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Abstract 
The rapid advancements in manufacturing technologies and the growing need for a skilled 
workforce have emphasized the importance of innovative approaches to manufacturing training. 
Traditional methods often lack the flexibility to conduct virtual training and collaborative tasks 
in the event of disruptions (e.g., pandemics) as well as sensor tracking measures to study 
problem-solving. To address these challenges, this study develops a collaborative virtual learning 
factory to enhance the learning of manufacturing systems and analyze human-human teaming 
and human-machine interaction. The development of the virtual factory involves creating a 
virtual reality environment that simulates the physical assembly of car toys, replicating key 
manufacturing paradigms such as craft production, mass production, mass customization, and 
personalized production. The virtual factory offers an immersive and interactive virtual 
environment where learners can engage with manufacturing systems, gain hands-on experiences, 
collaborate with peers, and develop problem-solving skills. The virtual factory also incorporates 
collaborative features such as a voice system for facilitating communication among participants, 
team-wise performance requirements for proceeding towards subsequent manufacturing 
paradigms, and interdependency among participants in the production line. This allows 
participants to work together on manufacturing tasks which enhances teamwork and 
communication skills. A study was conducted with 30 participants who completed a series of 
assembly tasks to produce car toys in the virtual factory.  collaboration and 
interactions with the system were recorded, and both quantitative data including physiological 
signals (e.g., heart rate and electrodermal activity) and performance measures (e.g., perception of 
workload and system usability) were collected. Analyzing the data revealed that higher 
physiological synchrony among the members of a group indicates better performance in task 
execution, which emphasizes the importance of physiological alignment for team performance. 
A significant negative correlation (r = -.60, p < .05) was found between workload and system 
usability. The study has the potential to improve user experience by enhancing system usability 
and reducing user workload. 
 
Keywords: Virtual learning factory, manufacturing systems, sensing technology, teamwork, 
human-machine interaction 
 
 
 
 



 
 

1. Introduction 
The primary goal of any production system is to achieve an optimally configured and stable 
process at minimal cost. Achieving this goal requires years of experience or targeted research 
addressing critical factors, including flexibility, adaptability, and safety [1]. These requirements, 
combined with the complexities of designing and redesigning human-human teamwork and 
human-machine interaction, make the process increasingly error-prone [2]. Time-based 
simulations provide a safe virtual environment for testing and validation, simplifying these 
complexities. Additionally, simulation-based learning bridges the gap between different 
disciplines by offering practical insights into how decisions in such disciplines impact each other 
throughout product development, manufacturing, and market [3]. However, traditional 
simulations lack the immersive experience needed for end-users to fully engage with the system. 
 
Virtual reality (VR) bridges this gap by enabling highly immersive, interactive experiences, 
allowing users to engage with realistic, three-dimensional environments that improve learning 
and data retention beyond the constraints of the physical world [2, 4]. VR can enhance 
production processes by allowing designers to create virtual prototypes, test multiple design 
options, and identify issues before physical implementation, which saves them time and reduces 
cost [2]. Additionally, VR simulations help optimize workflows by identifying inefficiencies in 
material, equipment, and workforce allocation, ultimately increasing efficiency and minimizing 
waste. Moreover, VR supports both individual and team-based experiences to enhance 
collaboration in the virtual workspace. Teams

5] benefit from VR by 
enhancing interactions, cohesion, and performance [6, 7].  
 
Human-machine interaction (HMI) is critical for ensuring process safety, quality, and efficiency 
in automated and complex systems [8]. Additionally, system usability is crucial to better align 
the VR environment with user needs and industry requirements [9]. As automation advances, the 
human role shifts from a controller to a supervisor, necessitating effective interfaces for 
communication and decision-making. Well-designed HMI is essential for supporting operators 
and ensuring efficient operations in dynamic technical environments. 
 
To enhance operator performance and, consequently, overall system efficiency, it is essential to 
provide effective and interactive training [10, 11]. Therefore, this study develops a VR 
environment for human-centered production systems and seeks to answer the following research 
questions: 

1) Does physiological synchrony in virtual reality teams impact performance during human-
human collaboration?   

