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Francesco Faa di Bruno (1825-1888) was an Italian of noble
birth, a soldier, a mathematician, and a priest. In 1988 he was
beatified by Pope John Paul II for his charitable work teach-
ing young women mathematics. As a mathematician he studied
with Cauchy in Paris. He was a tall man with a solitary dispo-
sition who spoke seldom and, when teaching class, not always
successfully. Perhaps his most significant mathematical contribu-
tion concerned the combinatorics of the higher-order chain rules.
These results were the cornerstone of “combinatorial analysis'’ :
a subject which never really took off. It is the combinatorics
underlying the higher-order chain rule which is of interest to us
here.
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Theorem Cartesian differential categories are exactly standard
coalgebras of the Faa di Bruno comonad.



Key structure:

XLY:QZ‘H]C(QZ‘)

XXX%Y:<CL,S>I—>3—£(S)°CL

(linear in a but not in s)

Example:

If f: (,y,2) — (@2 + ayz, 23 — ay)

. d(@PHayz,23—xy) 2r +yz xz TY
then: d{x,y,z) R —y —x 322

d(x2+xyz,23—xy) [ 2r+st rt s
and d{z,y,2) ({r,s,8)) = —8 —r 32

and d<$2ﬁ?}fz’j_$y>(<r, s,t)) - (a,b,c) =
((2r 4+ st)a + rtb + rsc, —sa — rb + 3t20>



Cartesian Differential Categories

1. Category X, Cartesian left additive: hom-sets are commu-
tative monoids & f(g+ h) = (fg) + (fh), fO=0.
( h is additive if also (f +g)h = (fh) 4+ (gh) and Oh = 0. )
‘Well-behaved’ products: mg, 71, A additive
f, g additive = f x g additive.

2. Differential operator D:

x .y

XXX —Y
D[f]

(Ref: [Blute-Cockett-Seely] TAC 2009)

Eg (of “left additive”): the category of commutative monoids & set maps

is left additive; the additive maps are homomorphisms.



Satisfying:

[CD.1] D[f + g] = D[f] + Dlg] and D[0] =0

[CD.2] (h+ k,v)D[f] = (h,v)D[f] + (k,v)D[f] and (0,v)Dx[f] =0

[CD3] D[l] = 700, D[7T0] = momg and D[7T]_] = Q71

[CD.4] DI(f,9)] = (DIf], Dlgl)

[CD.5] D[fg] = (D[f],7m1f)Dlg]

[CD.6] ({(g,0),(h, k)) DID[f]] = (g, k) Dlf]

[CD.7] ((O,h),{g,k))D[D[f]] = ({0, g}, (h, k)) D[D[f]]



dfs
dp

d(f1 -l-fz)(S) = df1

Dt.1 e
[Dt.1] i i

(s)-a—+ (s) -a and :—O(s)-a:O;
p

[Dt.2] :—f(s) (a1 4+ az) = d—f(s) ca1 + d—f(s) -ap and d—f(s) -0 = 0;
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df
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(5)-a= g5Csls/) -
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d¥L(s) - pf

Dt.6
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_df
(r) -a= %(s)-a.

dﬁ(sl) - a1 dﬁ(SQ) * a2
- (s2) - ap =~

[Dt.7]
dpo dp1

(s1) - a1




The Chain Rule
D[fg] = (D[f],m1f)Dlg]
U (5) 0= 3(fls/a]) - (4L(s) - a)

(F9) P (s)-a=g M) - (P (s)-a)




The Bundle Fibration over X
Objects: (A, X) (pairs of objects of X)

Morphisms: (f«, f1): (A, X) — (B,Y): f«: X — Y in X
fi:Ax X — B in X, additive in its first argument.

