Turing Categories and Incompleteness

Chad Nester

June 7, 2014

Incompleteness

First, the quick, abstract version of incompleteness

Incompleteness

given a logical system L, let
» g(E) be the Godel number of the expression E
E, be such that g(E,) = n
d(n) = g(Ea(n))
P be the set of provable sentences

v

v

v

v

P be the set of Godel numbers of provable sentences

Incompleteness

we say that L is correct if every provable sentence is true, and no
refutable sentence is true.

Incompleteness

Now, define A* by

neA* < dn)eA

Incompleteness

Theorem

If L is correct and (P)* is expressible in L (where P is the

complement of P), then there is a true sentence of L that is not
provable in L

Incompleteness

Proof

let H express (P)*, and let h = g(H). Since H expresses (P)*,
H(h) is true < he P
< d(h) €
& d(h) ¢ P
< g(H(h) &P

H(h) ¢ P
so H(h) is true if and only if H(h) is not provable.

Incompleteness

Now, if H(h) is false, then H(h) is provable, but this is impossible
as L is correct, which means all provable sentences are true!

Since H(h) cannot be false, it it true, and is thus not provable.
L]

Turing Categories

Next, we need to know what Turing categories are.

Turing Categories

A category X is a restriction category if for every map f : A — B
in X, there isa map f : A — A in X satisfying

Rl ff=f

R2 fg =gf
R3 fg=Tfg
R4 fg = fgf

wesay f : A— B is total if f =14.

Turing Categories

Restriction categories come with a free partial order on every
homset:

f<geofg=f

Turing Categories

A restriction category X has restriction products if for every pair of
objects X, Y in X, there is an object X x Y/, the restriction
product of X and Y, with maps 7wy, w1 such that for every

f:Z— Xand g:Z—Y, there is a unique map (f, g) making
the following diagram commute

(f,g) &

X

z
x

XxY

0 ™1 Y

and satisfying (f, g)mo = gf, (f,g)m = fg.

Turing Categories

A restriction category X has a restriction terminal object if it
contains an object 1 such that for every object A in X there is a
unique total map !4 : A— 1l such that forany f : X = Y

f !
X y LA

|

Turing Categories

A restriction category with both restriction products and a
restriction terminal object is called a cartesian restriction category.

For Example: Partial functions on sets

» The restriction terminal object is 1 = {*}, a one element set.

» The restriction product of A, B is the direct product, A x B,
with the usual projection.

Turing Categories

let X be a cartesian restriction category.

Givenamap 7xy : T X X — Y, amorphism f : Z x X = Y'is
said to admit a 7x y-index when there exists a total map
h:Z — T making

TX,Y
TxX Y
hx1
f
Zx X

commute. In this case, call h a 7x y-index for f.

Tx,y is called a universal application when every f : Z x X =Y
admits a 7x,y-index.

A Turing object in an object T such that for each X, Y € X, there
is a universal application 7x y : T x X = Y.

X is a Turing category if it posesses a Turing object.

equivalently. ..

Turing Categories

A Turing category is a cartesian restriction category with a
distinguished object T, called the Turing object, such that

> every object is a retract of T

> there is an application map, e, such that for every
f: T xT— T thereis a total map [f]: T — T making the
following diagram commute.

TxT —> 7T
[f]x1

TxT

Turing Categories

Proposition
A cartesian restriction category X is a Turing category if it
posesses an object T such that

> every object is a retract of T

> thereisamape: T x T — T such that forall f: T — T
there is a total point f® : 1 — T such that

[J
TXxT—T

(If*, 1)

commutes.

Turing Categories

Turing Categories capture computability. For example
» A-calculus gives a Turing category. (Take the reflexive object
of the cartesian closed category as the Turing object)

» In fact, Turing catgories are in one-to-one correspondence
with partial combinatory algebras

Incompleteness in Turing Categories

There is also a rather nice way to do Godel incompleteness in a
Turing category

Incompleteness in Turing Categories

Theorem

(second recursion theorem) In any Turing category, for any

f: TxT— T where T is the Turing object, there is a total point
p:1— T such that (p x 1)e = (p x 1)f.

Proof

let h= (A x 1)(e x 1)f. Then there is a code h® for h with
(h* x 1)e total and (h* x 1 x 1)(e x 1)e = h.