2) How does the human-machine interaction in VR-based manufacturing environments 
impact perceived task load and system usability?  

3) Does perceived system usability impact perceived workload?  



 
 

2. Relevant Literature 
VR offers a fully immersive environment that enables simulated learning experiences free from 
real-world distractions and better replicates collaborative scenarios and complex team 
interactions. Recent studies explored the use of VR in human-human team dynamics by 
integrating traditional frameworks and sensor-based measures to assess team efficiency and 
effectiveness, emphasizing factors like team composition, coordination, and prior VR experience 
[12]. On the other hand, a unified framework was proposed that integrates VR with human-robot 
simulations to enable human interaction with production equipment to address the challenges in 
designing flexible, adaptable, and safe human-robot workspaces [3]. By employing event-driven 
simulations, these frameworks support human-robot cycle time estimation, process planning, 
layout optimization, and robot control programming. 
 
A study demonstrated the use of VR technology to simulate digital factories and enhance 
production efficiency by employing simulation software [11]. It showed how VR enables 
intuitive interaction with factory equipment, facilitating real-time assessment of layout 
efficiency, material flow, and ergonomics. Results included reduced production time and 
increased overall productivity, illustrating VR potential as a decision-making tool to improve 
production processes in digital factory settings. While our study does not focus on factory 
optimization, such works demonstrate the broader applicability of VR-enhanced collaboration 
and interaction, reinforcing the practical relevance of our virtual learning environment. A case 
study of a Simulation-Based Training (SBT) system was designed to train manufacturing 
operators, focusing on steel plant operations [13]. A hybrid simulation approach combining 
virtual process models with physical ones and human-machine interfaces to replicate real-time 
plant dynamics and operator interactions.  It demonstrated the potential for enhancing safety and 
failure prevention and providing a lifelike and effective training experience, i.e., learning 
effectiveness in a virtual factory setting, which is the focus of the current study. An experimental 
framework was proposed for formalizing collaboration in virtual environments through VR-
powered metaverses [14]. A VR system was developed by incorporating digital twins and avatar 
models, advanced interfaces, and an online multi-user system. It was tested in a metaverse-based 
smart factory, and the usability metrics provide insights into real-time user interaction and 
teamwork dynamics, key aspects of our research. An adaptive simulation method for human-
robot collaboration in production engineering using VR was proposed [15], supporting our 
research on how VR facilitates human-machine coordination and teamwork. Leveraging gaming 
industry software and open-source approaches, it addresses VR limitations in industrial tools and 
enables realistic, immersive experiences with advanced hardware. A Unity-based prototype 
demonstrates feasibility, with future work focusing on formal validation through controlled 
studies. An immersive and interactive cyber-physical system framework was proposed using VR 
to enhance human-machine-autonomy collaboration in smart manufacturing [16]. Application of 
the framework augmented human skills via autonomy and deploying virtual human tasks to 
robots for automated programming. It showed its effectiveness in improving productivity and 



 
 

collaboration, reinforcing its role in enhancing human capabilities, a key aspect of our research 
on team performance in a VR factory. 
 
3. Theoretical Framework 
The proposed study aims to explore human-human teaming and human-machine interactions 
within a collaborative virtual reality environment, designed to enhance manufacturing training. 
Figure 1 represents the Conjecture Map [17] of this study. The high-level conjecture centers on 
investigating how these interactions impact task performance and collaboration in the VR 
environment. The design conjecture focuses on the immersive nature of the VR environment, 
which integrates manufacturing paradigms and collaborative features like voice communication 
and team-based performance requirements to promote teamwork. Theoretical conjectures 
examine the role of physiological synchrony in predicting team performance and the influence of 
human-machine interactions on cognitive load and system usability. This research aims to 
provide insights into optimizing operator training, enhancing team collaboration, and improving 
system efficiency in virtual environments. 
 

 
Figure 1. Conjecture map of the research in this study. 

