Shameless Promotion!

The talks by Robin & Robert from last year's FMCS have (finally!)
appeared “in print” (i.e. on-line):

Cartesian differential storage categories
(Blute-Cockett-Seely)

http://arxiv.org/abs/1405.6973 and
http://www.math.mcgill.ca/rags/

34

http://arxiv.org/abs/1405.6973
http://www.math.mcgill.ca/rags/

Revisiting the term calculus for proof-nets

R.A.G. Seely

McGill University & John Abbott College

June 2014

http://www.math.mcgill.ca/rags/

Typed Circuits

A Typed Circuit is built from
e types

e components (with type signatures giving types of inputs and
outputs)

which are then “juxtaposed” together (appropriate wires joined).
(Details ...)

3/34

Circuit Expressions

A typical component looks like this:

Naming the “wires”: x1: A, x2: B, y1: C, y»: D, we'd form the circuit
expression
[x1, x2]hly1, y2]

34

Juxtaposition

([x2, x3)f 1, 21, ¥5, 22); [X1, 22, Xa, Z1]g[y2, ¥3, ya])

represents

X1 ‘x2 ‘x3 Xa

f
i
;

1l ‘

Y1 Ya2Y3Ys Y5

(Think “composition”)

5/34

Abstraction

Given a circuit expression C, we can abstract it:
. . / /
T17 as) Tn- <Xla o5 Xp | C ‘ Y1, "'a}/m> : Tlﬂ s Tm

(the types are “optional”; the variables are abstracted in just the
way A-abstraction, Axf, abstracts variables).
An abstraction can be dissipated by reinserting the variables

[X17 "'7Xn] <X17 -eos Xp | C | Y1, ---,Ym> [yla ---,)/m]

(think “B-reduction” (Axf[x])(x") = f[x'])
and coalesced

<X17"'5Xn | [leﬂ-vXn]h[_yla"’aym] |)/17~--7)/m>

(think “n-reduction” Axf(x) = f, x not free in f)
(as long as there are no variable “clashes’ —rename if necessary!)

6

34

Operations on circuit expressions

(Legal) juxtaposition
Abstraction

Circuit expression equivalences

Renaming of bound variables (often needed for the following)
Reassociation: c1; (c2; c3) = (15 @2); 3

Elimination of empty circuits: ¢;0 = c=0;c
Non-interacting subcircuits exchange: ¢1; 00 = ;1
Abstraction coalescing and dissipating

“Surgery rules”: other equivalences a theory might impose.

34

(Symmetric) Monoidal Categories

Given a monoidal category (C,®, T), we have natural isos:

ufR o AT oA

TROA—=A

a, : (A9B)®C— A®(B® C)
(cy : ARB—B®A)

satisfying

awileou = ufel
ag; dg Ag ®1;a5;1® ag

(agiCoiae = Ce®1a5,1®c¢y)

34

Circuits for Monoidal Cats

These correspond to the following circuits

iC }'B A® B
(@) (©E) @
A®B ?AV\‘B

T T
(T C?T (TE) % (TE)" %

Circuit equivalences: Reductions

s\/\4 ,/; B A A
& A B
AR B — —
/A \\;B O

(There is a mirror image rewrite for the unit, with the unit edge
and nodes on the other side of the A edge.)

10/34

Expansions

A® B LA ®B
g

- é >’B T| =
A® B

(Again, there is a mirror image rewrite for the unit, with the
thinning edge on the other side of the unit edge and node.)

11 /34

Unit rewirings
In addition to these rewrites, there are also a number of
equivalences we must directly impose, to account for the unit
isomorphisms.
TC% A |B

JDTB:AH;]

Z -
A B

B

12 /34

Z1 22 Z1 22 z1 22

lg %T T g

*(One must check that the “net condition” remains satisfied after such a
move.)

13 /34

34

As circuit expressions . ..

