

A Demonstration of ScriptEase II

Matthew Church1, Eric Graves1, Jason Duncan1, Adel Lari1, Robin Miller1, Neesha Desai1,
Richard Zhao1, Mike Carbonaro1, Jonathan Schaeffer1, Nathan Sturtevant2, Duane Szafron1

1Department of Computing Science, University of Alberta
2Department of Computer Science, University of Denver

{mfchurch, graves, jtduncan, lari, remiller, neesha, rxzhao, mcarbona, jonathan, dszafron}@ualberta.ca, sturtevant@cs.du.edu

Abstract
This demonstration describes ScriptEase II, a tool that
allows game story authors to generate scripts that control
objects in video games by manipulating high level story
patterns and game objects. ScriptEase II can generate
scripting code for any game engine for which a translator is
written. Currently there are translators for Neverwinter
Nights and real Pinball games.

 Story Creation With ScriptEase II
ScriptEase (Cutumisu et al. 2007) allows authors to
generate scripting code for the Neverwinter Nights (NWN)
video game. However, designing a scripting tool on a per-
game-engine basis is costly. ScriptEase II can generate
code for any game engine, using interchangeable
“translators”. Two game engines at opposite ends of the
genre spectrum were chosen, to verify the code generation
system – NWN (Aurora game engine) and a modified
network version of USC’s pinball API (Wong et al. 2010).
Authors use a drag and drop interface to assemble event
driven scenarios using cause-effect patterns that can be
abstracted across games and genres. For example, pinball
is more similar to a game like NWN one might initially
expect, since pinball games often involve quest elements
by asking players to hit various targets on the board.
 In story-based games, a creature reacts when something
happens to it. Suppose an author wants to describe how a
Bodak will react when it is hit by a spell: first gasp, and
then, if the Bodak possesses a particular item (Briarspike),
speak a second line and attack, otherwise speak a warning.
Figure 1 illustrates how an author can generate scripts for
this scenario using ScriptEase II. The author drags a cause,
When [subject] becomes the target of (Spell) cast by (Spell
Caster), from the library pane to the story pane (see inset).

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The author changes the category in the library pane from
causes to effects (not shown) and drags an effect, Speak
Text [] at volume [], from the library pane to the story
pane. The author types AHHHH in the “brown” text slot
and selects a speech volume, Shout, from the “brown”
volume slot. A circle indicates the kind of object that can
be placed in the slot – C for creature, P for placeable, S for
spell and T for text. The author drags the “blue” Bodak
(creature) from the game object pane (lower left) to the
[subject] slot so that the Bodak will respond to being hit.
 The author uses a question to specify the conditional
effects, by dragging the effect, ? [], from the effect
category of the library pane to the story pane (see inset).
To fill in the question slot with a specific question, the
author changes the category in the library pane to
descriptions (not shown) and drags a description, HasItem
describes if [creature] has [], to the story pane (see inset).
The author then drags Bodak from the top line of the story
pane to the [subject] slot and drags the Briarspike item
object from the game object pane to the [] slot. The author
then drags the HasItem description from the description
line to the question line. The question has two parts, yes
and no and the author drags different effects to each of the
parts. During gameplay, the yes or the no effects are
performed depending on whether the Bodak has the
Briarspike. Figure 1 shows the complete story pattern.
 The “green” objects, Spell and Spell Caster are dynamic
game objects that the clause presents to the author. The
author can drag a “green” object from the cause to any
effect. For example, the author wants the Bodak to attack
the creature who cast the spell. This object is not known
during story creation. It becomes known during game-play
when a creature actually casts a spell at the Bodak. Each
cause has a custom set of objects that become available to
the author when that cause activates.

215

Figure 1 A screenshot from ScriptEase II, with an inset that shows some open slots.

 The author can save a story and ScriptEase II generates
scripts for the target game engine and writes them to the
appropriate files for that engine. In addition, ScriptEase II
stores the story patterns in a ScriptEase II file so that they
can be edited and used to regenerate scripting code
 If an author wants to save a story component in a library,
then that component is dragged from the story pane to the
library pane and it is stored in a library file for use in other
stories. When a story component is promoted to the library,
all story specific objects are removed from the component.
For example, the author could save the contents of the
story pane in Figure 1 to the library and the Bodak,
Briarspike and text fields would become empty slots. Note
that the “green” Spell Caster and HasItem objects would
not be removed from the creature and question slots
respectively, since they do not depend on game objects
available in a specific story. A demo movie is available at:
www.cs.ualberta.ca/~script/AIIDE2011-SEII.mov.

Code Generation
ScriptEase II code generation uses interchangeable game
“translators” to create scripting code for a variety of game
engines ranging from standard video games to real game

machines like pinball. These translators are a combination
of XML files, which specify attributes such as the types of
game objects, the available API functions, and the events
activated during gameplay.
 To write a translator, the format of the game files and
the API of the game engine must be known. In addition to
the XML libraries in the translator, an interface must be
provided for reading and writing to the desired story
modules. Story modules often define the unique game
objects available for that particular story, and are in a
format readable by the game engine. For example in NWN,
the story module would contain the creatures, placeables,
doors, etc. that appear in a particular story. Pinball is a
special case for code generation since there exists a single
story module, as every story contains the same available
switches, lamps and solenoids.

References
Cutumisu, M., et al. ScriptEase: A Generative/Adaptive
Programming Paradigm for Game Scripting. Science of Computer
Programming, 67 (1), June 2007, 32-55.
Wong, D., et al. Implementing Games on Pinball Machines. In
Foundations of Digital Games (FDG), 2010, 240-247.

216