Composition: (f«, f1)(gx,91) = (fxgx, (f1,71f%)91)
(Think f1 = D(f«))

Additive structure: defined “component-wise”

(A, X) — X; (f«, f1) — f« is a fibration

If X is Cartesian left additive, so are the fibres, and so is the
total category



2nd Order Chain Rule

(2) T
d gd(g{( ) (s)-ay - an

= 2 (£(s)) (d( ONCS “2>
d( )g (f(S)) ( £(3) . al) . (j—£ (S) . a2>

l.€. ay as ay as

(F0)@(s) - a1 - as Y T v
— JOF(E)) - (FD(s) - a1 - az))

+ ¢ () - (P () - a1) - (F(s) - ap)

10



The differential of a symmetric tree

ai ay a2 aj az
SR
a1 an o a1 a»> a3z al a3 a> ai
V a3 :
al a

az a3
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Faa(X), the Faa di Bruno Fibration over X
Objects: (A, X) (pairs of objects of X)

Morphisms: f = (f«, f1,/f2,...): (A, X) — (B, X), where:
fs: X — Y in X

for r > 0: friAx...xAxX — B a “symmetric form” (i.e.

.
additive and symmetric in the first » arguments
(think fr: A® /rl x X — B, even though X need not have ®)

Composition? This is where the higher order chain rules come
in ...
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Faa di Bruno convolution

T: a symmetric tree of height 2, width r, on variables {a1,... ,ar};
(A, X) 1 (B,Y) 295 (C, Z) in Faa(X).

Then (fxg)r:AXx...x AxX — C is defined thus (for example):

s
for = the tree on the left, interpret it as the tree on the right:

a1 a» a4 a3z ayp a2 a4 a3 x

R

(f*xg)r = g2(f«(x), f1(a3, ), f3(a1,a2,a4,7)): AXAXAXAXX — C.

NB: (f*xg)r is additive in each argument except the last whenever
the components of f and g have this property.
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a

>t is the (unique) height 2 width 1 tree (with variable a1)

7'2 v — 8a2,...,ar(L2 ,

i.e. the bag of trees obtained by ‘“deriving” L%l r-times with
respect to the given variables. (This is the set of all symmetric

trees of height 2 and width r.)

The Faa di Bruno convolution (composition in Faa(X)) of f and
g is given by setting (fg)« = fxg«, and for » > 0

(fg)r = (f*g),z.{al,...,ar} = Zn (fxg)r
2

n-T E 7’261,1,...,@7«

(This is well-defined: permuting the variables of any 7 € 751 %
either leaves 7 fixed or produces a new tree in 7,1 %".)

Proposition For any Cartesian left additive category X, Faa(X)
is a Cartesian left additive category.
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Faa: CLAdd — CLAdd is a functor:
X Faa(X) ; (f«, f1,...) = (F(f<), F(f1),.-.)

e: Faa(X) — X: (A, X) — X, (f«, f1,...) — f is a fibration.
(and a natural transformation)

There is a functor (indeed, a natural transformation)
0. Faa(X) — Faa(Faa(X)) so that (Faa,e d) is a comonad on
CLAdd.

On objects, §: (A, X) — ((A,A), A, X)

On morphisms, things are a bit “complicated”. Some notation:
we write f = (f«, f1,f2,...): (A, X) — (B,Y) as follows
fe: X —Y  z+— fi(x)

frni A" x X — B : (as1,.-.,0%n, %) — fn(x) a1 ... axn
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We then define §: Faa(X) — Faa(Faa(X)) as follows:

on objects, § takes (A,X) to ((A4,A),A, X).

On arrows, f— &6(f) = (f, fI1 #21 ) by setting
nlAn « X B (ayr, ... s, @) — Fal@) - ayg - ... - asn

[nl. (A" x A)" x (A" x X) — B:
ail...-Qlp | @1«

= Z fr—|—n—s(x>'aa11'- o Qapn Gy - Ay gy
s<n&s<r
& ramp. (e | 7)

where the “ramp” condition amounts to choosing (for each
s < min(r,n)) s elements from (a;;)i<rj<n, at most one from
each row and column, (this amounts to choosing a partial iso-
morphism) and constructing the function term as follows (for
example,):

ar1 -..0arn | Qrx
CL*]_ e o o a*n X
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If o is the following partial iso (here n =4, r =5, and s = 3):

