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Mixed unitary categories (MUCs)
(Take away from Part I)

A
φA−−−→
≃

A†

Unitary
category

†-isomix

functor

†-isomix
category

B

B†Core(C)

X

A mixed unitary category, M : U −→ C, is

†-isomix functor: unitary category −→ †-isomix category
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An LDC which is not ∗-autonomous: Shift Monoids

Let M be any set. A shift monoid is a commutative monoid,
(M,+, 0) with a designated element s such that there exists an
inverse to s i.e, s − s = 0.

A second multiplication can be defined on the set M as follows: for
all x , y ∈ M,

x ◦ y = (x + y)− s

The unit of the second multiplication is s.

A shift monoid considered as a discrete category (the elements of
the monoid are the objects and the maps are identity maps).

Note that the distributors are identity maps but ⊗ and ⊕ are
distinct.

†-shift monoid: A discrete category of pairs of shift monoids with
the dagger interchanging the monoids?
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Complementary quantum observables

A quantum observable refers to a measurable property of quantum
system.

A pair of quantum observables are complementary if measuring one
observable increases uncertanity regarding the value of the other.

Example: position and momentum of an electron
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Our goal: Fill this table
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Quantum observables and Frobenius algebras
A quantum observable is described by an orthonormal basis for a
Hilbert space.

In category of Hilbert spaces and linear maps, an orthonormal basis
is precisely a special commutative dagger Frobenius algebras1.

In a monoidal category, a Frobenius algebra (A, , , , )
consists of a monoid (A, , ), and a comonoid (A, , )
satisfying:

[Frob.] =

Special commutative dagger Frobenius algebra in symmetric
†-monoidal category:

[Spl.] = [Comm.] = [Dagger.]

( )†
=

1Coecke, B., Pavlovic, D. and Vicary, J. “A new description of orthogonal
bases”
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Properties of Frobenius algebras

If (A, , , , ) is a Frobenius algebra, then A is self-dual:

η : I −→ A⊗ A := ϵ : A⊗ A −→ I :=

The monoid and comonoid are dual to one another by the above
cap and cup:

= = = =

Linear monoids generalize Frobenius Algebras to LDCs.
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Linear monoids

In a symmetric LDC, a (symmetric) linear monoid, A
◦ � � B,

contains a:

- a monoid (A, : A⊗A −→ A, : ⊤ −→ A)

- a dual for A, (η, ϵ) : A ⊣⊣ B

together producing a comonoid (B, : B −→ B⊕B, : B −→ ⊥)

= =

A self-linear monoid is a linear monoid, A
◦ � � B, with A ≃ B.

For all practical purposes, a self-linear monoid is A
◦ � � A
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Alternate characterization of linear monoids
A linear monoid2, A

◦ � � B, consists of a ⊗-monoid, (A, , ), and
a ⊕-comonoid, (B, , ) and:

- monoid actions: : A⊗ B −→ B ; : B ⊗ A −→ A

- comonoid coactions: : B −→ A⊕ B ; : B −→ A⊕ B

satisfying certain equations. The Frobenius equation is given as
follows:

A

B

A

A

B

=

A

B A

A

=

A

B A

A

= =

Symmetric linear monoid:

A B

=

A B

2Cockett, Koslowski and Seely (1999) “Introduction to linear bicategories”
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Are self-linear monoids same as Frobenius algebras?

In a monoidal category, are self-linear monoids A ◦ � � A same
as Frobenius algebras?

Clue:

A

B

A

A

B

=

A

B A

A

=

A

B A

A

= =

Yes! but..
Lemma A self-linear monoid A

◦ � � A is Frobenius if and only if:

(a) = ⇐⇒ (b) = ⇐⇒ (c) =
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Dagger linear monoids

In a †-LDC, A ⊣⊣ A† is a †-dual iff:

ι
=

A †-linear monoid, (A, , )
†◦� � (A†, , ), in a †-LDC, is a linear

monoid such that (η, ϵ) : A ⊣⊣ A† are †-duals and:

= =
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Our goal: Fill this table
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Complementary observables

A pair of quantum obsevables are complementary if measuring
one observable increases uncertanity regarding the value of the
other.

In a symmetric †-monoidal category, two special commutative
†-Frobenius algebras

(A, , , , ) (A, , , , )

are strongly complementary3 if

(A, , , , ) (A, , , , )

are bialgebras which are also Hopf.

3Bob Coecke and Ross Duncan (2008). ”Interacting quantum observables”
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Complementary observables (cont...)

(A, , , , ) is a Hopf algebra:

Bialgebra rules:

= = =

Hopf rule:

s = = s where, s :=
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Complementary observables in isomix categories

In an LDC, can a linear monoid interact to produce two bialgebras?

(A, , )︸ ︷︷ ︸
⊗

◦ � � (B, , )︸ ︷︷ ︸
⊕

(A, , )︸ ︷︷ ︸
⊗

◦ � � (B, , )︸ ︷︷ ︸
⊕

A ⊗-monoid and a ⊕-comonoid interacting to produce a bialgebra
is simply NOT POSSIBLE due to the direction of the linear
distributor
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So what is solution?

