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Updates and views

I An update changes database state(s)

I Examples: deletion, insertion, attribute modification

Either: modification of single state by delete or insert

or an update process: an endo U of states, S

I A view may limit access e.g. for security

or present information to user class e.g. clerk

or specify boundary for database integration

I “Get” view states via G : S // V
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View update problem

When can an update to view state(s) either

I for single (view) state (e.g. formal insertion a):

GS V
a //

S

GS

S

V

I for an update process (e.g. U):

V V
U //

S

V

G
��

S

V
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View update problem

When can an update to view state(s) either

I for single (view) state (e.g. insert a):

GS V
a //

S

GS

S S ′_____ S ′

V

I for an update process (e.g. U):

V V
U //

S

V

G
��

S S//_____ S

V

G
��

propagate (or lift) correctly to full database update?
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Abstract view updates

Bancilhon and Spyratos (1982, and others) studied the view
update problem. For them:

I database states are an abstract set S

I view states are an abstract set V – the codomain of a
surjective view definition mapping G : S // V

I a view update is an endo-function U : V // V

I a translation TU of view update U is a database update on S
lifting UG through G

V V
U //

S

V

G ��

S S
TU //_____ S

V

G��

A translation strategy limited to “complemented” (better,
“factored”) views follows...

6



Asymmetric Lenses

(B. Pierce et al, 2005)
Consider a full database state s and view state G (s)
When G (s) updated to v , say, want strategy to find
updated full database state s ′ = TUs (over v):

G (s) v� //

s

G (s)

_

��

s s ′� //_____ s ′

v

_

��

Idea: provide a process P : V × S // S called “Put” so that
P(v , s) is the translated state s ′ after G (s) updated to v
Some equations should follow...

This structure, called a lens, provides translations

Also arose in considering “abstract models of storage”
(where there is a similar update problem)
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Asymmetric Lenses

Let C be a category with finite limits
An asymmetric lens in C is L = (S ,V ,G ,P) with

I S and V objects (... database states/view states)

I S
G // V aka ‘Get’ and V × S

P // S aka ‘Put’

called well-behaved (wb) if satisfying:

PutGet: Get of Put is projection: GP = π0 (or GP(v , s) = v)

GetPut: Put for non-update is trivial P〈G , 1S〉 = 1S

and very well-behaved (vwb) if also satisfying:

PutPut: repeated Puts depend only on the last:
P(1V × P) = Pπ0,2 (or P(v ′,P(v , s)) = P(v ′, s))
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the equations diagrammatically

V × S

V

π ��:::::V × S S
P // S

V
G��������

S

S
1 ��::::::S V × S
〈G ,1〉 // V × S

S
P�������

PutGet GetPut

V × S V
P

//

V × V × S

V × S

π0,2
��

V × V × S V × S
1V×P // V × S

V

P
��

PutPut

So ∆ΣG
P // G is in C/V where

C C/V

∆

55C C/V
vv

Σ

⊥
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And moreover . . .

Proposition (JRW)

A (vwb) lens has P an algebra structure on G in C/V for the
monad ∆Σ on C/V .

For vwb lenses:

I C = set, L = (S ,V ,G ,P) recovers B&S results:

S ∼= V × C , G the projection, C ‘complement’ of V ,

the translation: TU(s) := P(UGs, s)

I C = ord, recovers results of S. Hegner (2004)

I C = cat: G a projection and hence fibration and opfibration
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Lenses compose

We can compose lenses:
if L = (S ,V ,G ,P) and M = (V ,W ,H,Q) are lenses in C
then ML = (S ,W ,HG ,R) is a lens, with the Put R defined:

W × S
1W×〈G ,1S 〉 // W × V × S

〈Q,1S 〉 // V × S
P // S

Composites of wb, resp vwb, lenses are wb, resp vwb

There are identity on objects (ioo), non-full
functors between asymmetric lens (in C) categories

ALensv (C) // ALensw(C) // ALens(C)
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Lenses preserved

Suppose F : C // D is a finite product preserving functor
For L = (X ,Y ,G ,P) an asymmetric lens in C,
respectively: a well-behaved lens, very well-behaved lens

FL = (FX ,FY ,FG ,FP) is an asymmetric lens in D,
respectively: a well-behaved lens, very well-behaved lens