( a11a12 013414 | 1« \ ( aj1|a12a130a14 | a1« \
a21 422 a23 A24 | A2« a21 a22 423 A24 | A2
a31 432 a33 A34 | A3x ~s a31 a32Aa33|434 || A3
A41 442 A43 A44 | Q4% A41 Q42 A43 Q44 | A4
a51 a52 53 A54 | A5 451|052 |53 A54 | A5

K Ax]1 Ax2 Ax3 Ax4 | X ) K Ax1 AxD2 A3 Axq | T )

Then construct

fC = fe(x) -a11-asn - ax3-a34 - oy - Agx

fe since we need n—+r—s = 6 linear arguments. The linear argu-
ments of f are determined by putting in the selected arguments
and arguments from the bottom row and rightmost column cor-
responding to the rows and columns not containing a selected
argument. Then we set f}in] to be the sum of all such expressions:

M= Y

ocParlso(r,n)
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Remark: The intended interpretation of f7["] is the rth higher
order differential term

d" f(z)-ay- - -an

d(z,a1,... ,an) (z,a1,...,an)-(a1,a11,... ,a1p) - -(@r,ar1,. .. ;arn)

Properties: 7[”] IS additive, symmetric in its first » arguments.
(f + )i = gl 4 gl
If F is Cartesian left additive, Faa(F)(f") = (Faa(F) ()]

6: Faa(X) — Faa(Faa(X)) is a functor, and is natural (as a nat-
ural transformation).

(Faa,e 6) is a comonad on CLAdd.
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An example of the proofs:

Let's show that §(f)dé(g) = 6(fg):

For the most part (as seen in the sequence of equations on
the next slide) this involves expanding the definitions, followed
by several applications of additivity; only the last step requires
comment, as it involves a combinatorial argument.
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6(f)6(g)

> (0(f) x6(g))ryxm,

71,72

(=) (2

T1 XT2

=52
71,72 \ o/ gij;ai—>ﬁj ij
s o (£)
T1,72 o/ oy i
s o (£)
71,72 o'/ 045 ijEO’l
> > g%, f%,00)
71,72 0’,0¢j,ij€a’

> Y. (fx9)f = (f9)

om—mrcT,

+m—|o|
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The key combinatorial lemma is the equivalence of the following
data:

e Partitions 1 = (aq1,...,a), ™ = (B1,...,06;) and partial iso-
morphisms ¢":k — [ and o;;: o; — B; for (4,5) € o’

e Partial isomorphism o:n — m and partition of n +m — |o]|.

where n is the set partitioned by 71, m the set partitioned by 75,
and o is the union of the oy;.

We sketch the proof, with an example as illustration.
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We shall frequently identify an integer n with the set of integers
from 1 to n, unless otherwise stated. We shall represent a partial
isomorphim by listing the pairs (z,5) where ¢ — j.

Suppose we are given partitions 1 = (a1,...,ar), ™ = (B1,...,5))
and partial isomorphisms ¢’: k — [ and o;;: a; — 3, for (4,5) € o’

Consider the following example:

1 = ((1,3),(2,5),(4,6))

»=1((01,2,4),(3),(5)) (so k=1=23)

03— 3=1{(1,3),(3,1)} (so e.g. (2,2) is not in o)
c13:{1,3} — {5} = {(3,5)}

031 {4, 6} — {1, 2,4} — {(4,4), (6, 1)}

Thenn=6,m =5,|c| =3, and 0:6 — 5 ={(3,5),(4,4),(6,1)}

It remains to construct 7, a partition of an 8-element set.
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From m1 = (a1,...,a1), 7™ = (61,...,0;) we construct a set S
with n 4+ m — |o| elements, where n is the set partitioned by 71,

m the set partitioned by 75, and o is the union of the Tij-

S consists of pairs (z,y) € (nU{x}) x (mU {x}) as follows:
(z,y) € S if (z,y) € 045, (4,5) € o'

(z,%) € S if ¢ ¢ 0 (r10 = 15t components of elements of o)
(x,y) € S if y & mo0 (700 = 2"4 components of elements of o)

