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ABSTRACT
Reinforcement learning algorithms have been applied to many re-
search areas in gaming and non-gaming applications. However, in
gaming artificial intelligence (AI), existing reinforcement learning
tools are aimed at experienced developers and not readily accessible
to learners. The unpredictable nature of online learning is also a bar-
rier for casual users. This paper proposes the EasyGameRL frame-
work, a novel approach to the education of reinforcement learning
in games using modular visual design patterns. The EasyGameRL
framework and its software implementation in Unreal Engine are
modular, reusable, and applicable to multiple game scenarios. The
pattern-based approach allows users to effectively utilize reinforce-
ment learning in their games and visualize the components of the
process. This would be helpful to AI learners, educators, designers
and casual users alike.

CCS CONCEPTS
• Applied computing → Computer games; Interactive learn-
ing environments; • Computing methodologies→ Reinforce-
ment learning; • Human-centered computing → Visualization
systems and tools.
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1 INTRODUCTION
With better hardware and the proliferation of game development
software such as game engines, more people are interested in creat-
ing video games. Researchers and professionals have developed lots
of tools to support game development in different ways. However,
support tools for teaching the use of reinforcement learning in
games are lacking. Reinforcement learning allows an agent in game
to learn what to do without being explicitly scripted [4]. Deploying
reinforcement learning in games can have many advantages. How-
ever, creating learning algorithms from scratch for specific uses
every time is not easy, especially for non-programmers, learners
and casual users. Learners and designers may not have the neces-
sary technical knowledge to effectively implement the algorithm
that is best suited for their situation [25]. Therefore, the invention of
a module-based visual reinforcement learning tool allows learners
and game designers to have more options for the deployment of AI.
It allows casual users without in-depth AI programming knowledge
to learn and utilize reinforcement learning in their games.

Our objective is to create a framework for the universal abstrac-
tion of reinforcement learning algorithms and its implemented tool,
which we call EasyGameRL, that can work for various genres of
video games. This would allow a user to link our tool to their game,
which would add reinforcement learning functionality to the game.
The popularity of the Unreal engine is aided by its support of both
C++ and Blueprints visual scripting system. Visual scripting pro-
vides a short learning curve for hobbyists to quickly get on board.
We demonstrate in this paper that by using EasyGameRL, it be-
comes easy to add reinforcement learning into a game, have actions
outputted to game so that the actions can be performed by any
agent in game. The learning happens seamlessly in the background
until the desired result. The tool is based on visual design patterns.
It is modular and expandable, allowing a programmer to add new
algorithms and increase the pattern library. Furthermore, the visual
representation of the tool allows for better understanding of the AI
algorithms.

2 BACKGROUND
2.1 Related Work
As game development becomes more accessible and popular among
hobbyists who are not trained as computer programmers, researchers
have been investigating methods to better deploy AI in games for
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this audience. Researchers have for a long time examined design
patterns in various aspects of game design such as levels [8, 14]
or AI [24]. Each design pattern describes a family of known solu-
tions to a common problem [13]. Utilizing common design patterns,
researchers have created tools such as ScriptEase [3] that allows
a game designer to script complex game scenes by choosing and
adapting design patterns. These tools would automatically gen-
erate the programming code for the games. Using a similar idea,
Van Rozen [26] presented a tool that used a graphical interface to
aid with the game mechanics design process. In the education of
game design and development, researchers have long noted the
effectiveness of visual elements in scripting [18].

