seely)

A *linear bicategory* \mathcal{B} consists of the following data.

- A class \mathcal{B}_0 (of '0-cells')
- A category \mathcal{B}_1 (with '1-cells' as objects and '2-cells' as morphisms)
- Functors $D_0, D_1: \mathcal{B}_1 \rightarrow \mathcal{B}_0$ (*domain, codomain*).
- Functor $\otimes_{X,Y,Z}: \mathcal{B}(X, Y) \times \mathcal{B}(Y, Z) \rightarrow \mathcal{B}(X, Z)$ (*tensor*)
- Functor $\oplus_{X,Y,Z}: \mathcal{B}(X, Y) \times \mathcal{B}(Y, Z) \rightarrow \mathcal{B}(X, Z)$ (*par\cotensor*)
- 1-cells $\top_X, \perp_X: 1 \rightarrow \mathcal{B}(X, X)$

(continues on the next slide)

Linear Bicategories (cont'd)

Definition (Cockett, Koslowski, and Seely)

- *Natural isomorphisms (expressing associativity of \otimes and \oplus)*

$$a_{\otimes} : (A \otimes B) \otimes C \rightarrow A \otimes (B \otimes C) \quad a_{\oplus} : A \oplus (B \oplus C) \rightarrow (A \oplus B) \oplus C$$

- *Natural isomorphisms (expressing unity of \top_X and \perp_X)*

$$u_{\otimes}^L : A \rightarrow \top_X \otimes A \quad u_{\otimes}^R : A \rightarrow A \otimes \top_Y$$

$$u_{\oplus}^L : \perp_X \oplus A \rightarrow A \quad u_{\oplus}^R : A \oplus \perp_X \rightarrow A$$

- *Natural transformations (**linear distributivities**)*

$$\delta_L : A \otimes (B \oplus C) \rightarrow (A \otimes B) \oplus C$$

$$\delta_R : (A \oplus B) \otimes C \rightarrow A \oplus (B \otimes C)$$

subject to various coherence conditions.

Girard quantales and quantaloids

Definition (Yetter)

- An element $\perp \in Q$ is a *cyclic dualizing element* if $\forall a \in Q$, we have

$$\perp \circ a = a \circ \perp = a^\perp \quad \text{and} \quad (a \circ \perp) \circ \perp = a$$

- A *Girard quantale* is a quantale Q equipped with a chosen cyclic dualizing object \perp .

Definition (Rosenthal)

- A family of 1-cells $\mathcal{D} = \{d_a: a \rightarrow a \mid a \in Q\}$ is a *cyclic dualizing family* if $\forall f$,

$$f \multimap d_a = d_b \circ f = f^\perp \quad \text{and} \quad d_a \circ (f \multimap d_a) = f$$

- A *Girard quantaloid* is a quantaloid Q together with a cyclic dualizing family \mathcal{D} .

Noting that a Girard quantale is a $*$ -autonomous category:

Theorem

A Girard quantale is a linearly distributive category, where the second monoidal structure is given by $a \oplus b = (b^\perp \otimes a^\perp)^\perp$ (Girard\De Morgan duality).

Similarly:

Theorem

A Girard quantaloid is a linear bicategory.

Q -Rel is linear when Q is Girard

Suppose Q is a Girard quantale.

Consider Q -Rel the locally posetal bicategory of sets and Q -relations, then given $X \xrightarrow{R} Y \xrightarrow{S} Z$, we define

$$R \otimes S(x, z) = \sup_{y \in Y} (R(x, y) \otimes S(y, z))$$

$$R \oplus S(x, z) = \inf_{y \in Y} (R(x, y) \oplus S(y, z))$$

The identity 1-cells are given by:

$$\top_X(x, x') = \begin{cases} \mathbf{0} & \text{if } x \neq x' \\ \top & \text{if } x = x' \end{cases} \quad \perp_X(x, x') = \begin{cases} \mathbf{1} & \text{if } x \neq x' \\ \perp & \text{if } x = x' \end{cases}$$

Proposition

The above determines Q -Rel as a linear bicategory.

Result can actually be made more specific:

Theorem

Suppose Q is a unital quantale. Then $Q\text{-Rel}$ is a quantaloid.

