
Introduction
Inductive Groupoids and Inverse Semigroups

Quick Introduction to Double Categories
Double Inductive Groupoids and Double Inverse Semigroups

Main Result

On Double Inverse Semigroups
FMCS 2014 at the University of Calgary

Darien DeWolf – Joint with Dorette Pronk
Dalhousie University

June, 2014

Darien DeWolf – Joint with Dorette Pronk Dalhousie University On Double Inverse Semigroups



Introduction
Inductive Groupoids and Inverse Semigroups

Quick Introduction to Double Categories
Double Inductive Groupoids and Double Inverse Semigroups

Main Result

Double Semigroups
Double Inverse Semigroups

In the beginning. . .

In his 2006 paper “Note on commutativity in double semigroups
and two-fold monoidal categories”, Kock introduced the notion of
a double semigroup, along with some commutativity properties of
them. In particular, he defines double inverse semigroups.
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Definition

A double semigroup (S ,},�) is a set equipped with two
associative binary operations satisfying the middle-four interchange
law: for all a, b, c , d ∈ S ,

(a } b)� (c } d) = (a� c) } (b � d).

Horizontal product: a } b = .

Vertical product: a� b = .

Middle-four:
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Example

Any set D can be made into a double semigroup by equipping it
with left and right projection:

a� b = a and a } b = b.

Associative:

Middle-four interchange law:
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Definition

Given an element, x in a semigroup (S ,�), x said to have an
inverse x� if

x = x � x� � x and x� = x� � x � x�.

A semigroup is said to be an inverse semigroup if every element
has a unique inverse. A double semigroup is said to be inverse if
both of its operations are.

Note

x � x� and x� � x are idempotents:

(x � x�)� (x � x�) = (x � x� � x)� x� = x � x�

(x� � x)(x� � x) = (x� � x � x�)� x = x� � x
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Theorem (Kock)

Double inverse semigroups are commutative.

In the comments of his LATEX source code, Kock mentions that he
does not have any “significant” examples of a double inverse
semigroup. We aim to either find one, or to characterise double
inverse semigroups.
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Coming soon:

Explore Lawson’s correspondence between inductive groupoids
and inverse semigroups given by a pair of constructions.

Define double inductive groupoids.

Extend these constructions to double inductive groupoids and
double inverse semigroups and establish an analogous
correspondence.
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A quick notational note:

If f : A→ B is an arrow in a category:

Notation

Domain of f : f dom = A.

Codomain of f : f cod = B.

Denote the composite

A
f−→ B

g−→ C

as f ; g or fg .
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Definition

Let (G , •) be a groupoid and let ≤ be a partial order defined on
the arrows of G . We call (G , •,≤) and ordered groupoid whenever
the following conditions are satisfied:

– If x ≤ y , then x−1 ≤ y−1.

– If x ≤ y , u ≤ v , then xu ≤ yv .

Note

Identification of identity arrows with objects:

Gives ≤ on objects
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Definition (cont’d)

– Let f ∈ G1 and let e be an object in G such that e ≤ f dom.
Then there is a unique element (e∗|f ) ∈ G1, called the
restriction of f by e, such that (e∗|f ) ≤ f and (e∗|f )dom = e.

– Let f ∈ G1 and let e be an object in G such that e ≤ f cod.
Then there is a unique element (f |∗e) ∈ G1, called the
corestriction of f by e, such that (f |∗e) ≤ f and (f |∗e)cod = e.

f dom
f //

≥

f cod

e
(e∗|f )

// (e∗|f )cod
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Example

Let A be a set. Construct an inductive groupoid with the following
data:

– Objects : PA

– Arrows: Partial isomorphisms f : U
∼−→ V between subsets

U,V ∈ PA

– (f : U → V ) ≤ (f ′ : U ′ → V ′) if and only if U ⊆ U ′ and f ′

restricted to U (as functions) is f .
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Definition

