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A B S T R A C T

In contemporary educational settings, understanding and assessing student engagement through non-verbal cues, 
especially facial expressions, is pivotal. Such cues have long informed educators about students’ cognitive and 
emotional states, assisting them in tailoring their teaching methods. However, the rise of online learning plat-
forms and advanced technologies such as virtual reality (VR) challenge the conventional modes of gauging 
student engagement, especially when certain facial features become obscured or are entirely absent. This 
research explores the potential of Convolutional Neural Networks (CNNs), specifically a custom-trained model 
adapted from the ResNet50 architecture, in recognizing and distinguishing subtle facial expressions in real-time, 
such as neutrality, boredom, happiness, and confusion. The novelty of our approach is twofold: First, we optimize 
the power of CNNs to analyze facial expressions in digital learning platforms. Second, we innovate for the context 
of VR by focusing on the lower half of the face to tackle occlusion challenges posed by wearing VR headsets. 
Through comprehensive experimentation, we compare our model’s performance with the default ResNet50 
model and evaluate it against full-face and VR-occluded face datasets. Ultimately, our endeavor aims to provide 
educators with a sophisticated tool for real-time evaluation of student engagement in technologically advanced 
learning environments, subsequently enriching the teaching and learning experience.

1. Introduction

Over the years, educational methodologies have evolved from 
traditional chalkboard-based instruction to technologically advanced 
learning environments. Amidst these transformations, comprehending 
student engagement continues to be a paramount concern for educators. 
Past research indicated a correlation between student engagement and 
academic performance. (Chukwuemeka et al., 2022).

In classrooms where both students and teachers are physically pre-
sent, teachers have had various ways to assess the students’ engagement. 
One of the traditional methods has been through observing non-verbal 
cues, especially facial expressions. Teachers have long relied on these 
cues as indicators of student’s cognitive and emotional states (Ekman & 
Friesen, 1971). Students’ faces give teachers a lot of information which 
helps them adjust their teaching methods depending on how students 
react to the material being taught. However, with the rise of online 
education, this direct observation is often limited or non-existent, 
especially when students choose to keep their cameras off or face con-
nectivity issues (Sitzmann et al., 2006).

Two expressions often encountered by teachers, “boredom” and 
“neutrality,” can be challenging to distinguish but are crucial for 

effective teaching (D’Mello et al., 2012; Kunter et al., 2008). While the 
former may indicate disengagement, the latter could suggest calm 
attentiveness. Our work focuses on the limitation posed by missing facial 
cues in virtual education settings. We employ Convolutional Neural 
Networks (CNNs), leveraging the ResNet50 architecture (He et al., 
2016), to accurately analyze facial expressions such as neutrality and 
boredom without starting from scratch.

In the era of technological advancements, virtual reality (VR) has the 
potential to reshape many aspects of our everyday lives. Both educa-
tional technologists and pedagogical theorists are currently exploring 
how VR can create captivating and effective learning environments. 
Over time, VR has transformed from an entertainment and gaming 
concept into a tool with wide ranging implications across industries such 
as healthcare, manufacturing, and notably education (Zhao et al., 2019). 
With VR, learners can now engage with 3D environments where abstract 
concepts can be brought to life. Imagine a biology student walking 
through the system of the body, or a history student freely wandering 
around an ancient civilization while interacting with its culture. This 
feeling of being present in these worlds could potentially revolutionize 
how we engage in education by making it an experiential and successful 
process. While researchers have studied the impacts of VR in fields such 
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as engineering, gaming and medicine, its effectiveness in educational 
settings is still ongoing research.

As we envision the future, we expand our research to explore the 
integration of VR in educational settings, such as a virtual classroom 
where all students join through wearing a VR headset. VR integration in 
education is tantalizing and growing in popularity because it provides 
immersive teaching and learning experiences. However, it also presents 
challenges such as barriers, potential health effects and difficulties with 
analyzing expressions due to obstructions caused by VR headsets 
(Radianti et al., 2020). Therefore, this research does not only focus on 
highlighting the benefits, but also addresses the obstacle of occlusion 
when analyzing users’ facial expressions (Fig. 1). To address this issue, 
our CNN model has been cleverly designed to focus on the visible half of 
the face — the lower half. This adaptation ensures that our 
custom-trained model remains practical and relevant for analyzing 
facial expressions in these advanced immersive environments.

Our research covers the model’s architecture, development, experi-
ments, and results. We aim to offer educators a tool for real-time facial 
expression analysis during lectures, providing reports without storing 
student images, ensuring privacy (De la Cruz, 2022).

