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1 TIMELINE

1 Timeline

e Pythagoras (570-495 BC)

e Fuclid (at Alexandria, 323-283 BC)
e Archimedes (287-212 BC)

e Oresme (1323-1382)

o Vidte (1540-1603)

e Newton (1642-1727)

e Jakob Bernoulli (1646-1716)
e Johann Bernoulli (1654-1705)
e Taylor (1685-1731)

o Euler (1707-1783)

e Lagrange (1736-1813)

e Laplace (1749-1827)

o Legendre (1752-1853)

e Fourier (1768-1830)

e Gauss (1777-1855)

o Cauchy (1789-1857)

e George Green (1793-1841)

e Olinde Rodrigue (1795-1851)
o Abel (1802-1829)
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e Dirichlet (1805-1899)

o Liouville (1809-1882)

e Ludwig Schlafli (1814-1895)
e Weierstrass (1815-1897)

o Riemann (1826-1866)

o Mittag-Leffler (1846-1927)
o Volterra (1860-1940)

o Baire (1874-1932)

e Lebesgue (1875-1941)

e Cech (1893-1960)
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2  What is a Euclidean space?

A Euclidean space is a separable real Hilbert space with

norm ||z|| = <z, x> 2 and orthonormal basis e;,
n
limy, oo || — kz_:l a; el =0

where a; = <z, e;>.

Note that aje;+- - -+aye, is the closest vector in span{es, . .., e,}
to = (in the metric ||y — z||). This is the (Euclidean!) theory
of best least-square fit.

Pthagorean theorem = Parsival’s equality
For orthonormal e;,

T aiel]]? = ¥ o
If © = X a;e; with e; only orthogonal,

lzll* = = (el a:)®
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3 Why 7?7

e A = mr? (Archimedes, 287-212 BC)
o V = mr? (Archimedes)

e Ellipse, A = mab
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Green’s theorem in the plane (George Green, 1828; Gauss,
1813; Lagrange, 1760)

Let C be a closed curve (not necessarily simple) bounding a
(not necessarily simply-connected) region R. For force field

(u(z,y),v(x,y)) with continuous first partial derivatives and
defined on and inside C,

8

For u =0, v ==z,

Area R = /C x dy
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Example E : §§+%§ =1

Parametrize OF by x = acosf, y =bsinf,0 < 6 < 2mw. Note
the use of the (Euclidean) Pthagorean theorem (sin* + cos* =

1). Then the area is
_ 2 L 2w 9
/aExdy— A acos@(bcos@d@)—a,bo cos*0 db

1+cos 260

5, S0 the area is

By Euler’s formula, cos?§ =

S R
ab[§9+13m29}3 = mab

Because of the definition of m (= 180°), more general OR are

parametrized by x = f(0), y = ¢g(0), 0 < 6 < 27, with area
2m -
o f0)g(0)do = H(O)[;

so it’s no surprise m appears.
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4 What is 7?7

e Archimedes: 2 places (inscribed, circumscribed 96-gon)
e Francois Viete (1540-1603): 9 places

e Mathematica (1980s):
NumberForm[N[7,500],500] produces

3.141592653589793238462643383279502884197169399375105820

97494459230781640628620899862803482534211706798214808651
32823066470938446095505822317253594081284811174502841027
01938521105559644622948954930381964428810975665933446128
47564823378678316527120190914564856692346034861045432664
82133936072602491412737245870066063155881748815209209628
29254091715364367892590360011330530548820466521384146951
94151160943305727036575959195309218611738193261179310511
85480744623799627495673518857527248912279381830119491298
33673362

o’ = arctanl = L—%+%—%-~.Thmcmwmg%sbww,
but it is the basis of the Rabinowitz-Wagon spigot algorithm
which is best implemented in a functional language such as

Haskell —see J. Gibbons, Monthly 113, 2006.

e Bailey, Borwein and Plouffe 1997:

S% 1 ( 4 2 1 1
ﬂ': P P J—
n+1 8n+4 88n+5>H &&n+6

n=0 16" )
Can generate mth base-16 digit without knowing earlier
digits.