An ordered groupoid G is an inductive groupoid if its objects form
a meet-semilattice.
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Inductive Groupoids from Inverse Semigroups

Construction

Given an inverse semigroup (S ,�) with the natural partial ordering
≤, define an inductive groupoid, (IG (S), •), with the following
data:
Objects: idempotents of S ; IG (S)0 = E (S).
Arrows: elements of S .
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Construction (cont’d)

Arrows: elements of S .

sdom = s � s�

scod = s� � s

If a� � a = b � b�, define a • b = a� b

Every arrow is an isomorphism with a−1 = a�

(a|∗e) = a� e

(e∗|a) = e � a
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Inverse Semigroups from Inductive Groupoids

Construction

Given an inductive groupoid (G , •,≤,∧), construct an inverse
semigroup (IS(G ),�) with IS(G ) = G1 and, for any a, b ∈ S ,

a� b = (a|∗acod ∧ bdom) • (acod ∧ bdom∗|b).
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An Isomorphism of Categories

Notation

Denote the category of inverse semigroups and semigroup
homomorphisms as IS. Denote the category of inductive groupoids
and inductive functors as IG.

Theorem (Lawson)

The categories IG and IS are isomorphic.

GOAL: Double this theorem
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A double category D consists of the following data:

– A collection D0 of objects.

– A collection Ver(D) of vertical arrows.
Associative and unitary composition:

A
f• // B

g
• // C = A

f •g
• // C

A
1A• // A

f• // B = A
f• // B = A

f• // B
1B• // B
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Definition (cont’d)

– A collection Hor(D) of horizontal arrows.
Associative and unitary composition:

A
f // B

g // C = A
f ◦g // C

A
idA // A

f // B = A
f // B = A

f // B
idB // B
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Definition (Cont’d)

– A collection Dbl(D) of double cells. A double cell α has the
following form:

A
f //

u•
��

α

B

v•
��

C g
// D

A,B,C and D are objects of D.
Horizontal domain and codomain:

αhdom = u and αhcod = v

Vertical domain and codomain:

αvdom = f and αvcod = g
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These double cells must come together with:

An associative and unitary horizontal composition, ◦.
An associative and unitary vertical composition, •.
Horizontal and vertical composition of double cells must
satisfy the middle-four interchange law. That is, for any
α, β, γ, δ ∈ Dbl(D),

(α • β) ◦ (γ • δ) = (α ◦ γ) • (β ◦ δ).
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Definition

A double inductive groupoid, denoted DIG,

G = (Obj(G),Ver(G),Hor(G),Dbl(G))

is a double groupoid (i.e., a double category in which every vertical
arrow, horizontal arrow and double cell is an isomorphism) such
that :
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Definition (cont’d)

(Ver(G),Dbl(G)) is an inductive groupoid.

Composition: horizontal composition, ◦.
Partial order : ≤ .
Meet of vertical arrows e and f : e ∧h f .

For a double cell α and a vertical arrow e with e ≤ αhdom,
horizontal restriction : (e∗|α).

If e ≤ αhcod, horizontal corestriction: (α|∗e).
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Definition (cont’d)

(Hor(G),Dbl(G)) is an inductive groupoid.

Composition: vertical composition, •.
Partial order : . .

Meet of horizontal arrows e and f : e ∧v f .

For a double cell α and a horizontal arrow e with e . αvdom,
vertical restriction : [e∗|α].

If e . αvcod, vertical corestriction: [α|∗e].
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Definition (cont’d)

If a, b are double cells, f ′, g ′ are horizontal arrows and f , g are
vertical arrows, the following laws about restrictions and
corestrictions preserving composition hold:

1
(
a • b|∗f • g

)
=
(
a|∗f

)
•
(
b|∗g

)
.

2
[
a ◦ b|∗f ′ ◦ g ′

]
=
[
a|∗f ′

]
◦
[
b|∗g ′

]
.

3
(
f • g∗|a • b

)
=
(
f ∗|a

)
•
(
g∗|b

)
.

