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Abstract

Playing two-player games using reinforcement learning and
self-play can be challenging due to the complexity of two-
player environments and the possible instability in the train-
ing process. We propose that a reinforcement learning algo-
rithm can train more efficiently and achieve improved per-
formance in a two-player game if it leverages the knowledge
from the single-player version of the same game. This study
examines the proposed idea in ten different Atari 2600 en-
vironments using the Atari 2600 RAM as the input state.
We discuss the advantages of using transfer learning from a
single-player training process over training in a two-player
setting from scratch, and demonstrate our results in a few
measures such as training time and average total reward. We
also discuss a method of calculating RAM complexity and its
relationship to performance.

Introduction
In recent years, the advancement of artificial intelligence
(AI) research in deep neural networks and reinforcement
learning (RL) has shown prominent results in playing differ-
ent video games, especially games in Atari 2600 (referred
to as Atari in the rest of this paper). The first deep Q net-
work (DQN) was evaluated on seven Atari environments
(Mnih et al. 2013). RL has been used in single-player and
multiplayer games. Despite the achievements, deep RL algo-
rithms have been shown to be extensively sample-inefficient,
especially when using high-dimensional input data (Yarats
et al. 2021). DQN on Atari using images takes millions of
steps to learn to play a game (Mnih et al. 2013).

Alongside the general complexity of mapping observa-
tions to a singular reward, more problems can arise when
using self-play. When training a multi-player game, a tech-
nique called self-play can be employed, where the agent
plays against or in collaboration with a generation of itself.
An example of this can be seen in AlphaGo Zero, which is
an evolution of AlphaGo, an AI system that was able to de-
feat a human champion in the board game Go (Silver et al.
2017). Using self-play in multi-player environments can be
challenging due to the environment being non-stationary. In
other words, in a self-play setting, the opponent can be as-
sumed to be a part of the environment. As the policy of the
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opponent changes, the environment becomes non-stationary
and an action’s effects may depend on the actions of other
agents (Chakraborty and Stone 2014). This could hurt the
possibility of convergence of self-play in a multi-player en-
vironment (Hammar and Stadler 2020).

Transfer learning or knowledge transfer is a technique
in which the knowledge gained from a different domain is
transferred to the target domain to help the process of learn-
ing (Zhuang et al. 2020). Transfer learning has been used ex-
tensively in RL. Examples include the use of transfer learn-
ing for gaining the ability to generalize between multiple
environments (Parisotto, Ba, and Salakhutdinov 2016) and
solving multi-task problems (Rusu et al. 2016). Particularly,
a specific use of transfer learning is in curriculum learning
(Da Silva and Costa 2019), where the complex final task is
learned faster by breaking the task into simpler tasks in the
same domain. In our case, we have a similar goal, starting
from a simpler single-player environment and moving to a
more complex one where two agents have to play together.
However, the specific use of single-player version of a game
to train the two-player version of the same game has not
been explored by other studies and it is not clear whether
that would introduce an advantage in the process of learn-
ing.

Our research questions are: 1. Can knowledge learned
from a simpler single-agent Atari environment be trans-
ferred to the corresponding two-player environment of the
same game, enabling an agent to outperform one trained ex-
clusively in the two-player environment? 2. Is there a re-
lationship between the utilization of the Atari RAM and
the performance of the transferred agent? Could we use the
complexity of RAM utilization to predict transferred agent
performance? In this work:

1. We show that leveraging knowledge transfer from a
single-player Atari environment can have advantages
over training from scratch in a two-player environment.

2. We propose a method of quantifying the complexity of
the Atari RAM state for a particular game, along with a
visualization of such complexity.

3. We discuss how RAM complexity is correlated with the
performance of the transferred agent and can be used as
a weak predictor.



Related Works
Transfer Learning and RL
Transfer learning refers to using knowledge gained from one
or multiple source domains to improve a learner in a target
domain. Transfer learning strategies are applied to both tra-
ditional machine learning techniques and deep neural net-
works. Using transfer learning could result in more efficient
training and better performance, since the source domain(s)
has already useful features that could be leveraged for the
new task (Zhuang et al. 2020).