All of the above can be expressed in terms of circuit expressions, of
course(!):

Basic components

[A, Bl @ I[A® B ®-introduction
[A® Bl ® E[A, B] ®—elimination
[(TIT] unit introduction
[A, TITER[A] unit right elimination (thinning)
[T, A TEL[A] unit left elimination (thinning)

15 /34

Reductions

A, B: (x1,% | [x1,x2] @ I[z]; [z] ® E[y1,y2] | y1,¥2): A, B
= AB: (x1,x || x1,x):A B

A: <x | T 112); [2, X] TE[] | x> A = Ax || x):A

A: <x\ []Tl[z];[x,z]TER[x]|x>:A = A(x||x):A

16 /34

Expansions

ARB:(z||z):A®B = AQ®B:(z|[z]® Elz1,z0]; |21, 2] ® I[2] | 2)
Tox x0T = To(x | TESLOTIN | x): T

T 11X T = T (x| WTERL TN [x): T

17 /34

Unit rewirings

AT, B:{x,z,y | [x, 2] TER[x]; [x,y] @ I[w] | w): A® B

= AT,B: <X,z,y \ [z,y]TEL[y]; [x,y] ® I[w] | W> A® B
T,A® B: {z,x | [z,x] TE [x]; [X] ® E[x1, %] | x1,%) : A, B

= T,A®B: <z,x | [x] ® E[x1, x2]; [z,xl]TEL[Xl] | X1,X2>ZA,B
AR B, T: <x,z | [x, 2] TER[x]; [x] ® E[x1, 2] | xl,x2>:A, B

= A®B,T: <X,Z | [x] ® E[x1, x2]; [XQ,Z]TER[XQ] |X1,X2> ‘A B
A B, T: <x1,x2,z | [x2, 2] TER[xa]; [x1, %] @ 1[x] | x> AR B

= A B T:{x1,%, 2| [x,x] ®I[x]; [x, 2] TER[x] | x):A® B

18 /34

T,A, B: (z,x,% | [2,4] TE pal; [,) @ I[x] | x): A B
= AB,T: <Z, x1, % | [x1, x0] ® 1[x]; [z, x] TE-[x] | x> AR B
T, T,A{z1,z2,x || x) 1 A
= T,T,A: <zl,22,x | [zl,zz]TEL[ZQ]; [ZQ,X]TEL[X] | X> CA
= T,T,A: <21722,x | [21,22]TER[21]; [zl,x]TEL[X] | x> CA
AT, T: <X,21,22 | [x, 21]TER[X]; [X,ZQ]TER[X] | y>:A
= AT,T: <x721722 | [zl,ZQ]TER[zl]; [X,zl]TER[X] | x> CA
= AT,T: <X,21,22 | x, 21,2 | [21, 2] TE 20]; [x, 2] TER[X] | X>
T,AT: <21,X722 | [zl,x]TEL[X]; [x,zz]TER[x] |y> CA
= T,AT: <21,x722 | [x, z2] TER[x]; [21, x] TEL[X] | x> CA

CA

19/34

M, AT, B T (X, 2, %, . | [x, 2| TER[xa]; [x1, X2,] FL] | LA

=T1,A T,B, T <..,x1,z,x2, | [z, %) TE ;[x1, %2, -) F[] | > A

T,A Tz, xt, .. | [z.xa] TERpal; [xa, - Jf s] | %0,) 1 B, A

= T,AT: <z,x17 o xasdf ks s [z, %] TE %] | e, > B, A
CAT: Coxa,z | [, 2| TERPal; [oxalflox] | oxe) A B

= LA T: <..,x1,z | [..., xa]f[.., xo]; [XQ,Z]TER[XZ] | ..7X2> ‘A, B
T: <z | [If[x1, - x2); [2, xa] TE [xa] | xa, ..,x2> A A B

= T: <z | If[xa, -, x2]; [X2,Z]TER[X2] | x1, ..,X2> CAAB

(And two more unit rewirings for symmetry ...)

20 /34

Examples: The Pentagon

To prove the standard coherences are a consequence of the
equivalences is a simple matter of using the circuit rewrites above.

