
An introduction to Object-Oriented Calculus

Simon Fortier-Garceau

June 5-8, 2014

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 1 / 39

Outline

1 Introduction

2 The basics of ς-calculus

3 The first-order ς-calculus

4 Subtyping

5 Classes and inheritance

6 Polymorphism

7 Conclusion

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 2 / 39

Introduction

Why an object calculus?

Procedural languages are generally well understood and have a
supporting theory (λ-calculus)

By contrast, no such foundations exist for object-oriented languages

Interpretations of untyped objects in untyped λ-calculus is possible...

But typed object-oriented languages (OOL) are not easily emulated in
simply typed λ-calculus

Yet, the basics of typed OOL are simple enough...

→ This suggests investigation of a calculus where objects are used as
primitives

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 3 / 39

Introduction

Why an object calculus?

Procedural languages are generally well understood and have a
supporting theory (λ-calculus)

By contrast, no such foundations exist for object-oriented languages

Interpretations of untyped objects in untyped λ-calculus is possible...

But typed object-oriented languages (OOL) are not easily emulated in
simply typed λ-calculus

Yet, the basics of typed OOL are simple enough...

→ This suggests investigation of a calculus where objects are used as
primitives

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 3 / 39

Introduction

Why an object calculus?

Procedural languages are generally well understood and have a
supporting theory (λ-calculus)

By contrast, no such foundations exist for object-oriented languages

Interpretations of untyped objects in untyped λ-calculus is possible...

But typed object-oriented languages (OOL) are not easily emulated in
simply typed λ-calculus

Yet, the basics of typed OOL are simple enough...

→ This suggests investigation of a calculus where objects are used as
primitives

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 3 / 39

Introduction

Why an object calculus?

Procedural languages are generally well understood and have a
supporting theory (λ-calculus)

By contrast, no such foundations exist for object-oriented languages

Interpretations of untyped objects in untyped λ-calculus is possible...

But typed object-oriented languages (OOL) are not easily emulated in
simply typed λ-calculus

Yet, the basics of typed OOL are simple enough...

→ This suggests investigation of a calculus where objects are used as
primitives

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 3 / 39

Introduction

Why an object calculus?

Procedural languages are generally well understood and have a
supporting theory (λ-calculus)

By contrast, no such foundations exist for object-oriented languages

Interpretations of untyped objects in untyped λ-calculus is possible...

But typed object-oriented languages (OOL) are not easily emulated in
simply typed λ-calculus

Yet, the basics of typed OOL are simple enough...

→ This suggests investigation of a calculus where objects are used as
primitives

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 3 / 39

Introduction

Why an object calculus?

Procedural languages are generally well understood and have a
supporting theory (λ-calculus)

By contrast, no such foundations exist for object-oriented languages

Interpretations of untyped objects in untyped λ-calculus is possible...

But typed object-oriented languages (OOL) are not easily emulated in
simply typed λ-calculus

Yet, the basics of typed OOL are simple enough...

→ This suggests investigation of a calculus where objects are used as
primitives

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 3 / 39

Introduction

Principles of object-oriented

The four major principles of object-oriented programming (OOP) are :

Encapsulation : Restricting the manipulation of internal data to the
host object methods

Abstraction : The ability to abstract attributes and implementation
details of an object

Inheritance : The ability of certain classes to call upon method
implementations of another class

Polymorphism : The ability of an object to take many shapes

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 4 / 39

Introduction

Principles of process calculi

Describe concurrent systems and their behavior

Specify how processes communicate or interact (use of channels and
messages)

Sequentialization of actions

Non-deterministic choice in processing

Recursion and/or replication of processes

Hiding or restriction of channels

... can we combine these with OO principles?

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 5 / 39

Introduction

Principles of process calculi

Describe concurrent systems and their behavior

Specify how processes communicate or interact (use of channels and
messages)

Sequentialization of actions

Non-deterministic choice in processing

Recursion and/or replication of processes

Hiding or restriction of channels

... can we combine these with OO principles?

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 5 / 39

Introduction

Principles of process calculi

Describe concurrent systems and their behavior

Specify how processes communicate or interact (use of channels and
messages)

Sequentialization of actions

Non-deterministic choice in processing

Recursion and/or replication of processes

Hiding or restriction of channels

... can we combine these with OO principles?

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 5 / 39

Introduction

Principles of process calculi

Describe concurrent systems and their behavior

Specify how processes communicate or interact (use of channels and
messages)

Sequentialization of actions

Non-deterministic choice in processing

Recursion and/or replication of processes

Hiding or restriction of channels

... can we combine these with OO principles?

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 5 / 39

Introduction

Principles of process calculi

Describe concurrent systems and their behavior

Specify how processes communicate or interact (use of channels and
messages)

Sequentialization of actions

Non-deterministic choice in processing

Recursion and/or replication of processes

Hiding or restriction of channels

... can we combine these with OO principles?

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 5 / 39

Introduction

Principles of process calculi

Describe concurrent systems and their behavior

Specify how processes communicate or interact (use of channels and
messages)

Sequentialization of actions

Non-deterministic choice in processing

Recursion and/or replication of processes

Hiding or restriction of channels

... can we combine these with OO principles?

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 5 / 39

Introduction

Principles of process calculi

Describe concurrent systems and their behavior

Specify how processes communicate or interact (use of channels and
messages)

Sequentialization of actions

Non-deterministic choice in processing

Recursion and/or replication of processes

Hiding or restriction of channels

... can we combine these with OO principles?

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 5 / 39

Introduction

Merging objects and processes

OOL programs are composed of well-behaved independent parts that
are easy to type and assemble (through contracts) to form more
complicated and consistent systems...

but they do not come equipped with evaluation strategies that
provide insight in concurrent interactions

Process algebras are much better at rendering concurrent systems...

but processes are volatile creatures that are much harder to type and,
as such, are not the subject of “good” engineering principles

Ideally, we could interpret objects as processes, or processes as objects, or
perhaps, find a different formal system that captures OO style typing and
concurrency.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 6 / 39

Introduction

Merging objects and processes

OOL programs are composed of well-behaved independent parts that
are easy to type and assemble (through contracts) to form more
complicated and consistent systems...

but they do not come equipped with evaluation strategies that
provide insight in concurrent interactions

Process algebras are much better at rendering concurrent systems...

but processes are volatile creatures that are much harder to type and,
as such, are not the subject of “good” engineering principles

Ideally, we could interpret objects as processes, or processes as objects, or
perhaps, find a different formal system that captures OO style typing and
concurrency.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 6 / 39

Introduction

Merging objects and processes

OOL programs are composed of well-behaved independent parts that
are easy to type and assemble (through contracts) to form more
complicated and consistent systems...

but they do not come equipped with evaluation strategies that
provide insight in concurrent interactions

Process algebras are much better at rendering concurrent systems...

but processes are volatile creatures that are much harder to type and,
as such, are not the subject of “good” engineering principles

Ideally, we could interpret objects as processes, or processes as objects, or
perhaps, find a different formal system that captures OO style typing and
concurrency.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 6 / 39