Setting p = (h* x h*)e makes

Incompleteness in Turing Categories

o><1
T3—>T><T

(& y
(h* x1)

T——TxT

S
(h'xlx /

T3*>T><

commute, which gives (p x 1)e = (p x 1)f, as required. []

Incompleteness in Turing Categories

In a Turing category with Turing structure (T,e), a provability
predicate is a restriction idempotent e,r € O(T x T) such that
ki, ko are in epr (k1 = ko) if and only if

<!k1, 1>0 < <!k2, 1>o

Incompleteness in Turing Categories

Theorem

Every nontrivial Turing category with a restriction zero and a
provability predicate has a predicate (subobject) of the terminal
object which is neither 0 € O(1) nor 1 € O(1).

Incompleteness in Turing Categories

Proof

let epr € O(T x T) be the provability predicate, and let 0°, 0*® be
codes for the maps 0 and !0° respectively.

let f = ((1,10°*)comp x 1)eprlk for some k:1 — T.

by the second recursion theorem, there is a point p®: 1 — T such
that (p® x 1)e = (p® x 1)f. Note that p® is a code for some map p.

Incompleteness in Turing Categories

Now,

1,10%*)comp x 1)ep!k!

comp, *)epr!

Incompleteness in Turing Categories

If 0°p! = 0, then ((0°p)*,0%)er = ((0°p)*,0°%), and so
(('0*p)*®,0°)! = 11, which means that 1; = 0.

If 0°p! = 14, then p £ 0 and so ((0°p)*®,0°%)eyr! cannot be total,
which means it must be 0. So again, 0 = 1.

Incompleteness in Turing Categories

... and so there must be predicates of the terminal object that are
neither 1; nor 0. That is, The setting is non-classical!
O]

Logic — Turing Category

To connect these two incompleteness results, it would make sense
if we could start with a term logic, construct a Turing category
using it, and define a provability predicate in that category.

To that end, we introduce the logical system L.

Logic — Turing Category

Structural inference rules and induction:

r-o r-o D,D,TFO r-o,D,D
D,T -0 r-e,D D,T -0 r-oe,p

A,D,C,T+HO r-o,c,D,A r-e,p D,AFA
AC,D,T+-0O r-o,D,CA LAFO,A

F(a),T - ©, F(d)
F(0),l = ©, F(t)

Logic — Turing Category

Logical inference rules:

r-e,4 T+0,B8 ATHO B,T+O
r-0,AAB ANB,THO ANB,THO
ATFO BTFO r-o,4 r-o,8
AVB,TFO r-0,Av B rF0,4Av B
M-o,F(t) F(t),T - ©

I-©,3x.F(x) Ix.F(x), T ©

Logic — Turing Category

Axioms:
X =0k FExy=x)Vy=0 X =yFx=y
x=ykF P(x)=P(y) Fx=x x=yky=x

xX=y,y=zkbx=z a=bAP(b)F P(a)

Logic — Turing Category

Define the equivalence relation ~ by P; ~ Py if and only if
P1 F P, and P, = Py. Write the equivalence class of P as [P]

We can use this to construct a category T,:
Objects: 1 =N° N,N x N, N3, . ..

Maps: f: N7 — N7 is given by an equivalence class of n+ m
place predicates, [Pr], such that if Pr € [Pf] then

Pe(X1y ey Xny Y1y ooy Ym) A Pr(X1, ooy Xny 21, o« oy Zm)

Fyviw=z1A - AYm=2Zn

Logic — Turing Category

Composition:

Given f:N”—)N’",g:N’”—)N’,

fg =

[Fwy - Iwm. Pr(x1, - oy Xn, W, - .

W) A Pg(wi, ..

"Wm7y17"'

7.yl)]

Logic — Turing Category

Identities:
11 := [true]

Inn = [x1:y1/\~--/\xn:y,,]

Logic — Turing Category

This forms a category. In fact,
Fi=[Aw.Pe(x, W))A X=Y]

gives that we have a restriction category, and
Fi=[(3w .Pr(w, X))\ x=Y]

gives that we have a range category!

Logic — Turing Category

Proposition

T, is a cartesian restriction category with joins and ranges.

... How exactly we finish the construction and obtain a Turing
category is unclear. In particular, how does one define o7