2. Related literature

Keeping track of student’s reactions, emotions and engagements on 
online learning platforms can be quite challenging. It deprives teachers 
of the real time feedback mechanism that allows them to adapt their 
teaching strategies on the spot, potentially creating a disconnect be-
tween instruction and student’s needs. There have been efforts to 
address these limitations by using artificial intelligence and machine 
learning algorithms to analyze how engaged students are in classrooms 
(D’Mello & Graesser, 2015). These technologies are still in development, 
as they cannot fully replicate the depth of human understanding that 
comes from direct observation.

While it is well documented that online learning environments have 
limitations, especially when it comes to supporting nuanced verbal cues, 
it is important to recognize that virtual classrooms cause more than just 
negative effects on education. For example, Ally (2004) mentioned the 
flexibility and accessibility provided by virtual platforms can often 
outweigh the advantages of classrooms, particularly in situations where 
geographic or physical limitations pose challenges to conventional 
learning. Yildirim et al. (2020) delved into the perspectives of 
pre-service teachers regarding the incorporation of VR as a resource. 
Both pre-service teachers and school-based teacher educators acknowl-
edge the value of VR in teacher training curricula (Cooper et al., 2019).

Recently, VR has been used as a tool in games - serious games, for the 

purpose of improving the educational experience for students. Zhao 
et al. (2020) focused on developing a VR game specifically designed for 
manufacturing education. They aim to explore the potential of VR 
technology in improving manufacturing education by creating an 
interactive learning experience. Furthermore, they evaluate its effec-
tiveness based on user feedback and assessment of learning outcomes. 
The research shed light on how the VR game affects students learning 
experience and knowledge retention, in manufacturing education.

Traditional face to face classrooms has benefited from the nuanced 
interaction of signals and expressions between teachers and students. 
For instance, when a teacher notices confusion or disengagement among 
students through their expressions, they may take it as a sign to pause, 
revisit complex concepts, directly ask if further clarification is needed or 
provide examples. Disregarding these cues could lead to a learning 
environment where students either mentally disengage or go through 
heightened levels of anxiety and frustration, which could potentially 
affect students’ grades at the end of a session.

VR-based classrooms also impact student engagement and motiva-
tion, resulting in increased interest and active participation in science 
lessons. Kasapakis et al. (2023) delved into the benefits of incorporating 
VR technology into education specifically focusing on the impact of 
realistic nonverbal cues on the overall learning experience. As a result, 
they recommended that educators and designers consider incorporating 
these cues into VR based educational experiences to optimize learning 
outcomes. Similarly, Liu et al. (2020) focused on investigating the 
impact of a VR based classroom on students’ performance in science 
lessons. To conduct their experiment, they divided students into two 
groups: one receiving classroom instruction, while the other experi-
encing instruction within a VR based classroom. The outcome of their 
work shows that students in a virtual classroom perform better than 
those who received instructions in physical education class.

Researchers have examined the relationship between facial expres-
sions displayed by users in VR and their emotional states. One study 
found that emotions expressed by a virtual face were recognized in a 
comparable way as emotions expressed by natural facial expressions 
(Dyck et al., 2008). Dubovi (2023) showed that in a virtual learning 
environment, emotions could be detected through facial expressions. 
For instance, joy was found to be the predominant emotion during vir-
tual learning, but personality traits and emotion regulation strategies 
also influenced the expressions of negative emotions such as anger and 
sadness. Furthermore, a data-driven approach using interactive VR 
games and collected multimodal measures (self-reports, physiological 
and facial signals) from participants was used to better understand 
emotions’ underlying processes (Somarathna & Mohammadi, 2024). 
The results showed the role of different components in emotion differ-
entiation, with the model including all components demonstrating the 
most significant contribution. These findings have implications for using 
VR environments in emotion research and highlight the role of physio-
logical signals in emotion recognition within such environments. Mar-
ín-Morales et al. (2020) presented a systematic review of the emotion 
recognition research undertaken with physiological and behavioral 
measures as elicitation devices and showed that emotions, such as 
arousal, anxiety, stress, and fear, could be measured in VR. A system 
designed to track and mirror facial expressions in VR users found that it 
could accurately reconstruct high-fidelity facial expressions and provide 
insights into the user’s emotional states (Lou et al., 2019).

Half-face facial recognition in the context of VR is an ongoing chal-
lenging task due to the occlusion caused by wearing a VR headset. Mills 
and Cleary (2022) employed deep learning techniques and RGBD im-
agery of participants wearing VR headsets with obscured faces to 
analyze emotions. They compared this group with a control group 
composed of obscured faces. They developed a custom model for emo-
tions and occluded faces recognition. Additionally, another research 
(Houshmand & Khan, 2020) focuses on recognizing expressions despite 
occlusion caused by VR headsets. In their work, they used a transfer 
learning method. They started by using pre-trained networks, such as 

Fig. 1. A person wearing a VR headset (Meta Quest Pro), showing occlusion in 
the upper half of the face. This is generally the case for any currently available 
VR headsets in the market.
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VGG and ResNet, which were then fine-tuned using facial expression 
recognition datasets, such as FER+ and RAF DB. They had a better result 
with their model compared to the default benchmark datasets.

