
Turing Categories and Incompleteness

Chad Nester

June 7, 2014



Incompleteness

First, the quick, abstract version of incompleteness



Incompleteness

given a logical system L, let

I g(E ) be the Gödel number of the expression E

I En be such that g(En) = n

I d(n) = g(En(n))

I P be the set of provable sentences

I P be the set of Gödel numbers of provable sentences



Incompleteness

we say that L is correct if every provable sentence is true, and no
refutable sentence is true.



Incompleteness

Now, define A∗ by

n ∈ A∗ ⇔ d(n) ∈ A



Incompleteness

Theorem
If L is correct and (P)∗ is expressible in L (where P is the
complement of P), then there is a true sentence of L that is not
provable in L



Incompleteness

Proof

let H express (P)∗, and let h = g(H). Since H expresses (P)∗,

H(h) is true ⇔ h ∈ P
∗

⇔ d(h) ∈ P

⇔ d(h) /∈ P

⇔ g(H(h)) /∈ P

⇔ H(h) /∈ P

so H(h) is true if and only if H(h) is not provable.



Incompleteness

Now, if H(h) is false, then H(h) is provable, but this is impossible
as L is correct, which means all provable sentences are true!
Since H(h) cannot be false, it it true, and is thus not provable.



Turing Categories

Next, we need to know what Turing categories are.



Turing Categories

A category X is a restriction category if for every map f : A→ B
in X, there is a map f : A→ A in X satisfying

R1 f f = f

R2 f g = gf

R3 f g = f g

R4 f g = fg f

we say f : A→ B is total if f = 1A.



Turing Categories

Restriction categories come with a free partial order on every
homset:

f ≤ g ⇔ f g = f



Turing Categories

A restriction category X has restriction products if for every pair of
objects X ,Y in X, there is an object X × Y , the restriction
product of X and Y , with maps π0, π1 such that for every
f : Z → X and g : Z → Y , there is a unique map 〈f , g〉 making
the following diagram commute

Z

X × YX Yπ0 π1

〈f , g〉f g

and satisfying 〈f , g〉π0 = gf , 〈f , g〉π1 = f g .



Turing Categories

A restriction category X has a restriction terminal object if it
contains an object 1 such that for every object A in X there is a
unique total map !A : A→ 1 such that for any f : X → Y

1YX

X

!Yf

f
!X



Turing Categories

A restriction category with both restriction products and a
restriction terminal object is called a cartesian restriction category.

For Example: Partial functions on sets

I The restriction terminal object is 1 = {∗}, a one element set.

I The restriction product of A,B is the direct product, A× B,
with the usual projection.



Turing Categories

let X be a cartesian restriction category.

Given a map τX ,Y : T × X → Y , a morphism f : Z × X → Y is
said to admit a τX ,Y -index when there exists a total map
h : Z → T making

T × X

Z × X

Y
τX ,Y

h × 1
f

commute. In this case, call h a τX ,Y -index for f .



τX ,Y is called a universal application when every f : Z × X → Y
admits a τX ,Y -index.

A Turing object in an object T such that for each X ,Y ∈ X, there
is a universal application τX ,Y : T × X → Y .

X is a Turing category if it posesses a Turing object.

equivalently. . .



Turing Categories

A Turing category is a cartesian restriction category with a
distinguished object T , called the Turing object, such that

I every object is a retract of T

I there is an application map, •, such that for every
f : T × T → T there is a total map df e : T → T making the
following diagram commute.

T × T

T × T

T
•

df e × 1
f



Turing Categories

Proposition

A cartesian restriction category X is a Turing category if it
posesses an object T such that

I every object is a retract of T

I there is a map • : T × T → T such that for all f : T → T
there is a total point f • : 1→ T such that

T × T

T

T

〈!f •, 1〉
f

•

commutes.



Turing Categories

Turing Categories capture computability. For example

I λ-calculus gives a Turing category. (Take the reflexive object
of the cartesian closed category as the Turing object)

I In fact, Turing catgories are in one-to-one correspondence
with partial combinatory algebras



Incompleteness in Turing Categories

There is also a rather nice way to do Gödel incompleteness in a
Turing category



Incompleteness in Turing Categories

Theorem
(second recursion theorem) In any Turing category, for any
f : T ×T → T where T is the Turing object, there is a total point
p : 1→ T such that (p × 1)• = (p × 1)f .

Proof

let h = (∆× 1)(• × 1)f . Then there is a code h• for h with
(h• × 1)• total and (h• × 1× 1)(• × 1)• = h.

Setting p = (h• × h•)• makes



Incompleteness in Turing Categories

T T × T

T 3

T 3

T × T

T × T

T
(h• × 1)

(∆× 1)

(h• × 1× 1)

(• × 1)

(• × 1)

•

f

h

commute, which gives (p × 1)• = (p × 1)f , as required.