Moreover, F preserves lens composition and we denote:

F : ALens(C) // ALens(D)

respectively from ALensw(C) and ALensv(C).
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Lenses and pulling back

For C with pullbacks and an asymmetric lens L = (X ,Y ,G ,P))
and H : V ′ // V in C pulling back G along H in C
gives the Get for asymmetric lens L′ = (T ,V ′,G ′,P ′))
with P ′ = 〈P(H × H ′), π0〉

S V ′

T

S

H′

wwooooooo T

V ′
G ′

''OOOOOOO

S

VG ''OOOOOOOS V ′V ′

V Hwwooooooo

Similarly for well-behaved and very well-behaved lenses

But: ALens(C),ALensw(C),ALensv(C) may not have pullbacks.
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Less abstract lenses
For a view in cat, ie G : S // V

(Insert) updates needing lifts should better be GS
a // V

(Contrast simply pairs (S ,V ) above)
The domain of Put for G is better (G , 1V) than V × S

Right comma projection R(−) is functor part of a monad

R : cat/V // cat/V

with unit component G
ηG // RG defined by

S

S

��

1V

S

(G , 1V)

ηG
��

S

V

G

��
S V

(G , 1V)

S

L1V

wwoooooooooo
(G , 1V)

V

RG

''OOOOOOOOOO

S

V
G ''OOOOOOOOOOOOS VV

V
1Vwwoooooooooooo−→

where ηG = (1V,G , 1G ) : S // (G , 1V) defined universally 14



Less abstract lenses

and multiplication RRG
µG // RG defined by:

S

(RG , 1V)

		

LG1VLRG1V

(RG , 1V)

(G , 1V)

µG

��

(RG , 1V)

V

RRG

��
S V

(G , 1V)

S

L1V

wwoooooooooo
(G , 1V)

V

RG

''OOOOOOOOOO

S

V
G ''OOOOOOOOOOOOS VV

V
1Vwwoooooooooooo−→

with

µG = (LG1V · LRG1V,RRG , β(αLRG1V)) : (RG , 1V) // (G , 1V)
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An iterate of a P

For G : S // V consider a
P : (G , 1V) // S satisfying GP = RG , so that

GPLRG1V = RG · LRG1V
β // RRG , define: (P, 1V) by

(G , 1V)

(RG , 1V)
tt

LRG1Vjjjjj

S

(G , 1V)

��

P

(RG , 1V)

(G , 1V)

(P,1V)

��

(RG , 1V)

V

RRG

��
S V

(G , 1V)

S

L1V

wwoooooooooo
(G , 1V)

V

RG

''OOOOOOOOOO

S

V
G ''OOOOOOOOOOOOS VV

V
1Vwwoooooooooooo−→
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c-Lenses

Again, for a view in cat, G : S // V
the “Put” for view updates GS // V should be
a process P : (G , 1V) // S, and we define:

A c-lens in cat is L = (S,V,G ,P)
satisfying

c-PutGet: GP = RG

c-GetPut: PηG = 1S

c-PutPut: PµG = P(P, 1V)

(Could model delete updates V // GS , then “Put” s.b.
P : (1V,G ) // S using LG in the PutGet equation...)
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c-Lenses are opfibrations
or diagrammatically:

(G , 1V) S
P //(G , 1V)

V

RG
��??????????
S

V

G

��

S (G , 1V)
ηG //S

S

1S
��??????????? (G , 1V)

S

P

��
(G , 1V) S

P
//

(RG , 1V)

(G , 1V)

µG

��

(RG , 1V) (G , 1V)
(P,1V) // (G , 1V)

S

P

��

Recalling that an algebra structure for the monad

cat/V
R // cat/V

is a split opfibration:

Proposition (JRW)

For a c-lens L = (S,V,G ,P) in cat, P is an algebra structure for
R so G is a split opfibration.
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c-Lenses compose

Opfibrations compose, so if G : S // V and G ′ : V // W
are c-lenses. so is G ′G : S // W

Subcategory of cat with arrows c-lenses is denoted ACLens.
Asymmetric lens in cat is a c-lens, so ALensv (cat) is a subcategory.