The effectiveness of ResNet50 in facial recognition was explored in a 
study by Patel et al. (2019), highlighting its robustness in various 
challenging environments. The researchers utilized ResNet50 to train on 
a dataset consisting of thousands of images captured under lighting 
conditions, angles and expressions. By comparing it with other CNN 
architectures, they found that ResNet50 demonstrated performance in 
terms of both speed and accuracy, making it an excellent choice for their 
facial recognition tasks. Similarly, Nyarko et al. (2022) carried out a 
comprehensive analysis by comparing ResNet50, AlexNet and 
Inception-V3 architectures on masked face recognition. Their work 
highlighted ResNet50’s superiority over other deep learning architec-
tures in terms of both accuracy and computational efficiency. However, 
while the potential of ResNet50 in facial recognition is evident, chal-
lenges persist. Hwang et al. (2023) study shed light on potential vul-
nerabilities in ResNet50-based facial recognition systems, emphasizing 
the need for adversarial training to bolster security.

3. Research methodology

3.1. Data collection: the cornerstone of machine learning

In machine learning, especially for applications as nuanced and 
complex as facial recognition, data serves as the foundational layer upon 
which the entire architecture is built. Recognizing the intricate nature of 
facial expressions and the challenges they present in educational set-
tings, we collected data from two different sources: a public dataset 
called AffectNet and a dataset that was captured by our research team to 
mimic a VR-based classroom setting.

3.2. AffectNet dataset

AffectNet is a large-scale, publicly available dataset specifically 
designed for facial expression recognition in the wild, meaning the im-
ages are not confined to controlled environments but reflect real-world 
conditions. It contains over one million facial images collected from the 
Internet, annotated for eleven different facial expressions: happiness, 
sadness, surprise, neutral, etc. (Fig. 2) The strengths of using AffectNet 
as a source include its large sample size and diversity, encompassing 
different ages, genders, and ethnicities, thereby making the model more 
generalizable. However, it is important to note that while AffectNet 
provides a broad scope, it may not be specifically tailored for educa-
tional settings, especially VR-based educational settings. For example, 
the boredom expression which is important for our study is missing in 
the AffectNet dataset. We have therefore collected a second dataset.

3.3. Custom dataset and its collection

To address the limitations of the AffectNet dataset and to make our 
model more attuned to the specificities of a VR-based educational 
environment, a second dataset was captured by our research team.

3.3.1. User study design and accessibility
We designed user study materials as video presentations with clear 

instructions. The video utilized text-to-speech instructions generated 
through lovo.ai, directing participants on the required facial expres-
sions. To cater to those with hearing impairments, subtitles were added 
using the “VideoProc Vlogger” software. Each expression was timed for 
5 s, introduced by a countdown. To facilitate natural and authentic facial 
expressions, specific background visuals and music tracks were chosen 
for each expression type. For example, a cheerful background coupled 
with the lively tune was used to elicit the happiness expression. 
Conversely, a plain, dull background along with sleep-inducing music 
was selected to evoke expressions of boredom, which ensured genuine 
expressions and an engaging user experience.

Participants for our study were students from the Computer Science 
department at our institution, contacted through a dedicated mailing 
list. The recruitment email introduced the study’s objectives, an e-pos-
ter, participation incentives, and expectations. Our inclusive approach 
invited a diverse demographic, and we recruited 30 participants, offer-
ing a broad dataset for our facial expression model. We asked partici-
pants to self-report demographical information. Among our participants, 
the average age is 26.9. 16 participants identified as male, 12 identified 
as female, 1 identified as non-binary, and 1 was undisclosed. Ethnically, 
2 identified as East Asian, 6 identified as Black, 8 identified as South 
Asian, 12 identified as West Asian (Middle Eastern), and 2 identified as 
Latino.

3.3.2. User study setup
We configured a lab space to meet the requirements of the study, 

focusing on both technical and comfort aspects. A computer played the 
instructional video, while a Nikon camera captured the facial expres-
sions. The setup focused on recording detailed expressions vital for 
training our machine learning models. We ensured participants knew 
they could opt out anytime, adhering to ethical standards. Each partic-
ipant was recorded individually, focusing on four facial expression 
classes: Neutral, Boredom, Confusion, and Happiness.

3.3.3. Data processing: from videos to useable data
We gathered data in video format, capturing all four facial expres-

sions per participant, resulting in 30 comprehensive videos. These were 
subsequently divided according to expression classes, totaling 120 
videos. They were recorded at 23.98 fps but were down-sampled to 15 
fps to reduce computational strain. After converting these videos into 

Fig. 2. Sample images from the AffectNet dataset, showing different emotions: neutral, happiness, and boredom, respectively.
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image frames, we reviewed and discarded unsuitable frames where the 
images were blurry, resulting in 9000 useable frames.