4 WHAT IS n? 9

Newton’s approximation of

On the board we derive

V3 I 1
w:24(§+/04 22 (1 — )2 dx)

Newton had proved the “binomial theorem” to get the Taylor
expansion
1 1y 1 4 5 4, 7 4

— =T = =T — —

2 8 16 128 2506
883631595 o,

. — —x — o s e

238

Dol
I
—_
|
|
8
|
|
8

(1—x)

Multiplying through by 22 and taking antiderivatives to inte-
grate, all of which Newton had invented, note that

1 n—l—% 1
(i) T 9. 4n

so, taking the approximation above up to the % term computes

m o~ 3.1415926535897935

which is accurate to 15 places.



5 TAYLOR’S THEOREM AND THE IRRATIONALITY OF E 10

5 Taylor’s theorem and the irrationality of e

Taylor’s theorem Let zy # 21, a; be complex numbers such
that =%, an(z; — 20)* converges. Then f(z) = £, ax(z — 29)*
converges and is infinitely differentiable for all z with |z — 2| <
|21 — 20| Moreover, if 0 < s < |21 — 2| then, for |z — zo| < s,

(n+1)
n e JUTUE(R) w1
f(z) — P ap(z — z)" = (1) (z — 20)
for some |zg — £(2)] < |20 — z].
The a; are unique and satisfy
F M) (20)

k!
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Now apply this to f(z) = e* at zg = 0 which converges every-
where with partial sums
2 n
z z
Sn(z)=1+z+§+---+a
Now suppose e = § were rational and seek a contradiction. This

proof is due to Euler.

By Taylor’s Theorem, e — S,(1) = 2" for |z| < 1, soe—

. (n+1)!
Snll) < G

Now choose n > b with &5 < 1. Then e — 5,(1) < L. We
have

a 1 1 e’ 1
0 < 5_<1+§+”'+ ) < T < —

Now multiply through by n!:

an! 1 1
0 <M et
R T

Since no integer is strictly between 0 and 1, we have found a

n!

) <1

contradiction.
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6 Continuity

Karl Weierstrass (1815-1897)

Choose
1+ %ﬂ'
a

< b < 1, a an odd integer

and define W(x) = £, V¥ cos(ra*z).

e By the “Weierstrass M-test”, the series converges absolutely
and uniformly, so W is continuous.

e Differentiating term-by-term yields a divergent series, so W
has a continuous derivative nowhere.

e A more delicate proof shows W is differentiable nowhere.
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For b = 0.8, a = 9, the first three terms of W (x) are
cos(mx) + 0.8 cos(9mx) + 0.64 cos(81mx)

Here is a plot of this fragment on the interval [—m, 7]:

13
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2 1

o = ({0 <41

is differentiable, but f’ is not continuous at 0.

René Baire, thesis 1899

e In R, every countable intersection of open dense sets is
dense.

o If f: R — R is differentiable, {x : f’ is continuous at x}
is a countable intersection of open dense sets, hence is dense.

If f is differentiable on [a, b] is it true that /° f'(z) dz = f(b) —
f(a)?

e With Lebesgue integral, yes.
e (Volterra, 1860-1940). f’ may fail to be Riemann integrable.
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7 Baire spaces

A non-empty T'1 topological space is a Baire space if every
countable intersection of open dense sets is dense.

Well known theorems:

e A locally compact, Hausdorff space is Baire.

e A complete metric space is Baire.

But also, the irrationals are Baire. What is the general princi-
ple?
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A compactification of X is a dense subspace embedding
X — C with C' compact Hausdorft.

Thus, a compactification exists < X is completely regular,
Hausdorff < X is uniformizable (and separated).

In a space, a countable union of closed sets is said to be Fj,.

Theorem Given (completely regular, Hausdorff) X, there ex-
ists a compactification X — C' with C\X F, < for every
compactification X — C with C\ X Fy,.

We say X is Cech complete in that case.
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Examples

e A locally compact, Hausdorff space is Cech complete.
e The irrationals are Cech complete.
e R is Cech complete.

e (harder) A complete metric space is Cech complete.

Theorem (Cech 1937) A Cech complete space is Baire.
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Observation If X is a Baire space in which every non-empty
open set has a least two elements, every countable intersection of
open dense sets is uncountable. In particular, X is uncountable.