Further, opfibrations pull back (along any functor) and a cospan of
c-lenses gives span of c-lenses

Interest in spans motivated by cospan of views G ,H:

S S ′

T

S

H′

wwooooooo T

S ′
G ′

''OOOOOOO

S

VG ''OOOOOOOS S ′S ′

V Hwwooooooo

giving a span of views G ′,H ′ (of c-lenses if G ,H are)
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Another categorical version of lenses

Motivated by similar considerations Z. Diskin and co-authors
called updates deltas, made the set of deltas the domain of
Put (now returning a delta), with axioms similar to c-lenses

An (asymmetric) delta lens (d-lens) in cat is L = (S,V,G ,P)
where G : S // V is a functor and P : |(G , 1V)| // |S2| is a
function and the data satisfy:

(i) d-PutInc: the domain of P(S , α : GS // V ) is S

(ii) d-PutId: P(S , 1GS : GS // GS) = 1S

(iii) d-PutGet: GP(S , α : GS // V ) = α

(iv) d-PutPut:

P(S , βα : GS //V //V ′) = P(S ′, β : GS ′ //V ′)P(S , α : GS //V )

where S ′ is the codomain of P(S , α : GS // V )
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ADLens

Proposition

If L = (S,V,G ,P) and M = (V,W,H,Q) are d-lenses then
then ML = (S,W,HG ,R) is a d-lens, with R as

|(HG , 1W)| Q // |(G , 1V)| P // |S|2

Identity functor is Get for a d-lens and unitary for composition.
Denote the resulting category ADLens

Proposition

If L = (S,V,G ,P) is a d-lens and F : V′ // V is a functor then
G ′ in the pullback (in cat) is the Get of a d-lens

S V′

T

S

F ′

wwooooooo T

V′
G ′

''OOOOOOO

S

VG ''OOOOOOOS V′V′

V Fwwooooooo
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c-Lenses and d-Lenses

For G : S // V, denote G0 = |S| // S
G // V and

R0G : (G0, 1V) // V

Semi-monad (R0, µ
0) on cat/V similar to R, and transformation

η0 to R0 (from functor sending G to G0)

Proposition

If L = (S,V,G ,P) is a d-lens then (G ,P0) is an (R0, µ
0) algebra

satisfying P0η
0G = P0ηG0 = IS, and conversely.

Corollary

A c-lens is a d-lens; composition is compatible.

Though not every d-lens is a c-lens
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Categories of asymmetric lenses

In summary:

ALensv(set)

ALensv(ord)
��????????

ALensv(set) ALensv(cat)// ALensv(cat)

ALensv(ord)

??

��������
ALensv(cat) ACLens// ACLens ADLens//

All admit the Sp(U) construction which follows...
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The Sp(U) Construction

C with finite limits; U : A // C ioo functor reflecting isos
(We are thinking ALens // C)
Assume an operation P on C cospans

B
g // C oo U(r)

D

giving arrows P(g , r) in A such that
1) there is in C a pullback:

B D

A

B

t′

zzttttt A

D

g ′

$$JJJJJ

B

C
g $$JJJJJB DD

C U(r)zzttttt

with t ′ = U(r ′) where r ′ = P(g , r)

And...
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The Sp(U) Construction

2) If also g = U(v) then for v ′ = P(G (r), v) the square commutes
(in A):

B D

A

B

r ′

zzttttt A

D

v ′

$$JJJJJ

B

C
v $$JJJJJB DD

C
rzzttttt

Next, given U and operation P, define category Sp(U):
Objects of A (or C)
Arrows ≡U equiv classes of spans in A where
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The Sp(U) Construction

≡U generated by span morphisms in A

A B

C

A

u

wwooooooo C

B

v

''OOOOOOO

A

D

gg

u′ OOOOOOOA BB

D

77

v ′ooooooo

C

D

t

��

with u = u′t and v = v ′t and G (t) split epi.
Sp(U) composition by span composition in C

Proposition

With the data just defined, Sp(U) is a category.
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Symmetric lenses

(Hoffman, Pierce and Wagner, 2011)
Idea: Describe re-synchronization for model classes (of states)
X , Y having synchronization (“complement”) information from C .

Given states x , y synchronized by a complement c and an
(updated) state x ′ of X , determine re-synchronizing complement
c ′ from (x ′, c) and an updated y ′ of Y (and vice versa)

So an arrow r : X × C // Y × C and vice versa.