We utilized the “dlib” Python library, a facial landmark detector 
identifying 68 key face coordinates (x, y) (Fig. 3). This pre-trained model 
is highly accurate in pinpointing features such as eyes, nose, and mouth.

3.4. Processing for full face recognition and facial occlusion

To target only facial regions, we cropped bounding boxes around 
each face, specifically, we set the x-axis to 20 and the y-axis to 25 
extracting the full face akin to passport-sized photos. This dataset serves 
as the foundation for our full-face recognition model, emphasizing facial 
expressions by removing unrelated data.

Considering the relevance of VR in education, our research focuses 
on expressions when the upper face is obscured by a VR headset. Thus, 
we processed data to highlight the lower face, the area visible even when 
a VR headset is worn. Using different cropping parameters “x-axis at 3 
and the y-axis at 15”, we emphasized this lower region for our occlusion- 
specific model. Conclusively, all cropped images, both full and occluded 
half-face, were resized to 244x244 pixels, ensuring they fit the param-
eters required by our training model.

3.5. Custom-trained ResNet50

In our quest to build a specialized deep learning model capable of 
distinguishing between nuanced facial expressions, particularly in the 
context of online education and VR classrooms, we opted for a custom- 
trained ResNet50 architecture. ResNet50, a convolutional neural 
network with 50 layers, has been proven to perform exceptionally well 
in image classification tasks. However, to better suit the specificities of 
our study, certain modifications were imperative.

Efficiency and reproducibility are two pillars of any scientific 
research. Towards that, several key parameters were set before training 
the model. After experimenting with different batch sizes, we found that 
a batch size of 16 yielded the best results in terms of accuracy and 
computational efficiency. All our models were trained for 100 epochs. 
This number was found to be sufficient for the model to converge 
without overfitting. Setting the random seed for both NumPy and Ten-
sorFlow to 42 ensures that the experiments are reproducible.

3.5.1. Model architecture: ResNet50 base
For the feature extraction part of our model, we leveraged the pre- 

trained ResNet50 architecture. The input shape is set to accommodate 
64x64 images with 3 color channels (RGB). We excluded the fully con-
nected layers at the end of the pre-trained model to adapt the model for 
our custom classification layer. The model used pre-trained weights 

from the ImageNet database for quicker and more effective training.

3.5.2. Layer freezing and unfreezing strategy
In transfer learning, it is often beneficial to freeze the weights of the 

pre-trained model during the initial phase of training. This ensures that 
the useful features captured by the pre-trained model are not distorted. 
We froze all layers except for the last one. This approach was taken to 
avoid overfitting, which becomes more likely as more layers are un-
frozen and fine-tuned.

The ResNet50 architecture, inherently comprising multiple residual 
blocks, was further fine-tuned. Specifically, we unfroze the layers in 
blocks 4 and 5 for training, while keeping the preceding layers frozen. 
This localized training enabled the model to learn higher-level features 
pertinent to our specific use-case, without altering the generic feature- 
maps learned initially. This method focused training on the deeper 
layers responsible for higher-level feature extraction, offering the dual 
benefits of time-efficiency and specialized learning. Fig. 4 shows the 
entirety of our custom-trained ResNet50 architecture.

The challenge of overfitting—where the model performs exceedingly 
well on training data but poorly on unseen data—needed addressing. To 
mitigate overfitting, dropout layers were strategically placed in our 
neural network, following both the base ResNet50 model and the sub-
sequent dense layer. In each dropout layer, a percentage of the layer’s 
input units are randomly set to zero during training, which helps to 
prevent any single neuron from becoming overly specialized. Specif-
ically, we used a dropout rate of 0.5 following the base model and 0.6 
after the dense layer. These rates were determined experimentally to 
maximize model generalization without significantly compromising 
training accuracy.

Additionally, L2 regularization was applied to the dense layers in the 
model. Regularization techniques such as L2 are commonly employed to 
constrain the optimization process, discouraging the learning algorithm 
from fitting the training data too closely. L2 regularization adds a pen-
alty term to the loss function based on the magnitude of the layer 
weights. In our case, we used a regularization factor of 0.3, which was 
empirically found to be effective in reducing overfit.

4. Experimental results

Evaluation metrics are crucial for assessing the performance of ma-
chine learning models, particularly in classification tasks where the 
prediction of categories or classes is involved. These metrics provide a 
quantitative basis for comparing models, understanding their strengths 
and weaknesses, and guiding the improvement of algorithms.