Introduction

Merging objects and processes

OOL programs are composed of well-behaved independent parts that
are easy to type and assemble (through contracts) to form more
complicated and consistent systems...

but they do not come equipped with evaluation strategies that
provide insight in concurrent interactions

Process algebras are much better at rendering concurrent systems...

but processes are volatile creatures that are much harder to type and,
as such, are not the subject of “good” engineering principles

Ideally, we could interpret objects as processes, or processes as objects, or
perhaps, find a different formal system that captures OO style typing and
concurrency.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 6 / 39

Introduction

Merging objects and processes

OOL programs are composed of well-behaved independent parts that
are easy to type and assemble (through contracts) to form more
complicated and consistent systems...

but they do not come equipped with evaluation strategies that
provide insight in concurrent interactions

Process algebras are much better at rendering concurrent systems...

but processes are volatile creatures that are much harder to type and,
as such, are not the subject of “good” engineering principles

Ideally, we could interpret objects as processes, or processes as objects, or
perhaps, find a different formal system that captures OO style typing and
concurrency.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 6 / 39

The basics of ς-calculus

The basics of ς-calculus

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 7 / 39

The basics of ς-calculus

Primitives of the syntax

Objects and methods

ς(x)b method with self parameter x
and body b

[l1 = ς(x1)b1, . . . , ln = ς(xn)bn] object with n methods
labelled l1, . . . , ln (distinct)

o.l invocation of method l of object o

o.l ⇐ ς(x)b update of method l of object o
with method ς(x)b

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 8 / 39

The basics of ς-calculus

Primitives of the syntax

Objects and methods

ς(x)b method with self parameter x
and body b

[l1 = ς(x1)b1, . . . , ln = ς(xn)bn] object with n methods
labelled l1, . . . , ln (distinct)

o.l invocation of method l of object o

o.l ⇐ ς(x)b update of method l of object o
with method ς(x)b

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 8 / 39

The basics of ς-calculus

Primitives of the syntax

Objects and methods

ς(x)b method with self parameter x
and body b

[l1 = ς(x1)b1, . . . , ln = ς(xn)bn] object with n methods
labelled l1, . . . , ln (distinct)

o.l invocation of method l of object o

o.l ⇐ ς(x)b update of method l of object o
with method ς(x)b

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 8 / 39

The basics of ς-calculus

Primitives of the syntax

Objects and methods

ς(x)b method with self parameter x
and body b

[l1 = ς(x1)b1, . . . , ln = ς(xn)bn] object with n methods
labelled l1, . . . , ln (distinct)

o.l invocation of method l of object o

o.l ⇐ ς(x)b update of method l of object o
with method ς(x)b

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 8 / 39

The basics of ς-calculus

Primitives of the syntax

Objects and methods

ς(x)b method with self parameter x
and body b

[l1 = ς(x1)b1, . . . , ln = ς(xn)bn] object with n methods
labelled l1, . . . , ln (distinct)

o.l invocation of method l of object o

o.l ⇐ ς(x)b update of method l of object o
with method ς(x)b

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 8 / 39

The basics of ς-calculus

Primitives of the syntax

Objects and methods

ς(x)b method with self parameter x and body b
[l1 = ς(x1)b1, . . . , ln = ς(xn)bn] object with n methods labelled l1, . . . , ln (distinct)
o.l invocation of method l of object o
o.l ⇐ ς(x)b update of method l of object o with method ς(x)b

Given an object o = [l1 = ς(x1)b1, . . . , ln = ς(xn)bn],
a component li = ς(xi)bi of o consists of a label li and
a method ς(xi)bi .

The letter ς in the method acts as a binder for the self parameter of
the object. The self parameter is a reference to “self”, that is, the
methods’ host object.

When the body b of a method ς(y)b does not use its
self parameter y , we refer to the method as a field.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 9 / 39

The basics of ς-calculus

Primitives of the syntax

Objects and methods

ς(x)b method with self parameter x and body b
[l1 = ς(x1)b1, . . . , ln = ς(xn)bn] object with n methods labelled l1, . . . , ln (distinct)
o.l invocation of method l of object o
o.l ⇐ ς(x)b update of method l of object o with method ς(x)b

Given an object o = [l1 = ς(x1)b1, . . . , ln = ς(xn)bn],
a component li = ς(xi)bi of o consists of a label li and
a method ς(xi)bi .

The letter ς in the method acts as a binder for the self parameter of
the object. The self parameter is a reference to “self”, that is, the
methods’ host object.

When the body b of a method ς(y)b does not use its
self parameter y , we refer to the method as a field.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 9 / 39

The basics of ς-calculus

Primitives of the syntax

Objects and methods

ς(x)b method with self parameter x and body b
[l1 = ς(x1)b1, . . . , ln = ς(xn)bn] object with n methods labelled l1, . . . , ln (distinct)
o.l invocation of method l of object o
o.l ⇐ ς(x)b update of method l of object o with method ς(x)b

Given an object o = [l1 = ς(x1)b1, . . . , ln = ς(xn)bn],
a component li = ς(xi)bi of o consists of a label li and
a method ς(xi)bi .

The letter ς in the method acts as a binder for the self parameter of
the object. The self parameter is a reference to “self”, that is, the
methods’ host object.

When the body b of a method ς(y)b does not use its
self parameter y , we refer to the method as a field.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 9 / 39

The basics of ς-calculus

Primitives of the syntax

Objects and methods

ς(x)b method with self parameter x and body b
[l1 = ς(x1)b1, . . . , ln = ς(xn)bn] object with n methods labelled l1, . . . , ln (distinct)
o.l invocation of method l of object o
o.l ⇐ ς(x)b update of method l of object o with method ς(x)b

Given an object o = [l1 = ς(x1)b1, . . . , ln = ς(xn)bn],
a component li = ς(xi)bi of o consists of a label li and
a method ς(xi)bi .

The letter ς in the method acts as a binder for the self parameter of
the object. The self parameter is a reference to “self”, that is, the
methods’ host object.

When the body b of a method ς(y)b does not use its
self parameter y , we refer to the method as a field.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 9 / 39

The basics of ς-calculus

Primitives of the semantics

Two operations : method invocation (1) and method update (2)

(Notation: a b means that the term a reduces to b in one step.)

Given an object o = [l1 = ς(x1)b1, . . . , ln = ς(xn)bn] and j ∈ {1 . . . n} :

(1) o.lj bj [o/xj]

(2) o.lj ⇐ ς(x)b [lj = ς(x)b, li = ς(xi)bi
i∈{1...n}−{j}]

In the case of fields, method invocation and method update are referred as
field selection and field update respectively.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 10 / 39

The basics of ς-calculus

Primitives of the semantics

Two operations : method invocation (1) and method update (2)

(Notation: a b means that the term a reduces to b in one step.)