 
4. The Virtual Learning Factory 
The virtual factory demonstrates the evolution of manufacturing paradigms, beginning with 
early-stage craft production and followed by mass production, mass customization, lean 
manufacturing, and personalized production. There are separate production rooms for each of the 
paradigms. Figure 2 shows an angled top view of the virtual factory. Additionally, there is a 
tutorial room with two workstations where participants can practice basic manufacturing tasks 



 
 

and become familiar with the VR environment. There is also a storage room in which the 
completed products are stored. Figure 3 shows the factory hub.  
 

 
 

Figure 2. A top view of the virtual factory. 
 

 
 

Figure 3. Part of the hub of the production rooms in the virtual factory. 
 

The virtual factory was developed in Unity engine, with multiplayer designed using Photon. 
Participants can order, build, and package toy cars. The environment is compatible with different 
headsets, see Figure 4. A user does not need to physically walk around, since the physical space 
around the user can be limited. By using the controllers, a user can teleport (move instantly) to 
any location in the room. Every user is represented with a virtual character in a black body suit. 
However, a diverse set of characters is envisioned to be created in the future, along with the 
ability for each user to choose their virtual character. As a user works through the simulation, the 

The 
eye-tracking data is used to model attention and metacognitive processes.  
 



 
 

 
 

Figure 4. HTC Vive VR headset (left) and the Oculus Rift headset (right). 
 
Tutorial Room: Once participants enter the virtual factory, they start with the tutorial room, see 
Figure 5, where they get introduced to the virtual factory with audio instructions on how to 
interact with the virtual manufacturing system and the different tasks such as ordering, picking 
up/dropping, and connecting pieces for the car toy.  
 

 
 

Figure 5. Tutorial room in the virtual factory. 
 

After finishing the tasks in the tutorial room, participants press a button to start the move to the 
other factory rooms. The tutorial room has a set of instructions and includes two workstations, 
see Figure 6, each with a designated conveyor belt, assembly table, and trash bin. Workstations 
feature a selection board with 27 different options available in eight colors. At each station, users 
interact with a virtual screen displaying various plastic bricks. Selection is performed by pointing 
at a piece using the controller. Once selected, the chosen parts move on the conveyor belt to the 
workstation, allowing users to assemble them as needed. Unused components can be discarded in 
the trash bin
button, and the workstations provide real-time feedback on the price and weight of the assembled 
build, ensuring that participants meet the required specifications.  
 



 
 

 
 

Figure 6. Workstation in the tutorial room in the virtual factory. 
 

Storage Room: In the storage room, completed products (car toys) can be displayed, see Figure 
7. There is a robot in the storage room capable of using generative AI to guide the users on the 
assembly tasks.  
 

 
 

Figure 7. Storage room in the virtual factory. 
 
Craft Production Room: From the VR factory hub, participants can enter the craft production 
room and see four workstations, as shown in Figure 8. Each workstation has its own set of 
requirements (see Figure 9) for the toy car (e.g., color, size, tire type, price, and weight). At each 
station, the participant is presented with a screen of different parts to choose from. The 
participant then selects the parts and builds the car toy. 



 
 

 
 

Figure 8. Craft production room in the virtual factory. 
 

 
 

Figure 9. Craft production room workstation. 
 

Mass Production Room: The mass production room follows the post-industrial revolution 
traditional layout of an assembly line, see Figure 10. The room has four workstations, each 
connected by a conveyor belt to move parts between the stations. At each station, a user is tasked 
with assembling different parts of the car toy, moving from tires to base, side walls, and roof, 
before passing the subassembly off to the next station. Two available car options can be 
produced, see Figure 11. In the first station, a user is tasked with assembling the base of the car. 
In the second station, a user is tasked with assembling the sides of the car. In the third station, a 
user is tasked with putting the windshield, roof, and steering wheel on. Finally, the last station is 
tasked with adding the axles and wheels before moving the car toy to the inspection station, 
where the price and weight of the car toy are checked. Unlike craft production, mass production 
has a limited number of car toy designs. Further, requirements for completion are much stricter, 
as pieces must be the right color and located in the correct place.   
 



 
 

 
 

Figure 10. Mass production room in the virtual factory. 
 

 
 

Figure 11. Mass production workstation in the virtual factory. 
 