Reinforcement learning is a subfield of machine learn-
ing in which an agent aims to maximize the cumulative
reward while interacting with its environment (Sutton and
Barto 2018). Utility values for states or Q values for state-
action pairs are updated through trial and error. RL can be
used to train agents that play games such as chess, poker,
or Go at levels that surpasses the capabilities of the human
players or is comparable to the best of them. (Silver et al.
2016). A DQN uses a deep neural network to approximate
the Q values and is able to handle complex learning environ-
ments such as those found in video games by using the entire
screen of pixels as inputs (Justesen et al. 2019). The use of
DQN and its successors have allowed researchers to tackle a
vast set of video games, from first-person shooters to sports
games (Justesen et al. 2019). Deep RL approaches, how-
ever, are not without drawbacks: among them, interpretabil-
ity (Eberhardinger, Maucher, and Maghsudi 2023; Sieusahai
and Guzdial 2021) and long training time.

Combining transfer learning and RL allows for quicker
learning and learning more complex problems (Braylan and
Miikkulainen 2016). This concept has been applied to a
relational regression algorithm used to learn a generalized
Q-function (Ramon, Driessens, and Croonenborghs 2007).
More recently, Gamrian and Goldberg (2019) show that
transfer knowledge between slightly modified RL environ-
ments can be improved using Generative Adversarial Net-
works (GANs) with imitation learning. Anwar and Ray-
chowdhury (2020) demonstrate the effectiveness of transfer
learning in deep RL for autonomous navigation in the Un-
real game engine. Pleines et al. (2022) propose sim-to-sim
transfer, transferring knowledge learned in a limited Unity
engine implementation of Rocket League to the full game,
showing that knowledge quickly learned in a simplified en-
vironment can be useful in a more complex environment.
Balla and Perez-Liebana (2022) present research on the ef-
fectiveness of pre-training Successor Features in transferring
their knowledge to new target tasks without further training.
The survey by Muller-Brockhausen et al. (2021) discusses
the difficulty of transfer learning in generalizing to differ-
ent problem variations and the need for a united benchmark
to test transfer learning in RL. This is an ongoing challenge
requiring further studies.

Multi-Agent Environments
A multi-agent environment refers to a setting where multiple
autonomous agents learn to interact with each other and the
environment simultaneously. This framework is often used
to model complex, dynamic systems with multiple decision-

makers such as multiplayer games. In a multi-agent envi-
ronment, each agent has its own goals and learning process.
They may cooperate, compete, or do both, depending on the
situation (Tampuu et al. 2017). Their actions affect not only
their own future state but also those of the other agents, cre-
ating a complex, intertwined learning problem.

There are many different approaches in multi-agent envi-
ronments. Boeda (2021) proposes planning using Goal Ori-
ented Action Planner to facilitate cooperation among mul-
tiple agents. Lei and Zhang (2017) study cooperative game
theory with a service composition method.

One common method for training agents in multi-agent
environments is RL. Multi-Agent RL (MARL) extends RL
to multi-agent settings, where multiple agents learn to op-
timize their behaviors while interacting with each other.
Chakraborty and Stone (2014) examine convergence to Nash
equilibrium and targeted-optimality in learning. Booth and
Booth (2019) present Marathon Environments, a suite of
continuous control benchmarks for multi-agent RL in the
Unity game engine. Ferreira et al. (2022) propose a frame-
work for developing multi-agent cooperative game envi-
ronments to facilitate the process and improve agent per-
formance during RL. MARL has also been examined in
StarCraft (Khan, Ahmed, and Sukthankar 2022), where
a transformer-based joint action-value mixing network is
shown to be superior to other benchmarks.

Won, Gopinath, and Hodgins (2021) present a learning
framework that generates control policies for physically
simulated athletes in two-player games, boxing and fenc-
ing. The framework uses a two-step approach for learning
basic skills and learning bout-level strategies. The authors
develop a policy model based on an encoder-decoder struc-
ture that incorporates an autoregressive latent variable and a
mixture-of-experts decoder. The pre-trained model with ba-
sic skills is transferred over and trained on the two-player
environment.

In our work, we explore the use of knowledge transfer
from a single-agent environment to its corresponding multi-
agent environment, sidestepping the complications from
training directly in a multi-agent environment. Training in
a single-agent environment has several potential advantages
over a multi-agent environment, mainly due to its stablil-
ity and efficiency. Single-agent environments are often more
stable and predictable because there is no other learning
entity to introduce non-stationarity. In multi-agent settings,
each agent’s policy is changing as it learns, which can lead
to a constantly shifting environment that is challenging to
learn from. Training can be more computationally efficient
in single-agent settings. Each additional agent in a multi-
agent setting increases the complexity of the state and action
spaces, which can slow down learning.