Given an object o = [l1 = ς(x1)b1, . . . , ln = ς(xn)bn] and j ∈ {1 . . . n} :

(1) o.lj bj [o/xj]

(2) o.lj ⇐ ς(x)b [lj = ς(x)b, li = ς(xi)bi
i∈{1...n}−{j}]

In the case of fields, method invocation and method update are referred as
field selection and field update respectively.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 10 / 39

The basics of ς-calculus

Primitives of the semantics

Two operations : method invocation (1) and method update (2)

(Notation: a b means that the term a reduces to b in one step.)

Given an object o = [l1 = ς(x1)b1, . . . , ln = ς(xn)bn] and j ∈ {1 . . . n} :

(1) o.lj bj [o/xj]

(2) o.lj ⇐ ς(x)b [lj = ς(x)b, li = ς(xi)bi
i∈{1...n}−{j}]

In the case of fields, method invocation and method update are referred as
field selection and field update respectively.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 10 / 39

The basics of ς-calculus

Primitives of the semantics

Two operations : method invocation (1) and method update (2)

(Notation: a b means that the term a reduces to b in one step.)

Given an object o = [l1 = ς(x1)b1, . . . , ln = ς(xn)bn] and j ∈ {1 . . . n} :

(1) o.lj bj [o/xj]

(2) o.lj ⇐ ς(x)b [lj = ς(x)b, li = ς(xi)bi
i∈{1...n}−{j}]

In the case of fields, method invocation and method update are referred as
field selection and field update respectively.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 10 / 39

The basics of ς-calculus

Primitives of the semantics

Two operations : method invocation (1) and method update (2)

(Notation: a b means that the term a reduces to b in one step.)

Given an object o = [l1 = ς(x1)b1, . . . , ln = ς(xn)bn] and j ∈ {1 . . . n} :

(1) o.lj bj [o/xj]

(2) o.lj ⇐ ς(x)b [lj = ς(x)b, li = ς(xi)bi
i∈{1...n}−{j}]

In the case of fields, method invocation and method update are referred as
field selection and field update respectively.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 10 / 39

The basics of ς-calculus

Primitives of the semantics

Two operations : method invocation (1) and method update (2)

(Notation: a b means that the term a reduces to b in one step.)

Given an object o = [l1 = ς(x1)b1, . . . , ln = ς(xn)bn] and j ∈ {1 . . . n} :

(1) o.lj bj [o/xj]

(2) o.lj ⇐ ς(x)b [lj = ς(x)b, li = ς(xi)bi
i∈{1...n}−{j}]

In the case of fields, method invocation and method update are referred as
field selection and field update respectively.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 10 / 39

The basics of ς-calculus

Example of a storage cell

myCell , [contents = 0,
get = ς(s)s.contents,
set = ς(s)(λ(n)(s.contents ⇐ n))]

Then myCell .get myCell .contents 0,

myCell .set(5).get = ((myCell .set)(5)).get
 ((λ(n)(myCell .contents ⇐ n))(5)).get
 (myCell .contents ⇐ 5).get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].contents
 5

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 11 / 39

The basics of ς-calculus

Example of a storage cell

myCell , [contents = 0,
get = ς(s)s.contents,
set = ς(s)(λ(n)(s.contents ⇐ n))]

Then myCell .get myCell .contents 0,

myCell .set(5).get = ((myCell .set)(5)).get
 ((λ(n)(myCell .contents ⇐ n))(5)).get
 (myCell .contents ⇐ 5).get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].contents
 5

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 11 / 39

The basics of ς-calculus

Example of a storage cell

myCell , [contents = 0,
get = ς(s)s.contents,
set = ς(s)(λ(n)(s.contents ⇐ n))]

Then myCell .get myCell .contents 0,

myCell .set(5).get = ((myCell .set)(5)).get

 ((λ(n)(myCell .contents ⇐ n))(5)).get
 (myCell .contents ⇐ 5).get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].contents
 5

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 11 / 39

The basics of ς-calculus

Example of a storage cell

myCell , [contents = 0,
get = ς(s)s.contents,
set = ς(s)(λ(n)(s.contents ⇐ n))]

Then myCell .get myCell .contents 0,

myCell .set(5).get = ((myCell .set)(5)).get
 ((λ(n)(myCell .contents ⇐ n))(5)).get

 (myCell .contents ⇐ 5).get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].contents
 5

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 11 / 39

The basics of ς-calculus

Example of a storage cell

myCell , [contents = 0,
get = ς(s)s.contents,
set = ς(s)(λ(n)(s.contents ⇐ n))]

Then myCell .get myCell .contents 0,

myCell .set(5).get = ((myCell .set)(5)).get
 ((λ(n)(myCell .contents ⇐ n))(5)).get
 (myCell .contents ⇐ 5).get

 [contents = 5,
get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].get

 [contents = 5,
get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].contents

 5

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 11 / 39

The basics of ς-calculus

Example of a storage cell

myCell , [contents = 0,
get = ς(s)s.contents,
set = ς(s)(λ(n)(s.contents ⇐ n))]

Then myCell .get myCell .contents 0,

myCell .set(5).get = ((myCell .set)(5)).get
 ((λ(n)(myCell .contents ⇐ n))(5)).get
 (myCell .contents ⇐ 5).get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].get

 [contents = 5,
get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].contents

 5

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 11 / 39

The basics of ς-calculus

Example of a storage cell

myCell , [contents = 0,
get = ς(s)s.contents,
set = ς(s)(λ(n)(s.contents ⇐ n))]

Then myCell .get myCell .contents 0,

myCell .set(5).get = ((myCell .set)(5)).get
 ((λ(n)(myCell .contents ⇐ n))(5)).get
 (myCell .contents ⇐ 5).get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].contents

 5

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 11 / 39

The basics of ς-calculus

Example of a storage cell

myCell , [contents = 0,
get = ς(s)s.contents,
set = ς(s)(λ(n)(s.contents ⇐ n))]

Then myCell .get myCell .contents 0,

myCell .set(5).get = ((myCell .set)(5)).get
 ((λ(n)(myCell .contents ⇐ n))(5)).get
 (myCell .contents ⇐ 5).get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].get
 [contents = 5,

get = ς(s)s.contents, set = ς(s)(λ(n)(s.contents ⇐ n))].contents
 5

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 11 / 39

The basics of ς-calculus

Example of Movable points

origin1 , [x = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx)]

origin2 , [x = 0, y = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx),
mvy = ς(s)λ(dy)(s.y ⇐ s.y + dy)]

In this case, all operations possible on origin1 are also possible on origin2.

That is, we need a typed system in which any context expecting an origin1

object can also accept an origin2 object.

→ Subtyping

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 12 / 39

The basics of ς-calculus

Example of Movable points

origin1 , [x = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx)]

origin2 , [x = 0, y = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx),
mvy = ς(s)λ(dy)(s.y ⇐ s.y + dy)]

In this case, all operations possible on origin1 are also possible on origin2.

That is, we need a typed system in which any context expecting an origin1

object can also accept an origin2 object.

→ Subtyping

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 12 / 39

The basics of ς-calculus

Example of Movable points

origin1 , [x = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx)]

origin2 , [x = 0, y = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx),
mvy = ς(s)λ(dy)(s.y ⇐ s.y + dy)]

In this case, all operations possible on origin1 are also possible on origin2.