Our experiments can be broadly categorized into two segments. The 
first segment is dedicated to the training of different neural networks on 

Fig. 3. Facial feature identification from the dlib Python library, showing full face and lower-half face identifications. Image adapted from Sagonas et al. (2013).
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datasets. Following the training process, we saved the learned weights of 
each model for use in the second segment, which focuses on prediction 
tasks using the model unseen datasets. The four sets of experiments are 
summarized in Table 1.

4.1. Experiment 1: comparative analysis of ResNet50, VGG19, and 
MobileNet

The goal of this experiment is to determine the effective neural 
network architecture for transfer learning in our facial recognition 
research. We chose common image classification architectures for 
comparisons based on recent works (Jahnavi et al., 2023; Mascarenhas 
& Agarwal, 2021; Ikechukwu et al., 2021; Mohapatra et al., 2021). 
Although there are performance statistics for ResNet50 (He et al., 2016), 
VGG19, which is an updated architecture of VGG (Simonyan & Zisser-
man, 2015), and MobileNet (Howard et al., 2017), these existing metrics 
are general and do not accurately represent how these models perform in 
the specific scenario of emotion detection in VR-occluded faces. Hence, 
we conducted this comparative analysis. Tables 2 and 3 show the results.

ResNet50: We chose ResNet50 because of its depth and the presence 
of residual connections, which have been proven to aid in solving the 
vanishing/exploding gradient problem in deep networks. Additionally, 
ResNet50 is widely adopted in the research community.

VGG19: We selected VGG19 based on its reputation for performance 
in image classification tasks and its straightforward architecture, which 
makes it easier to understand and modify.

MobileNet: We included it in our experiment because it serves as the 
architecture for Google Teachable Machine (Carney et al., 2020). This 
architecture is specifically designed to be lightweight and efficient, 
making it highly suitable for real time applications or situations where 
computational resources are limited.

All three networks were trained using our dataset consisting of four 
classes: “Neutral”, “Boredom”, “Confusion”, and “Happiness.” We con-
ducted the trainings over 100 epochs to ensure that the model reached a 
level of convergence. We also extended our experiment to account for 
the occluded "half-face" scenario, simulating the conditions under which 
a portion of the face is obscured when a student is wearing a VR headset.

The results indicated a clear preference for the ResNet50 architecture 

Fig. 4. Block diagram of the proposed custom-trained ResNet50 architecture.
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in terms of both accuracy and generalization when applied to our 
dataset. This was consistent across both the full-face and occluded half- 
face conditions. This justifies our choice in using ResNet50 as the base 
architecture for our customization.

4.2. Experiment 2: effectiveness when testing on a different dataset

In the second experiment, we aimed to evaluate the generalizability 
and adaptability of our custom ResNet50 model by training it on an 
online dataset and test its effectiveness with our own dataset, which is a 
different dataset that more closely resembles a VR classroom setting. 
This would be similar to real-life use cases of teachers utilizing such a 
system in virtual classrooms where the model was pre-trained on a 
different dataset. We contrasted this with the performance of the default 
ResNet50 model. This was conducted to test the robustness of our 
custom-trained model in working with new, unseen data. Tables 4 and 5
show the results.

We trained both the default ResNet50 and our custom-trained 
version on the AffectNet dataset. Then we used these trained models 

to make predictions on our own dataset. The performance metrics show 
that our custom-trained ResNet50 model performed better than the 
default ResNet50 model in making accurate predictions on our 
specialized dataset. This highlights the versatility and generalizability of 
our custom-trained model when faced with new data.

4.3. Experiment 3: default ResNet50 vs custom-trained ResNet50

Our third experiment aimed to evaluate the performance of our 
custom model using our specialized dataset. This was similar to Exper-
iment 2, but in this case, we partitioned our specialized dataset into a 
training set, a validation set, and prediction set, focusing on both full- 
face and occluded half-face images. The models were then trained, 
validated, and predicted using these sets. Tables 6 and 7 show the re-
sults. Our custom-trained model again outperformed the default 
ResNet50 model, irrespective of the full face or half face context.

4.4. Experiment 4: binary classification experiments involving boredom

The fourth experiment aimed to test the discriminatory power of our 
custom-trained model, specifically in differentiating “Boredom” from 
other expressions such as “Neutral,” “Happiness,” and “Confusion.” This 
is of particular interest as the expression for “Boredom” often closely 
resembles “Neutral,” making it a challenging task. We configured the 
models to perform binary classifications. We set up three separate sce-
narios: Boredom vs Neutral, Boredom vs Happiness, and Boredom vs 
Confusion. The experiment was conducted using both full-face and 
occluded half-face datasets. Tables 8 and 9 show the results. The result 
of this experiment provided intriguing insights. Not only did our custom 
model manage to effectively differentiate “Boredom” from other 

Table 1 
Summary of our four experiments.

