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Orbifolds as Manifolds

Orbifolds

The Atlas Definition of Effective Orbispaces

Atlas Charts

I An effective (or, reduced) orbispace consists of a
paracompact space M with an equivalence class of
orbispace atlases.

I An orbispace chart U = {Ũ,GU , ρU , ϕU } consists of
I Ũ ⊆ Rn, open (and contractible);
I GU a finite group;
I a monomorphism ρU : GU → Homeo(Ũ), defining a left

action of GU on Ũ;
I ϕU : Ũ → Ũ/GU � U ⊆ M, the quotient map into the

orbitspace.
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Orbifolds

The Atlas Definition of Effective Orbispaces

Atlas Chart Embeddings

Given charts U = {Ũ,GU , ρU , ϕU } and V = {Ṽ ,GV , ρV , ϕV }, an
(atlas) chart embedding U ↪→V consists of a pair

(λ : Ũ ↪→ Ṽ , ` : GU ↪→ GV )

such that
I

Ũ
λ //

ϕU

��

Ṽ
ϕV

��
U ⊆ V

I λ(g · u) = `(g) · λ(u) for g ∈ GU and u ∈ Ũ.
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Orbifolds

The Atlas Definition of Effective Orbispaces

Local Compatibility

For any two charts U = {Ũ,GU , ρU , ϕU } and V = {Ṽ ,GV , ρV , ϕV }

with a point x ∈ U ∩ V ⊆ M, there is a chart
W = {W̃ ,GW , ρW , ϕW } with x ∈W ⊆ U ∩ V and atlas chart
embeddings

U ←↩W ↪→V
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The Atlas Definition of Effective Orbispaces

Equivalence of Atlases

Two atlases A and B for the space M are equivalent if they
satisfy the following equivalent conditions:
I There is a third atlas C with C ⊇ A ∪B.
I There is a common refinement D.
I For each pair of charts U ∈ A and V ∈ B with a point

x ∈ U ∩ V ⊆ M there exists an orbifold chart for a
neighbourhood of x with chart embeddings into both U
and V.
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The Atlas Definition of Effective Orbispaces

Example 1: The Teardrop

eZ/n
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The Atlas Definition of Effective Orbispaces

Example 2: The Triangular Billiard

The orbitspace: 3 3 3*      *      *

3 3 3*      *      *
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The Atlas Definition of Effective Orbispaces

Example 2: The Triangular Billiard

A chart for a corner:

with an action by the dihedral group D6.
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The Atlas Definition of Effective Orbispaces

Example 2: The Triangular Billiard

Three charts with embeddings:
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The Atlas Definition of Effective Orbispaces

Example 2: The Triangular Billiard

Objects:

Quotient

σ

σρ

σρ2

(glueing via natural transformation)
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The Atlas Definition of Effective Orbispaces

Embeddings and Homomorphisms

I Given a chart embedding λ : Ũ ↪→ Ṽ (such that ϕVλ = ϕU )
there is a unique (monic) group homomorphism
` : GU ↪→ GV such that λ(g · u) = `(g) · λ(u).

I So the atlas chart embeddings are determined by the λs.
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The Atlas Definition of Effective Orbispaces

Embeddings as modules

I The set of embeddings


λ : Ũ ↪→ Ṽ ;

Ũ
λ //

ϕU

��

Ṽ
ϕV

��
U ⊆ V


has a

natural right action by GU and a natural left action by GV .
I The set of chart embeddings from a chart Ũ to itself is in

1-1 correspondence with GU .
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Groupoid Representations for Effective Orbispaces

Effective Orbigroupoids
Given an orbifold atlas A, we can represent its data in a
topological groupoid G(A),

G(A)1 ×G(A)0 G(A)1
m // G(A)1

i // G(A)1

s //

t
// G(A)0,uoo

as follows:
I The space of objects is G(A)0 =

∐
U∈A Ũ;

I The space of arrows has

s−1(Ũ) ∩ t−1(Ũ) = GU × Ũ

with
s(g,u) = u and t(g,u) = g · u.
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Groupoid Representations for Effective Orbispaces

G(A)1
s−1(Ũ) ∩ t−1(Ṽ ) = lim→ W̃ , the colimit of the diagram of spaces
with
I Objects: chartsW with chart embeddings

W̃λ
wwoooooo µ

''OOOOOO

Ũ Ṽ
I Arrows: chart embeddings that commute with the

embeddings of the objects:

