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Classical Galois Theory for Fields

Some Field Theory

First, let us recall a few notions from field theory. . .
Let L/K be a field extension and G ⊂ AutK (L). The fixed
field of G is the field:

LG = {α ∈ L | ∀g ∈ G,gα = α}.

A field extension L/K is called a Galois extension if L/K
is algebraic and there exsts a subgroup G ⊂ AutK (L) such
that K = LG.
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Classical Galois Theory for Fields

The Galois Correspondence

For a Galois extension L/K define the Galois group to be
Gal(L/K ) := AutK (L).

Theorem: Galois Correspondence

Let L/K be a Galois extension. Then we can define the
following bijective correspondence:

{Intermediate fields E of L/K} ←→ {Subgroups H of Gal(L/K )}
E 7−→ AutE(L)

LH ←− [ H

There are more Galois correspondences out there!
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Definition
Examples

What is a Galois Category?

A category C together with a fundamental functor
F : C −→ fset satisfying some conditions. . .

(G1) C has a final object and pullbacks.
(G2) C has an initial object, finite coproducts, and
quotients by finite groups of automorphisms exist.
(G3) Any f : X → Y in C can be written f = e ◦m, for e
epic and m monic.
(G4) F preserves final objects and pullbacks.
(G5) F preserves initial objects, finite coproducts, epics,
and quotients.
(G6) For g a map in C, if F (g) is an isomorphism, then g is
an isomorphism.
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Examples of Galois Categories

Galois Category C Fundamental Functor F
fset - the category of finite
sets.

F = idfset

π-fset - the category of finite
sets with a continuous action
by a profinite group π.

F = Forget : π-fset −→ fset

SAlgK
op - the category of

free separable K -algebras,
for K a field.

F (A) = HomAlgK
(A,Ks)

Note: Ks = {x ∈ K | x is separable over K}.
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Main Theorem of Galois Categories

Note: A profinite group is a topological group which is totally
disconnected, compact, and Hausdorff.
Eg. Every finite group is profinite, given the discrete topology.

Theorem
Let C be a small Galois category. Then there exists a profinite
group π such that C is equivalent to π-fset.
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An Example of the Theorem in Practice

Consider SAlgK
op, the opposite of the category of free

separable K -algebras, for K any field.
Recall: Ks = {x ∈ K | x is separable over K}. Ks is a Galois
extension over K .

Proposition
There is an equivalence of categories:

SAlgop
K ' G − fset

where G is the Galois group of Ks over K , i.e. Gal(Ks/K ).
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The Family Category

Definition
Let C be any category. Define the family category, denoted
Fam(C), to be the category where:

objects: (Ci)i∈I , indexed objects Ci ∈ C.

maps: (Ci)i∈I
(f ,F )−→ (Dj)j∈J , where f : I −→ J is a map in set and

for each i ∈ I, F (i) : Ci −→ DF (i) is a map in C.
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The Coproduct Completion

We say that Fam(C) is the coproduct completion of C,
which is described by the following universal property:

C Fam(C)

D

η

F
F ]

Where D is a category with coproducts, F is a functor,
η(C) = (C){∗}, i.e. η sends C to the singleton family, and
F ] preserves coproducts.
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The Fundamental Functor

Connected Objects

Definition
An object X ∈ C is called connected if:

Hom(X ,−) : C −→ set

preserves coproducts.

Theorem
Every family category is equivalent to the coproduct completion
of its subcategory of connected objects.

We would like to study categories C which make Fam(C)
(finitely) complete and cocomplete.
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Method for Producing the Fundamental Functor

We would like to construct the following functor (to match the
original “fundamental functor"):

Fam(C) −→ fset

To do so, it is enough to consider:

C −→ fset

To construct the above, however, we need only consider:

Norm(C) −→ fset

Where Norm(C) is the subcategory of normal objects.
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Normal Objects 1: Tables

Definition
A table is a wide pushout (which we will also call a pre-table)
such that any map of wide pushouts leaving a table must be an
isomorphism.

That is, given:
A

H

B1 . . . Bn

q

b1 bn

h1 hn

q must be an isomorphism.
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Normal Objects 2

Definition
An object N in a category is normal if every table:

A

N N

α β necessarily has α and β isomorphisms.

Call a category C normal if every object is normal.
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What is a Fundamental Functor?

Definition

For C normal, a functor U : C −→ fset is fundamental if it is
equipped with for each N ∈ C, isomorphisms:

[_]N : U(N) −→ HomC(N,N)

{_}N : HomC(N,N) −→ U(N)

such that:
1 {[x ]} = x
2 [{α}] = α

3 U([x ])({1N}) = x
4 [x ]f = f [U(f )({1N})]−1[U(f )(x)]
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Example of a Fundamental Functor

Consider the preorder collapse of C:
C

Preorder(C)

δ

Where Preorder(C) is the category whose objects are
objects of C and given any two objects in C, if there is a
map between them in C, then there is a map in
Preorder(C).
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Example of a Fundamental Functor Continued

We say δ above is split if there is a functor

λ : Preorder(C) −→ C

such that:
Preorder(C) C

Preorder(C)

λ

δ
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Example of a Fundamental Functor Continued

Given such a splitting, we can form the following functor:

C fset
Uλ

N Table(N,N) N

N N

M

M Table(M,M) M M

f

α
∼=

λNM f
β

∼=
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The Fundamental Functor

Significance of Uλ

Uλ is a fundamental functor!

Proposition
Given a fundamental functor U : C −→ fset, there exists a
unique splitting λ such that U ∼= Uλ.
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Questions/Outlook

What properties does C need so that the constructed
fundamental functor above, Uλ, can be generalized to one
on Fam(C) which agrees with Grothendieck’s definition?
What further results can we find about Galois categories
using this method?
How can this method be used in already existing
examples? (eg. schemes)
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THANK YOU!
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