That is, we need a typed system in which any context expecting an origin1

object can also accept an origin2 object.

→ Subtyping

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 12 / 39

The basics of ς-calculus

Example of Movable points

origin1 , [x = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx)]

origin2 , [x = 0, y = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx),
mvy = ς(s)λ(dy)(s.y ⇐ s.y + dy)]

In this case, all operations possible on origin1 are also possible on origin2.

That is, we need a typed system in which any context expecting an origin1

object can also accept an origin2 object.

→ Subtyping

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 12 / 39

The first-order ς-calculus

The first-order ς-calculus

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 13 / 39

The first-order ς-calculus

Formal syntax for first-order theory

A,B,C ,D ::= Types

Top the biggest type

[li :Bi
i∈1...n] object (li distinct)

A→ B function type

a, b, c , d ::= Terms

x variable

[li = ς(xi :Ai)bi
i∈1...n] object (li distinct)

a.l method invocation

a.l ⇐ ς(x :A)b method update

λ(x :A)b function

b(a) application

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 14 / 39

The first-order ς-calculus

Formal syntax for first-order theory

A,B,C ,D ::= Types

Top the biggest type

[li :Bi
i∈1...n] object (li distinct)

A→ B function type

a, b, c , d ::= Terms

x variable

[li = ς(xi :Ai)bi
i∈1...n] object (li distinct)

a.l method invocation

a.l ⇐ ς(x :A)b method update

λ(x :A)b function

b(a) application

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 14 / 39

The first-order ς-calculus

Scoping for the first-order calculus

FV (x) , {x}

FV (ς(x :A)b) , FV (b)− {x}

FV ([li = ς(xi :Ai)bi
i∈1...n]) ,

⋃n
i=1 FV (ς(xi :Ai)bi)

FV (a.l) , FV (a)

FV (a.l ⇐ ς(x :A)b) , FV (a) ∪ FV (ς(x :A)b)

FV (λ(x :A)b) , FV (b)− {x}

FV (b(a)) , FV (b) ∪ FV (a)

Substitution : a[b/x] is the term a in which all free occurrences of x are
substituted for b.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 15 / 39

The first-order ς-calculus

Formal system and judgments

We present a formal system for deriving judgments of the form E ` T
where E is an environment and T is an assertion whose shape depends on
the judgment.

An environment E is a list of assumptions for variables, of the form
x1 : A1, . . . , xn : An

∅ stands for the empty environment

The judgment E ` � means that the environment E is well-formed

The judgment E ` A for a type A means that A is a well-formed type
in the environment E .

The judgment E ` b : B is value typing judgment, stating that the
term b has type B in E

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 16 / 39

The first-order ς-calculus

Formation rules fragments

Assertions describing how to form well-typed objects and functions :

∆x : environments and term variables

∆K : ground types

∆Ob : objects

∆→ : functions

∆<: : subtyping and subsumption

∆<:Ob : objects subtyping

∆<:→ : functions subtyping

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 17 / 39

The first-order ς-calculus

Standard First-Order Fragments

∆x : environments and term variables

(Env ∅) (Env x) (Val x)

∅ ` �
E ` A x /∈ dom(E)

E , x :A ` �
E ′, x :A,E ` �

E ′, x :A,E ` x :A

∆K : ground types

(Type Const)

E ` �
E ` K

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 18 / 39

The first-order ς-calculus

Standard First-Order Fragments

∆x : environments and term variables

(Env ∅) (Env x) (Val x)

∅ ` �
E ` A x /∈ dom(E)

E , x :A ` �
E ′, x :A,E ` �

E ′, x :A,E ` x :A

∆K : ground types

(Type Const)

E ` �
E ` K

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 18 / 39

The first-order ς-calculus

Object Fragment

∆Ob : building objects and object types

(Type Object)

E ` Bi ∀i ∈ 1 . . . n (li distinct)

E ` [li :Bi
i∈1...n]

(Val Object) (where A ≡ [li :Bi
i∈1...n])

E , xi :A ` bi :Bi ∀i ∈ 1 . . . n

E ` [li = ς(xi :A)bi
i∈1...n] : A

(Val Select) (Val Update) (where A ≡ [li :Bi
i∈1...n])

E ` a : [li :Bi
i∈1...n] j ∈ 1 . . . n

E ` a.lj : Bj

E ` a:A E , x :A ` b:Bj j ∈ 1 . . . n

E ` (a.lj ⇐ ς(x :A)b) : A

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 19 / 39

The first-order ς-calculus

Object Fragment

∆Ob : building objects and object types

(Type Object)

E ` Bi ∀i ∈ 1 . . . n (li distinct)

E ` [li :Bi
i∈1...n]

(Val Object) (where A ≡ [li :Bi
i∈1...n])

E , xi :A ` bi :Bi ∀i ∈ 1 . . . n

E ` [li = ς(xi :A)bi
i∈1...n] : A

(Val Select) (Val Update) (where A ≡ [li :Bi
i∈1...n])

E ` a : [li :Bi
i∈1...n] j ∈ 1 . . . n

E ` a.lj : Bj

E ` a:A E , x :A ` b:Bj j ∈ 1 . . . n

E ` (a.lj ⇐ ς(x :A)b) : A

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 19 / 39

The first-order ς-calculus

Object Fragment

∆Ob : building objects and object types

(Type Object)

E ` Bi ∀i ∈ 1 . . . n (li distinct)

E ` [li :Bi
i∈1...n]

(Val Object) (where A ≡ [li :Bi
i∈1...n])

E , xi :A ` bi :Bi ∀i ∈ 1 . . . n

E ` [li = ς(xi :A)bi
i∈1...n] : A

(Val Select)

(Val Update) (where A ≡ [li :Bi
i∈1...n])

E ` a : [li :Bi
i∈1...n] j ∈ 1 . . . n

E ` a.lj : Bj

E ` a:A E , x :A ` b:Bj j ∈ 1 . . . n

E ` (a.lj ⇐ ς(x :A)b) : A

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 19 / 39

The first-order ς-calculus

Object Fragment

∆Ob : building objects and object types

(Type Object)

E ` Bi ∀i ∈ 1 . . . n (li distinct)

E ` [li :Bi
i∈1...n]

(Val Object) (where A ≡ [li :Bi
i∈1...n])

E , xi :A ` bi :Bi ∀i ∈ 1 . . . n

E ` [li = ς(xi :A)bi
i∈1...n] : A

(Val Select) (Val Update) (where A ≡ [li :Bi
i∈1...n])

E ` a : [li :Bi
i∈1...n] j ∈ 1 . . . n

E ` a.lj : Bj

E ` a:A E , x :A ` b:Bj j ∈ 1 . . . n

E ` (a.lj ⇐ ς(x :A)b) : A

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 19 / 39

The first-order ς-calculus

Function Fragment

Abstraction and application mechanisms are used as primitives of the
calculus.