W̃ ′

ν ��λ′

��

µ′

��
W̃λ

wwpppppp µ

''NNNNNN

Ũ Ṽ
The source map s is induced by the embeddings λ and the
target map t is induced by the embeddings µ.
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Groupoid Representations for Effective Orbispaces

Example 0: The Cone Groupoid

objects

id

2/3

1/3 morphisms
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Groupoid Representations for Effective Orbispaces

Example 1: The Teardrop Groupoid
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Groupoid Representations for Effective Orbispaces

Example 2: The Triangular Billiard Groupoid

Objects:

Quotient

e

σ

σρ

σρ2

(glueing via natural transformation)

Billiard groupoid
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Groupoid Representations for Effective Orbispaces

Notes

I The groupoid G(A) is étale in the sense that all structure
maps (s, t , u, i and m) are local homeomorphisms.

I The groupoid G(A) is proper in the sense that
(s, t) : G(A)1 → G(A)0 × G(A)0 is proper (the preimage of
any compact subset is compact).

I For any two charts Ũ and Ṽ , the arrows s and t in

Ũ s−1(Ũ) ∩ t−1(Ṽ )
soo t // Ṽ

are covering projections onto their images (with the groups
GV and GU respectively acting as deck transformations).
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Groupoid Representations for Effective Orbispaces

Notes

I The groupoid G(A) is effective.
I For any point x ∈ Ũ ⊆ G(A)0, s−1(x) ∩ t−1(x) is the isotropy

group of x , i.e., the group {g ∈ GU ; g · x = x}.
I Equivalent atlases give rise to Morita equivalent groupoids,

G(A) Koo //G(B) .

Definition
An orbigroupoid is a proper étale groupoid.
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Groupoid Representations for Effective Orbispaces

From Groupoids to Atlases: Translation
Neighbourhoods

Given an effective orbigroupoid G, we construct an effective
orbispace atlas for its space of orbits G0/G1.
Step 1: The Charts

I G is étale and proper⇒ for each point x ∈ G0 there is a
neighbourhood Ũx such that

s−1(Ũx ) ∩ t−1(Ũx ) � Gx × Ũx .

I We call Ũx a translation neighbourhood.
I Translation neighbourhoods form a basis for the topology

on G0.
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Groupoid Representations for Effective Orbispaces

From Groupoids to Atlases: Translation
Neighbourhood Embeddings

Step 2: Embeddings of Charts

I Given two translation neighbourhoods Ũx and Ũy with
Ux ⊆ Uy , the maps in

Ũx s−1(Ũx ) ∩ t−1(Ũy )
soo t // Ũy

are covering projections, so we can obtain the chart
embeddings from the connected components of the
preimages.
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Groupoid Representations for Effective Orbispaces

Morita Equivalence and Atlas Equivalence

I Recall: Equivalent orbispace atlases give rise to Morita
equivalent groupoids.

I Any two atlases obtained from the same orbigroupoid are
equivalent as orbispace atlases.

I Any two atlases obtained from Morita equivalent
orbigroupoids are equivalent as orbispace atlases.
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Groupoid Representations for Effective Orbispaces
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Ineffective Orbispaces

Atlases for Ineffective Orbispaces (Adem, Chen,
Ruan, etc.)

An orbispace is ineffective (or, non-reduced) if the group
actions are not effective.

I Charts for ineffective orbispaces are of the form
U = {Ũ,GU , ρU , ϕU }, where ρU : GU → Homeo(Ũ) is any
group homomorphism.

I Chart embeddings U ↪→V are pairs
(λ : Ũ ↪→ Ṽ , ` : GU ↪→ GV ) as before with the additional
property that

`|Ker(ρU) : Ker(ρU)
∼
→ Ker(ρV ).
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Ineffective Orbispaces

Ineffective Orbigroupoids

Ineffective orbigroupoids are just proper étale groupoids that
are not required to be effective.
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Ineffective Orbispaces

Atlases and Groupoids

We hope that:
I Orbispace charts correspond to translation

neighbourhoods in a proper étale groupoid.
I Embeddings of charts U ↪→V correspond to connected

components of s−1(Ũ) ∩ t−1(Ṽ ).
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Ineffective Orbispaces

The Problem: Example 1

I Consider the orbispace described by one chart, D, the
open unit disk in R2, with GD = Z/2 × Z/2, acting trivially.

I How many chart embeddings are there from this chart to
itself?