$Q\text{-Rel}$: Girard quantaloid,
cyclic dualizing family

$$D = \{d_X : X \multimap X\}$$

\iff

Q : Girard quantale,
cyclic dualizing element d
corresponding to $d_1 : 1 \multimap 1$

$$d_X(x, x') = \begin{cases} \mathbf{1} & x \neq x' \\ d & x = x' \end{cases}$$

Model theory of linear logic

$*$ -autonomous category

Linear distributive (LD) category

Girard quantale

LD-quantale

The analogous structure to LD-categories for quantales:

Definition

An **LD-quantale** is a complete lattice Q with operations \otimes and \oplus and elements \top and \perp such that

- (Q, \otimes, \top) and (Q^{op}, \oplus, \perp) are quantales.
- $a \otimes (b \oplus c) \leq (a \otimes b) \oplus c$ and $(b \oplus c) \otimes a \leq b \oplus (c \otimes a)$

Clearly a Girard quantale is a LD-quantale and an LD-quantale is a linearly distributive category.

Definition (Cockett, Seely)

- A *shift monoid* consists of a 4-tuple $\mathcal{M} = (M, +, \top, a)$ where $(M, +, 0)$ is a commutative monoid and a is an invertible element of M .
- If \mathcal{M} is a shift monoid, define a second multiplication by

$$x \cdot y = x + y - a$$

Then this is a second monoid structure on M with unit given by a .

Definition

A commutative monoid M is *cancellative* if for all $a, b, c \in M$, one has

$$a + b = a + c \Rightarrow b = c$$

Lemma

- Let M be a cancellative commutative monoid. We view M as a discrete poset and then add top and bottom elements which we denote $\mathbf{1}$ and $\mathbf{0}$. Denote this set as M^+ . We then extend the addition on M :

$$\mathbf{1} + b = \mathbf{1} \text{ if } b \in M \text{ or } b = \mathbf{1} \quad \mathbf{0} + b = \mathbf{0} \text{ for all } b \in M^+$$

Then $(M^+, +)$ is a commutative quantale.

- If M is furthermore a cancellative commutative shift monoid, then extend the second operation in the dual way:

$$\mathbf{0} \cdot b = \mathbf{0} \text{ if } b \in M \text{ or } b = \mathbf{0} \quad \mathbf{1} \cdot b = \mathbf{1} \text{ for all } b \in M^+$$

Then M is an LD-quantale.

Linear quantaloids

Appropriate structure for quantaloids to be linear bicategories:

Definition

A *linear quantaloid* is a locally small category \mathcal{Q} whose hom-sets are complete lattices with binary operations \otimes and \oplus , and families of distinguished morphisms $\{\top_a \mid a \in \text{ob } \mathcal{Q}\}$ and $\{\perp_a \mid a \in \text{ob } \mathcal{Q}\}$ such that

- $(\mathcal{Q}, \otimes, \top_a)$ and $(\mathcal{Q}^{co}, \oplus, \perp_a)$ are quantaloids,
- $f \otimes (g \oplus h) \leq (f \otimes g) \oplus h$ and
 $(f \oplus g) \otimes h \leq f \oplus (g \otimes h) \quad \forall \text{ composable } f, g, h \in \text{mor } \mathcal{Q}$

Clearly a Girard quantaloid is a linear quantaloid, which is in turn a linear bicategory.

Q is LD iff Q -Rel is linear

Suppose (Q, \otimes, \oplus) is an LD-quantale, and $X \xrightarrow{R} Y \xrightarrow{S} Z$ are Q -valued relations. Define

$$R \otimes S(x, z) = \sup_{y \in Y} (R(x, y) \otimes S(y, z))$$

$$R \oplus S(x, z) = \inf_{y \in Y} (R(x, y) \oplus S(y, z))$$

The identity 1-cells are given by:

$$\top_X(x, x') = \begin{cases} \mathbf{0} & \text{if } x \neq x' \\ \top & \text{if } x = x' \end{cases} \quad \perp_X(x, x') = \begin{cases} \mathbf{1} & \text{if } x \neq x' \\ \perp & \text{if } x = x' \end{cases}$$

Theorem

(Q, \otimes, \oplus) is an LD-quantale if and only if $(Q\text{-Rel}, \otimes, \oplus)$, where \otimes and \oplus are defined above, is a linear quantaloid.

A structure showed by Rosenthal to be Girard given conditions:

Definition

Let \mathcal{Q} be a quantaloid. A **\mathcal{Q} -category** is a pair $M = (X, \rho)$ where:

- X is a set.
- ρ is a function $\rho : X \rightarrow \text{ob } \mathcal{Q}$.
- We have a function, called the **enrichment** assigning to each pair $(x, x') \in X \times X$ a morphism $M(x, x') : \rho(x) \rightarrow \rho(x')$ such that
 - 1 $T_{\rho(x)} \leq M(x, x) \forall x \in X$
 - 2 $M(x, x') \otimes M(x', x'') \leq M(x, x'') \forall x, x', x'' \in X$

Remark

Alternatively, a \mathcal{Q} -category is a lax bifunctor from set X to \mathcal{Q} , when X is viewed as an indiscrete\chaotic bicategory (i.e. every hom-cat is trivial).

