Generating Believable Virtual Characters Using
Behavior Captureand Hidden Markov Models

Richard Zhag Duane Szafrdn

! Department of Computing Science, University of Athe
Edmonton, Alberta, Canada T6G 2E8
{rxzhao, dszafron} @ualberta.ca

Abstract. We propose a method of generating natural-lookiegaviors for
virtual characters using a data-driven method daliehavior capture We
describe the techniques for capturing trainer-getedr traces, for generalizing
these traces and for using the traces to geneedtaviors during game-play.
Hidden Markov Models (HMMs) are used as one of theneralization
techniques for behavior generation. We comparegpmposed method to other
existing methods by creating a scene with a ssixo¥ariations in a computer
game, each using a different method for behavioregdion, including our
proposed method. We conducted a study in whichicg@ants watched the
variations and ranked them according to a set d@kri for evaluating
behaviors. The study showed that behavior captuee viable alternative to
existing manual scripting methods and that HMMsdpiced the most highly
ranked variation with respect to overall believinil

Keywords: behavior, virtual characters, behavior capture,ddid Markov
Model, HMM

1 Introduction

A story-based computer game contains virtual charac Most of them are Al-
controlled non-player characters (NPCs), who imevdth the player character (PC),
other NPCs, and the environment. Although gameslalisincreasingly realistic
graphics and physics, NPC behaviors have improleelys Players are demanding
more realistic behaviors for the NPCs. Rather ttanding or wandering aimlessly,
NPCs should converse with other NPCs and interditt game objects in realistic
ways. They should also react to events such aso®mps or unusual events.
Creating natural-looking behaviors for NPCs is mo¢xpensive. In a typical
commercial story-based game, there are hundredsometimes over a thousand
NPCs. Since manually scripting each NPC indiviuedquires extensive resources,
most NPCs in most commercial games have simpleepwtitive behaviors.

We propose a new method of creating NPC behavialledcbehavior capture
based on the concept of motion capture. With madegture [6], sensors are attached
to the bodies of actors, and as the actors move libelies, the spatial locations of
their body parts are recorded. The data is usedhitbate virtual characters to move

in the same way. Our system of behavior captuteged on a similar idea of using
captured traces to guide NPC behaviors, but behagipture is not a generalization
of motion capture. Our behavior traces represegt-fével intentions as opposed to
motion trajectories in space. For example, the MRy use an entirely different path
to approach another NPC during game-play, sincerdlaive positions of the two
NPCs may be different than they were during tranin

Behavior capture enables a game designer to takrotmf a particular NPC
during training and perforrexemplarbehaviors. It captures traces of the exemplar
behaviors and generalizes them. Generalizationeisegsary to generate natural
behaviors with short training times. First, intdraes should be generalized. If a
particular NPC should talk to a particular set @ (such as rich NPCs only) in a
tavern, then the trainer should be able to traism MPC by talking to only one rich
NPC. If another NPC should have the same behattierfrainer should not have to
train the second NPC separately. Second, duringegglay, the NPC should not
repeatedly follow the exact training trace. We prisseveral trace generalization
mechanisms, including a technique that learns alétieMarkov Model (HMM).
Our generalization and learning do not requirepsicrg).

The termbehavior capturéhas been used in commercial software to deschibe t
LiveAl technique introduced by AiLive [1], and bydSoft [13]. Unfortunately, there
are no publications describing what technique isdu® generalize behaviors after
training and no indication of the level of behasi¢inat can be learned, although there
is a video that highlights some behavior in a stasgoccombat scenario [2].

To verify the utility of behavior capture, we credta tavern scene in a commercial
video game. We generated a set of scene variasitsg @ collection of behavior
generation techniques, including manual scriptimgl @everal forms of behavior
capture. We conducted a study in which particippfdyedeach scene variant and
ranked them by: most active characters, most uigiedde characters, most plausible
action sequences, most diverse character acticmsiciPants also ranked overall
believability and rated overall believability ofaavariant.

2 Related Work

There are many methods of creating behaviors fiduali characters. Traditionally,
programmers had to script individual behaviors dach character. Orkin and Roy
devised a data-driven approach to generating betgwising unsupervised learning
of behavior and dialogue in a game that simulategstaurant [10]. They take
advantage of the massive online-gaming community ase it to collect data as
training examples. A character in the game hastaokgoals and corresponding
priorities, used to guide interactions. After gaalection, the character retrieves
candidate plans and sends them to the critics mystéhich uses criteria to reject
plans. Experiments compare the ability of the plagtwork and humans to
differentiate between typical and atypical restatifachavior. Thurau et al. [12]
describes methods of inferring goals from replafshoman games for a virtual
character in a First-Person Shooter game. Ontahal. [9] proposes a planning
system for a Real-Time Strategy game that candredel from human demonstration.