I So what should its orbigroupoid presentation be?
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Ineffective Orbispaces

The Problem: Example 2

I Consider the orbispace described by one chart D, the
open unit disk in R2, with GD = Z/2, acting trivially.

I How many chart embeddings are there from this chart to
itself?

I So what should its orbigroupoid presentation be?
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The Problem: Example 2
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Ineffective Orbispaces

The Problem: Example 2

I Consider the orbispace described by one chart D, the
open unit disk in R2, with GD = Z/2, acting trivially.

I How many chart embeddings are there from this chart to
itself?

I So what should its orbigroupoid presentation be?
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Ineffective Orbispaces

Our Goal

We want an atlas definition for orbispaces that agrees with the
orbigroupoid description:
I an extension of the classical description for effective

orbispaces;
I Morita equivalence classes of orbigroupoids should

correspond to equivalence classes of atlases;
I with a notion of morphisms that will give rise to a

(bi)equivalence of (bi)categories.
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Classical Manifold Atlases

I With the classical notion of manifolds, you may have
equivalent atlases, but there are no arrows from one to the
other, there is just a refinement, or a common enlargement.

I Consequently, you cannot represent all smooth maps
between two manifolds in terms of any given atlases.



Orbifolds as Manifolds

The Manifold Construction (Grandis)

The Manifold Construction

I The manifold construction defines a notion of atlas such
that in the category of charts and atlases (the manifold
completion of the category of charts) equivalent atlases
are isomorphic.

I The trick behind this is that we allow ourselves to work with
partial maps.

I In order to apply the manifold construction, we need a join
restriction category.
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The Manifold Construction (Grandis)

Join Restriction Categories

Restriction categories

Definition
A restriction category C (of “charts”) is a category with a
restriction structure which assigns to each arrow f : A→ B,
an arrow, f̄ : A→ A, such that:
R.1 f f = f ;
R.2 If dom(f ) = dom(g) then f g = gf ;

R.3 If dom(f ) = dom(g) then f g = f g;

R.4 If dom(h) = cod(f ) then hf = f hf .
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Join Restriction Categories

The Restriction Category for Ordinary Manifolds

I To obtain the classical notion of manifold, the restriction
category C has open subsets of Rn as objects and partially
defined smooth maps as morphisms.

I We can represent the morphisms in this category by spans

U U′
λoo ϕ // V

where λ is a smooth embedding and ϕ is a smooth map.
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The Manifold Construction (Grandis)

Join Restriction Categories

Structure on the arrows

When two arrows agree wherever they are both defined, we say
that they are compatible:

Definition
Two parallel maps f ,g : A⇒ B in a restriction category are
compatible, written f _ g, if gf = f g.

Restriction categories carry a natural enrichment over posets:

Definition
For two parallel maps f ,g : A⇒ B in a restriction category, we
say that f ≤ g if gf = f .
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The Manifold Construction (Grandis)

Join Restriction Categories

Restriction Idempotents and Partial Inverses

I An arrow e : A→ A is a restriction idempotent if e = e.
I The restriction idempotents on A form a semilattice.
I An arrow f : A→ B is a partial isomorphism if there is an

arrow f ∗ : B → A such that ff ∗ = f ∗ and f ∗f = f .
I An inverse category is a restriction category in which

every arrow is a partial isomorphism.
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The Manifold Construction (Grandis)

Join Restriction Categories

Joins

I A set S ⊆ C(A,B) is called compatible if for any arrows
f ,g ∈ S, f _ g.

I The restriction category C is a join restriction category if
for each compatible family S ⊆ C(A,B), there is an arrow∨

f∈S f ∈ C(A,B) such that:
I

∨
f∈S f is the join of S with respect to ≤ in C(A,B);

I The join is stable with respect to composition:
(
∨

f∈S f ) h =
∨

f∈S(fh).

It follows that:
I k (

∨
f∈S f ) =

∨
f∈S(kf );

I The restriction idempotents on A form a locale.
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Join Restriction Categories

Joins and ordinary manifolds

The restriction category of charts for ordinary manifolds has
joins of families of compatible maps:∨

s∈S

(
U U′s

λsoo ϕs //V
)

= U
⋃

s∈S U′s
λoo ϕ //V ,

where λ is the obvious embedding and ϕ is the unique smooth
map such that ϕ|U′s = ϕs.
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A Join Restriction category for Orbispace Charts

Orbichart embeddings as modules

I Since the idea of using the group homomorphisms
between the charts did not work, we want to use the idea
that the embeddings between two charts should form a
module with actions by the structure groups.