Among AI techniques, reinforcement learning has become a
huge topic of recent gaming research [30]. AlphaGo and its succes-
sors [20] have achieved worldwide fame. Glavin and Madden [7]
used the SARSA(𝜆) algorithm in a first-person shooter, aiming to
improve bots’ performance compared to fixed-strategy opponent
bots. Pinto and Coutinho [17] designed and evaluated a fighting
game combining reinforcement learning with Monte Carlo tree
search. Florensa et al. [5] used reinforcement learning to tackle the
circumstance where there was need for an agent to perform mul-
tiple tasks. In their paradigm, tasks were generated automatically,
and the reinforcement learning agent automatically learned and
performed those tasks. Yeh et al. [31] proposed and proved that a
multistage temporal difference learning method could effectively
improve the performance for 2048-like games. Adaptive learning
rates had been explored by researchers [1]. Emigh et al. [4] showed
that using nearest neighbor states to bootstrap value function up-
dates could speed up convergence. Deep reinforcement learning
combines reinforcement learning with deep neural networks, uti-
lizing the strength of deep neural network to address issues such
as large state spaces. Torrado et al. [23] tested the performance of
several deep reinforcement learning algorithms on General Video
Game AI games, by connecting the framework to the OpenAI Gym
environment. Drastic performance differences were found among
the learning algorithms between games. StarCraft and its sequel
are popular platforms for deep reinforcement learning. Lee et al.
[10] created competitive modular agents by implementing a novel
modular architecture. Each module in the architecture had its own
responsibility and could be optimized independently or jointly. Xu
et al. [29] developed a competitive StarCraft bot by proposing a new
deep reinforcement learning framework to improve the macro ac-
tion selection performance. Frazier and Riedl [6] tested if interactive
machine learning could help deep Q networks reduce perceptual
aliasing in Minecraft by leveraging the knowledge of a human
teacher. Results showed that their Learning from Advice agent
could converge on a robust policy even in an environment with
aliasing. Bontrager et al. [2] studied pitfalls in deep reinforcement
learning.

While the video game research community has embraced the
use of AI, the use of reinforcement learning in the game devel-
opment community, especially among learners and casual users,
is sparse. The ML-Agents toolkit [9] for the Unity game engine
provides game programmers with the opportunity to develop their
own AI using machine learning. While it has been used extensively
by game researchers (Stephens and Exton [21], among many oth-
ers), its primary usage still requires extensive programming and

technical background. The research in this paper aims to address
this challenge by providing a framework for reinforcement learning
AI that is accessible to learners and casual users, and friendly to AI
educators.

In a survey of current practice and teaching of AI [28], researchers
and educators found that machine learning is one of the most de-
sired and recommended topic, and games kept students’ interest.
Machine learning topics are complex and AI educators have used
creative methods to help students learn, such as using robots [12].
Vlist et al. [25] found that it was important to provide design stu-
dents with a tangible tool to interact with a learning system. Mac-
Cormick and Zaman [11] also tested the use of parallel ideas using
visual programming. Algorithm visualization is a powerful aid in
learning [16]. In this research, we provide a visual tool built using
our proposed framework so that learners and AI educators can
directly visualize the AI algorithmic process.

2.2 Reinforcement Learning Preliminaries
Reinforcement learning is an area of machine learning where the
agent is not told what to do and has to discover the appropriate ac-
tions to maximize a notion of a reward. In a reinforcement learning
environment, there are:

• a set of world states s ∈ S
• a set of actions: a ∈ A
• an unknown reward function R(s,a) → r that outputs a re-
ward

• an unknown state transition function T(s,a) → s’ that takes
a state into the next state

The goal of reinforcement learning is to discover a policy, which
is a mapping 𝜋 from states to actions that maximizes expected
future reward: 𝜋 (s)→ a.

A commonly used reinforcement learning algorithm is Q-Learning
[27]. It is an off-policy reinforcement learning algorithm where the
agent keeps state-action values Q(s,a) and uses these values to
choose the best action to take in each state. The Q(s,a) values are
updated through a trial-and-error process using an update formula.
Often the state space is large and explicitly storing Q(s,a) in tabular
form is not feasible. Therefore, approximation methods, ranging
from linear combinations to deep convolutional neural networks
have been used to approximate Q(s,a).

3 MODULE-BASED FRAMEWORK
Design patterns have been used for the purpose of video game
scripting. By adapting design patterns for a specific situation, they
can be used to effectively script complex game encounters, such as
the quests commonly found in role-playing video games.