These two approaches assume there are specifis (adh as killing an enemy) for
the virtual characters to achieve, and differenthmés are used to find ways to
satisfy such goals. Our research targets dayydsdhaviors of virtual characters in a
non-combat virtual environment, where NPCs oftelmalye without clear-cut goals.

MacNamee [7] proposed a technique called role-pgssvhich allows an NPC to
exhibit behavior variations by assuming roles irtipalar situations. Such NPCs can
be implemented usindevel-of-detai] which means that their behaviors can be
modeled abstractly when the player is not lookary] in more detail when the player
is focused on them. Thepeoactive persistent agengsovide a realistic experience.
Individual behaviors are driven by an artificialunal network, which is trained using
about 300 hand-crafted examples by the author.le/fthése examples contained a set
of interesting behaviors, their flexibility to adaf other situations has not been
demonstrated. It is not clear how a game desigarratld additional behaviors not
included in the pre-designed training examplesselech has been done in the past to
analyze player statistics extracted from in-garaeds or character attributes [8] [11].
We want to provide a better gaming experience faygys, specifically by enabling
game designers to create more interesting NPC mkav

3 Capturing Behaviors

Behavior capturas a data-driven approach to generating virtuakratter behaviors.
Instead of a programmer specifying how each cherastiould move, speak, and
interact with the environment, a game designer gat@ntrol of the character and
performs the actions that the designer would liksde this character perform. This
is done in a game session calledining mode In training mode, the designer-
controlled character actions are recorded withrebier capture system. The system
remembers what each character did and uses thistdagenerate new behaviors
during game play. There is no need to write prognarg scripts.

3.1 Trainingin Neverwinter Nights

We constructed a prototype of our behavior captystem in BioWare Corp.’s
Neverwinter Nights (NWN). NWN includes a simpledse Toolset that allows
designers to create new stories using a C-likeptieg language. Since NWN is a
medieval fantasy game, tavern scenes are commatavesn typically has patrons, a
bartender, and sometimes entertaining bards. d&teu a tavern scene and used it as
a test-bed for our behavior capture system (Figre

In training mode, the characters start with no bilta. A game designer takes
control of atraineecharacter. Figure 2 shows a trainee in the cerittiee screen. At
the bottom of the screen, there are buttons reptiegethe actions a trainee can
perform (pressing modifier keys display other sdtactions). If the designer clicks
on theFacebutton and then clicks on another character, rdiade will turn and face
the clicked character, and tRaceaction will be recorded as an action in a sequence
of actions the trainee should perform. The gamégdes can switch trainees at any
time, by clicking on thé8ecomebutton and clicking on another character. Ifaanter

makes an error, the offending trace can be defedad the training record. To avoid
pressure on the designer during training, desigaases are ignored in training mode
and if the trainer wants the trainee to pause xaliait wait action is selected.

} By blueprint By tag

Fig. 2. Training a character. The action bar isierﬁrgaﬂé figu—re or clarity.

3.2 Behavior Types

Cutumisu [4] introduced the behavior ontology shownFigure 3. Behaviors are
categorized as independent or collaborative. laddent behaviors are performed by
one NPC, while collaborative behaviors are perfarmdéth a partner. An NPC may
have an independent behaviorstbon a chairand a collaborative behavior talk to
another NPC Behaviors can also be classified as proactivagtiee (reacting to a
partner’s initiative), or latent.

A new proactive behavior is initiated when no otbehavior is active. A latent
behavior is triggered by a specific event and hagher priority than any proactive
behavior so it can interrupt. For example, an NR&y perform a proactive behavior
to sit on a chair. When the NPC is done, a new proadtelgvior is selected. The
NPC maywait or talk to another NPC. However, if an explosion occurdatant
behavior to flee from the explosion can be triggesnd theflee behavior will
interrupt the current proactive behavior.

Our behavior capture system supports this behantmlogy during training mode.
For example, to train a collaborative behavior,esigner clicks on th€ollaborate
button and clicks on another character so the systrognizes the collaboration
partner. The designer trains one character fast] then switches to the other
character and trains a corresponding reactive hehaelicking the Collaborate
button again to end the collaborative behaviorerac

Behavior

independent indepedent collaborative collaborative collaborative
proactive latent proactive reactive latent

behavior behavior behavior behavior behavior

Fig. 3. Behavior architecture, adapted from Cutumisu [4].