I This can be done in more than one way - here we will
choose to stay fairly close to the structure we obtain
directly from the orbigroupoids, and use topological
modules/profunctors.
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A Join Restriction category for Orbispace Charts

Action Groupoids

I Let a group GX act on an open subset X ⊆ Rn, then its
action groupoid G nX has space of objects X and space of
arrows G × X .

I The source map is given by projection and the target map
by the action.

I Composition and inverses are induced by multiplication
and inverses in the group GX .
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The Manifold Construction (Grandis)

A Join Restriction category for Orbispace Charts

Topological Profunctors Between Action Groupoids
A topological profunctor GX n X �

U //GY n Y is given by a

diagram of spaces X U
poo q //Y with

I A left action of GY , which makes q equivariant and
preserves the fibers of p:

q(g · u) = g · q(u) and p(g · u) = p(u)

I A right action of GX , which makes p equivariant and
preserves the fibers of q:

p(u · g′) = g′−1 · p(u) and q(u · g′) = q(u)

I The two actions commute:

(g · u) · g′ = g · (u · g′)
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A Join Restriction category for Orbispace Charts

Three Additional Conditions
For a topological profunctor GX n X �

U //GY n Y to be an
orbispace profunctor, we will further require that
I U is Hausdorff;
I the map p : U → X is open;
I the action of GY is free and transitive on the fibers of

p : U → UX in the sense that it induces a homeomorphism
of spaces,

GY × U // U ×X U

(g,u) � // (g · u,u)

So, whenever p(u) = p(u′) there is a unique g ∈ GY such
that g · u = u′.
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A Join Restriction category for Orbispace Charts

Maps between profunctors

Given two topological profunctors U,V : GX n X � //GY n Y , a
map of profunctors α : U → V is given by a continuous function
α which is equivariant with respect to the actions of GX and GY
and commutes with the anchor maps,

U
pU

��~~~~~~~ qU

��@@@@@@@

α

��

X Y

V
pV

__@@@@@@@ qV

??~~~~~~~
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A Join Restriction category for Orbispace Charts

Composition of Profunctors
Composition of topological profunctors

GX n X �
U // GY n Y �

V // GZ n Z

is given by a continuous version of the usual tensor
construction:
I First take the pullback,

V ×Y U

��

// U
qU

��
V pV

// Y

I The group GY acts on this space by
g′ · (v ,u) = (v · g′−1,g′ · u).

I The composition profunctor V ⊗GY U is the orbitspace of
V ×Y U under this action.

Note that the composition of two orbispace profunctors is again
an orbispace profunctor.
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A Join Restriction category for Orbispace Charts

Units and Associativity

I The unit profunctor G n U � // G n U is given by

U G × U
π2oo a // U

where a : G × U → U is given by a(g,u) = g · u.
I The left and right actions of G on G × U are given by

g1 · (g,u) = (g1g,u) and (g,u) · g2 = (gg2,g−1
2 · u)

I Note that the composition of profunctors is only unitary and
associative up to isomorphism.



Orbifolds as Manifolds

The Manifold Construction (Grandis)

A Join Restriction category for Orbispace Charts

Orbispace Charts

The category OrbiCharts is defined as follows:
I Objects are actions groupoids GX n X , where X ⊆ Rn is

open (and contractible) and G is a finite group which acts
on X .

I An arrow GX n X �
U //GY n Y is a homeomorphism class

of orbispace profunctors.
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The Manifold Construction (Grandis)

A Join Restriction category for Orbispace Charts

Restrictions for Orbispace Profunctors
The restriction U for an orbispace profunctor

GX × X

π2

��

a

��

GY × Y

π2

��

a′

��

Up

wwnnnnnnnnn q

''PPPPPPPPP

X Y

is given by

GX × X

�� ��

GX × X

�� ��

GX × pU
π2

uukkkkkkkkk a|GX ×pU

))SSSSSSSSS

X X

Note that pU is GU -invariant, so this is well-defined.
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A Join Restriction category for Orbispace Charts