We propose a visual design pattern-based approach specifically
to apply reinforcement learning in video games. In this framework,
we treat each component of a common reinforcement learning al-
gorithm as a modular pattern and provide a library of such modules
for users. Current reinforcement learning approaches range from
Q-Learning with linear function approximation to parallel deep
Q network methods such as A3C [15]. We divide a reinforcement
learning algorithm into three components: Setup, Action Selection,
and Value Update. Each component consists of modules from a
library that a user can choose and combine. Figure 1(a) shows the
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architecture of the EasyGameRL framework. In the Setup com-
ponent, algorithm selection and hyperparameter setup are done.
Depending on the algorithm selected, hyperparameters, such as
the learning rate, may be available as modules where the user can
specify their initial values and behaviors. Any hyperparameter not
initialized by the user will be assigned default values. The selec-
tions done in Setup directly affects how Action Selection is done,
and how Value Update is done. These two components are auto-
matically adjusted by the tool after the user creates the desired
setup. Action Selection produces an action according to the chosen
algorithm and sends the action to the game to be performed. Value
Update processes the changes in Q(s,a) values or the corresponding
values used for approximation, depending on the algorithm. Action
Selection and Value Update never directly interact with each other.
They always pass information through Algorithm Memory, which
is the part that is hidden from users but used by the framework to
store information, both online and offline.

Figure 1(b) uses Q-Learning as an example and shows how the
three components form the entire algorithm. Three hyperparam-
eters are commonly used: learning rate 𝛼 , discount factor 𝛾 , and
exploration rate 𝜖 which is used by policy 𝜋 . By dividing a rein-
forcement learning algorithm into modular components, each part
can be generalized as a design pattern, and they can be adapted to
different circumstances. Users can put together an algorithm by
picking and choosing from different modules as they wish.

4 IMPLEMENTATION AND DISCUSSIONS
The implementation of the EasyGameRL framework is in Unreal
Engine 4 using visual design patterns. Unreal offers a complete
suite of tools and assets with the ability for programmers to create
their own features through plugins. This tool is an extension to
Blueprints scripting of the Unreal engine. By targeting the Unreal
engine platform, our tool is readily available to a huge existing
user base, and that supports our goal of helping game learners and
educators around the world. The algorithms were implemented in
C++ to ensure performance, but the user interface was integrated
with Unreal Blueprints visual scripting. A learner can use the tool
and visualize the structure of an AI in their game without writing
any C++ code, and the tool automatically calls or uses C++ libraries
in the backend.

In this visual implementation of EasyGameRL, modules are pre-
sented as a library of visual nodes. We use Q-Learning as an exam-
ple. For the Setup component, a user needs to specify the number
of actions available to the hostile creature. Let us say there are
four actions. The user specifies this by selecting the “Set Number
of Actions” node (Figure 2) in the library. Similarly, the user can
specify that linear function approximation should be used with
three features. The user can stop here and select the “Initialize Q-
Learning” node, which would set the algorithm to Q-Learning with
linear function approximation, and set all hyperparameter values
(learning rate, exploration rate, and discount factor, etc.) to their
defaults. However, the user can manually pick and choose their
nodes, set these values, and specify their behavior such as how
fast they should decay. Other algorithms, such as SARSA [19], or
functionalities such as eligibility traces [22], can be chosen similarly
in the Setup component. These nodes would insert code into the

(a)

(b)

Figure 1: (a) The architecture of the EasyGameRL framework.
(b) The Q-Learning algorithm represented as the three com-
ponents.

existing code of the game on the AI agent that would be utilizing
this reinforcement learning algorithm.

Figure 2: An example Setup component in the Unreal
EasyGameRL implementation, showing a visual flowchart
of hyperparameter setup and algorithm selection steps.

In the Action Selection component, the user needs to add the
node “RL Select Action,” and for each possible return value, map it
to an actual action in game for the AI agent to perform. Assuming
the game has been developed to allow these actions, mapping an
integer to each action is straightforward (Figure 3).