Mass Customization room: The mass customization room produces a variety of car toys that 
satisfy specific customer requirements, and at the same time maintains the assembly production 
system to ensure high production volume. Unlike mass production, mass customization offers the 
customers a variety of design options to choose from. The mass customization room includes 
four workstations, each connected by a conveyor belt to move pieces between the stations (see 
Figure 12). At each station, a user is tasked with assembling different parts of the car according 
to customer requirements. In workstation 1 (see Figure 13), participants perform the axle 

the wheel, axles, and flats. Wheels are of various types  
large, hard, or soft. In workstation 2, participants perform the frame and chassis  task 
in which they assemble flats of different sizes to prepare the frame and then assemble the frame 
with axles to prepare the chassis. In workstation 3, hood and fender  assembly, the 
windshield , and then attach them to the axle/frame assembly and the steering wheel. 



 
 

In workstation 4, the roof is prepared. There are a variety of colors of the roof to choose from 
based on customer requirements. Finally, the roof is attached to the body sub-assembly received 
from workstation 3. Once the car is completed, it is moved to the inspection station to determine 
the price and weight. 
 

 
 

Figure 12. Mass customization room in the virtual factory. 
 

 
 

 

Figure 13. Workstation in the mass customization room in the virtual factory. 
 
Lean Production Room: In the lean production room, teams will have 20 minutes for Kaizen. 
Areas for improvement include reducing work in progress and waste by physically limiting 
storage space, balancing line build activities based on takt time, creating visual guides to avoid 
common mistakes, and combining or reducing positions or stations to improve organization.  The 
lean manufacturing room is shown in Figure 14. 
 



 
 

 
 

Figure 14. Lean production room in the virtual factory. 
 

Personalized Production Room: The personalized production room produces a high variety of 
products that fit specific customer needs. Unlike the mass customization paradigm, where 
customers only select from lists of available options, personalized production involves customers 
in the design of products they want to buy. The product design has two phases. The initial phase 
is driven by strategic decisions made by the manufacturer to fit their facilities and strengths. In 
this phase, the product architecture and module interfaces are designed. In our personalized 
production room, initial design options are a car with a windshield, a car without a windshield, a 
sports convertible, or a pick-up truck. Basic modules include a hood and 
fender assembly roof assembly
select their preferred product features, the final tailored design takes place in the personalized 
design phase, in which a flexible and reconfigurable manufacturing system is utilized, as shown 
in Figure 15.  
 

 
 

Figure 15. Personalized production room in the virtual factory. 
 



 
 

5. Methods  
Participants: 30 students (8 females and 22 males) with ages between 21 and 33 years old (mean 
= 23.17 years, SD = 2.83 years) participated in the study (see Figure 16a). Participants were 
engineering students with no or varied levels of prior VR experience (see Figure 16b). The study 
was approved by the University of Louisville  Institutional Review Board (IRB) #22.1089. 
Participants worked in the virtual factory in groups of three. Participants were provided with a 
brief introduction about the study, the VR environment, the use of VR headsets and controllers, 
the eye tracker, and wearable sensors. Participants read and signed an informed consent form and 
filled out the demographic survey and pre-experiment surveys. 
 

a) b)      

Figure 16. a) Age distribution of participants and b) distribution of VR familiarity levels. 
 
Procedure: In this study, along with eye tracking data, participants , such as 
electrodermal activity (EDA) and heart rate, were collected using an Empatica Embrace Plus 
watch. Participants started experiencing the virtual factory by walking through the tutorial room. 
After spending 10 minutes in the tutorial room, they moved to the craft production room and 
occupied three different workstations where they assembled the car toys. First, users selected the 
required pieces and then moved to the corresponding assembly stations to prepare the toy car. 
The users then determined the price and weight by pressing the finish assembly button. After 
spending around 45 minutes in the craft production room, participants completed post-
experiment surveys such as NASA Task Load Index (TLX) and System Usability Score (SUS). 
 

Data Collection: The physiological data recorded via the Empatica watches was collected from 
the Care Lab portal. Videos were also recorded from the virtual factory for each participant's 
activities. NASA TLX, a 6-question standardized survey with a rating of low to high, was used 
to determine the perceived task load. Each question asks for a rating of a different aspect of 
perceived task load, including mental demand, physical demand, temporal demand, performance, 
effort, and frustration level [18]. SUS, used for system usability assessment, is a 10-question 
standardized survey with a Likert scale of 0 to 4, Disagree

Agree  [19].  