X × C Y × C

r
))
Y × CX × C

l

hh

Now (x ′, c ′, y ′) is (re)synchronized. Some equations are expected
because...

if l applied to (y ′, c ′) then the result should be (x ′, c ′)
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Example (from H,P,W)
The data in states x , y might initially be the following

x : y :
Schubert 1797-1828 Schubert Austria
Schumann 1810-1856 Schumann Germany

with initial complement, “hidden data” (a C state):

c :
1797-1828 Austria
1810-1856 Germany

An edit to x gives new X state x ′:
Schubert 1797-1828
Schumann 1810-1856
Monteverdi 1567-1643

then applying r(x ′, c) results in new C and Y states:
c ′ : y ′ :

1797-1828 Austria Schubert Austria
1810-1856 Germany Schumann Germany
1567-1643 ?country Monteverdi ?country
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Symmetric lenses

Let C be a category with finite limits.

For objects X ,Y in C, an rl lens from X to Y , denoted
L = (X ,Y ,C , r , l) with C an object of “complements” and
morphisms

r : X × C // Y × C and l : Y × C // X × C

satisfying the equations:
πX lr = πX : X ×C // X πC lr = πC r : X ×C // C (PutRL)
πY rl = πY : Y ×C // Y πC rl = πC l : Y ×C // C (PutLR)

HPW require an element m : 1 // C where m is for “missing”
(called pc-symmetric below)
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Symmetric lenses decompose

Remark
For an RL lens L = (X ,Y ,C , r , l) in C, the equations rlr = r and
lrl = l hold.

Suppose that L = (X ,Y ,C , r , l) is an rl lens in C.

Let e : SL
// X × Y × C be an equalizer of rπ0,2 and π1,2.

If C = set,

SL = {(x , y , c) | r(x , c) = (y , c)} = {(x , y , c) | l(y , c) = (x , c)}

Elements of SL are the “synchronized triples”
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Symmetric lenses decompose

For L,SL as above:

Proposition

There is a span
Ll : X oo SL

// Y : Lr

in ALensw from X to Y with Gets defined by gl = πX e, gr = πY e.
The Put. pl for Ll (pr similar) is defined by

X × SL
1X×e // X × X × Y × C

π0,3 // X × C

∆X×1C // X × X × C
1X×r // SL

(The set formula for pl is pl(x ′, (x , y , c)) = (x ′, r(x ′, c)).)

Denote the span (Ll , Lr ) by A(L)

Recalling Uw : ALensw
// C, define SLensw = Sp(Uw )

31



Symmetric lenses compose

For rl lenses L1 = (X ,Y ,C1, r1, l1) and L2 = (X ,Y ,C2, r2, l2):

L1 ∼ L2 if exists well-behaved asymmetric lens L = (C1,C2, t, p)
with t split epi and respecting L1, L2 operations, which means:

r2(X × t) = (Y × t)r1 and l2(Y × t) = (X × t)l1

and

r1(X × p) = (Y × p)(r2 × C1) and l1(Y × p) = (X × p)(l2 × C1).

∼ generates equivalence relation on rl lenses X to Y denoted ≡rl

≡rl class of L denoted [L]rl .
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Symmetric lenses compose
L = (X ,Y ,C , r , l), M = (Y ,Z ,C ′, r ′, l ′) rl lenses

Their rl-composite lens is ML = (X ,Z ,C ′′, r ′′, l ′′,m′′)
where C ′′ = C × C ′ and

r ′′ = 〈π0,2, π1〉(r ′ × 1C )〈π0,2, π1〉(r × 1C ′) (l ′′ similar)

Proposition

For rl lenses L1, L2 from X to Y and M1,M2 from Y to Z in C, if
L1 ≡rl L2 and M1 ≡rl M2 then M1L1 ≡rl M2L2.

RLLens has objects of C; arrows X to Y are ≡rl classes

Proposition

There is an identity on objects functor

A : RLLens // SLensw

defined by A([L]rl) = [A(L)]Uw .