We deploy the concept of self-play in our empirical study.
Self-play in RL is defined to be a method of deploying an
algorithm against copies of itself to learn and test in various
stochastic learning environments. Self-play has been well-
tested in many applications. AlphaGo Zero and AlphaZero
(Silver et al. 2018) famously use self-play to achieve su-
perhuman performance in chess, shogi, and Go. Self-play
has also seen success in fighting game AI (Takano et al.



2019), “Big 2”, a four-player game of imperfect informa-
tion (Charlesworth 2019), among others. Liu et al. (2021)
introduce a critic into the policy gradient method to form a
self-play actor-critic method for training agents and demon-
strate its success in a few simple environments.

The Atari Environments
In our empirical study, we have chosen ten different Atari
environments provided by Gymnasium (single player) (Tow-
ers et al. 2024) and PettingZoo (two players) (Terry et al.
2021). Both of these libraries use the Arcade Learning En-
vironment (ALE) which is a platform for building intelli-
gent agents across different Atari games (Shao et al. 2019).
There have been numerous attempts at training AI agents
to play Atari games using RL. One of the most notable
achievements is when DQN reached human-level perfor-
mance across 49 Atari games (Mnih et al. 2015). After
this breakthrough, other algorithms and improvements of
DQN such as Rainbow DQN and Ape-X DQN have shown
promising results and in some cases surpassing DQN results
(Shao et al. 2019). More recently, a novel approach of cre-
ating an auxiliary reward using instructions extracted from
the manuals of the Atari games have shown improvement
in performance and training speed (Wu et al. 2024). For the
purpose of this study, we focus on the regular DQN algo-
rithm that is common with Atari games. We use DQN with
a couple of improvements such as prioritized experience re-
play and double structure to aid the training process.

Methodology
We begin by describing the environments used for training.
Next, details of the RL algorithm are provided, alongside the
transfer method. The final aspect we discuss is the configu-
ration of the experiments we conducted to investigate the
advantages of knowledge transfer.

Details of the Environments
For developing our Atari transfer benchmark, we focus on
the games that are present in both Gymnasium and Pet-
tingZoo libraries, with single-player and two-player ver-
sions. Gymnasium provides single agent Atari environments
while PettingZoo offers a library to facilitate multi-agent
Atari training. Atari environments are simulated via the Ar-
cade Learning Environment. We use a total of nine Atari
games in ten Atari environments. The names of the environ-
ments sorted alphabetically are: Boxing, Double Dunk, En-
tombed competitive, Entombed cooperative, Flag Capture,
Mario Bros, Pong, Space Invaders, Surround, and Tennis.
Entombed is a game with two different environments, coop-
erative and competitive, based on the strategy of the player.
Throughout the rest of this paper we use “Atari games” as
a shorthand for Atari game environments. For training, the
Atari RAM is used instead of image pixels to optimize com-
putational power and time. RAM observations are a total of
128 bytes.

In single-player environments, all games except Mario
Bros, Entombed, Flag capture and Surround use version 4

(v4) environments with default frame skip of one and no ac-
tion repeating. The four mentioned games use version 5 as
it yields better results. In version 5 there is a default frame
skip of 4 and repeat action probability of 0.25. Single-player
training is conducted using the Tianshou platform (Weng
et al. 2022). In addition to the environment’s settings, the de-
fault processing of the DQN Atari benchmark in Tianshou is
used. These include sampling initial states by taking random
number of no-ops on reset, returning every 4th frame (frame
skipping) with maxing over 2 most recent raw observations,
making the end of life the same as end of episode (boot-
strapping values) without resetting to help with the value es-
timation, normalizing the observation between 0 and 1, and
clipping the reward to be between -1 and 1.