Experiments Model 
Comparison

Dataset Used Facial 
Expression 
Classes

Dataset for 
Comparison

Experiment 
1

Default 
ResNet vs. 
VGG19 vs. 
MobileNet

Our 
specialized 
dataset 
(training and 
prediction)

Neutral, 
Boredom, 
Confusion & 
Happiness

Full Face 
and Half 
Face

Experiment 
2

Default 
ResNet50 vs 
Custom- 
ResNet50

AffectNet 
(training) +
Our 
specialized 
dataset 
(prediction)

Neutral, 
Boredom & 
Happiness

Full Face 
and Half 
Face

Experiment 
3

Default 
ResNet50 vs 
Custom- 
ResNet50

Our 
specialized 
dataset 
(training and 
prediction)

Neutral, 
Boredom, 
Confusion & 
Happiness

Full Face 
and Half 
Face

Experiment 
4

Custom- 
ResNet50

Our 
specialized 
dataset 
(training and 
prediction)

Boredom vs 
Happy 
Boredom vs 
Neutral 
Boredom vs 
Confusion.

Full Face 
and Half 
Face

Table 2 
Experiment 1 training results. (Full face = F, half face = H).

Model Accuracy Precision Recall F1 Score

ResNet50 F: 0.7986 F: 0.6646 F: 0.3821 F: 0.4879
H: 0.8059 H: 0.6807 H: 0.4211 H: 0.5160

VGG19 F: 0.7573 F: 0.5301 F: 0.2582 F: 0.3428
H: 0.7638 H: 0.5530 H: 0.2871 H: 0.3730

MobileNet F: 0.7796 F: 0.6066 F: 0.3364 F: 0.4287
H: 0.7921 H: 0.6415 H: 0.3821 H: 0.4760

Table 3 
Experiment 1 prediction results.

Model Precision Recall F1 Score

ResNet50 F: 0.5370 F: 0.5332 F: 0.5294
H: 0.4845 H: 0.4579 H: 0.4619

VGG19 F: 0.3030 F: 0.2972 F: 0.2870
H: 0.3836 H: 0.3752 H: 0.3753

MobileNet F: 0.2719 F: 0.2455 F: 0.2130
H: 0.3545 H: 0.3032 H: 0.2385

Table 4 
Experiment 2 training results. (Full face = F, half face = H).

Model Accuracy Precision Recall F1 Score

Default ResNet50 F: 0.7543 F: 0.6678 F: 0.5231 F: 0.5823
H: 0.7159 H: 0.5971 H: 0.4537 H: 0.5117

Custom-trained ResNet50 F: 0.8041 F: 0.7574 F: 0.6063 F: 0.6739
H: 0.8045 H: 0.7604 H: 0.6037 H: 0.6716

Table 5 
Experiment 2 prediction results.

Model Data Class Precision Recall F1 Score

Default ResNet50 Boredom F: 0.43 F: 0.46 F: 0.44
H: 0.44 H: 0.58 H: 0.50

Neutral F: 0.39 F: 0.51 F: 0.44
H: 0.47 H: 0.59 H: 0.52

Happiness F: 0.69 F: 0.43 F: 0.53
H: 0.88 H: 0.36 H: 0.51

Average F: 0.5033 F: 0.4666 F: 0.47
H: 0.5948 H: 0.511 H: 0.5113

Custom-trained ResNet50 Boredom F: 0.61 F: 0.46 F: 0.52
H: 0.49 H: 0.61 H: 0.54

Neutral F: 0.66 F: 0.72 F: 0.69
H: 0.46 H: 0.45 H: 0.46

Happiness F: 0.76 F: 0.82 F: 0.79
H: 0.76 H: 0.60 H: 0.67

Average F: 0.6766 F: 0.6666 F: 0.6666
H: 0.57 H: 0.5533 H: 0.5566

Table 6 
Experiment 3 training results. (Full face = F, half face = H).

Model Accuracy Precision Recall F1 Score

Default ResNet50 F: 0.7986 F: 0.6646 F: 0.3821 F: 0.4879
H: 0.8059 H: 0.6807 H: 0.4211 H: 0.5160

Custom-trained ResNet50 F: 0.8496 F: 0.7717 F: 0.5661 F: 0.6502
H: 0.9111 H: 0.8946 H: 0.7304 H: 0.8033
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expressions, but it also achieved a reasonable level of accuracy across 
both full-face and occluded half-face conditions.