Incompleteness in Turing Categories

In a Turing category with Turing structure (T , •), a provability
predicate is a restriction idempotent epf ∈ O(T × T ) such that
k1, k2 are in epf (k1 ` k2) if and only if

〈!k1, 1〉• ≤ 〈!k2, 1〉•



Incompleteness in Turing Categories

Theorem
Every nontrivial Turing category with a restriction zero and a
provability predicate has a predicate (subobject) of the terminal
object which is neither 0 ∈ O(1) nor 1 ∈ O(1).



Incompleteness in Turing Categories

Proof

let epf ∈ O(T × T ) be the provability predicate, and let 0•, 0•• be
codes for the maps 0 and !0• respectively.

let f = (〈1, !0••〉comp × 1)epf !k for some k : 1→ T .

by the second recursion theorem, there is a point p• : 1→ T such
that (p•×1)• = (p•×1)f . Note that p• is a code for some map p.



Incompleteness in Turing Categories

Now,

0•p! = 0•〈!p•, 1〉•!
= 0•〈!p•, 1〉f !

= 〈p•, 0•〉f !

= 〈p•, 0•〉(〈1, !0••〉comp × 1)epf !k!

= 〈〈p•, 0••〉comp, 0•〉epf !

= 〈(!0•p)•, 0•〉epf !



Incompleteness in Turing Categories

If 0•p! = 0, then 〈(0•p)•, 0•〉epf = 〈(0•p)•, 0•〉, and so
〈(!0•p)•, 0•〉! = 11, which means that 11 = 0.

If 0•p! = 11, then p � 0 and so 〈(0•p)•, 0•〉epf ! cannot be total,
which means it must be 0. So again, 0 = 11.



Incompleteness in Turing Categories

. . . and so there must be predicates of the terminal object that are
neither 11 nor 0. That is, The setting is non-classical!



Logic → Turing Category

To connect these two incompleteness results, it would make sense
if we could start with a term logic, construct a Turing category
using it, and define a provability predicate in that category.

To that end, we introduce the logical system L.



Logic → Turing Category

Structural inference rules and induction:

Γ ` Θ

D, Γ ` Θ

Γ ` Θ

Γ ` Θ,D
D,D, Γ ` Θ

D, Γ ` Θ

Γ ` Θ,D,D
Γ ` Θ,D

∆,D, C, Γ ` Θ

∆, C,D, Γ ` Θ

Γ ` Θ, C,D,Λ
Γ ` Θ,D, C,Λ

Γ ` Θ,D D,∆ ` Λ

Γ,∆ ` Θ,Λ

F (a), Γ ` Θ,F (a′)

F (0), Γ ` Θ,F (t)



Logic → Turing Category

Logical inference rules:

Γ ` Θ,A Γ ` Θ,B
Γ ` Θ,A ∧ B

A, Γ ` Θ

A ∧ B, Γ ` Θ

B, Γ ` Θ

A ∧ B, Γ ` Θ

A, Γ ` Θ B, Γ ` Θ

A ∨ B, Γ ` Θ

Γ ` Θ,A
Γ ` Θ,A ∨ B

Γ ` Θ,B
Γ ` Θ,A ∨ B

Γ ` Θ,F (t)

Γ ` Θ,∃x .F (x)

F (t), Γ ` Θ

∃x .F (x), Γ ` Θ



Logic → Turing Category

Axioms:

x ′ = 0 ` ` (∃x .y = x ′) ∨ y = 0 x ′ = y ′ ` x = y

x = y ` P(x) = P(y) ` x = x x = y ` y = x

x = y , y = z ` x = z a = b ∧ P(b) ` P(a)



Logic → Turing Category

Define the equivalence relation ∼ by P1 ∼ P2 if and only if
P1 ` P2 and P2 ` P1. Write the equivalence class of P as [P]

We can use this to construct a category TL:

Objects: 1 = N0,N,N× N,N3, . . .

Maps: f : Nn → Nm is given by an equivalence class of n + m
place predicates, [Pf ], such that if Pf ∈ [Pf ] then

Pf (x1, . . . , xn, y1, . . . , ym) ∧ Pf (x1, . . . , xn, z1, . . . , zm)

` y1 = z1 ∧ · · · ∧ ym = zm



Logic → Turing Category

Composition:

Given f : Nn → Nm, g : Nm → Nl ,

fg :=

[∃w1 · · · ∃wm.Pf (x1, . . . , xn,w1, . . . ,wm) ∧ Pg (w1, . . . ,wm, y1, . . . , yl)]



Logic → Turing Category

Identities:

11 := [true]

1Nn := [x1 = y1 ∧ · · · ∧ xn = yn]



Logic → Turing Category

This forms a category. In fact,

f := [(∃ ∼w .Pf (
∼
x ,
∼
w))∧ ∼x=

∼
y ]

gives that we have a restriction category, and

f̂ := [(∃ ∼w .Pf (
∼
w ,
∼
x ))∧ ∼x=

∼
y ]

gives that we have a range category!



Logic → Turing Category

Proposition

TL is a cartesian restriction category with joins and ranges.

... How exactly we finish the construction and obtain a Turing
category is unclear. In particular, how does one define •?