For two-player environments, the same reward clipping
and observation normalization is used to ensure that the net-
work can comprehend values after transfer. Based on the
work of Lee et al. (2022), we also add the following pre-
processing techniques:
1. Limiting the max number of steps in each episode to 200.
2. Frame skip of 4.
3. Sticky actions with a probability of 0.25.
Pre-processing in two-player Atari games is done using the
SuperSuit library (Terry, Black, and Hari 2020) and training
is done using the Machin library (Li 2020). In two-player
training, no-op resets are performed on the first 130 frames
for Space Invaders, and the first 60 frames for Pong (Lee,
Ganapathi Subramanian, and Crowley 2022). Two-player
environments reset upon termination of first-player. In Mario
Bros, the game can continue even if player two is dead, so
we ensure that the game resets when player two is terminated
as well.

The Algorithm
A double deep Q-network is the main RL algorithm to train
on the games for both single-player and two-player environ-
ments. Prioritized experience replay is used alongside this
to ensure that experiences with a higher importance get pri-
oritized during training. A fully connected deep neural net-
work with the same structure for both single-player and two-
player games is used to map observations of 128 bytes to the
number of actions that varies based on the environment but
is consistent for both single-player and two-player versions
of the same game. The details of this neural network and
hyper-parameters used for training can be found in Table 1.
For playing the opponent in two-player versions of games,

self-play is used. During training, only the network of player
1 (also called “the player”) is trained while the network of
player 2 (also called “the opponent”) is only updated at cer-
tain time-steps by copying the weights of player 1’s network.
This ensures that the opponent’s network is always updated
with the previous generations of the player’s network. The
network of player 1 is solely trained using player 1’s ex-
perience. Since we aim to not train the opponent’s network
separately, we need to ensure that the network understands
the difference between players 1 and 2 when playing. For
this purpose, we use our method of agent indication in two-
player Atari that is discussed in the next section.



(a) Double Dunk (b) Mario Bros (c) Space Invaders (d) Tennis

(e) Boxing (f) Pong (g) Flag Capture (h) Entombed Competitive

(i) Entombed Cooperative (j) Surround

Figure 1: The Average total reward of player 1 in the ten Atari games for the transferred agent (in blue) and the agent training
from scratch (in orange), in the two-player versions of the games. The x-axis is the number of episodes and the y-axis is the
average total reward per episode.

Agent Indication

In Atari, all agents have the same observation from the envi-
ronment, which could be a problem when there is a need
to indicate which player is which. A common method of
agent indication is by adding a separate channel to the ob-
servation to indicate the agent’s turn (Gupta, Egorov, and
Kochenderfer 2017). However, adding a new channel to a
network could make the training more difficult as it could
make it harder for transfer learning to discover parts of the
observation that are completely new. To avoid this problem,
we annotate the parts in the Atari two-player RAM that are
directly related to player 1 or 2. The annotation has been
done using both PettingZoo and PCAE Atari emulator. An-
notations of four environments are inspired by the anno-
tations from the Atari Annotated RAM Interface (Anand
et al. 2019). Our focus is mainly on elements that could af-
fect a player’s gameplay such as player avatars’ locations,
scores, and the number of remaining lives. After annotat-
ing the desired parts, we implement a PettingZoo custom
wrapper that would reconstruct the observation of player 2
by swapping the related parts of player 2 with player 1. As
an example, the bytes related to locations of player 1 and
2 are swapped. Meaning that the specific byte that contains
the location of player 1 now contains the location of player

2 and the network is able to decide based on this location.
Essentially, the observation of player 2 is reconstructed as
if player 1 were the one playing instead. The code used
for training two-player environments including this custom
wrapper is publicly available in our GitHub repository at
https://github.com/Justkim/Two-player-atari-RL .

Transfer Learning
For the transfer of knowledge from a single-player game to
the two-player version of the same environment, the agent
is first trained in single-player setting. After this training,
all the weights are transferred to a new deep neural network
to be trained in a two-player setting. To make the overall
training more efficient and decrease the total running time
while leveraging knowledge from the transferred network,
the first two layers are frozen and do not get updated during
two-player training. We have conducted preliminary experi-
ments using different numbers of layer freezing, and found
that freezing the first two layers produced the most desirable
results.