Then came the spring.. In FMCS
2019, here at the Field Station,
we got our first hint during my

conversation with J.S. –
exponential modalities in

linear logic
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Exponential modalities
Linear logic accommodates non-linear resources using the
exponential modalities !,(of course / bang) and ? (why not /
whimper):

!A refers to an infinite supply of the resource A

In this sense, the type !A is an infinitely-copyable and freely
disposable storage for resource A.

?A represents the notion of infinite demand.

Dually, the type ?A is a spontaneously-appearing infinite
consumption for resource A.
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! for monoidal categories

A colagebra modality for a symmetric monoidal category consists
of a comonad (!, δ, ϵ) and natural transformations ∆A :!A −→!A⊗!A
and A :!A −→ I such that (!A,∆A, eA) is a cocommutative
comonoid and δA :!A −→!!A preserves the comultiplication

An bialgebra modality4 on an
additive symmetric monoidal category is a monoidal coalgebra

modality (!, δ, ϵ,∆, ), a natural transformation ∇ :!A⊗!A −→!A
and a natural transformation : I −→!A such that (!A,∇, u) is a
commutative monoid, and (!A,∇, ,∆, ) is a bialgebra.

4Richard Blute, Robin Cockett, Robert Seely (2006) “Differential
Categories”
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! and ? for LDCs

In a (!, ?)-LDC5

- ! is a monoidal coalgebra comodality

▶ (!, δ :!⇒!!, ϵ :!⇒ I) is a monoidal comonad

▶ For each A, (!A,∆A, eA) is a cocommutative comonoid

- ! is a comonoidal algebra modality

▶ (?, µ :??⇒?, η : I⇒?) is a comonoidal monad

▶ For each A, (?A,∇A, uA) is a commutative monoid

- (!, ?) is a linear functor

- The pairs (δ, µ), (ϵ, η), (∆,∇) are linear transformations

Examples: Category of finiteness relations, category of finiteness
matrices over a commutative rig

5Richard Blute, Robin Cockett, and Robert Seely (1996). “! and ? -
Storage as tensorial strength.”
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Solution

Hint: In a (!-?) LDC, !A is a ⊗-comonoid and ?A is a ⊕-monoid.

(A, , )︸ ︷︷ ︸
⊗

◦ � � (B, , )︸ ︷︷ ︸
⊕

←− linear monoid

⊗︷ ︸︸ ︷
(A, , ) ◦

� �
⊕︷ ︸︸ ︷

(B, , ) ←− hypothetical!

Now, obtaining two bialgebras – a ⊗ one and a ⊕ one – is
straightforward!
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The solution was quite simple

Hint: In a (!-?) LDC, !A is a ⊗-comonoid and ?A is a ⊕-monoid.
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⊗

◦ � � (B, , )︸ ︷︷ ︸
⊕
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⊗︷ ︸︸ ︷
(A, , )
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Linear comonoids

In a symmetric LDC, a (symmetric) linear comonoid, A B,
contains a:

- a ⊗-comonoid (A, : A −→ A⊗A, : A −→ ⊤)
- a dual for A, (η, ϵ) : A ⊣⊣ B

together producing a ⊕-monoid (B, : B⊕B −→ B, : ⊥ −→ B)

B

B ⊕ B

:=
A

B

B ⊕ B

B

⊥

:=

A

B

⊥
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Alternate characterization of linear comonoids

A linear comonoid, A B, in an isomix category is equivalent to
the following data:

▶ a ⊕-monoid (B, : B ⊕ B −→ B, : ⊥ −→ B)

▶ a ⊗-comonoid (A, : A −→ A⊗ A, : A −→ ⊤)
▶ actions : B ⊗ A −→ A; : A⊗ B −→ A,

▶ coactions : B −→ A⊕ B; : B −→ B ⊕ A,

B AB

A

=

B AB B

A

B

B

A

=

B

A B

B

=

B

A B

B
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Linear bialgebra

In a symmetric LDC, a linear bialgebra

(a, b)

(c, d)
: A B

is given by a linear monoid (a, b) : A
◦ � � B and a linear comonoid

(c , d) : A B interacting bialgebraically.

Thereby, (A, , , , ) is a ⊗-bialgebra and (B, , , , ) is a
⊕-bialgebra.
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Exponential modalities linear bialgebras

In a (!-?)-LDC, for every object A, (!A,∆A, A) is a cocommutative

⊗-comonoid and A, (?A,∇A, A) is a commutative ⊕-monoid

Lemma: In a (!-?)-LDC, for any dual gives a linear comonoid

using the natual cocommutative comonoid (!A,∆A, A).

(a, b) : A ⊣⊣ B =⇒ (a, b) :!A ?B

Lemma: In a (!-?)-LDC, any linear monoid and an arbitary dual
gives a linear bialgebra using the natural cocommutative comonoid
on !.