Definition

Let \mathcal{Q} be a quantaloid, $M = (X, \rho_M)$ and $N = (Y, \rho_N)$ be \mathcal{Q} -categories. A **\mathcal{Q} -bimodule** $\Theta : M \multimap N$ consists of a 1-cell $\Theta(x, y) : \rho_M(x) \rightarrow \rho_N(y)$ for every $(x, y) \in X \times Y$ such that

- ① $\Theta(x, y) \otimes N(y, y') \leq \Theta(x, y') \quad \forall x \in X, y, y' \in Y$
- ② $M(x, x') \otimes \Theta(x', y) \leq \Theta(x, y) \quad \forall x, x' \in X, y \in Y$

Then, **\mathcal{Q} -Mod** is the locally posetal bicategory of \mathcal{Q} -categories and \mathcal{Q} -bimodules. Given $M \xrightarrow{\Theta} N \xrightarrow{\Pi} P$, composition $\Theta \otimes \Pi : M \multimap P$ is defined by

$$(\Theta \otimes \Pi)(x, z) = \sup_{y \in Y} \Theta(x, y) \otimes \Pi(y, z)$$

Identity 1-cells are $\iota_M : M \multimap M$ defined by $\iota_M(x, x') = M(x, x')$.

If \mathcal{Q} is a Girard quantaloid, $\mathcal{Q}\text{-Mod}$ has a second bicategorical structure. Given $M \xrightarrow{\Theta} N \xrightarrow{\Pi} P$, composition $\Theta \oplus \Pi : M \rightarrow P$ is

$$(\Theta \oplus \Pi)(x, z) = \inf_{y \in Y} \Theta(x, y) \oplus \Pi(y, z)$$

with identity 1-cells $\delta_M : M \rightarrow M$, $\delta_M(x, x') = M(x', x)^\perp$.

Proposition

Suppose \mathcal{Q} is a quantaloid. Then $\mathcal{Q}\text{-Mod}$ is a quantaloid. Furthermore \mathcal{Q} is a Girard quantaloid if and only if $\mathcal{Q}\text{-Mod}$ is a Girard quantaloid.

\mathcal{Q} -categories and \mathcal{Q} -bimodules when \mathcal{Q} is a linear quantaloid

Definition

Let \mathcal{Q} be a linear quantaloid. A **linear \mathcal{Q} -category** is a pair $M = (X, \rho)$ where:

- X is a set,
- ρ is a function $X \rightarrow ob\mathcal{Q}$,
- We have a **\otimes -enrichment** and **\oplus -enrichment**, assigning to each pair $(x, x') \in X \times X$:
 - $M_{\otimes}(x, x') : \rho(x) \rightarrow \rho(x')$
 - $M_{\oplus}(x, x') : \rho(x) \rightarrow \rho(x')$
- subject to inequalities
- satisfying $M_{\otimes}(x, x'') \leq M_{\oplus}(x, x') \oplus M_{\otimes}(x', x'')$, $\forall x, x', x'' \in X$, and three other inequalities

\mathcal{Q} -categories and \mathcal{Q} -bimodules when \mathcal{Q} is a linear quantaloid (cont'd)

Remark

A linear \mathcal{Q} -category is in fact a linear functor from X to \mathcal{Q} , where X is the degenerate linear bicategory (i.e. $\otimes = \oplus$) formed from the indiscrete bicategory.

Definition

Let \mathcal{Q} be a linear quantaloid, $M = (X, \rho_M)$ and $N = (Y, \rho_N)$ be \mathcal{Q} -categories. A **linear \mathcal{Q} -bimodule** $\Theta : M \rightarrow N$ consists of two 1-cells for every $(x, y) \in X \times Y$

- $\Theta_{\otimes}(x, y) : \rho_M(x) \rightarrow \rho_N(y)$
- $\Theta_{\oplus}(y, x) : \rho_N(y) \rightarrow \rho_M(x)$
- satisfying $N_{\otimes}(y, y') \otimes \Theta_{\oplus}(y', x) \leq \Theta_{\oplus}(y, x)$, $\forall x \in X, y, y' \in Y$ and three other inequalities.

Definition

Let \mathcal{Q} be a linear quantaloid.