∆→ : function types

(Type Arrow) (Val Fun) (Val Appl)

E ` A E ` B

E ` A→ B

E , x :A ` b:B

E ` λ(x :A)b : A→ B

E ` b:A→ B E ` a:A

E ` b(a):A

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 20 / 39

Subtyping

Subtyping

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 21 / 39

Subtyping

Subtyping fragment

∆<: : subtypes (“A <: B” means A is a subtype of B)

(Sub Refl) (Sub Trans) (Val Subsumption)

E ` A

E ` A <: A

E ` A <: B E ` B <: C

E ` A <: C

E ` a : A E ` A <: B

E ` a : B

(Type Top) (Sub Top)

E ` �
E ` Top

E ` A

E ` A <: Top

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 22 / 39

Subtyping

Object and function subtypes

∆<:Ob : Object subtypes

(Sub Object)

E ` Bi ∀i ∈ 1 . . . n + m (li distinct)

E ` [li :Bi
i∈1...n+m] <: [li :Bi

i∈1...n]

∆<:→ : Function subtypes

(Sub Arrow)

E ` A′ <: A E ` B <: B ′

E ` A→ B <: A′ → B ′

(contravariant in the domain, covariant in the codomain)

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 23 / 39

Subtyping

Object and function subtypes

∆<:Ob : Object subtypes

(Sub Object)

E ` Bi ∀i ∈ 1 . . . n + m (li distinct)

E ` [li :Bi
i∈1...n+m] <: [li :Bi

i∈1...n]

∆<:→ : Function subtypes

(Sub Arrow)

E ` A′ <: A E ` B <: B ′

E ` A→ B <: A′ → B ′

(contravariant in the domain, covariant in the codomain)

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 23 / 39

Subtyping

Example of typed Movable points

A , [x : Real , mvx : Real → A]

B , [x : Real , y : Real , mvx : Real → B, mvy : Real → B]

origin1 , [x = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx)] : A

origin2 , [x = 0, y = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx),
mvy = ς(s)λ(dy)(s.y ⇐ s.y + dy)] : B

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 24 / 39

Subtyping

Movable points

A , [x : Real , mvx : Real → A]
B , [x : Real , y : Real , mvx : Real → B, mvy : Real → B]

origin1 , [x = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx)] : A

origin2 , [x = 0, y = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx),

mvy = ς(s)λ(dy)(s.y ⇐ s.y + dy)] : B

We have B <: A. Thus, by subsumption, origin2 : A.

origin1↔ origin2 : A, but not origin1↔ origin2 : B

Once origin2 is subsumed to the type A, we cannot invoke the
methods mvy or y on origin2.

Example : if B , [x :Real , y :Real , mvx :Real → B, mvy :Real → A],
then origin2.mvy (4) has type A, which means that I cannot derive
(origin2.mvy (4)).mvy as a typed value in the formal system.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 25 / 39

Subtyping

Movable points

A , [x : Real , mvx : Real → A]
B , [x : Real , y : Real , mvx : Real → B, mvy : Real → B]

origin1 , [x = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx)] : A

origin2 , [x = 0, y = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx),

mvy = ς(s)λ(dy)(s.y ⇐ s.y + dy)] : B

We have B <: A. Thus, by subsumption, origin2 : A.

origin1↔ origin2 : A, but not origin1↔ origin2 : B

Once origin2 is subsumed to the type A, we cannot invoke the
methods mvy or y on origin2.

Example : if B , [x :Real , y :Real , mvx :Real → B, mvy :Real → A],
then origin2.mvy (4) has type A, which means that I cannot derive
(origin2.mvy (4)).mvy as a typed value in the formal system.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 25 / 39

Subtyping

Movable points

A , [x : Real , mvx : Real → A]
B , [x : Real , y : Real , mvx : Real → B, mvy : Real → B]

origin1 , [x = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx)] : A

origin2 , [x = 0, y = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx),

mvy = ς(s)λ(dy)(s.y ⇐ s.y + dy)] : B

We have B <: A. Thus, by subsumption, origin2 : A.

origin1↔ origin2 : A, but not origin1↔ origin2 : B

Once origin2 is subsumed to the type A, we cannot invoke the
methods mvy or y on origin2.

Example : if B , [x :Real , y :Real , mvx :Real → B, mvy :Real → A],
then origin2.mvy (4) has type A, which means that I cannot derive
(origin2.mvy (4)).mvy as a typed value in the formal system.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 25 / 39

Subtyping

Movable points

A , [x : Real , mvx : Real → A]
B , [x : Real , y : Real , mvx : Real → B, mvy : Real → B]

origin1 , [x = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx)] : A

origin2 , [x = 0, y = 0, mvx = ς(s)λ(dx)(s.x ⇐ s.x + dx),

mvy = ς(s)λ(dy)(s.y ⇐ s.y + dy)] : B

We have B <: A. Thus, by subsumption, origin2 : A.

origin1↔ origin2 : A, but not origin1↔ origin2 : B

Once origin2 is subsumed to the type A, we cannot invoke the
methods mvy or y on origin2.

Example : if B , [x :Real , y :Real , mvx :Real → B, mvy :Real → A],
then origin2.mvy (4) has type A, which means that I cannot derive
(origin2.mvy (4)).mvy as a typed value in the formal system.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 25 / 39

Subtyping

Cells and encapsulation

A RomCell is a storage cell that can only be read.

A PromCell can be written once, and then becomes a RomCell .
A PrivateCell is used for operating on a contents field, that is hidden in
the previous cell types.

Let’s consider storage for natural numbers (Nat) :

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]
RomCell , [get : Nat]

We get PrivateCell <: PromCell <: RomCell .

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 26 / 39

Subtyping

Cells and encapsulation

A RomCell is a storage cell that can only be read.
A PromCell can be written once, and then becomes a RomCell .

A PrivateCell is used for operating on a contents field, that is hidden in
the previous cell types.

Let’s consider storage for natural numbers (Nat) :

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]
RomCell , [get : Nat]

We get PrivateCell <: PromCell <: RomCell .

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 26 / 39

Subtyping

Cells and encapsulation

A RomCell is a storage cell that can only be read.
A PromCell can be written once, and then becomes a RomCell .
A PrivateCell is used for operating on a contents field, that is hidden in
the previous cell types.

Let’s consider storage for natural numbers (Nat) :

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]
RomCell , [get : Nat]

We get PrivateCell <: PromCell <: RomCell .

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 26 / 39

Subtyping

Cells and encapsulation

A RomCell is a storage cell that can only be read.
A PromCell can be written once, and then becomes a RomCell .
A PrivateCell is used for operating on a contents field, that is hidden in
the previous cell types.

Let’s consider storage for natural numbers (Nat) :

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]
RomCell , [get : Nat]

We get PrivateCell <: PromCell <: RomCell .

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 26 / 39

Subtyping

Cells and encapsulation

A RomCell is a storage cell that can only be read.
A PromCell can be written once, and then becomes a RomCell .
A PrivateCell is used for operating on a contents field, that is hidden in
the previous cell types.