Experiment Setup
As part of our research, we conduct an empirical study
in the ten Atari games. For each game, two sets of train-



Hyperparameter Value for single-player Value for two-player
fully-connected layer dimensions 512×256 512×256

number of total steps 10,000,000 Maximum of 4,000,000
optimizer Adam Adam

discount factor 0.99 0.99
learning rate 0.0001 0.001

batch size 32 256
reply buffer size 100,000 500,000

epsilon decay rate N/A (linear decay from 1 to 0.05) 0.9999985
number of parallel environments 10 1

player2 fixed exploration rate N/A 0.05
seeds 99 [24, 42, 56, 99, 3000]

self-play step N/A 50000

Table 1: Hyperparameters used in training for both single-player and two-player games.

ing are conducted. For the transferred agents, first the net-
work is pre-trained on the single-player game for 10 million
steps. Then, the weights of this network is transferred to the
two-player version of the same game for further running of
20,000 episodes. An episode refers to a complete sequence
of steps that starts from an initial state and ends when the
environment reaches a terminal state. Five different sessions
with different random seeds are used in the two-player en-
vironments. For the training-from-scratch agents, five ses-
sions with different random seeds in each game are done
from scratch in the two-player version without any trans-
fer for 20,000 episodes. The results of these experiments in
the two-player versions are compared (transferred vs. from
scratch) using the rewards gathered by the player in each
episode. Across the different games and experiments, the
same hyper-parameters are used to ensure consistency and
avoid bias.

Table 1 reports the set of hyper-parameters for train-
ing single-player and two-player environments. The exper-
iments (two-player training) were conducted using a clus-
ter with 7 cores of 2x Intel(R) Xeon(R) Gold 5320 CPU @
2.20GHz (Ice Lake) and a maximum of 10G RAM.

Results and Discussions
Average Run Time
One advantage of transfer learning and layer freezing is the
running time saved. Table 3 shows the average time taken
for each of the ten games in the two-player versions. In each
case, the transferred version took less time than the version
from scratch. This makes sense since layer freezing allows a
network to be trained with less parameters. The results show
that the transferred version took, on average, 27% less time,
a substantial saving.

Average Total Rewards per Episode
Figure 1 shows the average reward over five training ses-
sions with different random seed values in transferred vs.
from scratch settings, again both in the two-player versions.
The graphs show a running average with a window of 10 and
random sampling to present the trend of the training process

more clearly. Table 2 presents the mean and standard devia-
tion of average total rewards in five different points in time:
At the start of training, 5000 episodes in, 10,000 episodes in,
15,000 episodes in, and lastly the final episode. These pro-
vide a sample of the training process for each agent in each
game.

In each graph in Figure 1, the blue curve indicates the
transferred version while the orange curve indicates the ver-
sion from scratch. It is interesting to observe that while in
some games (in particular, Double Dunk, Space Invaders,
and Tennis), the transferred version clearly outshines the
version from scratch, this is not consistent across all games.
While we do not observe any environments where the ver-
sion from scratch is better than the transferred version, there
are cases where they are closely matched. This addresses our
first research question: we see that the transferred version is
at least as good as the version from scratch in terms of re-
wards. However, it still begs the question: could the trans-
ferred agent performance be predicted with a simple predic-
tor derived from the input (the Atari RAM)?

The Atari RAM Complexity
There are different ways to provide a notion of “complexity”
of the RAM usage. For our study, we focus on the temporal
variation in the RAM data, as we feel that temporal informa-
tion best captures a game in progress. Variation indicates the
change in each byte of the RAM, which can serve as an indi-
cator of the RAM observation’s complexity. More frequent
changes in each byte suggest that specific bytes are more
dynamic, reacting to different actions. Additionally, the em-
phasis is on temporal changes, as substantial changes in a
byte value over time may be misleading when considered on
a global scale. To mitigate this, RAM Complexity is calcu-
lated by analyzing specific time windows.

A dataset of 50,000 RAM instances is gathered by a ran-
dom agent playing every two-player game. In each of these
datasets, a difference is calculated between the actual data
in each byte and average of the values that are neighbors
of the data using a kernel of size 11 across the time dimen-
sion. Each difference value is squared. The average of these
squared differences is considered the final value for a spe-



Episode 1 5000 10000 15000 20000
Game

Double Dunk -1.0 ± 1.78 0.4 ± 1.85 -0.4 ± 1.85 1.2 ± 1.46 2.0 ± 2.09
1.2 ± 1.16 0.4 ± 0.8 -1.0 ± 0.89 -1.4 ± 1.49 -0.4 ± 0.8