Corollary R is uncountable.
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8 Classical PDEs and complex analysis

Laplacian of u(zx,y, z,t)

- 0u N 0u N 0u
Ve = ox?  0y?> 022

. . _ &%
Wave equation: \yu = %5

Fourier heat equation for u(z,y, z,t) the temperature at

(x,y, z) at time t:
ou

U = —
VT
u(z,y,z) or u(x,y) is harmonic if syu = 0. This is the
heat equation at thermal equilibrium, and is also the Laplace
equation.
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For U an open subset of the complex plane C' and for f :
U — C' the following conditions are equivalent and we say f is
holomorphic on U if any, hence all, hold.

fletw) = 1) oyists
w

o f'(z) = limy—y
e Writing f = u + v, the Cauchy-Riemann equations

hold:
du v ou Ov

or Oy Oy  Ox
e For zy € U there exists > 0 with S,(z) C U and

f(z)= § ap (2 — 20)", 2 € Sp(%)

k=0

For holomorphic f = u(x,y) +iv(z,y), f'(2) = 34 +i 2.
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First properties of holomorphic functions

e Every holomorphic function is infinitely differentiable inside
any of its circles of convergence.

e As a real function U C R* — R?, because of the Cauchy-
Riemann equations, the Jacobian matrix is

g—;f —% _(r 0 cos) —sinb
g—; g—;f {07 sin® cost
where tan 6 = 22/%% and r? = (94)% + (24)%.
e T'wo functions holomorphic on an open set U, if they agree

on infinitely many points in a closed and bounded subset of
U, must agree everywhere in U.

e If u + 2 v is holomorphic, v and v are harmonic functions.
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Using complex line integrals to expand a holomor-
phic function

Let f(z) be holomorphic on and inside a closed curve C.

Cauchy’s theorem.

/Cf(z) dz =0

Cauchy’s integral formulas. For C a simple curve and z,

inside C,
1 f(2)
f(z0) = 271 /C z— 2 dz
(n) ~n! f(2)
f <Z0) 9 /C (Z _ Zo)n+1 dz

Thus, Taylor coefficients can be found by
f () 1 [ f(z)
“(

n! 21 ¢ (2 — zg)"t!
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9 From Legendre to wiggly polynomials

Our goal: To approximate a wiggly curve on an interval by a
polynomial.

The story begins with Legendre’s study of the gravational po-
tential V' between point mass at (a, b, ¢) and a solid with typ-
ical point (x,y, z) (see blackboard picture), V(z,y,2) = &

5
5:\/(x—a)2+(y—b)2+(z—c)2.

Indeed the gradient is given by
ov oV oV K (x—a) (y—10) (2—2c¢)

Wl a) - w5 5 o 5 )

By the law of cosines (Euclidean!), §° = o + p* — 2ap cos 0.
Define a = 7p so that
6% = p°1r? + p* — 21p*cos b
= p*(1 — 27cos 0 + 77)
Choose units with ' = p. Then
P 1

V = — =
) V1—271cosO + 12

Write x = cos 6, T = z € C' so that
1

V pr—
(,2) V1—2xz+ 22




9 FROM LEGENDRE TO WIGGLY POLYNOMIALS 24

(from previous slide)
1

V pr—
(,2) V1—2xz+ 22

Fix x. At this point, following the example of Newton and
Euler, Legendre used the binomial theorem to expand V (z, 2).
We do the same thing, in effect, but by virtue of regarding V'
as a holomorphic function in a radius about 0.

Thus V() expands as follows:
1
V1—2xz+ 22

P,(x) =

= Py(x) + Pi(x) 2+ Po(z) 22 + - -

1

1
dz
27Tz'/0 2L\ /1 — 202 + 22

Where the heck is this going?
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Schafli observed that if w = \/ 1—27 + ;12 + % then, on a large
circle E centered at x,

_ —1)"
omi /E 2” (w — x)nt! dw

s, if g(w) = (w? — 1)", we have
g(n)<x) _ L‘ <w2 —1)"
2m i E (w — )t
and we arrive at Rodrigue’s formula
1 d"
2" n! da™

dw = 2"n! P,(x)

P,(x) =

(@t = 1)

We thus learn that P,(x) is a polynomial of degree n. These
polynomials are called the Legendre polynomials.