Let’s consider storage for natural numbers (Nat) :

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]
RomCell , [get : Nat]

We get PrivateCell <: PromCell <: RomCell .

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 26 / 39

Subtyping

Cells and encapsulation

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]

RomCell , [get : Nat]

myCell : PrivateCell , [contents = 0,
get = ς(s : PrivateCell)s.contents,
set = ς(s : PrivateCell)(λ(n)(s.contents ⇐ n))]

We can use subsumption to get myCell :PromCell and hide contents.

The subtyping PrivateCell <: RomCell is required to type the set method
because its body has a PrivateCell method, whereas the expected return
type is RomCell .

s : PrivateCell ` λ(n : Nat)(s.contents ⇐ n) : Nat → PrivateCell <:
Nat → RomCell by covariance on codomain types

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 27 / 39

Subtyping

Cells and encapsulation

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]

RomCell , [get : Nat]

myCell : PrivateCell , [contents = 0,
get = ς(s : PrivateCell)s.contents,
set = ς(s : PrivateCell)(λ(n)(s.contents ⇐ n))]

We can use subsumption to get myCell :PromCell and hide contents.

The subtyping PrivateCell <: RomCell is required to type the set method
because its body has a PrivateCell method, whereas the expected return
type is RomCell .

s : PrivateCell ` λ(n : Nat)(s.contents ⇐ n) : Nat → PrivateCell <:
Nat → RomCell by covariance on codomain types

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 27 / 39

Subtyping

Cells and encapsulation

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]

RomCell , [get : Nat]

myCell : PrivateCell , [contents = 0,
get = ς(s : PrivateCell)s.contents,
set = ς(s : PrivateCell)(λ(n)(s.contents ⇐ n))]

We can use subsumption to get myCell :PromCell and hide contents.

The subtyping PrivateCell <: RomCell is required to type the set method
because its body has a PrivateCell method, whereas the expected return
type is RomCell .

s : PrivateCell ` λ(n : Nat)(s.contents ⇐ n) : Nat → PrivateCell <:
Nat → RomCell by covariance on codomain types

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 27 / 39

Subtyping

Cells and encapsulation

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]

RomCell , [get : Nat]

myCell : PrivateCell , [contents = 0,
get = ς(s : PrivateCell)s.contents,
set = ς(s : PrivateCell)(λ(n)(s.contents ⇐ n))]

We can use subsumption to get myCell :PromCell and hide contents.

The subtyping PrivateCell <: RomCell is required to type the set method
because its body has a PrivateCell method, whereas the expected return
type is RomCell .

s : PrivateCell ` λ(n : Nat)(s.contents ⇐ n) : Nat → PrivateCell <:
Nat → RomCell by covariance on codomain types

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 27 / 39

Subtyping

Cells and encapsulation

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]
RomCell , [get : Nat]

myCell : PrivateCell , [contents = 0,
get = ς(s : PrivateCell)s.contents,
set = ς(s : PrivateCell)(λ(n)(s.contents ⇐ n))]

Now, we can show that :

myCell .set : Nat → RomCell
myCell .set(3) : RomCell
(can’t write myCell .set(3).contents or myCell .set(3).set)

myCell .set(3).get : Nat 3 : Nat

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 28 / 39

Subtyping

Cells and encapsulation

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]
RomCell , [get : Nat]

myCell : PrivateCell , [contents = 0,
get = ς(s : PrivateCell)s.contents,
set = ς(s : PrivateCell)(λ(n)(s.contents ⇐ n))]

Now, we can show that :

myCell .set : Nat → RomCell

myCell .set(3) : RomCell
(can’t write myCell .set(3).contents or myCell .set(3).set)

myCell .set(3).get : Nat 3 : Nat

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 28 / 39

Subtyping

Cells and encapsulation

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]
RomCell , [get : Nat]

myCell : PrivateCell , [contents = 0,
get = ς(s : PrivateCell)s.contents,
set = ς(s : PrivateCell)(λ(n)(s.contents ⇐ n))]

Now, we can show that :

myCell .set : Nat → RomCell
myCell .set(3) : RomCell
(can’t write myCell .set(3).contents or myCell .set(3).set)

myCell .set(3).get : Nat 3 : Nat

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 28 / 39

Subtyping

Cells and encapsulation

PrivateCell , [contents : Nat, get : Nat, set : Nat → RomCell]
PromCell , [get : Nat, set : Nat → RomCell]
RomCell , [get : Nat]

myCell : PrivateCell , [contents = 0,
get = ς(s : PrivateCell)s.contents,
set = ς(s : PrivateCell)(λ(n)(s.contents ⇐ n))]

Now, we can show that :

myCell .set : Nat → RomCell
myCell .set(3) : RomCell
(can’t write myCell .set(3).contents or myCell .set(3).set)

myCell .set(3).get : Nat 3 : Nat

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 28 / 39

Classes and inheritance

Classes and inheritance

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 29 / 39

Classes and inheritance

Classes

Given an object type A ≡ [li :Bi
i∈1...n] :

Class(A) , [new :A, li :A→ Bi
i∈1...n]

is the type of classes generating objects of type A.

These classes are objects of the form :

[new = ς(z :Class(A))([li = ς(s:A)z .li (s)i∈1...n]),
li = λ(s:A)bi

i∈1...n].

The methods of a class are called pre-methods, whose λ binders are
meant to be replaced with ς binders, that will link an instantiated
object to its methods.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 30 / 39

Classes and inheritance

Classes

Given an object type A ≡ [li :Bi
i∈1...n] :

Class(A) , [new :A, li :A→ Bi
i∈1...n]

is the type of classes generating objects of type A.

These classes are objects of the form :

[new = ς(z :Class(A))([li = ς(s:A)z .li (s)i∈1...n]),
li = λ(s:A)bi

i∈1...n].

The methods of a class are called pre-methods, whose λ binders are
meant to be replaced with ς binders, that will link an instantiated
object to its methods.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 30 / 39

Classes and inheritance

Classes

Given an object type A ≡ [li :Bi
i∈1...n] :

Class(A) , [new :A, li :A→ Bi
i∈1...n]

is the type of classes generating objects of type A.

These classes are objects of the form :

[new = ς(z :Class(A))([li = ς(s:A)z .li (s)i∈1...n]),
li = λ(s:A)bi

i∈1...n].

The methods of a class are called pre-methods, whose λ binders are
meant to be replaced with ς binders, that will link an instantiated
object to its methods.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 30 / 39

Classes and inheritance

Inheritance

Inheritance is the re-use of pre-methods from a class within another class.

An ad-hoc criteria for re-use :

Class(A′) may inherit from Class(A) iff A′ <: A

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 31 / 39

Classes and inheritance

Inheritance

Inheritance is the re-use of pre-methods from a class within another class.