Mario Bros 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 0.0 ± 0.0 0.4 ± 0.48
0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Space Invaders 2.8 ± 1.6 3.4 ± 1.62 3.6 ± 1.49 5.6 ± 2.15 4.0 ± 1.0
3.4 ± 1.01 2.0 ± 1.09 2.8 ± 1.59 3.2 ± 2.4 1.5 ± 0.5

Tennis 2.2 ± 1.83 1.6 ± 2.33 1.2 ± 1.93 0.4 ± 1.35 2.4 ± 1.35
4.0 + 0.0 -0.4 ± 2.87 1.6 ± 2.93 -0.2 ± 3.48 -0.8 ± 3.24

Boxing 2.0 ± 2.28 0.8 ± 1.72 1.4 ± 2.8 4.8 ± 8.51 6.8 ± 4.4
1.6 ± 2.41 -1.0 ± 2.6 6.6 ± 7.73 6.4 ± 10.17 3.8 ± 3.81

Pong 3.6 ± 3.32 4.6 ± 2.33 6.0 ± 0.0 6.0 ± 0.0 5.0 ± 1.26
2.8 ± 3.65 3.8 ± 1.32 3.4 ± 3.55 2.6 ± 3.26 5.2 ± 1.6

Flag Capture 0.0 ± 0.0 0.4 ± 0.48 0.4 ± 0.48 0.2 ± 0.4 1.0 ± 0.81
0.0 ± 0.0 0.6 ± 0.48 0.6 ± 0.48 0.4 ± 0.48 0.4 ± 0.48

Entombed Competitive -1.2 ± 0.74 0.0 ± 1.41 0.6 ± 2.05 0.2 ± 0.97 0.2 ± 0.74
-0.2 ± 2.03 -0.2 ± 1.72 -0.4 ± 0.48 -0.2 ± 1.16 0.0 ± 0.63

Entombed Cooperative 1.4 ± 0.48 2.0 ± 0.0 1.2 ± 0.97 1.0 ± 0.63 1.8 ± 0.4
2.0 ± 0.0 1.6 ± 1.2 1.6 ± 0.8 1.0 ± 0.0 1.0 ± 0.63

Surround 0.4 ± 1.35 -0.6 ± 0.79 0.2 ± 1.32 0.0 ± 0.63 1.4 ± 0.48
-0.4 ± 1.35 -0.2 ± 1.32 1.0 ± 1.54 -0.2 ± 0.97 -0.4 ± 1.49

Table 2: Mean and standard deviation of total reward per episode, at the specified episodes. For each game, the first row
represents transferred agent and the second row represents the agent training from scratch.

Game From Scratch Transferred
Double Dunk 16.79 13.47
Mario Bros 16.35 11.89

Space Invaders 16.57 12.85
Tennis 18.04 13.34
Boxing 19.05 11.39
Pong 16.62 12.44

Flag Capture 16.08 12.25
Entombed Competitive 15.14 12.28
Entombed Cooperative 16.25 10.94

Surround 16.36 11.07

Table 3: Average run time (in hours) for the ten Atari games
in the two-player versions.

cific byte in the RAM values. We repeat this process for ev-
ery byte in the RAM dataset and obtain values that show the
temporal variation for each byte separately. We cap these
values at a maximum of 3000 to reduce chances of outliers.
As an Atari RAM has 128 bytes, this provides 128 separate
values.

We present a method of visualizing the magnitude of
RAM data variations in an Atari game environment. Using
the 128 values gained from the previous step we can produce
a heatmap for a game. We give this heatmap a dimension of
16 by 8 for better visualization. Figure 2 shows the resulting
heatmaps. This visualization allows us to intuitively observe
how differently each game utilized its RAM space - for some
games, activities are concentrated in a few bytes, while in

other games, activities are spread out in the RAM.
We present a measure for RAM complexity and analyze

the Atari RAM of each game by this measure. From these
128 byte variation values, we can calculate one number that
we define as our ”RAM Complexity”, by taking the average
of the 128 values. The second column of Table 4 shows our
defined RAM Complexity for each of the ten game environ-
ments.