(a, b) : A
◦ � � B and (c, d) : A ⊣⊣ B =⇒ (a, b)

(c , d)
:!A ?B
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Complementary systems in isomix cats

A complementary system A A in an isomix category a
self-linear bialgebra, A (not necessarily in the core), such that:

[comp.1] = [comp.2] = [comp.3] =

Lemma: If A is a complementary system, then A is a ⊗-Hopf and
⊕-Hopf.
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Our goal: Fill this table
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Measurement in †-monoidal cats

A demolition measurement6 on an object A is retract from A to
a spl. comm. †-Frobenius algebra (an abstract quantum
observable), E .

A
r // E
r†
oo such that r †r = 1E

A
φA−−−→
≃

A†

Unitary
category

†-isomix

functor

†-isomix
category

B

B†

Core ⊗ ≃ ⊕

Unitary category ∼
† monoidal category

6Coecke and Pavlovic (2006). “Quantum measurements without sums”
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Measurement in †-monoidal cats

A demolition measurement7 on an object A is retract from A to
a spl. comm. †-Frobenius algebra (an abstract quantum
observable), E .

A
r // E
r†
oo such that r †r = 1E

Classical types obtained by †-splitting †- idempotents8 in a
†-category

An idempotent e : A −→ A is a †-idempotent if e = e†

e †-splits if e = rr † and r †r = 1

7Coecke and Pavlovic (2006). “Quantum measurements without sums”
8Selinger (2008) “Idempotents in Dagger Categories: (Extended Abstract)”
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MUC measurement = Compaction followed by demolition

A
φA−−−→
≃

A†

Unitary
category

†-isomix

functor

†-isomix
category

B

B†

Core ⊗ ≃ ⊕

M(U)

Unitary category ∼
† monoidal category

A compaction in a MUC, M : U −→ C, is a retraction to an object
in the unitary core r : B −→ M(U).
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Binary idempotents

Binary idempotent (any category): A
u // B
v
oo such that:

A

B

A

B

u

v

u

= A B
u

A

B

A

B

v

u

v

= B A
v

Suppose,
eA := uv splits through E , and

eB := vu splits through F

then E ≃ F

In a mix category, suppose E ≃ F
is in the core, then uv is coring
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Dagger Binary idempotent

†-binary idempotent: (†-LDC) A
u // A†
v

oo

A
ι //

u ##

A††

u†��
A†

A† v //

v† $$

A

ι��
A††

Observation:

(eA)
† = (uv)† = v †u† = v ιu† = vu = eA†

In a †-monoidal category where A = A†, †-binary idempotents are
precisely †-idempotents.

In a †-monoidal category when a †-binary idempotent splits, it
always †-splits.
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Characterizing compaction using binary idempotents

A
φA−−−→
≃

A†

Unitary
category

†-isomix

functor

†-isomix
category

B

B†

Core ⊗ ≃ ⊕

M(U)

Unitary category ∼
† monoidal category

A compaction in a MUC, M : U −→ C, is a retraction to an object
in the unitary core r : B −→ M(U).

Theorem: In a †-isomix category, r : A = B −→ M(U) is a
compaction if and only if M(U) is given by splitting a coring
†-binary idempotent.
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Goal accomplished
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Main Result **New**
A connection between exponential modalities and complementary observables

Theorem: In a (!, ?)-isomix category with free exponential
modalities, every complementary system is given by splitting a
binary idempotent on the linear bialgebra induced on the free
exponentials.

(The proof uses a series of results)

The structures and results discussed extend directly to †-linear
bilagebras in †-isomix categories with free exponential modalities
due to the †-linearity of (!, ?), (η, ϵ), (∆,∇), and ( , ).
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Theorem sketch
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Why is this result interesting?

Quantum harmonic oscillator(QHO) is one of the most
important system model used in quantum mechanics.

A harmonic oscillator is a system which has been displaced from its
equilibrium and has a restoring force acting on it.

Quantum harmonic oscillator is modelled as Bosonic Fock spaces
which are in turn modelled using ! exponential modality9,10.

Total energy of QHO is given by the equation: p̂2

2m + mω2x̂2

2

Alternately, ladder operators allow calculation of energy eigen value
without solving a differential equation.

Position and momentum operators, which are complementary,
can be recovered from the ladder operators for harmonic oscillators.

9
Blute, Panandagen, Seely (1994) “Fock Space: A Model of Linear Exponential Types”

10
Vicary (2007) “A categorical framework for the quantum harmonic oscillator”
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Linear comonoids and linear bialgebras
(Take away from Part II)

Linear comonoid:

a ⊗-comonoid (A, : A −→ A⊗ A, : A −→ ⊥)
and a dual (η, ϵ) : A ⊣⊣ B

Linear bialgebras in symmetric LDCs: bialgebraic interaction
between a linear monoid and a linear comonoid giving a
⊗-bialgebra, and a ⊕-bialgebra.
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