Summary: V = 5 as a function of cos @ and £ expands as

nzzjo P,(cos0) <a>n
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Since deg(P,) = n, the P, are linearly independent in C'a, b].
Can we find [a, b] such that the P, are orthogonal? If so, one
suspects it would be an orthogonal basis for the Hilbert space
C'la, b] by the Stone-Weierstrass theorem, and this can be shown
rigorously.

Toward finding [a, b], differentiate!

y = (8 -1)"
y = 2nx (2 —1)"!

SO...

(2 = 1)y — 2nay = 0
(2 = 1)y —2x(n — 1)y +2ny = 0

(22 — 1)y 4 229 —p(n+1)y™ = 0

Thus the P, satisty Legendre’s differential equation

(1 —a®)P, —22P, +n(n+1)P, =0

n
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Multiplying the equations for P,, P, By P,,, P, and subtract-
Ing gives

% (1= 2%) (P,Pn—P,P) = (n(n+1) = m(m+1)P,P,
so that

1 — g2

n(n+1) —m(m+1)

(Pmpo;_qu@Pn) ;

a

/ab P,(x) P,(z)dr =

So we choose [a, b] = [~1, 1] since 1 — z* has roots 1, —1.

Thus for f € C[—1,1], f =2, a, P, (both mean and point-
wise convergence) where

<Lz 2k Py da

a,n:—: 1

| Pal]? 2n+1
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Facts about Legendre polynomials

_ 2n+1 n
.Pn+1 — n+1 xPn_n—H n—1

e P, has n distinct roots in [—1, 1].

e The kernel function for the nth partial sum Sy, (x) in the
Legendre series for f is K, (t,z) = si_y 225 Pu(t) Py(w),
so that 1

Spalx) = [ Kult,x) f(t) dt
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Let f(z) = & sin 10z

The degree-15 Taylor expansion of f about 0 is

2 3 4 5 9 6 4 7
So y Sat 4850 1650t | 90050 | 200030 _ 7934937

24 8 96 288 4032

14773;r;8+65251609x9+88250801x10__482539648%11__831516013312_F
64 290304 290304 31933440 322560

2897968414132 '3 4 5278393991807z!% 1631181003097
4981616640 34871316480 209227898830

The degree-15 Legendre approximant of f on [—1,1] is

0.00033828682209426086 + 1.249714795203168 = +
1.20272761705514 2 — 20.194127413740084 °

— 19.53972960572615 z* 4+ 93.59841403204769 x°

+ 91.15027962415643 25 — 195.51192014695948 z”
— 188.91521865333604 28 + 220.59378321239416
+201.2424491124213 210 — 143.95071152099672 21
— 109.83398669386563 x'2 4+ 52.66100043325236 x13
+ 24.614622828224174 x1* — 8.551179016273345 z1°
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The Taylor approximation is only good near 0:

The Legendre approximation is awesome. Plotted is the differ-
ence between the two functions.
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A Dirichlet problem

Find the steady state temperature u(p, @) (spherical coordi-
nates (p, 0, ¢)) on and inside the unit ball p = 1, assuming

independence of 8 and given the temperature on the surface.
Thus

vulp,¢) = 0
u(l,¢) = f()

[t turns out the solution is as follows and involves Legendre
polynomials.

Expand f(arccosxz) =32, ap Py(z) on [—1,1]. Then

0.6) = & st Plcosd
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10 The Basel problem

What is ¢(2) = 32, 157

Some background:

e Nicole Oresme (1323-1382): ¥ + diverges.

o [, = % + % +ee % is the maximum overhang distance of
n cards of length 2.

e Euler (1707-1783) v = lim(H,, — Inn) ~ 0.5772156....
e Abel (1828) showed ¥ 17— diverges.
e Mathematica: For S, = % + i + .4 512

— S100 = 1.6349...

— S10000 = 1.6448...