4
[
f ′ ◦ g ′∗|a ◦ b

]
=
[
f ′∗|a

]
◦
[
g∗|b

]
.
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a • b|∗f • g
)
=
(
a|∗f

)
•
(
b|∗g

)

//

•

��

(
a|∗f
)

f•

��//

•

��

(
b|∗g
)

g•

��//

=

//

•

��

(
a•b|∗f •g

)
f •g•

��//
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Definition (cont’d)

If e, f , g and h are horizontal arrows and e ′, f ′, g ′ and h′ are
vertical arrows, the following laws about composition and meets
satisfying middle-four hold:

(a) (e ∧v f ) ◦ (g ∧v h) = (e ◦ g) ∧v (f ◦ h).

(b) (e ′ ∧h f ′) • (g ′ ∧h h′) = (e ′ • g ′) ∧h (f ′ • h′).
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(e ∧h f ) • (g ∧h h) = (e • g) ∧h (f • h)

e •

��

f•

��

g •

��

∧h

h•

��

=

e∧hf•

��

g∧hh•

��

Darien DeWolf – Joint with Dorette Pronk Dalhousie University On Double Inverse Semigroups



Introduction
Inductive Groupoids and Inverse Semigroups

Quick Introduction to Double Categories
Double Inductive Groupoids and Double Inverse Semigroups

Main Result

Double inductive Groupoids
Constructing Double Inductive Groupoids
Constructing Double Inverse Semigroups
An Isomorphism of Categories

Definition (cont’d)

If e and g are horizontal arrows f and h are objects, then the
following rule about corestrictions and meets satisfying middle-four
holds:

(e|∗f ) ∧v (g |∗h) = (e ∧v g |∗f ∧v h)
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(e|∗f ) ∧v (g |∗h) = (e ∧v g |∗f ∧v h)

(e|∗f ) //

∧v

f

(g |∗h)
// h

= (e∧vg |∗f ∧vh)
// f ∧v h

Similarly,

(a) (e|∗f ) ∧v (g |∗h) = (e ∧v g |∗f ∧v h).

(b) [e ′|∗f ′] ∧h [g ′|∗h′] = [e ′ ∧h g ′|∗f ′ ∧h h′].

(c) (e∗|f ) ∧v (g∗|h) = (e ∧v g∗|f ∧v h).

(d) [e ′∗|f ′] ∧h [g ′∗|h′] = [e ′ ∧h g ′∗|f ′ ∧h h′].

Darien DeWolf – Joint with Dorette Pronk Dalhousie University On Double Inverse Semigroups



Introduction
Inductive Groupoids and Inverse Semigroups

Quick Introduction to Double Categories
Double Inductive Groupoids and Double Inverse Semigroups

Main Result

Double inductive Groupoids
Constructing Double Inductive Groupoids
Constructing Double Inverse Semigroups
An Isomorphism of Categories

Definition (cont’d)

If a is a double cell, f a horizontal arrow, g a vertical arrow and x
an object such that

f . avcod

g ≤ ahcod

x = f hcod ∧ gvcod,

then the following middle-four law about vertical and horizontal
corestrictions holds:

([a|∗f ]|∗[g |∗x ]) = [(a|∗g)|∗(f |∗x)]
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([a|∗f ]|∗[g |∗x ]) = [(a|∗g)|∗(f |∗x)]

//

�� ��

g

��

a ≥

// gvcod

f
//

.

f hcod x= f hcod ∧ gvcod.

≤

Similarly,

(a) [(a|∗g)|∗(f |∗x)] = ([a|∗f ]|∗[g |∗x ]).
(b) ([x∗|g ]∗|[f ∗|a]) = [(x∗|f )∗|(g∗|a)].
(c) [(x∗|f )∗|(g∗|a)] = ([x∗|g ]|[f ∗|a]).
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Definition (cont’d)

If e, f , g and h are objects, the following law about meets
satisfying middle-four holds:

(e ∧h f ) ∧v (g ∧h h) = (e ∧v g) ∧h (f ∧v h).
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Definition (cont’d)

If a is a double cell, e a vertical arrow and e ′ a horizontal arrow,
then the following laws about domains and codomains preserving
restrictions and corestrictions hold:

(a) (a|∗e)vdom = (avdom|∗evdom).