(A®B)®C)® D

&

A®(B®((C®D))

21/34

Unit Coherence

22 /34

Using the circuit expressions

We shall now express these (simple!) graph rewrites using the circuit term
notation—but with some simplifying shortcuts which should make them
less (?intimidating?) cumbersome. We'll use numerals as variable names,
numbering the wires as we come upon them (reading top down, left to
right), with the understanding that variable renaming is an equality.

So for example, an (abstracted) expression such as

(A B)® C) @ D: (x1 | [x1] ® E[x2,x3] | x2,x3): A, (B® C)® D

would simply become 1 ®E 3.

(Reading this on its side, and doing a mirror-image, one can almost “see”
the circuit this represents.)

With this simplified (though underspecified!) notation, we can look at
the individual steps in showing the pentagon commutes. We'll leave the
end target in the picture, so you can see where we're going at each stage.
I'll highlight the step where an equivalence is used, in the circuit
expression (and initially in the circuit itself).

23 /34

The Pentagon, step by step

10E32RELH4QESI®IS;
8®19;3®/10;100E 311 ®E T3
B el15 13 ®/116;16 9E 1E;
18 QE 33,19 ®E 33,33 ®123;

A @i24;3 125 = ...

24 /34

The Pentagon, step by step 2

1QE$2QE44RES I 018,
§oI9 0o oE Y
#1153 ®116;16 ®E 17;
18 ®E 3319 ® E 33; 32 ®123;
A 124,37 2125 = ...

25 /34

The Pentagon, step by step 2

1RE22RELHARES I ®IS;

(9=11,6=13 .
3=12,8=14 °

8 ®115;% ©116;16 QF {§;
18®E 3190 E 3% 25 @1 23;
Al @125 = ...

26 /34

The Pentagon, step by step 3

1RE22RELHARES I ®IS;

(9=116=13 .
3=12,8=14 °

g o115, 0515
150E 33190 E 3325 @123;
A ®124;5, @125 = ...

27 /34

The Pentagon, step by step 4

1RE32REL4RES w8,
0=11,6=13 16=13=17,8=19
0]

3=12,8=14 15=18,3=12=20"
8 wE2; 2 ®123;
A ®124;5, @125 = ...

28 /34

The Pentagon, step by step 5

1®E32QEL4®ES;

(0=13=17,8=10,0=117=21
3=12=20,5=22,8=14,15=18,"

S®123;%, ®124;5, @125

= (renaming bound variables)

—.

29 /34

The Pentagon, step by step 6

1®E220E:®I6;¢ @I T;TRES;
8®EN @12, ®/13 = ...

30/34

The Pentagon, step by step 7

1QE22QEH3®I6,01=5,40E 19
1112, 2/13

= (exchanging non-interacting subcircuits)
1RE32QE8,40E1):3016;

6 ®112;19®113

= (renaming bound variables)

1®E32RELH4RESS®I8F®I9;§®/10

31/34

The Unit Coherence, step by step 1

We extend our simplified notation to include thinning links:
[A, TITER[A] becomes 3T/l andnotethat2=T
[T,B]TEL[B] becomes 3TES and notethat1=T
[[TI[T] becomes TI1 andnotethatl=T

3®I32QEL3®I6,¢0IT;
TRESIEIGNTES; S ®l12

32/34

The Unit Coherence, step by step 2

1®13;20EH3TES @/ 12
= 3®I320E85T/8 512

Using
AT B (x 2,y | 2 ATEL [,y @ 1w] | w): A B
= AT,B: <x,z,y | %, 2] TER X [x, v] ® I[w] | w> A®B

ie. STESA@in2=24T14 4 ®i12

33/34

Extensions

This notation was originally developed for linearly distributive
categories, and so handles par as well as tensor.l We also extended
it to “Full intuitionist linear logic” 2, which showed how to include
scope or functor boxes. The idea is simple enough (though the full
notation does get to be a handful!), and I'll leave that to your own
bedtime reading ...

!See BCST [JPAA 1996]
2See CS [TAC 1997]

34 /34