— Johann Bernoulli (1667-1748): lim S, < 2
— The true first four places are 1.6449.
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Fourier series

Cl—m,n] with < f,g >= /" f(z)g(x)dx is a real Hilbert
space with orthogonal basis

1, cosx, sinx, cos2x, sin2x, ...

so that continuous f : [—m, 7] — R has Fourier series
Qg o) )
f= ?—F 3 apcoskx + by sinkx
k=1

e The Fourier series of a differentiable function f converges
pointwise to f everywhere. This is not true for Taylor series!

e A. Kolmogorov (1903-1987): There exists an L' function
whose Fourier series does not converge pointwise anywhere.

e L. Carleson (1966): The Fourier series of an L* function f

converges pointwise to f almost everywhere.

e R. Hunt (1968): For 1 < p < oo, the Fourier series of an
LP function converges pointwise to f almost everywhere.
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To solve the Basel problem we look for f € C[—m,n| with
Fourier coefficients a constant multiple of

1 1 1
6117 6257 6357---

with the idea of applying Parsival’s equality.

with ¢, € {—1,1}

The simplest example f(z) = x does the job. As f(—z) =
—f(x) is odd, ax = 0, whereas

1 2
= — krdr = (—1)F=
7T/_W:I:cos rdr = )k:
On the other hand,

1 2
2 _ s 3
2doe = = = —
This gives
2 00 2
o= 2 (VA (=1t
3 =1 k

= k2 6
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11 Finding ( of an even positive integer

Euler solved the Basel problem at the beginning of his career
and toward the end found ¢(2n) = ¥3°, -3 in general.

His calculation, which uses the Bernoulli numbers, appears with
few changes in modern advanced texts.

The Bernoulli numbers B; may be defined through their

exponential generating function by
k
2z 0 2z
— B, =
er — 1 kz::() g k!

Properties of the Bernoulli numbers

e The B, are rational and B3, Bs, B7, ... = 0. The sequence
By alternates in sign. By = 1, By = —%, By = %, By =
1
—%7 « o e
e The numbers are named after Jakob Bernoulli who showed

1 m +1
1m—|—2m—|—-.-+<n—1)m = — ¥ (mk )Bknm—lﬁ—l

m—+ 1 r=o

e Kummer (1850): A prime p is regular if it does not divide

the numerator of any By, ..., B,_y. For regular p, 2 +y” =
2P has no integer solutions.



11 FINDING ¢ OF AN EVEN POSITIVE INTEGER 36

We began with the Fourier series of cos ax, a not an integer.
Since this is an even function, the sin kx coeflicients are zero.

Qg 0
cosar = — + Y. apcoskx
2 k=1
We have ! _
™ SIN QT
ay = — cosardr = 2
—T
7 T
and, for k > 0,
I
a, = — cos ax cos kx dx
T T

An antiderivative is
sin (z(k —a))  sin(x(k+ a))
2(k — «) " 2(k + «)
so that for k& > 0,

2a sinan (—1)F!
7T k? — a?

ap —
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So far:
sinan (1 oo (—1)FH!
cOS x = — 4+ 20 Y 12 5 cos kx
s o =1 k* — «
Letting x =,
CcOS T 1 00 Qo
cotamr = — = ——2) 55—
Sin om o =1 k% — «

But now, letting u = ax for 0 < u < 7 (so that « is never an
integer) we get

U2

(0. @)
ucotu = 1 —2 _—

Note: Expansions of this type result from what is called the
Mittag-Leffler expansion theorem; using Fourier series
is not the usual route.
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Here’s the idea: noting || < 1,

1l —ucotu 00 u? o u? 1
2 S EEr R T AR ()2
2
B ::1 /€2L7T2 nij()(/{?l;)%
o0 00 U
B nzzjl l{:ijl(k?ﬂ)%
- nijl%l{ijl(%yn
- £ mcen

a power series!

Thus to find {(2n) we seck another power series for u cot u and
equate coefficients.
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We know e = cosu + i sinu, e " = cosu — 1 stnu which

allows us to solve for sin u, cos u in terms of e, e . Recalling

the generating function defining the Bernoulli numbers, we get
e i (2iu)*

o0
ucotu = 1u— + — = 1+ B
e2iv — 1 2w _ ] kgg SN

Thus equating coefficients leads to the amazing formula

< 1 (2m)>
m) =3 — = (1" LB,
¢(2n) > (=1) 2(2n)1
Here are the first ten values:
a2 gt g0 58 il 691712

6 2 907 9457 94507 935557 6385128757

orld 3617710 43867718
18243225 325641566250 38970295430125

17461172V
1531329465290625
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What about ((2n + 1)?
1.08232 < ((3) < 1.64493
The exact value of ((3) = =32, % is unknown to this day!

That’s it!

40