(b) (a|∗e)vcod = (avcod|∗evcod).

(c) (e∗|a)vdom = (evdom∗|avdom).

(d) (e∗|a)vcod = (evcod∗|avcod).

(e) [a|∗e ′]hdom = [ahdom|∗e ′hdom].

(f) [a|∗e ′]hcod = [ahcod|∗e ′hcod].

(g) [e ′∗|a]hdom = [e ′vdom∗|ahdom].

(h) [e ′∗|a]hcod = [e ′hcod∗|ahcod].
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(a|∗e)vdom = (avdom|∗evdom)
(a|∗e)hdom = (ahdom|∗ehdom)

��

(a|∗e)

(avdom|∗evdom) //

e

��
(ahdom|∗ehdom)

//
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Double Inductive Groupoids from Double Inverse
Semigroups

Construction (DIG)

Given a double inverse semigroup (S ,},�), we construct a double
inductive groupoid

DIG(S) = (DIG(S)0,Ver(DIG(S)),Hor(DIG(S)),Dbl(DIG(S)))

as follows:
Objects: DIG(S)0 = E (S ,}) ∩ E (S ,�).
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Construction (DIG cont’d)

Vertical arrows: Ver(DIG(S)) = E (S ,}). Let u and v be any
two vertically composable arrows:

uvdom = u � u�

uvcod = u� � u

Vertical composition: u • v = u � v

Horizontal arrows: Hor(DIG(S)) = E (S ,�). Let f and g be any
two horizontally composable arrows:

f hdom = f } f }

f hcod = f } } f

Horizontal composition: f ◦ g = f } g
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Construction (DIG cont’d)

Dbl(DIG(S)) = S(},�). Let a, b be any two horizontally
composable double cells.
Horizontally:

ahdom = a } a}

ahcod = a} } a

Horizontal composition: a ◦ b = a } b

Horizontal partial order: a ≤ b iff a = ide } b for some
vertical arrow e

Horizontal meet of two vertical arrows e and f : e ∧h f = e } f

If we have a vertical arrow e ≤ ahcod, define (a|∗e) = a } e

If e ≤ ahdom, define (e∗|a) = e } a.
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Construction (DIG cont’d)

Dbl(DIG(S)) = S(},�). Let a, b be any two vertically
composable double cells.
Vertically:

avdom = a� a�

avcod = a� � a

Vertical composition: a • b = a� b

Vertical partial order: a . b iff a = 1e � b for some horizontal
arrow e

Vertical meet of two horizontal arrows e and f : e ∧v f = e� f

If we have a horizontal arrow e . avcod, define [a|∗e] = a� e

If e . avdom, define [e∗|a] = e � a
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Double Inductive Groupoids from Double Inverse
Semigroups

Theorem

If S(},�) is a double inverse semigroup, then DIG(S), as
constructed in Construction DIG , is a double inductive groupoid.
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Double Inverse Semigroups from Double Inductive
Groupoids

Construction (DIS)

Given a double inductive groupoid

G = (Obj(G),Ver(G),Hor(G),Dbl(G)),

we construct a double inverse semigroup DIS(G) = (S ,},�) as
follows:

– Its elements are the double cells of G; S = Dbl(G).
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Construction (DIS cont’d)

– For any a, b ∈ S , define

a } b = (a|∗ahcod ∧h bhdom) ◦ (ahcod ∧h bhdom∗|b)

– For any a, b ∈ S , define

a� b = [a|∗avcod ∧v bvdom] • [avcod ∧v bvdom∗|b]
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Double Inverse Semigroups from Double Inductive
Groupoids

Theorem

If G is a double inductive groupoid, then DIS(G), as constructed in
Construction DIS, is a double inverse semigroup.