A latent behavior is based on a game event. Ta @datent behavior, the trainer
first clicks on theStart Latentbutton. The designer next triggers the approgriat
event. In our tavern scene, the designer may s@me tavern patrons to cheer when
the bard finishes performing amditsthe stage. Sincexits a trigger(an area on the
ground) is an event in the game, performing thisoadn Latent mode enables the
behavior capture system to record this event. tidieer clicks on the bard and then
moves the bard out of the trigger area. Once tlateg recorded, the designer trains
an NPC to react to this event by clicking on therapriate NPC and selecting
behaviors, such asfacethe bard behavior andcheeranimation behavior.

4 Generating Behaviors

After data is gathered using training mode, theabihr capture system produces
the NPC behaviors. Currently, the behavior capystem supports three types of
generalizations. First, there can be hundred$éRs, and the designer may want the
training of one NPC to apply to multiple NPCsharacter generalization Second,
the designer may want a trained NPC interactioih wispecific object to generalize
to an interaction with any one of a group of olgeebbject generalizationThird, the

designer may not want the NPC to perform the tngjrsictions strictly in the training
sequence order during game play and then repeat itndhe same order once the
sequence is complete, so we perf@equence generalization

4.1 Character and Object Generalization

To support character and object generalization,bétgavior capture system uses
categoriesof objects and characters. For example, if agiesitrains a character to
sit on a chair the action is not teit on that specific chajibut tosit on any chair in a
category During game play, the character would sit on ohmany chairs. To force
a character to sit on a specific chair, the desigtaces this chair in its own category.
Object categorization mechanisms are game-spedific. example, in NWN, the
designer can use two different categorization meishas — tags and blueprints. The
designer assigns a tag to each game object. Tihe tsay can be assigned to different
kinds of objects. During training, any interactiaith an object can be generalized to
an interaction with a random object with the saam tFor example, the trainer can
train an NPC to converse with any tavern patron sehtag isconversableby
conversing with any one of them. Alternatively, NWN, the trainer can choose to
generalize by blueprint — the template used toteraa object. In this case, sitting on
a chair would train an NPC to sit on any objectated using the chair blueprint,
regardless of tags. In our NWN trainer, the desigra@ toggle between using tags or
blueprints to categorize objects. To support chiarageneralization, when a designer
trains an NPC for one blueprint, all NPCs with tbeme blueprint receive this
training. It is easy to make custom blueprints frewristing blueprints so creating
categories that correspond to groups with commdiaviers is straightforward.

4.2 Sequence Generalization

A behavior capture system needs an algorithm taerolbhaviors based on the
training traces. A simple approactg sequence generalizatiogenerates a sequence
of actions that exactly matches the recorded sexguand then repeats this sequence.
However, a player may regard this repetition asatumal. Alternative approaches
could select actions from the set of training awi;m a non-deterministic manner. For
example, the system could sample uniformly fromdéeof all trained actions using
random actionsequence generalizationHowever, in many situations the order is
important. To provide some designer control overritbn-determinism, we divide the
training actions for a single NPC into a set otém of actions. A designer starts a
trace, performs a sequence of actions and enddralte. The designer usually
performs many traces, each of which contains at Steguence of actions that form a
cohesive sequence. For example, one trace maystafishree actions: dyait a few
seconds2) say “I'm thirsty” and 3)walk to the bar Another trace may consist of
three actions: 1jvait a few second<) say “I'm tired” and 3)walk to a chair The
random action technique could result in unrealiatiion sequences, such assay
“I'm tired” , 2) walk to the baror 1) say “I'm thirsty”, 2) walk to a chairor even 1)
wait a few second®) wait a few second$8)wait a few secondetc.

The random trace sequence generalizatiotechnique uniformly select traces
instead of actions. It tries to maintain the plailisy of action sequences created by
the designer. However, over longer periods of t{imany traces), this technique can
produce behaviors that players view as repetitiod$erefore, we created a third
sequence generalization that maintains traces toesextent, while producing
emergent sequences that may reduce repeatabiliey.intfoduceHMM sequence
generalizationthat uses a Hidden Markov Model (HMM) to selediats that have a
bias towards selecting actions in the order sptifiy the designer.

A Markov Model is a statistical model with statéignsitions and outputs. One
state is a special state called the start stateh Btate is connected to a set of other
states by probabilistic transitions. In additioacle state has an output probability of
outputting a set of outputs. An HMM is a Markov Mibadvhose states are unobserved
(hidden). In our application, the output is ondlaf behavior actions that the designer
used in a trace. Hidden states are hidden to & ghasigner. The number of hidden
states is a parameter of the HMM sequence genatializtechnique.