Compatibility for Orbispace Profunctors
I Let

GX × X

π2

��
a

��

GY × Y

π2

��
a′

��
UpU

uukkkkkkkkk qU

))SSSSSSSSS

X Y

VpV

iiSSSSSSSSS qV

55kkkkkkkkk

be orbispace profunctors such that V ⊗GX U � U ⊗GX V .
I This means that there is a commutative diagram

p−1
U (pV V )

pU
uukkkkkk qU

))SSSSSS

o α

��
X Y

p−1
V (pUU)

pV

iiSSSSSS qV

55kkkkkk

where α is equivariant with respect to both GX and GY .
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A Join Restriction category for Orbispace Charts

Binary Joins for Orbispace Profunctors
I When α : V ⊗GX U

∼
→ U ⊗GX V , then

U _ V = (U q V )/(x ∼ α(x)),

i.e, the following pushout,

p−1(qV )
⊆ //

α

��

U

��

V // U q
p−1
U (pV V )

V = U _ V

I The relation {(x , α(x))|x ∈ U} is closed in
(U q V ) × (U q V ), so (U q V )/x ∼ α(x) is Hausdorff.

I p q q : U _ V → X is well-defined and open.
I The actions of GX and GY on U and V induce well-defined

actions on U _ V and make it an orbispace profunctor.
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A Join Restriction category for Orbispace Charts

Arbitrary Joins for Orbispace Profunctors

To obtain the join
∨

i∈I

(
GX n X �

Ui //GY n Y
)

of profunctors

represented by X Ui
pioo qi //Y ,

I take the colimit of the diagram with the spaces Ui for i ∈ I
and p−1

i (pjUj) for i , j ∈ I and the arrows

Ui ←↩ p−1
i (pjUj)

αij
↪→ Uj .

I The arrow into X is induced by the pi .
I The arrow into Y is induced by the qi .
I The actions of GX and GY are induced by those on the Ui .
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A Join Restriction category for Orbispace Charts

Partial Isomorphisms

Lemma

I An orbispace profunctor GX n X �
U //GY n Y , with

X U
poo q //Y is a partial isomorphism if and only if GX

acts freely and transitively on the fibers of U
q //Y , i.e., it

induces a homeomorphism GX × U � U ×Y U.
I In this case, the partial inverse U∗ : GY n Y 9 GX n X is

given by Y U
qoo p //X , with the group actions defined

by inverses: u ·′ g = g−1 · u.
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The Manifold Construction (Grandis)

Atlases

Atlases in Join Restriction Categories

Definition (Grandis)
Let C be a join restriction category. An atlas (Ci , ϕij , I) in C
consists of
I a family of objects Ci , i ∈ I in C;
I for each pair i , j ∈ I, a map ϕji : Ci → Cj ;

such that for each triple i , j , k ∈ I,
Atl. 1 ϕjiϕii = ϕji (partial charts);
Atl. 2 ϕkjϕji ≤ ϕki (cocycle condition);
Atl. 3 ϕij is the partial inverse of ϕji .
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The Manifold Construction (Grandis)

Atlases

Atlases in OrbiCharts
Definition
An atlas in OrbiCharts consists of
I a family of objects, Gi n Xi , for i ∈ I;
I for each pair i , j ∈ I, an orbispace profunctor

Uji : Gi n Xi 9 Gj n Xj ;
such that for each triple i , j , k ∈ I,
I OrbiAtl. 0 αii : Uii

∼
→ IdGinXi , i.e., αii : Uii

∼
→ Gi × Xi ;

I (OrbiAtl. 1 there are isomorphisms αjii : Uji ⊗Gi Uii
∼
→ Uji ;)

I OrbiAtl. 2 there are embeddings αkji : Ukj ⊗Gj Uji ↪→ Uki ;
I OrbiAtl. 3 Uij is the partial inverse of Uji , i.e., there are

isomorphisms of topological profunctors,
βiji : Uij ⊗Gj Uji

∼
→ U ji and βjij : Uji ⊗Gi Uij

∼
→ U ij .
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Atlases

Inverses Revisited

For each triple i , j ∈ I,
OrbiAtl. 3 (improved version) There is an equivariant
isomorphism

Uij
qij

���������� pij

��???????

o αij

��

Xi Xj

Uji

pji

__???????? qji

??�������
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Atlases and Orbigroupoids

From Atlases to Orbigroupoids

The atlas groupoid

Given an atlas X = (Gi n Xi , [Uij ], I), with a choice of

representatives Xi Uij
pijoo

qij //Xj , define the orbigroupoid
G(X) as follows:
I Space of objects G(X)0 = qi∈IXi

I Space of arrows G(X)1 = qi ,j∈IUij

I Source and target maps s|Uij = pij and t |Uij = qij

I The unit map u : G(X)0 → G(X)1 is defined on the
component Xi by u(x) = α−1

ii (x ,eGi ).
I Composition for (f ′, f ) ∈ Ukj ×Xj Uji , define

m(f ′, f ) = αkji(f ′ ⊗ f ) ∈ Uik .
I Inverses for f ∈ Uij , i(f ) ∈ Uji is defined by i(f ) = αij(f ).
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From Atlases to Orbigroupoids

Is this a groupoid?