33



Symmetric lenses from asymmetric

Going the other way... From span of wb asymmetric lenses
L = (S ,X ,GX ,PX ), M = (S ,Y ,GY ,PY ), construct rl lens
S(L,M) = (X ,Y ,S , r , l) where (in set)

r(x ′, (x , y , c)) = (GY PX (x ′, (x , y , c)),PX (x ′, (x , y , c))) (l similar)

Proposition

Denote AS(L,M) by Ll : X oo SL
// Y : Lr . There is iso span

morphism
g : S // SL, so AS(L,M) ≡Uw (L,M),
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Categories of symmetric lenses

Proposition

If L : X oo S // Y : M, L′ : X oo S ′ // Y : M ′ are
≡Uw equivalent spans of well behaved asymmetric lenses then
S(L,M) ≡rl S(L′,M ′) and S([(L,M)]≡Uw

) = [S(L,M)]rl defines
functor S : SLensw // RLLens.

Theorem
SLensw is a retraction of RLLens via A and S.
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pc-symmetric lenses

Hofmann, Pierce and Wagner introduced an equivalence relation
we denote ≡pc on their pc-symmetric lenses from X to Y

≡pc allows well-defined composition of pc-symmetric lenses
giving pcLens

Starting from rl lenses, suitably adding points so that ≡Uw can be
compared, we can show that ≡pc is in fact coarser than ≡Uw
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Symmetric delta lenses (Diskin et al. 2011/12)

For symmetric version of d-lens, again use morphisms for updates:

Let A and B be small categories.

Given an update a : A // A′ in A from state A
where A synchronized with B by “correspondence” r : A↔ B,
symmetric d-lens should deliver an update b : B // B ′ in B and
re-synchronization r ′ : A′ ↔ B ′:

A′ B ′oo
r ′

//____

A

A′

a
��

A Boo r // B

B ′

b
���
�
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Symmetric delta lenses

A symmetric delta lens (sd-lens) from A to B is
L = (δA, δB, fP, bP) with a span of sets

δA : |A| oo RAB
// |B| : δB

(elements of RAB called corrs are denoted r : A↔ B) and
forward and backward propagation operations

fP : Arr(A)×|A| RAB
// Arr(B)×|B| RAB

bP : Arr(A)×|A| RAB
oo Arr(B)×|B| RAB
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Symmetric delta lenses

Display instances of propagation operations as:

A′ B ′oo
r ′

//____

A

A′

a
��

A Boo r // B

B ′

b
���
�

fP
//

A′ B ′oo
r ′

//____

A

A′

a
���
�A Boo r // B

B ′

b
��

bP
oo

where fP(a, r) = (b, r ′) and bP(b, r) = (a, r ′).:
Propagation respects identities: r : A↔ B implies
fP(idA, r) = (idB , r) and bP(idB , r) = (idA, r) and composition in
A and B: fP(a′a, r) = fP(a′, π1(fP(a, r))), similarly for B.
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Composing symmetric delta lenses

Let L = (δRA , δ
R
B , fP

R , bPR) and L′ = (δSB, δ
S
C, fP

S , bPS) The
composite sd-lens L′L = (δA, δC, fP, bP) where δA = δRAδ1,
δC = δSCδ2 and RAC is the pullback in

RAB RBC

RAC

RAB

δ1

yysssss
RAC

RBC

δ2

%%KKKKK

RAB

RB
δRB

%%KKKKKKRAB RBCRBC

RB
δSB

yyssssss

Define: fP(a, (r , s)) = (c, (rf , sf )) and bP(c , (r , s)) = (a, (rb, sb))
where fPR(a, r) = (b, rf ), fPS(b, s) = (c , sf ) and
bPS(c, s) = (b, sb), bPR(b, r) = (a, rb).

The construction is used to define a category SDLens
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SDLens and spans

Let L = (S,V,GL,PL), R = (S,W,GR ,PR) be a span of d-lenses

Construct sd-lens SL,R = (δV, δW, fP, bP) with forward propagation
from PL,GR .
Conversely, from an sd-lens M = (δA, δB, fP, bP) we can construct
a span LM = (S,A,GL,PL), RM = (S,B,GK ,PK ) of d-lenses using
the corrs and propagations to define S,

Comparison of SDLens and spans of asymmetric d-lenses remains
to be made precise....
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Conclusion

I Asymmetric lenses provide solutions to
the view update problem in several contexts

I Symmetric lenses describe model synchronization
processes also in various contexts

I Symmetric lenses should be understood via spans of
asymmetric lenses and often arise from cospans
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Thanks!
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