One HMM generates the proactive behaviors for ehelnacter. The Baum-Welch
Algorithm [3], a generalized expectation-maximipatialgorithm, uses the training
traces to teach the HMM. The HMM adjusts its triosiand output probabilities to
fit the trace sequences. If the trainer follows shy “I'm thirsty” action with the
walk to the baraction, the HMM will favor this action order. Ifi¢ trainer trains the
NPC to converse three times as often as orderidign&, the HMM will generate a
similar 3 to 1 ratio. The behaviors generated by HHMM are stochastic, but are
somewhat consistent with the training traces. Tinalrer of hidden states parameter
controls the consistency, with higher consisterahieved by more hidden states.

5 User-Study and Evaluation

5.1 User-Study

We conducted a user study to evaluate the utilithehavior capture. Participants
were enrolled in a first-year university psychologgss. They did not necessarily
have video game experience. Our goal was to shatbiehavior capture is a viable
alternative to typical commercial game NPC behavimeated by manual scripting.
We created six variants of a tavern scene in NWNiclvare identical in all aspects
except in the way that the NPC behaviors were gdedr The six scene variations
were constructed using the techniques listed irlelab The mapping between Scene
Variation number and technique was generated ralydimnavoid any bias.

Study participants were asked to watch the sixatiams, and to rank them
according to the criteria listed as the first cofuwf Table 2. We also asked the
participants to rate the overall believability aich variation on a scale of 1-4.

Technique T1 is a baseline, with all charactersikatthg only stock idling
animations provided by the NWN game engine, suchstastching their arms.
Technique T2 is hand-scripted — characters behacerding to a representative
commercial role-playing game, Dragon Age: Origilike variation was scripted to
combine the behaviors in two taverhsthering (bards entertaining) arfdedcliffe(a

server who walks around). If we only used one @f thverns the behaviors would
have been very simple and we believe the evaluatidrthis variation would have
resulted in a worse ranking. The other four techesqused behavior capture.

Tablel. Behavior generation techniques. Scene Variationbars (shown to participants
instead of technique numbers) were randomly asgigmé&chniques to avoid bias.

Technique Scene Variation Behavior Generation
Number
No behaviors added (idle
T1 4 (idle)
T2 6 Behaviors hand-scripted by a programmer
5 Behavior capture with no sequence
T3 generalization
T4 1 Behavior capture with random action
sequence generalization
5 3 Behavior capture with random trace
sequence generalization
2 Behavior capture with HMM sequence
T6 generalization (using 8 hidden states)

For behavior capture, fourteen different proactiegons (behaviors) were used:

al) Wait 5 seconds

a2) Collaborate with another patron by conversing

a3) Wave at another patron

a4) Face another patron

a5) Walk to a chair

a6) Walk to the bar

a7) Speak "I'm thirsty"

a8) Speak "I'm tired"

a9) Speak "I'm lonely"

al0) Speak "See you later"

all) Speak "I'm bored"

al2) Speak "The inn-keeper is busy"

al3) Speak "l see a friend"

al4) Speak "What was that noise?"
The collaborativeconversebehavior included 4 taskface the collaboratgrwalk to
the collaborator speakand therlisten The training set contained 10 traces of three
actions each: [a5, a7, a6], [al, a4, a3], [a6a88,[a9, a2, al0], [a4, al, a4], [a5, all,
ab], [a6, al2, a5], [al3, a2, al0], [al4, a4, [a], a3, al].

Technique T3 is behavior capture with no sequerce@lization. The next action
is picked directly from the trainer's traces, conit traces into a single long trace to
eliminate randomness in picking actions. Thedfsactions in order was [a5, a7, a6,
al, a4, a3, a6, a8, ab, ..., a4, a3, al] and thiwdis repeated forever.

Technique T4 is behavior capture with random actiequence generalization. An
action is selected randomly, ignoring training éscThe next action to perform is:
randon{al, a2, ..., al4}.

Technique T5 is behavior capture with random treequence generalization. It
picks a random trace from available training tracesl performs the actions in the
chosen trace order. Therefore the next three actiororder arer andon{[a5,
a7, a6],[al, a4, a3],[a6, a8, ab],...,[ad4, a3, al]}.Technique
T5 is just one of the parameterized HMM generaliwet. Since an HMM remembers
its previous state information through the traosisil probabilities between pairs of
hidden states, with enough hidden states, the HMMremember the exact order of
the training traces and reproduce actions in theesarder as the training traces.

Technique T6 is behavior capture with HMM sequegereralization and it uses
an HMM with eight hidden states.

