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Vlain result

* The problem of deciding whether two MLL proofs
are equivalent is PSPACE-complete.

e This is true even in the unit-only tfragment.
* (In contrast equivalence can be easily decided

without units, and also Iin the intuitionistic case with
units.)



What is MLL"

Multiplicative linear logic

Every premise must be used once and once only
No contraction or weakening

negation is written (-)+

connectives ®, ¥

corresponding to A, v In classical logic



MLL sequent calculus
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When are proofs equivalent?
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MLL proof nets
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MLL proof nets
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MLL proof nets
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MLL proof nets
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MLL with units

The units are 1, L




Cquivalence with units
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Proof nets tor units

e Proof net = function from occurrences of L to

occurrences of 1 that satisfies the switching
condition;

* Proof net equivalence relation generated by
rewiring. moving a single link froma 1L to a

different 1.



Proof nets tor units




Proof nets tor units




Implications for proof theory

* |t's no use looking for a canonical notion of MLL
oroof net (unless you believe that PSPACE = P).

* The proof nets we have for MLL may well be as
nice as we're ever going to get.



The Initlal star-autonomous
category

* “The initial X-category” is pretty boring for most
values of X — typically either O or 1.

e Not so when X = “star-autonomous”.

* |nfinite hierarchy of non-isomorphic objects:
1, 1L, 1®1, 1®1®1, etc.

11, 1¥9(Lel), 1R(LeL)¥(1Lel®l)
(1R(LeL)R(1¥(LeL)¥(L®LeL1))
ad infinitum




What is “PSPACE-complete”

* Really hard.
 As hard as possible, in a sense.

 Hard even with an omniscient (but untrusted)
guide.

* [here are proofs that are equivalent but where the
shortest rewiring from one to the other Is
exponentially long.




HOW do we prove this IS
PSPACE-complete”

* Reduction from a known-hard problem

* (The configuration-to-configuration problem for
nondeterministic constraint logic)

* SO we can solve MLL proof equivalence easily only
if everything is easy (i.e. if PSPACE = P)



Constraint Logic
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Nondeterministic
constraint logic

Weighted graph
Each node has a minimum inflow constraint e N

A configuration is an assignment of a direction to each
edge such that the inflow constraints are satisfied

A move is the reversal of a single edge (s.t. constraints
remain satisfied)

Deciding whether one configuration can be changed
into another is PSPACE-complete



Nondeterministic
constraint logic

This remains true under many restrictions on the
constraint graphs. We may assume:

Every edge has weight 1 or 2;
Every node has minimum inflow constraint 2;

The graph is cubic planar.



Example







































End of Part 17



Notation



Notation

(AeB®C) ® (DoE) ¥ F




Notation

[(A®B®C) ® (D®E)] ® F




Notation example




Notation example




More notation




Why this notation”




1The reduction



Overall construction

node O edge
node 1 edge [absorbers]
node 2 edge




Gadget for node |
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The edge /- attaching to node |




The edge /- attaching to node J




‘Parity”
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Not equivalent:
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Parity

* A relationship between two proofs of the same
sequent.

e [wo proof nets for the same sequent stand in even
or odd relationship to each other.

 Equivalent proof nets are always evenly related.



Parity defined

Sequent A bijection between
+ Linking two sets associated
+ Switching with the sequent.



Parity defined

Sequent + Switching
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Parity defined
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Parity

* Equivalent proofs have even parity



Worked example

(If there’s time)






“‘Matching”






Provable iff n = a+b+cC



Using matching to encode
arithmetic questions
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Equivalent iff m>n
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