For our example, this gives
S =1{(3,5),(4,4),6,1),(1,%),(2,%),(5,%), (*,2),(,3)}.
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We partition S as follows (write a ~ b to mean a and b are in the
same set of the partition S):

it (xz,y),(@,y") € 0;5, then (x,y) ~ (z,y)

(this includes pairs containing *: if x ¢ 710, ¢ € ; (i.e. x "‘comes
from” o;;, but is not in its domain) then (z,x) is in this same
partition set, as is (*,y) for y € moo, y € B; (i.e. y “comes from”
o;; but is not in its codomain)

if 2,2’ € a; (sO x ~ 2’ in 77), then (z,*) ~ (2/, %)
if y,y' € B; (so y~y inm), then (x,y) ~ (x,y)
In our example, this gives the 4-fold partition of S

T =(((4,4),(6,1),(%,2)),((3,5), (1,%)), ((2,%), (5, %)), ((*,3)))

(This completes one direction of the equivalence)
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What’s going on?

The given partitions and partial isos amount to this selection
from a variable base:

( a1 ai12 aia4 a3 a1,5 \
a31 a32 a3za4 a3 3 a3,5
a1 a22 a4 a2 3 a2 5
as 1 as2 as4 as 3 as. 5

a’4,1 a’4,2 a’4,4 0,4 3 CL4 5
\ ag,1| 46,2 a6 4 ae.3 aeg.5 )

and it's clear that what both sets of data are defining is the
following term from the sums that define §(f)d(g) and 6(fg):

ga(x) - (f3(x) - asa - ag1 - ax2) - (f2(x) - azs - a1s) - (fo(z) - ass - asy) -
(f1(z) - a.3)
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The other direction:
Suppose we are given a partial isomorphism o:n — m and a
partition of n +m — |o]|.

We must construct partitions 1 = (aq1,...,a), 7™ = (61,--.,0)
and partial isomorphisms ¢’: k — [ and o;;: o; — 3; for (i,5) € o/,
of appropriate sizes.

Re-notate 7, so that it is a partition of the following set S,
containing the pairs (i,j) € o, (i,%) for : € n but € w10, (*,5) for
j € m but € noo.

Example: If 0:6 — 5 = {(3,5),(4,4),(6,1)}, and
T=1((1),(2,3),(4,5,8),(6,7)), then

S={(6,1)),(x,2),(*,3),(4,4),(3,5),(1,%),(2,%),(5,%)} and
™= (((6,1)), ((*,2),(%,3)),((4,4),(3,5),(5,%)), ((1,%),(2,%)))
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From the re-notated version of 7, it is easy to express 7 = 71 X
7> as a product of partitions: consider the first components
(ignoring xs) and the second components (ignoring *s). In our
example, this gives

T =((6),(4,3,5),(1,2)) x ((1),(2,3),(4,5))

(so k=1=3, and n =6, m = 5 as required)

We can also construct (from 7) two partial isos, by ignoring the
pairs with xS, and taking the remaining pairs from each partition.
Note that by this construction, o is the union of these partial isos,
as required.

In our example, we get {(6,1)} and {(4,4),(3,5)}, whose union
is the 0:6 — 5 ={(3,5),(4,4),(6,1)} we started with.
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Finally, we can construct ¢’: k — [ by pairing the positions in
71 and 7 (equivalently the pairs in 7) which correspond to the
partial isos above.

In our example this gives ¢’ = {(1,1),(2,3)} (since {(6,1)} as-
signs the first partition in 71 to the first partition in =, and
{(4,4),(3,5)} assigns the second partition in 71 to the third par-
tition in ™).

So o011 = {(6,1)} and o023 = {(4,4),(3,5)}. And this completes
the construction.
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What'’s going on?