- $(\mathcal{Q}\text{-Mod}, \otimes, \iota_M)$ is a locally posetal bicategory whose 0-cells are linear \mathcal{Q} -categories, 1-cells are linear \mathcal{Q} -bimodules.

$$\text{2-cells } \Theta \leq \Pi \Leftrightarrow \forall (x, y) \in X \times Y : \quad \Theta_{\otimes}(x, y) \leq \Pi_{\otimes}(x, y) \\ \Pi_{\oplus}(y, x) \leq \Theta_{\oplus}(y, x)$$

$$\text{composition} \quad (\Theta \otimes \Pi)_{\otimes}(x, z) = \sup_{y \in Y} \Theta_{\otimes}(x, y) \otimes \Pi_{\otimes}(y, z) \\ \Theta \otimes \Pi : M \rightarrow P : \quad (\Theta \otimes \Pi)_{\oplus}(z, x) = \inf_{y \in Y} \Pi_{\oplus}(z, y) \oplus \Theta_{\oplus}(y, x)$$

$$\otimes\text{-identity 1-cells} \quad \iota_{M_{\otimes}}(x, x') = M_{\otimes}(x, x') \\ \iota_M : M \rightarrow M : \quad \iota_{M_{\oplus}}(x, x') = M_{\oplus}(x, x')$$

(continues on the next slide)

Definition

- $(\mathcal{Q}\text{-Mod}^{co}, \oplus, \delta_M)$ is a locally posetal bicategory whose 0-cells are linear \mathcal{Q} -categories, 1-cells are linear \mathcal{Q} -categories, with 2-cells, composition and identities defined similarly.

Theorem

$(\mathcal{Q}, \otimes, \oplus)$ is a linear quantaloid if and only if $(\mathcal{Q}\text{-Mod}, \otimes, \oplus)$ is a linear quantaloid and therefore a linear bicategory.

Girard Bicategories

Suppose $\mathcal{D} = \{D_X: X \rightarrow X \mid X \in \mathcal{B}\}$ is a family of 1-cells in a biclosed bicategory \mathcal{B} . Given $A: X \rightarrow Y$, we get

$$A \xrightarrow{\delta_{A,Y}} (D_Y \circ A) \multimap D_Y \quad \text{and} \quad A \xrightarrow{\delta_{X,A}} D_X \circ (A \multimap D_X)$$

Definition

- A family $\mathcal{D} = \{D_X: X \rightarrow X \mid X \in \mathcal{B}\}$ is called **dualizing** if the 2-cell $\delta_{A,Y}$ is invertible, for all $A: X \rightarrow Y$.
- A dualizing family \mathcal{D} is called **cyclic** if there are invertible 2-cells $\theta_A: (D_Y \circ A) \rightarrow (A \multimap D_X)$, natural in $A: X \rightarrow Y$, subject to a commuting diagram. In this case, we let $A^\perp = A \multimap D_X$.
- \mathcal{B} is a **Girard bicategory** if it admits a cyclic dualizing family.

Examples of Non-locally Posetal Linear Bicategories

Theorem

Every Girard bicategory is a linear bicategory.

Lemma

- If \mathcal{V} is a $*$ -autonomous category, then $\mathcal{B}(\mathcal{V})$ is a linear bicategory. If, in addition, \mathcal{V} has equalizers and coequalizers stable under composition, then so is $\mathcal{Bim}(\mathcal{V})$. In particular, $\mathcal{Q}u\text{ant}$ and $\mathcal{L}oc$ are linear bicategories.
- If \mathcal{V} is a star-autonomous category with set-indexed products and coproducts, then $\mathcal{V}\text{-}\mathcal{M}at$ is a linear bicategory. If, in addition, \mathcal{V} has equalizers and coequalizers, then so is $\mathcal{V}\text{-}\mathcal{P}rof$. In particular, $\mathcal{Q}tld$ is a linear bicategory.

Further Work: Formal Theory of Linear Monads

Definition (Street)

Let \mathcal{B} be a 2-cat, then $\text{Mnd}(\mathcal{B})$ is the 2-cat of monads, monad functors, and monad transformations.

- If \mathcal{Q} is a Girard quantaloid, is $\text{Mnd}(\mathcal{Q})$ a Girard quantaloid?
- If \mathcal{Q} is a linear quantaloid,
 - what is the appropriate definition for $\text{Mnd}(\mathcal{Q})$?
 - is $\text{Mnd}(\mathcal{Q})$ a linear quantaloid?
- If \mathcal{B} is a Girard bicategory, is $\text{Mnd}(\mathcal{B})$ a Girard bicategory?
- If \mathcal{B} is a linear bicategory,
 - what is the appropriate definition for $\text{Mnd}(\mathcal{B})$?
 - is $\text{Mnd}(\mathcal{B})$ a linear bicategory?
 - when are linear monads in \mathcal{B} generated by a cyclic linear adjunction?