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Nice Spaces

Our category of “nice” topolicial spaces is going to be the category
of compactly generated, weak Hausdorff spaces, CGwH, a full
subcategory of Top. Call the objects of CGwH spaces.
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Briefly, a space X is compactly generated if, for every compact
Hausdorff space K , every map f : K → X , and every subset
Y ⊆ X we have that Y is closed if and only if f −1(Y ) is.

A space X is weakly Hausdorff if and only if the image of any
compact Hausdorff space K in X is closed.
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Smash Product

On CGwH∗ there is a symmetric moinoidal product, ∧ (pron:
‘smash’), defined by:

X ∧Y := X × Y /X q Y

Further, one can topologize CGwH∗(X ,Y ) to make ∧ into a
closed symmetric monoidal product.
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Homotopy Relation

Call parallel maps f , g : X → Y homotopic if there exist a map
H : X ∧ I+ → Y such that f = H(−∧ 0) and g = H(−∧ 1).

Intuitively f is homotopic to g if “f can be deformed into g”
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Spheres

Let S0 and S1 denote the 0-sphere and the 1-sphere
respectively.

In general define Sn := S1 ∧ · · · ∧S1︸ ︷︷ ︸
n−times

Happily: Sn ∼= {v ∈ Rn+1||v | = 1} the usual n-sphere.
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Homotopy Groups

There are functors πn : CGwH∗ → Grp (pron: ‘nth homotopy
group’) for n ≥ 1 which takes a pointed space to the group
obtained by taking the homotopy classes of pointed maps [Sn,−]
with multiplication given by composition of loops.
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Example

X π1(X ) π2(X ) π3(X ) π4(X ) π5(X ) π6(X ) π7(X )

S1 Z 0 0 0 0 0 0

S2 0 Z Z Z2 Z2 Z12 Z2

S3 0 0 Z Z2 Z2 Z12 Z2

S4 0 0 0 Z Z2 Z2 Z× Z12
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Homology Groups

There are also functors Hn : CGwH→ Grp (pron: ’nth homology
groups’) for n ≥ 0 which takes a (non-pointed) space first to the
chain complex whose n-th level is hom(I n,X ) with differential map
∂ taking the alternating sum of the faces of I n, then takes returns
ker ∂n/ im ∂n+1.
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Example

Hn(Sk) =

{
Z n = k
0 otherwise
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Hurewicz Map

There is a natural map h∗ : π∗ ⇒ H∗ called the hurewicz map
defined as follows:

Given f : Sn → X we get a map Hn(f ) : Hn(Sn)→ Hn(X )

Since Hn(Sn) ∼= Z we may set hn(f ) = Hn(f )(1) by abuse of
notation.

Proposition: If the set of homotopy classes of maps from S0 → X
is a singleton and if π1(X , ∗) = · · · = πk(X , ∗) = 0 then
hk+1 : πk+1(X , x0)→ Hk+1(X ) is an isomorphism and
H1(X ) = H2(X ) = · · · = Hk(X ) = 0
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The homotopy groups are difficult to compute. Computing the
homotopy groups of the spheres Sn has only been accomplished for
n = 1. However:

Theorem (Freudenthal): For any space X the sequence

πi (X , ∗)→ πi+1(S1 ∧X , ∗)→ · · · → πi+k(Sk ∧X , ∗)→ · · ·

eventually stabilizes.

This allows us to define the nth stable homotopy group functor
πSn : sSet∗ → Grp by πSn (X , ∗) = colimπn+k(Sk ∧X ).
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It would be nice to get a setting in which this particular functor
was more akin to the original.
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The Original Solution

Originally the appropriate category, spectra, in which to study
stable homotopy had, as objects, N-indexed sequences

. . .
σn−1

##

S1 ∧Xn

σn

&&

S1 ∧Xn+1

σn+1

&&

S1 ∧Xn+2

σn+2

$$

. . .

. . . Xn Xn+1 Xn+2 . . .

