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Mixed unitary categories (MUCs)

(Take away from Part I)

X

t-isomix
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A A At

A mixed unitary category, M : U — C, is

t-isomix functor: unitary category — t-isomix category.



An LDC which is not *x-autonomous: Shift Monoids

Let M be any set. A shift monoid is a commutative monoid,
(M, +,0) with a designated element s such that there exists an
inverse to s i.e, s — s = 0.

A second multiplication can be defined on the set M as follows: for
all x,y e M,
xoy=(x+y)—s

The unit of the second multiplication is s.

A shift monoid considered as a discrete category (the elements of
the monoid are the objects and the maps are identity maps).

Note that the distributors are identity maps but ® and & are
distinct.

1-shift monoid: A discrete category of pairs of shift monoids with
the dagger interchanging the monoids?



Complementary quantum observables

A quantum observable refers to a measurable property of quantum
system.

A pair of quantum observables are complementary if measuring one
observable increases uncertanity regarding the value of the other.

Example: position and momentum of an electron
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Quantum observables and Frobenius algebras
A quantum observable is described by an orthonormal basis for a
Hilbert space.

In category of Hilbert spaces and linear maps, an orthonormal basis
is precisely a special commutative dagger Frobenius algebras!.

In a monoidal category, a Frobenius algebra (A,%,7, A, 1)
consists of a monoid (A,%%’,7), and a comonoid (A, 4, [)

satisfying:

Special commutative dagger Frobenius algebra in symmetric
T-monoidal category:

[sp|_]¢: Comm] & =\ [Dageer] (\f/)Tz

1Coecke, B., Pavlovic, D. and Vicary, J. “A new description of orthogonal
bases”

}




Properties of Frobenius algebras

If (A,,9, 4, 1) is a Frobenius algebra, then A is self-dual:

77:/—>A®A::£\ e:A®A—>I::\E/
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Properties of Frobenius algebras

If (A,,9, 4, 1) is a Frobenius algebra, then A is self-dual:

77:/—>A®A::£\ e:A®A—>I::\<£/

The monoid and comonoid are dual to one another by the above
cap and cup:

Linear monoids generalize Frobenius Algebras to LDCs.



Linear monoids

In a symmetric LDC, a (symmetric) linear monoid, A 4 B,
contains a:

-amonoid (A, : ARA — A, 7: T — A)

- a dual for A, (n,€) : AHB



Linear monoids

In a symmetric LDC, a (symmetric) linear monoid, A 4 B,
contains a:

-amonoid (A, : ARA — A, 7: T — A)
- a dual for A, (n,€) : AHB
together producing a comonoid (B, 4, : B — B®B, [ : B — 1)

Al 1

A self-linear monoid is a linear monoid, A 4 B, with A~ B.
For all practical purposes, a self-linear monoid is A =4 A



Alternate characterization of linear monoids

A linear monoid?, A 4 B, consists of a ®-monoid, (A,',), and
a @-comonoid, (B, 4, ) and:

- monoid actions: \{: A B—B; }:BRA—A
- comonoid coactions: 4: B —A®B; N:B—A®&B

satisfying certain equations. The Frobenius equation is given as
follows:

\ ‘ \

M AR el S

A

Symmetric linear monoid: =

2Cockett, Koslowski and Seely (1999) “Introductionsto linear bicategories”



Are self-linear monoids same as Frobenius algebras?

In a monoidal category, are self-linear monoids A >4 A same
as Frobenius algebras?

Clue:

A



Are self-linear monoids same as Frobenius algebras?

In a monoidal category, are self-linear monoids A 4 A same
as Frobenius algebras?

Clue:
A A A A A A |
i) ey
o
B A B A B A [
Yes! but..

Lemma A self-linear monoid A 4 A is Frobenius if and only if:

(2 f\= — o M=§j — f/:%)



Dagger linear monoids

In a +-LDC, AHAT is a {-dual iff:

N
[

A t-linear monoid, (A,Y,7) 34 (AT, 4, 1), in a f-LDC, is a linear
monoid such that (1, €) : AHAT are {-duals and:

U_ Jf @ \\!P/\




Our goal: Fill this table
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Complementary observables

A pair of quantum obsevables are complementary if measuring
one observable increases uncertanity regarding the value of the
other.

In a symmetric T-monoidal category, two special commutative
1-Frobenius algebras

(A 0 AL d) (A, 0, 4, d)

are strongly complementary? if

(A 0 AL ) (A, T, A, d)

are bialgebras which are also Hopf.

3Bob Coecke and Ross Duncan (2008). " Interacting quantum -observables”



Complementary observables (cont...)

(AN, 1, 4., }) is a Hopf algebra:

Bialgebra rules:

L e
b



Complementary observables in isomix categories

In an LDC, can a linear monoid interact to produce two bialgebras?