An ad-hoc criteria for re-use :

Class(A′) may inherit from Class(A) iff A′ <: A

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 31 / 39

Classes and inheritance

Inheritance

For example, consider A′ ≡ [li :Bi
i∈1...n+m] <: A ≡ [li :Bi

i∈1...n] and the
following classes :

c : Class(A) , [new = ς(z :Class(A))([li = ς(s:A)z .li (s)i∈1...n]),
li = λ(s:A)bi

i∈1...n]

c ′ : Class(A′) , [new = ς(z :Class(A′))([l1 = ς(s:A′)z .li (s)i∈1...n+m]),
l1 = λ(s:A′)b′1,
lj = c .lj

j ∈2...n,
lk = λ(s:A′)bk

k ∈n+1...n+m]

c ′ overrides the pre-method l1
c ′ inherits the pre-methods lj with j ∈ 2 . . . n from c
(c .lj : A→ B <: A′ → B by contravariance on A′ <: A).

c ′ has some new pre-methods of it’s own k ∈ n + 1 . . . n + m

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 32 / 39

Classes and inheritance

Inheritance

For example, consider A′ ≡ [li :Bi
i∈1...n+m] <: A ≡ [li :Bi

i∈1...n] and the
following classes :

c : Class(A) , [new = ς(z :Class(A))([li = ς(s:A)z .li (s)i∈1...n]),
li = λ(s:A)bi

i∈1...n]

c ′ : Class(A′) , [new = ς(z :Class(A′))([l1 = ς(s:A′)z .li (s)i∈1...n+m]),
l1 = λ(s:A′)b′1,
lj = c .lj

j ∈2...n,
lk = λ(s:A′)bk

k ∈n+1...n+m]

c ′ overrides the pre-method l1
c ′ inherits the pre-methods lj with j ∈ 2 . . . n from c
(c .lj : A→ B <: A′ → B by contravariance on A′ <: A).

c ′ has some new pre-methods of it’s own k ∈ n + 1 . . . n + m

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 32 / 39

Classes and inheritance

Inheritance

For example, consider A′ ≡ [li :Bi
i∈1...n+m] <: A ≡ [li :Bi

i∈1...n] and the
following classes :

c : Class(A) , [new = ς(z :Class(A))([li = ς(s:A)z .li (s)i∈1...n]),
li = λ(s:A)bi

i∈1...n]

c ′ : Class(A′) , [new = ς(z :Class(A′))([l1 = ς(s:A′)z .li (s)i∈1...n+m]),
l1 = λ(s:A′)b′1,
lj = c .lj

j ∈2...n,
lk = λ(s:A′)bk

k ∈n+1...n+m]

c ′ overrides the pre-method l1

c ′ inherits the pre-methods lj with j ∈ 2 . . . n from c
(c .lj : A→ B <: A′ → B by contravariance on A′ <: A).

c ′ has some new pre-methods of it’s own k ∈ n + 1 . . . n + m

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 32 / 39

Classes and inheritance

Inheritance

For example, consider A′ ≡ [li :Bi
i∈1...n+m] <: A ≡ [li :Bi

i∈1...n] and the
following classes :

c : Class(A) , [new = ς(z :Class(A))([li = ς(s:A)z .li (s)i∈1...n]),
li = λ(s:A)bi

i∈1...n]

c ′ : Class(A′) , [new = ς(z :Class(A′))([l1 = ς(s:A′)z .li (s)i∈1...n+m]),
l1 = λ(s:A′)b′1,
lj = c .lj

j ∈2...n,
lk = λ(s:A′)bk

k ∈n+1...n+m]

c ′ overrides the pre-method l1
c ′ inherits the pre-methods lj with j ∈ 2 . . . n from c
(c .lj : A→ B <: A′ → B by contravariance on A′ <: A).

c ′ has some new pre-methods of it’s own k ∈ n + 1 . . . n + m

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 32 / 39

Classes and inheritance

Inheritance

For example, consider A′ ≡ [li :Bi
i∈1...n+m] <: A ≡ [li :Bi

i∈1...n] and the
following classes :

c : Class(A) , [new = ς(z :Class(A))([li = ς(s:A)z .li (s)i∈1...n]),
li = λ(s:A)bi

i∈1...n]

c ′ : Class(A′) , [new = ς(z :Class(A′))([l1 = ς(s:A′)z .li (s)i∈1...n+m]),
l1 = λ(s:A′)b′1,
lj = c .lj

j ∈2...n,
lk = λ(s:A′)bk

k ∈n+1...n+m]

c ′ overrides the pre-method l1
c ′ inherits the pre-methods lj with j ∈ 2 . . . n from c
(c .lj : A→ B <: A′ → B by contravariance on A′ <: A).

c ′ has some new pre-methods of it’s own k ∈ n + 1 . . . n + m

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 32 / 39

Polymorphism

Polymorphism

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 33 / 39

Polymorphism

A class that instantiates polymorphic cells

Private cell type with a dependency on a type variable X :

PrivateCell{X} , [contents : X , get : X , set : X → RomCell]

Abstraction on the type : ∀(X)PrivateCell{X}

Polymorphic class type for cells : Class(∀(X)PrivateCell{X}) ,

[new : ∀(X)PrivateCell{X},
contents : ∀(X)(PrivateCell{X} → X),
get : ∀(X)(PrivateCell{X} → X),
set : ∀(X)(PrivateCell{X} → X → RomCell{X})]

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 34 / 39

Polymorphism

A class that instantiates polymorphic cells

Private cell type with a dependency on a type variable X :

PrivateCell{X} , [contents : X , get : X , set : X → RomCell]

Abstraction on the type : ∀(X)PrivateCell{X}

Polymorphic class type for cells : Class(∀(X)PrivateCell{X}) ,

[new : ∀(X)PrivateCell{X},
contents : ∀(X)(PrivateCell{X} → X),
get : ∀(X)(PrivateCell{X} → X),
set : ∀(X)(PrivateCell{X} → X → RomCell{X})]

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 34 / 39

Polymorphism

A class that instantiates polymorphic cells

Private cell type with a dependency on a type variable X :

PrivateCell{X} , [contents : X , get : X , set : X → RomCell]

Abstraction on the type : ∀(X)PrivateCell{X}

Polymorphic class type for cells : Class(∀(X)PrivateCell{X}) ,

[new : ∀(X)PrivateCell{X},
contents : ∀(X)(PrivateCell{X} → X),
get : ∀(X)(PrivateCell{X} → X),
set : ∀(X)(PrivateCell{X} → X → RomCell{X})]

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 34 / 39

Polymorphism

A class that instantiates polymorphic cells

Private cell type with a dependency on a type variable X :

PrivateCell{X} , [contents : X , get : X , set : X → RomCell]

Abstraction on the type : ∀(X)PrivateCell{X}

Polymorphic class type for cells : Class(∀(X)PrivateCell{X}) ,

[new : ∀(X)PrivateCell{X},
contents : ∀(X)(PrivateCell{X} → X),
get : ∀(X)(PrivateCell{X} → X),
set : ∀(X)(PrivateCell{X} → X → RomCell{X})]