Additional conditions to obtain strict units, associativity:
I Units: αji ◦ (α−1

ii (eGi ,qij(−),−) = idUij

I Associativity:

(Ulk ⊗Gk Ukj) ×Xj Uji
αlkj×Uji // Ulj ×Xj Uji // // Ulj ⊗Gj Uji

αlji

��
Ulk ×Xk Ukj ×Xj Uji

OOOO

����

Uli

Ulk ×Xk Ukj ⊗Gj Uji)
Ulk×αkji

// Ulk ×Xk Uki // // Ulk ⊗Gk Uki

αlki

OO
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From Orbigroupoids to Atlases

Given an orbigroupoid G,
I take a collection of translation neighbourhoods Xi ⊆ G0,

with structure groups Gi , which essentially covers G0 (it
meets every orbit);

I then s−1(Xi) ∩ t−1(Xj) has a left action of Gj and a right
action of Gi ;

I furthermore, Xi s−1(Xi) ∩ t−1(Xj)
soo t //Xj carries the

structure of an orbispace profunctor which is a partial
isomorphism.

I Composition in G gives rise to the required isomorphisms
to make this an orbichart atlas.
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Maps Between Atlases

Atlas Maps in Join Restriction Categories

Definition
Let (Ci , ϕij , I) and (Dk , ψkl ,K ) be atlases in a join restriction
category C. An atlas map

A : (Ci , ϕij , I)→ (Dk , ψkl ,K )

consists of a family of maps Aki : Ci → Dk (i ∈ I, k ∈ K ), such
that
I AtlM. 1 Akiϕii = Aki ;
I AtlM. 2 Akjϕji ≤ Aki ;

I AtlM. 3 ψhkAki = AhiAki .
The atlas map is a total map when

∨
k∈K Aki = ϕii .
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Maps Between OrbiChart Atlases

Definition
Let (Gi n Xi ,Uij , I) and (Hk n Yk ,Vkl ,K ) be atlases in the join
restriction category OrbiCharts. An atlas map

A : (Gi n Xi ,Uij , I)→ (Hk n Yk ,Vkl ,K )

consists of a family of orbispace profunctors
Aki : Gi n Xi → Hk n Yk (i ∈ I, k ∈ K ), such that
I OrbiAtlM. 1 Aki ⊗Gi Uii � Aki ;
I OrbiAtlM. 2 Akj ⊗Gj Uji ≤ Aki ;

I OrbiAtlM. 3 Vhk ⊗Hk Aki � Ahi ⊗Gi Aki .

The atlas map is a total map when
∨

k∈K Aki = U ii .
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Maps Between Atlases

Example: Paths in the Teardrop

dorette

dorette

dorette

dorette
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Maps Between Atlases

Hilsum Skandalis Maps

Definition
Let G and H be two orbigroupoids. A Hilsum-Skandalis map

M : G9 H

is a topological profunctor

G0 M
poo q //H0

(i.e., M has a left action of H which keeps the fibers of p
invariant and it has a right action of G which keeps the fibers of
q invariant), such that p is an open surjection and the action of
H is free and transitive on the fibers.



Orbifolds as Manifolds

Atlases and Orbigroupoids
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Atlas Maps and Hilsum Skandalis Maps

I Hilsum Skandalis maps correspond to atlas maps which
are total.

I M is a Morita equivalence when q is an open surjection
and the action of G is free and transitive on the fibers of p.

I Isomorphic atlases give rise to Morita equivalent atlas
groupoids.

I Atlases obtained from Morita equivalent groupoids are
isomorphic.
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Maps Between Atlases

Further Research

I We really want to view orbispaces as a ‘manifolds’ in a
restriction bicategory.

I The manifolds obtained from the manifold construction are
not necessarily Hausdorff or of a well-defined dimension.
One can obtain the traditional manifolds by idempotent
splitting. Can this be generalized to the category
OrbiCharts to obtain the usual orbispaces?
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