This time we have the following selection from the variable base:

( ( 46,1 ) (%,2 a6,3> (%,4 a6,5> )

as,1 a42 @43 44,4| 945
a3 1 a3z a33 a3z 4 |Aa35
a’5,1 a’5,2 a’5,3 CL5’4 a,5’5

ai 1 a1 a13 a4 ais
\ \ a21 aro a3 a3 a5 )

and the common function term corresponding to this is
ga(zx) - (f1(x) -ae1) - (f2(x) - aso - as3) - (f3(x) - as4 - a35 - asy)-

(f2(z) - a1+ - aoy)
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Coalgebras

Suppose X, D: X — Faa(X) is a coalgebra (so eD = 1, DFaa(D) =
D¢). Since the bundle fibration is included in the Faa di Bruno
fibration, we know (BCS, TAC2009) D induces a differential
structure satisfying [CD.1]—-[CD.5]. But [CD.6], [CD.7] ... ?

On objects: Let D(X) = (Do(X), D1(X)); then
X =¢e(D(X)) = e(Do(X),D1(X)) = D1(X) so D1(X) = X.

Also
(DFaa(D))(X) = Faa(D)(D(X)) =
Faa(D)(Do(X), X) = ((Do(Do(X)), Do(X))(Do(X), X))
And
(D4)(X) = 6(Do(X), X) = ((Do(X), Do(X)), (Do(X), X))

so Dg(Dg(X)) = Do(X), i.e. Dg is an idempotent.

Call such a coalgebra in which Dg is the identity on objects a
standard coalgebra. Inside each coalgebra there always sits a
standard coalgebra determined by the objects with Dg(X) = X.
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On morphisms: Write D(f) = (f, f(1, £(2) . ). The coalgebra
equation for J tells us these are equal:

¥ f(l) f(2) f(3) f(4)

FaalD)PUN = | 1@ )Y@ (@)@ (1)@ (f@nE
K‘,0(4) (FAN@@) (£ (#GHA) (f(AHy@)

[+ b p(H? pHl bl )

F D(f)%” D(f)%f] D(f)[f’] D(f)?]
soiyy = | f@ byt pns b pps?t
@ b ppH? b ppHy ..
1@ p(Hl p(HB p(HB p(HIA

\

(which is enough to guarantee(!) [CD.6] & [CD.7])

31
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(Why?)
Since ()™ = (A,
(a2 oo () ()
= P (z) ay1-z1+ fM(x) a1
Setting a, 1 = 0 which yields [CD.6]:

(rHH ( " ) - ( 711 ) = D) -a1s

T

and setting a3 ;1 = 0 yields [CD.7]:

(FDYD ( 71 ) . ( 0 )
Zr Ay 1

= fP()- Qg1 " T1
= @) 2 Qs 1

EREING) ( x1 ) . ( 0 )
x 1
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So we have proved

Proposition Every standard coalgebra of the Faa di Bruno
comonad is a Cartesian differential category.

To prove the converse involves some calculations using the term
calculus of Cartesian differential categories. Here are some high-
lights.
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Higher order derivatives

1
Define dgx)t (s) -a= % (s)-a and
dd(n_l)t

dS;)t (s)-a1-...-apn = = <$d)a.:a1.m.an_1 (s) - an

Then

dt[:z:+s/y] (0) -a=4d ;(s)-a (z not freein s)

d<2>t (s)-a1-ap = d<2>t (s)-ap-a1 (x not free in ag,as)

d(n)t (s)-ay-...-apn= dg;) (s) - Qo(1) "+ " Go(n) (for any o € Sn.)

dd(dz)t(s)-al-...-:v

Yo} (n)
i n(s’)-a,f,«=ddzt(s)-al-...-ar-...-an

ddt (5) a (p) ! d(2)t ( [p//y]) a[p’/y] . (j_}y? (p/) .a/)
+4& ol /) - (2 0) -a)  (fory &)
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Corollary: In any cartesian differential category:

() o( F(s
d gd(;};f( ))(z)-al-.

A = (f *g)%al,...,an(2>

Furthermore

(m) x))-
d fn(fn—ld(x(f( )) >) (Z) cA1cm = (f]. * f2 ) ook fn)zz—?;llr"?am(’z)

In other words, the higher order derivatives connect with the Faa
di Bruno convolution in exactly the right way, ...
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and so (after some technical calculations!):

Theorem Cartesian differential categories are exactly standard
coalgebras of the Faa di Bruno comonad.
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