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 34 / 39

Polymorphism

A class that instantiates polymorphic cells

Polymorphic class for cells : c : Class(∀(X)PrivateCell{X}) ,

[new = ς(z : Class(∀(X)PrivateCell{X}))
λ(X)([contents = ς(s : PrivateCell{X})z .contents(X)(s),

get = ς(s : PrivateCell{X})z .get(X)(s),
set = ς(s : PrivateCell{X})z .set(X)(s)]),

contents = λ(X)(λ(s:PrivateCell{X})s.contents),
get = λ(X)(λ(s:PrivateCell{X})s.contents),
set = λ(X)(λ(s:PrivateCell{X})(λ(x)(s.contents ⇐ x)))]

Finally c .new(Nat) : PrivateCell{Nat} = [contents : Nat, get : Nat, set :
Nat → RomCell] is a private cell that stores natural numbers as desired.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 35 / 39

Polymorphism

A class that instantiates polymorphic cells

Polymorphic class for cells : c : Class(∀(X)PrivateCell{X}) ,

[new = ς(z : Class(∀(X)PrivateCell{X}))
λ(X)([contents = ς(s : PrivateCell{X})z .contents(X)(s),

get = ς(s : PrivateCell{X})z .get(X)(s),
set = ς(s : PrivateCell{X})z .set(X)(s)]),

contents = λ(X)(λ(s:PrivateCell{X})s.contents),
get = λ(X)(λ(s:PrivateCell{X})s.contents),
set = λ(X)(λ(s:PrivateCell{X})(λ(x)(s.contents ⇐ x)))]

Finally c .new(Nat) : PrivateCell{Nat} = [contents : Nat, get : Nat, set :
Nat → RomCell] is a private cell that stores natural numbers as desired.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 35 / 39

Polymorphism

A class that instantiates polymorphic cells

Polymorphic class for cells : c : Class(∀(X)PrivateCell{X}) ,

[new = ς(z : Class(∀(X)PrivateCell{X}))
λ(X)([contents = ς(s : PrivateCell{X})z .contents(X)(s),

get = ς(s : PrivateCell{X})z .get(X)(s),
set = ς(s : PrivateCell{X})z .set(X)(s)]),

contents = λ(X)(λ(s:PrivateCell{X})s.contents),
get = λ(X)(λ(s:PrivateCell{X})s.contents),
set = λ(X)(λ(s:PrivateCell{X})(λ(x)(s.contents ⇐ x)))]

Finally c .new(Nat) : PrivateCell{Nat} = [contents : Nat, get : Nat, set :
Nat → RomCell] is a private cell that stores natural numbers as desired.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 35 / 39

Conclusion

Conclusion

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 36 / 39

Conclusion

Conclusion

The theory of objects is not recognized as having a foundational basis
as of now

Yet, through the study of ς-calculus, we saw that such foundations
can be provided (at least, some foundation exists)

Through the notion of “self” of this calculus, objects have acquired
an expressive and robust typing system.

Through subtyping alone, the four OOL principles of abstraction,
encapsulation, inheritance, and polymorphism have been properly
enforced.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 37 / 39

Conclusion

Conclusion

The theory of objects is not recognized as having a foundational basis
as of now

Yet, through the study of ς-calculus, we saw that such foundations
can be provided (at least, some foundation exists)

Through the notion of “self” of this calculus, objects have acquired
an expressive and robust typing system.

Through subtyping alone, the four OOL principles of abstraction,
encapsulation, inheritance, and polymorphism have been properly
enforced.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 37 / 39

Conclusion

Conclusion

The theory of objects is not recognized as having a foundational basis
as of now

Yet, through the study of ς-calculus, we saw that such foundations
can be provided (at least, some foundation exists)

Through the notion of “self” of this calculus, objects have acquired
an expressive and robust typing system.

Through subtyping alone, the four OOL principles of abstraction,
encapsulation, inheritance, and polymorphism have been properly
enforced.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 37 / 39

Conclusion

Conclusion

The theory of objects is not recognized as having a foundational basis
as of now

Yet, through the study of ς-calculus, we saw that such foundations
can be provided (at least, some foundation exists)

Through the notion of “self” of this calculus, objects have acquired
an expressive and robust typing system.

Through subtyping alone, the four OOL principles of abstraction,
encapsulation, inheritance, and polymorphism have been properly
enforced.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 37 / 39

Conclusion

Relation to my research

Objects do not come equipped with elaborate forms of reduction strategies
⇒ no facility for the expression of concurrency

Should objects be rendered as processes, or processes rendered as objects?
Or is there an alternative solution?

My intuition : investigation of the typing theory of processes, such as
presented in π-calculus, may allow a representation of objects that is
faithful with respect to subtyping and the notion of “self”;
that would mean endowing objects with a natural form of concurrency.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 38 / 39

Conclusion

Relation to my research

Objects do not come equipped with elaborate forms of reduction strategies
⇒ no facility for the expression of concurrency

Should objects be rendered as processes, or processes rendered as objects?
Or is there an alternative solution?

My intuition : investigation of the typing theory of processes, such as
presented in π-calculus, may allow a representation of objects that is
faithful with respect to subtyping and the notion of “self”;
that would mean endowing objects with a natural form of concurrency.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 38 / 39

Conclusion

Relation to my research

Objects do not come equipped with elaborate forms of reduction strategies
⇒ no facility for the expression of concurrency

Should objects be rendered as processes, or processes rendered as objects?
Or is there an alternative solution?

My intuition : investigation of the typing theory of processes, such as
presented in π-calculus, may allow a representation of objects that is
faithful with respect to subtyping and the notion of “self”;
that would mean endowing objects with a natural form of concurrency.

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 38 / 39

Conclusion

Relation to my research

In parallel, I am investigating a model of my own that represents labelled
transition systems through localized functions that fire recurrently.

The firing of these localized functions resembles the firing of transitions in
a Petri net; but in my model, the state of the system is not represented by
tokens in a region, but by values that fall under certain types associated to
regions...

A circuit made of logic gates operating on boolean types would be a good
example. The state of the system would be represented by values that
circulate in the wires. I would model logic gates as methods that fire to
affect the state of the system locally on the wires.

My belief is that, perhaps, encapsulation, abstraction and subtyping can
be rendered through typing and localization in my model...

which is still at a rather experimental phase!

Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 39 / 39

Conclusion

Relation to my research

In parallel, I am investigating a model of my own that represents labelled
transition systems through localized functions that fire recurrently.

The firing of these localized functions resembles the firing of transitions in
a Petri net; but in my model, the state of the system is not represented by
tokens in a region, but by values that fall under certain types associated to
regions...

A circuit made of logic gates operating on boolean types would be a good
example. The state of the system would be represented by values that
circulate in the wires. I would model logic gates as methods that fire to
affect the state of the system locally on the wires.

My belief is that, perhaps, encapsulation, abstraction and subtyping can
be rendered through typing and localization in my model...

which is still at a rather experimental phase!Simon Fortier-Garceau An introduction to Object-Oriented Calculus June 5-8, 2014 39 / 39

	Introduction
	The basics of -calculus
	The first-order -calculus
	Subtyping
	Classes and inheritance
	Polymorphism
	Conclusion