The last column of Table 4 shows a normalized difference
of means based on the rewards of the last 100 episodes in
each game. As the scales of the average total rewards vary
by environment, a direct comparison across environments is
not possible. Normalization involves rescaling the data to a
common scale without distorting differences in the ranges
of values, thus allowing for a comparison between the envi-
ronments. To calculate the normalized difference of means,
we first use a 90% winsorization to remove extreme out-
liers in rewards. Then the rewards of the last 100 episodes in
each environment are scaled to a [0, 1] range by performing
a Min-Max normalization (using the minimum and maxi-
mum reward per each environment). Lastly, the difference
between the mean of the scaled last 100 episodes rewards in
transferred and non-transferred versions is calculated.

We observe that generally there is a trend that as RAM
complexity goes down, the advantage of the transferred
agent goes down as well, with Surround being an obvi-
ous outlier. The Pearson Correlation Coefficient between the
two sets of values is 0.44, indicating a weak positive re-
lationship. If the outlier Surround is removed, the Pearson
Correlation Coefficient becomes a stronger 0.71. This sug-
gests that a higher RAM complexity (based on our measure



(a) Double Dunk (b) Mario Bros (c) Space Invaders (d) Tennis (e) Boxing

(f) Pong (g) Flag Capture (h) Entombed Competi-
tive

(i) Entombed Coopera-
tive

(j) Surround

Figure 2: Heatmap visualizations of RAM complexity for the ten games. Each pixel represents a RAM byte. A brighter color
denotes higher temporal variations in that byte whereas a darker color denotes lower temporal variations.

of temporal change) could be connected to the transferred
agent performing better in this environment compared to
agents trained from scratch, and that the benefits of trans-
ferred knowledge become less relevant in simpler environ-
ments. This addresses our second research question: in the
absence of other information, we could use the RAM com-
plexity as a weak predictor of the effectiveness of transfer.
To our knowledge, we are the first to conduct this type of
analysis.

Conclusion, Limitations, and Future Work
In this research, we investigate the potential of knowledge
transfer from single-player to two-player Atari games as a
solution to the prevalent issues of instability and computa-
tional inefficiency in training self-play two-player games.
Through an empirical study conducted in the Atari envi-
ronment, we demonstrate that transferred knowledge from
a single-player setting leads to cumulative rewards that are
at least as good as non-transferred settings, while reducing

the total running time.
However, there are limitations to our results. We have cho-

sen ten environments with one and two-player versions, and
these games all have the player avatar(s) shown on the screen
so that our agent indication method can annotate an avatar’s
location. We have not tested our work on games that do
not have an on-screen player avatar (such as Video Check-
ers). Moreover, most Atari games have symmetric graphics
largely due to the technical limitations of the system’s hard-
ware. While we use the Atari RAM as the input, the symme-
try in the level design of some games could have effects that
are not captured by the current results.

Hardware constraints may affect the choice of the number
of training steps, thus potentially preventing the agents from
achieving optimal performance. A comprehensive investiga-
tion into the advantages of knowledge transfer may be fa-
cilitated by extending the training duration until the agents
reach a predetermined performance level.

For the purpose of this study, DQN was chosen due to its



Game RAM Normalized difference of means
Complexity of rewards of last 100 episodes

Double Dunk 454.15 0.646
Mario Bros 394.42 0.255

Space Invaders 328.22 0.468
Tennis 285.66 0.518
Boxing 217.84 0.588
Pong 142.73 -0.075

Flag Capture 112.35 0.148
Entombed Competitive 126.85 0.081
Entombed Cooperative 127.54 0.121

Surround 65.31 0.613

Table 4: RAM complexity and normalized difference of means for each game.

prevalence in Atari games. However, using different algo-
rithms can produce varying transfer results. Future research
could explore the differences between using different type
of algorithms, i.e. off-policy and on-policy algorithms for
knowledge transfer.

Atari games serve as a prime example of how an agent’s
performance can be enhanced by transferring knowledge
from single-player versions. The implications of knowledge
transfer warrant further investigation in diverse environ-
ments, particularly those exhibiting varied characteristics.
This includes, but is not limited to, environments that are
wholly collaborative rather than competitive, or those where
the observations in the single-player and multiplayer ver-
sions manifest significant differences.

Our research also provides a method of analysis of the
Atari RAM, including a visualization of its complexity by
using a temporal change measure. While we show that there
is a weak correlation between RAM complexity and the per-
formance of the transferred agent, there is still much to be
done. Further research should be conducted to validate the
accuracy and effectiveness of using RAM complexity as a
predictor for agent performance.
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