4.5. Performance of the models in prediction time

A critical aspect of evaluating the efficacy of different Convolutional 
Neural Network models was not only their accuracy in emotion recog-
nition but also the performance of their prediction processes. The 
effectiveness of the ResNet50, VGG19, and MobileNet models in this 
research was evaluated based on their total prediction time when given 
our entire custom dataset. Table 10 presents a comparative overview of 
each model’s prediction time, reflecting their capacity to process and 
analyze facial expressions. Each model was given our custom-captured 
dataset of 9000 useable frames. This measure directly impacts the 
feasibility of integrating the models into VR environments where im-
mediate feedback and interaction are paramount. While MobileNet had 

the least prediction time (as it was designed to be simple and fast), the 
performance of ResNet50 still provided real-time capabilities of per- 
frame prediction necessary for such a system in a virtual classroom 
setting.

4.6. Discussions

The importance of any research lies in its ability to systematically 
address and provide insights into the questions that form its foundation. 
In this section, we delve into an analysis of the experimental results and 
provide a link between the framework of our research and its practical 
implications, ensuring a coherent narrative flow, from identifying 
problems to exploring potential solutions.

This research provides a detailed comparative analysis of ResNet50 
with VGG19 and MobileNet, focusing on their performance in facial 
recognition in VR classroom settings. From our experiments, ResNet50 
exhibited superior performance in terms of accuracy and generalization 
when applied to both full-face and VR-occluded face datasets. This 
outcome highlights that while VGG19 and MobileNet have their own 
merits, ResNet50’s architecture, particularly its depth and residual 
connections, makes it more suitable for the complexities involved in VR- 
based emotion recognition.

Our work also explored the effectiveness of a customized training 
approach to CNN adapted from the ResNet50 architecture in recognizing 
and differentiating subtle facial expressions, such as neutrality, 
boredom, happiness, and confusion, in VR classroom settings. This 
effectiveness is evident in Sections 4.2 and 4.3, where our model out-
performed the default ResNet50 model in accuracy and adaptability in 
both full-face and occluded scenarios. In Section 4.4, we also demon-
strated how we were able to test our customized training approach 
model alongside boredom and other expressions such as neutrality, 
happiness, and confusion, yielding decent results. Our approach to 
modifying the ResNet50 model, specifically targeting the lower half of 
the face to address occlusion challenges, appears to be a key factor in its 
success.

The limitations of current emotion recognition technologies in VR 
environments in this research revolve around occlusion challenges and 
data diversity, including the absence of boredom facial expressions, 
which were missing in previous studies. Boredom is one of the essential 
facial expressions in educational settings. Our custom-trained model 
addresses these challenges by focusing on the lower half of the face, 
which remains visible even with a VR headset occlusion. Occlusion 
caused by VR headsets significantly affects the accuracy of facial 
expression recognition. This research incorporated techniques that 
improved recognition performance for the visible portions of the face by 
focusing on the lower half of the face and employed data augmentation 
strategies to simulate what a VR classroom setting would look like.

5. Conclusion

Understanding student engagement through non-verbal cues such as 
facial expressions is crucial in contemporary educational settings. With 
the advent of online learning and VR technologies, conventional 
methods of gauging these cues are being tested, as facial features can be 
obscured or completely absent when students participate remotely 
wearing VR headsets. This research presents a novel approach 
leveraging a custom-trained CNN model adapted from the ResNet50 
architecture for recognizing subtle facial expressions when students are 
learning using VR technology. Our custom-trained model uniquely ad-
dresses two key challenges: the capability to analyze facial expressions 
in digital platforms and the ability to focus on the lower half of the face, 
overcoming the occlusion issues presented by VR headsets. Our exper-
iments examined the identification of emotions such as boredom, 
happiness, and confusion, all central to an educational setting. We aim 
to empower educators with the means to evaluate student engagement 
in real-time in modern, technologically advanced learning 

Table 7 
Experiment 3 prediction results.

Model Data Class Precision Recall F1 Score

Default ResNet50 Boredom F: 0.45 F: 0.61 F: 0.52
H: 0.50 H: 0.51 H: 0.51

Confusion F: 0.47 F: 0.37 F: 0.41
H: 0.33 H: 0.50 H: 0.40

Neutral F: 0.56 F: 0.46 F: 0.51
H: 0.48 H: 0.34 H: 0.40

Happiness F: 0.66 F: 0.69 F: 0.68
H: 0.62 H: 0.49 H: 0.55

Average F: 0.5370 F: 0.5332 F: 0.5294
H: 0.4845 H: 0.4579 H: 0.4619

Custom-trained ResNet50 Boredom F: 0.71 F: 0.51 F: 0.59
H: 0.58 H: 0.61 H: 0.60

Confusion F: 0.74 F: 0.70 F: 0.72
H: 0.45 H: 0.57 H: 0.50

Neutral F: 0.63 F: 0.82 F: 0.71
H: 0.75 H: 0.64 H: 0.69

Happiness F: 0.80 F: 0.85 F: 0.82
H: 0.77 H: 0.65 H: 0.70

Average F: 0.7224 F: 0.7177 F: 0.7125
H: 0.6379 H: 0.6145 H: 0.6217

Table 8 
Experiment 4 training results. (Full face = F, half face = H).