Most of the work in proving this is in checking that the middle-four
interchange law is satisfied.
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An Isomorphism of Categories

Notation

We denote the category of double inductive groupoids with double
inductive functors as DIG and we denote the category of double
inverse semigroups with double semigroup homomorphisms as DIS.

Theorem

There exists an isomorphism of categories between DIG and DIS.
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Consider a double cell in a double inductive groupoid

A

a

avdom //

ahdom•

��

B

ahcod•

��
C

avcod
// D
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Recall that domains and codomains may be written as semigroup
products and that double inverse semigroups are commutative.
Then

ah := ahdom = a } a} = a} } a = ahcod

av := avdom = a� a� = a� � a = ahcod
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Similarly, the domain and codomain of a vertical or horizontal
arrows are equal, so that

A = ahhdom = ahhcod

A = avvdom = avvcod

Ultimately, a is of the form

A

a

avdom //

ahdom•

��

B

ahcod•

��
C

avcod
// D

=

A

a

ah //

av •

��

A

av•

��
A ah

// A
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Let G be a double inductive groupoid and let A be an object of G.
Then there is a natural collection of double cells

(A)SG =

a ∈ Dbl(G)

∣∣∣∣∣
A

a

ah //

av •
��

A

av•
��

A ah
// A


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Recall: Objects of double inductive groupoids are idempotent
with respect to both operations of its corresponding double
inverse semigroup.

Double inverse semigroups are commutative.

(a } b)� (a } b) = (a� a) } (b � b) = a } b

a� b = (a� b) } (a� b)

= (a� b) } (b � a)

= (a } b)� (b } a)

= (a } b)� (a } b)

= a } b.
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Lemma

The vertical and horizontal order relations on the objects of a
double inductive groupoid coincide.
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Theorem

These one-object double inductive groupoids are precisely Abelian
groups.

Proposition

Let G be a double inductive groupoid. If A and B are objects in G
with A ≤ B, then there is an Abelian group homomorphism

ϕA≤B : (B)SG → (A)SG .
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This discussion results in an Ab−valued presheaf

SG : Obj(G)op → Ab.

Theorem

Arbitrary double inverse semigroups are Ab−valued presheaves
over meet-semilattices.
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Construction

If P : Lop → Ab is a presheaf of Abelian groups on a
meet-semilattice, define a double inductive groupoid G = PF ′ with
the following data:
Objects: Obj(G) = L
Vertical/horizontal arrows:
Ver(G) = Hor(G) = {eA : A→ A : A ∈ L},

eA is the group unit of the Abelian group AP for each A in L.

(Co)domains: eAdom = eAcod = A

Composition: eA ◦ eA = eA • eA = eA.

Meets: eA ∧ eB = A ∧ B to be that from L.
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Construction (cont’d)

Double cells: Dbl(G) =
∐

A∈L AP

Disjoint union of all Abelian groups AP for A in L.

A double cell a is contained in an Abelian group AP for some
A ∈ L.

ahdom = ahcod = avdom = vcod = eA.

Composites: group products

If eu ≤ eA = ahdom,

Restriction of a to eu :

(eu∗|a) = eu ∗u (a)ϕu≤A = (a)ϕu≤A

Corestrictions are similarly defined.
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Notation

Denote the category of presheaves of Abelian groups on
meet-semilattices by AbMeetSLatt.

Theorem

The categories DIG and AbMeetSLatt are isomorphic.
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Recall:

Kock showed double inverse semigroups are commutative.

Double inverse semigroups are exactly presheaves of Abelian
groups on meet-semilattices.

Theorem

Double inverse semigroups are commutative and improper. That
is, (S ,�,}) is a double inverse semigroup if and only if both �
and } are commutative inverse semigroup operations with } = �.
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Special thanks to Dr. Pronk, NSERC, FMCS and, of course, to
each of you for listening!

. . . questions?
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