 
 

6. Results and Analysis 
 
6.1 Human-Human Teaming 
This study investigated the correlation between team physiological synchrony and team 
performance. Analyzing the recorded videos, various team performance measures were 
documented, such as the number of parts assembled correctly. Team physiological synchrony 
was assessed utilizing EDA and heart rate data. Dynamic Time Warping (DTW) of EDA and 
heart rate was calculated. DTW measures the similarity between two temporal sequences, even if 
they differ in speed, length, or timing. It was found that EDA_DTW and HR_DTW were 
negatively correlated with the average number of parts assembled correctly by the groups (see 
Figures 17 and 18, respectively). The correlation values are rs = -0.75 (p = .01) and rs = -0.63 (p 
= .05), respectively where rs represents Spearman s Rho. This indicates that the more synchrony 
in the EDA and/or HR among the members of a group, the better their performance in 
assembling correct pieces. However, this does not necessarily imply that synchronization causes 
improved performance. Instead, it is possible that well-coordinated and high-performing teams 
naturally exhibit greater physiological alignment due to shared cognitive and emotional states, 
such as mutual engagement, focus, or stress regulation. 

 

 
 

Figure 17. Correlation between Team EDA_DTW and No. of Parts Assembled Correctly. 
 



 
 

 
 

Figure 18. Correlation between Team HR_DTW and No. Of Parts Assembled Correctly. 
 
6.2 Human-Machine Interaction 
Workload Perception: As their perception of the different loads varies, scores for 
the NASA TLX categories were weighted to account for individual preference [16]. This was 
done by pairwise comparison of the sources of load where participants were asked to select one 
source of load from each pair. The participant responses to the NASA TLX questionnaire were 
analyzed as follows (1) calculating the average score for each of the sources of load, (2) 
calculating the overall weights for each of the sources of load, (3) calculating the weighted score 
for each of the sources of load by multiplying the average rating by the overall weight of the 
corresponding source of load and then dividing the product by the sum of the weights, and (4) 
calculating the load sources' share of the overall workload which sums up to 100%. The average 
NASA TLX score was 60.76, indicating the workload was moderate. 
 

System Usability: The SUS score is calculated between 0 and 100. The average SUS score was 
53.75, indicating a relatively low system usability. Some users may have found the system 
challenging to navigate, especially if they had limited prior VR experience. Also, latency in 
interactions and object interaction mechanics may require refinement to enhance intuitiveness. 
 
The NASA TLX and SUS scores were found to be negatively correlated (r = -.60, p < .05), as 
presented in Figure 19. This means that by enhancing system usability, user task load can be 
reduced, thereby improving user experience.  
 



 
 

 
 

Figure 19. Correlation between NASA TLX and SUS scores. 
 

7. Conclusions and Future Work 
This study highlighted the transformative potential of VR in manufacturing by developing an 
immersive and interactive platform for training and collaboration. The integration of human-
human teaming and human-machine within the virtual factory allows participants to engage with 
key manufacturing paradigms. Though the system usability score is relatively low, it provided 
insights into the possible reasons impacting  perception of the system. To improve 
usability and enhance user experience, future refinements should focus on optimizing the user 
interface design for better intuitiveness and enhancing VR interactions by reducing latency and 
improving object manipulation. Providing comprehensive onboarding and training can minimize 
the learning curve. Finally, conducting iterative user testing can help to refine task design and 
system responsiveness. 
 
The findings underscore the importance of VR-embedded task engagement and physiological 
synchrony, such as alignment in stress responses, in improving group performance during 
assembly tasks, or vice versa. Future studies could manipulate synchronization by varying stress 
levels, task complexity, or team composition to analyze the impact on performance. Furthermore, 
temporal trends can be analyzed to determine whether synchronization precedes or results from 
high performance. This can be compared with subjective measures of team cohesion to explore 
underlying mechanisms.  
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