Data Classes Accuracy Precision Recall F1 Score

Boredom vs Neutral F: 0.9036 F: 0.9007 F: 0.9071 F: 0.9012
H: 0.8654 H: 0.8654 H: 0.8729 H: 0.8646

Boredom vs Happiness F: 0.9614 F: 0.9641 F: 0.9586 F: 0.9577
H: 0.9621 H: 0.9723 H: 0.9514 H: 0.9603

Boredom vs Confusion F: 0.8407 F: 0.8383 F: 0.8443 F: 0.8368
H: 0.8600 H: 0.8510 H: 0.8729 H: 0.8598

Table 9 
Experiment 4 prediction results.

Data Class Precision Recall F1 Score

Boredom vs Neutral F: 0.6596 F: 0.653 F: 0.6493
H: 0.6442 H: 0.641 H: 0.6389

Boredom vs Happiness F: 0.8432 F: 0.8380 F: 0.8373
H: 0.8102 H: 0.8085 H: 0.8082

Boredom vs Confusion F: 0.6471 F: 0.647 F: 0.6468
H: 0.6373 H: 0.63 H: 0.6249

Table 10 
Total prediction time results.

Models ResNet50 VGG19 MobileNet

Total Prediction Time 2321 s 2296 s 652 s
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environments, thus enriching both teaching and learning experiences. 
As the field of education undergoes the transition from traditional to 
digital methodologies, our model stands as a beacon, exemplifying how 
technology can seamlessly bridge this gap. As educational technology 
continues to adapt and evolve, we remain optimistic that such techno-
logical advancements will pave the way for richer, more insightful, and 
inclusive learning experiences for all.

5.1. Applications in future VR classrooms

The advent of VR in educational settings has opened new vistas for 
immersive and interactive learning experiences. The integration of 
emotion recognition technologies, particularly the custom ResNet50 
model developed in this research, holds significant potential in revolu-
tionizing these virtual learning spaces. Our model can be seamlessly 
integrated into a future VR classroom, enhancing the teaching-learning 
dynamic through real-time emotional feedback or post-class facial 
expression analysis.

In a future VR classroom, each student, equipped with a VR headset, 
is immersed in a 3D educational environment, alongside their instructor. 
The students and their instructor can be physically sitting at any location 
on the planet, but they see each other’s virtual avatars in a virtual 
classroom, sitting together. Integrated within each VR headset is a 
compact camera system, discreetly positioned to capture the students’ 
facial expressions without causing any discomfort or distraction. As the 
lesson progresses, our model embedded within the classroom’s educa-
tional software analyzes the facial expressions of each student in real- 
time or captures their facial expressions for post-class analysis. By 
focusing on the lower half of the face, the model overcomes the occlu-
sion challenge posed by the VR headsets. It identifies subtle expressions 
indicative of emotions such as confusion, boredom, neutrality, and 
happiness.

When done in real-time, the model’s output is relayed to the in-
structor’s VR interface, where a dashboard displays an aggregated 
emotional overview of the class. This immediate feedback allows the 
instructor to adjust the pace, content, and delivery of the lesson 
dynamically. For instance, if a significant number of students show signs 
of confusion or boredom, the instructor can introduce interactive ele-
ments, revisit complex topics, or initiate a Q&A session. When the 
analysis is done post-class, the system captures students’ facial expres-
sions for subsequent analysis, which the instructor can access after class. 
The resulting report provide a comprehensive view of each student’s 
emotional responses in summary format. This data then enables the 
instructor to pinpoint moments during the class when a notable increase 
in boredom or disengagement occurred, and therefore able to adjust the 
teaching plan in the future.

This integration of emotion recognition technology cultivates an 
empathetic educational environment. Students, aware that their 
emotional feedback is valued and acted upon, feel more connected and 
engaged. Instructors, equipped with insights into their students’ 
emotional states, can foster a more inclusive and responsive learning 
atmosphere. The envisioned application of the custom model in VR 
classrooms paves the way for a new era in digital education. This 
technology, with its potential to understand and respond to students’ 
emotional states, can significantly enhance the effectiveness of VR-based 
learning.

Our system has several limitations, particularly its emphasis on 
specific facial expressions. Additionally, our training dataset was 
collected under controlled lighting conditions, which may not reflect 
real-world scenarios. Future research should broaden the scope of facial 
expression analysis to encompass various environmental factors, such as 
fluctuating lighting conditions and changing distances between the 
camera and the user, although the latter can be mitigated with head- 
mounted cameras. Furthermore, the social dimension is crucial for 
comprehending the emotional dynamics of human beings 
(Marín-Morales et al., 2020), necessitating an examination of the effects 

of social interactions in VR settings on emotional states.
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