This worked but...
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The original category of spectra was plagued by the unfortunate
truth that CGwH (and the other categories of “nice” spaces) are
symmetric monoidal, the homotopy categories of these categories
are symmetric monoidal, the homotopy category of the category of
spectra is symmetric monoidal, but the category of spectra itself is
not...
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Symmetric Spectra

A symmetric spectrum, X , is a sequence {Xn|n ∈ N} of spaces
such that each Xn is equipped with a basepoint preserving left
Σn-action together with Σ1 × Σn equivariant structure maps
S1 ∧Xn → Xn+1 such that the composite

Sp ∧Xq
Sp−1 ∧σ1,q

// Sp−1 ∧Xq+1
// · · · σ1,q+p−1

// Xp+q

is Σp × Σq equivariant.

Michael Pors Hurewicz for Symmetric Spectra 17/26



Background
Spectra

Example

Let X be any space X , then define the spectrum X to be:

X n := Sn ∧X

The structure map σn : S1 ∧X n → X n+1 is the isomorphism
S1 ∧Sn ∧X → Sn+1 ∧X
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The groupoid Σ

Let Σ denote the groupoid whose objects are the natural numbers,

and where Σ(n,m) =

{
Σn, n = m
∅ otherwise

Enrich this over CGwH by adding a basepoint and considering the
hom-sets as discrete spaces.

Notice that this category is symmetric monoidal via the addition
functor: (p, q) 7→ p + q, (τ, γ) ∈ Σp × Σq 7→ τ × γ ∈ Σp+q
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CGwHΣ

So we have two categories enriched over CGwH. Consider the
functor category CGwHΣ. The day convolution provides a
symmetric monoidal product:

X (−)⊗ Y (−) :=

∫ p,q

X (p)∧Y (q)∧Σ(p + q,−)

Which in this case resolves to:

(X ⊗ Y )(n) =
∐

p+q=n

(Σn)+∧Σp×ΣqX (p)∧Y (q)
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A monoid for ⊗ is: S− which takes n to Sn and Σn acts on Sn

via
s1 ∧ . . .∧ sn 7→ sτ1 ∧ . . .∧ sτn

So now we have a monoidal category CGwHΣ and a monoid S−

thus we may consider modules over that monoid:

S− ⊗ S− ⊗ X //

��

S− ⊗ X

��
S− ⊗ X // X

U ⊗ X //

%%

S− ⊗ X

��
X
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What are these things?

Let X be one of these S− modules, then X is described by the
following data:

A sequence of spaces Xn for each n ∈ N such that each space
is equipped with an action of Σn

A collection of Σp × Σq maps σp,q : Sp ∧Xq → Xp+q such
that all reasonable diagrams commute

Note that it is enough to specify the σ1,q : S1 ∧Xq → Xq+1 and
verify that the composites

Sp ∧Xq
Sp−1 ∧σ1,q

// Sp−1 ∧Xq+1
// · · · σ1,q+p−1

// Xp+q

are Σp × Σq-equivariant.
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Homotopy

Let X be a symmetric spectrum with spaces Xn and structure
maps σn.

πk(Xn, ∗)
S1 ∧−// πk+1(S1 ∧Xn, ∗)

πk+1(σn+1,∗)// πk+1(Xn+1, ∗)

From this we may for the colimit:

πSk (X ) = colim
k

πn+k(Xn)
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A Fun Fact

Given any symmetric spectrum E one can define an E-homology,
Ek(−), on CGwH by snetting Ek(X ) = πk(X ∧K ) where X ∧K is
the result of smashing each level of E with the space X and
ignoring X when considering the action.

Funner fact: The homology previously described arises in this way
via the Eilenberg MacLane spectrum HZ!

Warning!
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Homology

This suggests that, given a spectrum E we can define the
E -homology for spectra the same way! If X is a symmetric
spectrum then define the kth E -homology, Ek(X ) to be
πk(E ∧X ).
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Hurewicz

There is a map S0 → HZ, now, given any pointed symmetric
spectrum X we have that X ∼= X ∧S0 so we get a hurewicz map
for a ‘nice ’ subcategory of SpΣ

π∗(X ) ∼= π∗(X ∧S0)→ π∗(X ∧HZ) := H∗(X )
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