(A7) =+ (B, A ))
® 52

A ®-monoid and a @-comonoid interacting to produce a bialgebra
is simply NOT POSSIBLE due to the direction of the linear
distributor



So what is solution?

Then came the spring.. In FMCS

2019, here at the Field Station,

we got our first hint during my
conversation with J.S. -

exponential modalities in
linear logic




Exponential modalities

Linear logic accommodates non-linear resources using the
exponential modalities !,(of course / bang) and ? (why not /
whimper):

IA refers to an infinite supply of the resource A

In this sense, the type !A is an infinitely-copyable and freely
disposable storage for resource A.

7A represents the notion of infinite demand.

Dually, the type ?A is a spontaneously-appearing infinite
consumption for resource A.



| for monoidal categories

A colagebra modality for a symmetric monoidal category consists
of a comonad (!, 4, €) and natural transformations A, :!A —1A®!A
and L :'A — I such that (1A, Aa, ea) is a cocommutative
comonoid and 4 :!A —!1A preserves the comultiplication

An bialgebra modality* on an

additive symmetric monoidal category is a monoidal coalgebra
modality (!, 0, ¢, A, L), a natural transformation V :IA®!A —1A
and a natural transformation T : / —!A such that (1A, V,u) is a
commutative monoid, and (!A, V,7, A, 1) is a bialgebra.

*Richard Blute, Robin Cockett, Robert Seely (2006) ‘Differential
Categories”



I 'and 7 for LDCs

Ina (!,?)-LDC®
- I'is a monoidal coalgebra comodality
> (1,6 :1 =1l e:l = 1) is a monoidal comonad

» For each A, (1A, A, ea) is a cocommutative comonoid

- l'is a comonoidal algebra modality
> (7,1 :7?=71n:1=7)is a comonoidal monad
» For each A, (?A,Va,un) is a commutative monoid
- (1,7?) is a linear functor
- The pairs (9, 1), (¢,7m), (A, V) are linear transformations

Examples: Category of finiteness relations, category of finiteness
matrices over a commutative rig

®Richard Blute, Robin Cockett, and Robert Seely (1996). “! and ? -
Storage as tensorial strength.”



Solution

Hint: In a (I-7) LDC, A is a ®-comonoid and ?A is a é-monoid.

(A1) =4 (B, 4, )) <— linear monoid
® 5]

—— =
(A AL = (B,,7) «— hypotheticall

Now, obtaining two bialgebras — a ® one and a & one —is
straightforward!



The solution was quite simple

Hint: In a (I-7) LDC, !Ais a ®-comonoid and ?A is a &-monoid.

(AN,9) 24 (B, 4, )) <— linear monoid
® &

r—ieg ,_9;
(A, A, L) =1 (B,%,7) <— Linear comonoid!

Now, obtaining two bialgebras — a ® one and a & one — is
straightforward!



Linear comonoids

In a symmetric LDC, a (symmetric) linear comonoid, A <+ B,
contains a:

- a ®-comonoid (A, 4 1A — ARA, |[:A—T)

- a dual for A, (n,¢) : AHB

together producing a &-monoid (B, : B&B — B, : L — B)

W, 1]



Alternate characterization of linear comonoids

A linear comonoid, A —# B, in an isomix category is equivalent to
the following data:

> a @-monoid (B, :B®B —B,7: 1L —B)

> a ®-comonoid (A4 A—=ARAL[:A—T)

» actions N:BOA—= A V:A®B— A,
» coactions A:B—>A@B; }\:B—>B@A,
B B A B B




Linear bialgebra

In a symmetric LDC, a linear bialgebra

(a, b)
(¢, d)

A4 B
is given by a linear monoid (a, b) : A =+ B and a linear comonoid

(c,d) : A <# B interacting bialgebraically.

Thereby, (A,'’,7, A,L) is a ®-bialgebra and (B,\Y, T, 4., ) is a
@-bialgebra.



Exponential modalities linear bialgebras

In a (1-?)-LDC, for every object A, (1A, Aa, L) is a cocommutative

®-comonoid and A, (?A,V 4, T4) is a commutative &-monoid



Exponential modalities linear bialgebras
In a (1-?)-LDC, for every object A, (1A, Aa, L) is a cocommutative
®-comonoid and A, (?A,V 4, T4) is a commutative &-monoid

Lemma: In a (I-?)-LDC, for any dual gives a linear comonoid
using the natual cocommutative comonoid (!A, AA,LA).

(a,b) : AHB = (a,b) :JA <+ 7B



Exponential modalities linear bialgebras
In a (1-?)-LDC, for every object A, (1A, Aa, L) is a cocommutative
®-comonoid and A, (?A,V 4, T4) is a commutative &-monoid

Lemma: In a (I-?)-LDC, for any dual gives a linear comonoid
using the natual cocommutative comonoid (!A, AA,LA).