Finally, for Value Update, EasyGameRL automatically sets the
correct algorithm when the user chooses the “RL Update” node
(Figure 4). Here the Reward is a variable defined by the user. The
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Figure 3: An example Action Selection component.

Figure 4: An example Value Update component.

Figure 5: An example showing layers and their hyperparam-
eters in a DQN created in Setup.

State Array is an array of features also defined by the user for linear
function approximation. Disabling this single node stops further
learning but keeps the learned values and the game logic intact.
This is useful when using or testing pre-trained parameters.

Linear function approximations on Q(s,a) generally works well
on small state spaces. When state space gets large, such as when
raw pixels of the screen are used to form states, Deep Q Network
(DQN) is often deployed. To use a DQN, a user can use the “Add
Hidden Layer” node to add a hidden layer to the neural network
with the specified number of hidden nodes and activation function.
Figure 5 shows an example with input, hidden, and output layers.
The “Initialize Q-Learning” node is replaced by “Initialize DQN”
and the other components are used in the same way. The visual
representation provides a clear explanation of the structure of a
deep neural network and the flow of the algorithms.

The system saves learned values to a file and can use these the
next time a game starts. If a user is concerned about the unpre-
dictability of applying reinforcement learning online, pre-trained
parameters can be used.

EasyGameRL also provides the functionality to help learners
visualize the effects of hyperparameters for tuning purposes. The
system can track the performance of different values of a hyper-
parameter and let the learner visualize how the hyperparameter
affected learning.

Figure 6 shows an example using a 2D side-scroller game with
platforms, enemies, and traps. The goal is for the player character
to get to the end of the level on the right end. Reward is given based
on how far to the right the character has moved and for staying
alive. We use EasyGameRL to let the AI take control of the charac-
ter to learn how to play this game. A user can set up the SARSA
algorithm using EasyGameRL by dragging in and connecting 12
nodes (4 in Setup, 7 in Action Selection, and 1 in Value Update). By
comparison, when a programmer coded the SARSA algorithm, the
same result required approximately 400 lines of C++ code, a much
larger overhead.

Figure 7 shows an example of hyperparameter visualization us-
ing the same game. It shows the performances of the AI based on
cumulative reward using two values of the hyperparameter, 𝛼 =
0.9 and 𝛼 = 0.5. No 𝛼-decay was set. The traces were averaged over
ten episodes of 500 discrete steps each. From this graph we can
see that the large constant 𝛼 value led to fluctuating results that
had not converged while the smaller 𝛼 value led to convergence
and more consistent rewards after 300 steps. This serves an educa-
tional value because a learner can explore and experiment with the
hyperparameters.

Figure 6: Example 2D side-scroller game showing platforms,
enemies, and a trap. Avoiding enemies and traps is essential.

Figure 7: A cumulative reward visualization showing the
results of learning based on two different learning rates.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented a framework and its implementation for
efficiently adding a reinforcement learning algorithm to an existing
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video game. It is aimed at AI learners, educators, designers and
casual users. We presented examples to show how the framework
handled different reinforcement learning components. There are
a lot of potential for the future expansion of EasyGameRL. The
framework and tool are designed to be modular. Adding a new
reinforcement learning algorithm to the tool takes incremental and
relatively small effort on the part of a C++ programmer, and the
resulting functionality can be used by any learners and designers
whomay not have or need a deep understanding of a particular rein-
forcement learning algorithm. It allows for reinforcement learning
to be introduced in game development curriculums. By choosing
and swapping modules, AI educators can quickly create different
reinforcement learning prototypes and demonstrate to students the
effects of each small change on the result of the AI process. For
learners, this allows for hands-on experimentation of reinforcement
learning in their learning process.

For future work, we will conduct user studies on the tool to
assess its usability among different user groups. Qualitative analysis
will be performed based on user surveys and quantitative analysis
will be performed to analyze the effectiveness of learning and the
efficiency of use.
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