(a,b) : AHB = (a,b) :JA <+ 7B

Lemma: In a (!-7)-LDC, any linear monoid and an arbitary dual
gives a linear bialgebra using the natural cocommutative comonoid
on I

(a,b): A 24 B and (c,d) : AHB = ((Z’s; HA 24 7B




Complementary systems in isomix cats

A complementary system A =4 A in an isomix category a
self-linear bialgebra, A (not necessarily in the core), such that:

[comp.1] K{ :i [comp.2] [% :T [comp.3] ﬁ :TT

Lemma: If Ais a complementary system, then A is a ®-Hopf and
@-Hopf.
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Measurement in f-monoidal cats

A demolition measurement® on an object A is retract from A to
a spl. comm. {-Frobenius algebra (an abstract quantum
observable), E.

Aﬁ E such that rfr = 1g
i

t-isomix
category

Core @ =~ @)

Unitary
category

t-isomix
N
functor

A A At

Unitary category ~
t monoidal category

®Coecke and Pavlovic (2006). “Quantum measurements without sums”



Measurement in f-monoidal cats

A demolition measurement’ on an object A is retract from A to

a spl. comm. f-Frobenius algebra (an abstract quantum
observable), E.

A<74r> E such that rfr = 1e
t
r

Classical types obtained by t-splitting {- idempotents® in a
T-category
An idempotent e : A — A is a t-idempotent if e = ef

e t-splitsif e=rrf and rfr=1

"Coecke and Pavlovic (2006). “Quantum measurements without sums”
8Selinger (2008) “Idempotents in Dagger Categories: (Extended Abstract)”



MUC measurement = Compaction followed by demolition

-isomix
category

Unitar . .
tary t-isomix

category

functor

A LA, Af

Unitary category ~
t monoidal category

A compaction in a MUC, M : U — C, is a retraction to an object
in the unitary core r : B — M(U).



Binary idempotents

Binary idempotent (any category): A= B such that:
v



Binary idempotents

Binary idempotent (any category): A= B such that:
v

Suppose,
ea := uv splits through E, and

eg := vu splits through F
then E ~ F

A

\

(u/ =p—54
A

T,

In a mix category, suppose E ~ F
is in the core, then uv is coring



Dagger Binary idempotent
-binary idempotent: (-LDC) A<:>:AT

Ao AfT ATV A

N Sk

At VAl



Dagger Binary idempotent

-binary idempotent: (-LDC) A=—= Al

A—L> Aft At Y S A
\ Jut Je
N VT\ATT

Observation:

(ea)t = (uv)" = viul = viul = vu = eyt
In a t-monoidal category where A = Af, t-binary idempotents are
precisely t-idempotents.

In a t-monoidal category when a f-binary idempotent splits, it
always {-splits.



Characterizing compaction using binary idempotents

t-isomix
category

Unitary . X
T-isomix
category

functor
A LA, Af

Unitary category ~
1 monoidal category

A compaction in a MUC, M : U — C, is a retraction to an object
in the unitary core r : B — M(U).

Theorem: In a {-isomix category, r : A= B — M(U) is a
compaction if and only if M(U) is given by splitting a coring
T-binary idempotent.



Goal accomplished
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Main Result **New**

A connection between exponential modalities and complementary observables

Theorem: In a (!, 7)-isomix category with free exponential
modalities, every complementary system is given by splitting a
binary idempotent on the linear bialgebra induced on the free
exponentials.

(The proof uses a series of results)

The structures and results discussed extend directly to {-linear
bilagebras in -isomix categories with free exponential modalities
due to the f-linearity of (1,?), (n,¢€), (A, V), and (4, 7).



Theorem sketch

r C@'"’) A — A *‘

Linear Momocd Linear Comoﬂod
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y Y
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Why is this result interesting?

Quantum harmonic oscillator(QHO) is one of the most
important system model used in quantum mechanics.

A harmonic oscillator is a system which has been displaced from its
equilibrium and has a restoring force acting on it.

Quantum harmonic oscillator is modelled as Bosonic Fock spaces

which are in turn modelled using | exponential modality®,1°.
. . . . ﬁ2 252
Total energy of QHO is given by the equation: 5 + ™5

Alternately, ladder operators allow calculation of energy eigen value
without solving a differential equation.

Position and momentum operators, which are complementary,
can be recovered from the ladder operators for harmonic oscillators.

gBlute, Panandagen, Seely (1994) “Fock Space: A Model of Linear Exponential Types”

10,,. “ . . : "
Vicary (2007) “A categorical framework for the quantum harmonic oscillator



Linear comonoids and linear bialgebras
(Take away from Part II)

Linear comonoid:
a ®@-comonoid (A, A:A—A®A L:A— 1)
and a dual (n,¢) : AHB

Linear bialgebras in symmetric LDCs: bialgebraic interaction
between a linear monoid and a linear comonoid giving a
®-bialgebra, and a ®-bialgebra.
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