In addition to the proactive behaviors, each patwas trained to perform one
reactive behavior: face the collaborator, walk lte tollaborator, listen and then
speak. This behavior is used to respond to theqgre@ collaborative converse
behavior. Patron training also included one latetiavior:when the bard exits the
stage, face the bard and che#&r multi-queue behavior architecture was usedhst t
the latent behavior would interrupt any proactiveh&vior and the interrupted
behavior would be resumed after the latent behavas completed [5]. The bard was
trained with two proactive behaviors. The first waimg wait andleave the stage
The second waseturn to the stage

We had two main hypotheses. First, that behaviptuta would rank higher than
the no behaviorand manually scripted behaviatechniques. Second, that sequence
generalization would be a factor in the perceptioh believable characters.
Specifically, that the order of behavior capturekings would be: HMM, random
traces, random actions and no sequence genermatizati

5.2 Preliminary User-Study

We conducted a preliminary user study to evalubg&edffects of the number of
training traces. We wanted to determine how theber of traces would influence
user perceptions. The goal was to determine ifsuseuld distinguish between a very
small number of training traces (4) and a largember (9). The user study was
constructed similarly to the main user study tlsadéscribed in the previous section,
except that scene variations with 4 training trazese compared to scene variations
with 9 training traces. The results show that V@9 confidence the variations with
higher numbers of traces produced more believatdres. This is an expected trade-
off between quality and workload. Based on thisiltesve set the number of training
traces in our main user-study closer to the higlwnber (we selected 10 traces).

5.3 Results

In the main user study, there were 27 participddtdortunately, a few participants
did not answer carefully enough for their resporisdse considered valid, with some
participants not answering some questions and spanticipants providing what
seemed to be random answers (e.g. ranking 1,2, #5all criteria). Therefore, the
results of each questionnaire were validated ffrcemsistency. One question asked
the respondent to rank the six variations accordmgverall believability, while

another question asked the respondent to ratéxhausations individually on a scale
of 1 to 4 according to overall believability. Taseire that the participants answered
the questions carefully, we removed a questionndirthe rankings and ratings
contained more than one inconsistency between atiegr and ranking questions.
After this consistency check, a total of 21 valigegtionnaires remained.

Table 2 shows the average technique rankings &6ttechniques. Each number
represents the average ranking for the particelelhrtique for the particular criteria
over the 21 responses. For example, techniqus Tdhked 4.29 on average (where 6
is the highest ranking) among the 6 techniquesprdany to the criteriaactive
characters The results show that in general, techniquesTiaumked highly for all the
criteria excepunpredictable characterdNote that high rankings are better than low
ones for all criteria excepmpredictable characterand that theverall believability
is not an average of the other criteria. It was@asate question on the survey.

Table 2. Average Technique Ranking (6 is Highest, 1 is Lsijvand Average Overall Rating
(out of 4). Higher numbers are better in all cid@xcepunpredictable charactersStandard
deviations are shown in parentheses.

Criteria T1 T2 T3 T4 T5 T6
active characters 1.19 3.38 3.90 4.29 3.95 4.29
(ranking) (0.60) | (1.72) | (1.67) | (1.23) | (1.53) | (1.06)

unpredictable 3.00 3.29 4.48 3.52 3.62 3.10
characters (ranking)| (2.24) | (1.65) | (1.60) | (1.50) | (1.60) | (1.34)
plausible sequences 2.00 2.38 3.57 4.38 4.29 4.38

(ranking) (1.45) | (1.63) | (1.57) | (1.40) | (1.35) | (1.20)
diverse actions 1.24 3.29 4.10 3.86 3.81 4.71
(ranking) (0.54) | (1.68) | (1.67) | (0.96) | (1.66) | (1.10)
overall believability | 1.33 3.05 3.67 4.00 4.10 4.86
(ranking) (0.80) | (1.69) | (1.28) | (1.26) | (1.61) | (1.15)
overall believability | 1.20 2.05 2.19 2.71 2.57 2.85
(rating) (0.41) | (1.16) | (0.87) | (0.90) | (0.87) | (0.59)

We used a Friedman statistical test compared eawhof Table 2 to avoid the
alpha-inflation effect. It indicated that there aignificant differences in the average
rankings of the six techniques for each criteriorthe 95% confidence level. We
used a Friedman test instead of ANOVA because efrémked data. Based on the
positive result of the Friedman test, T-tests wexed to compare pairs of rankings.

Table 3 shows the p-values of subsequent T-testgcke the average rankings of
technique T6 versus each of the other techniglié& most obvious result is that T6
was ranked significantly higher than T1 and T2llraapects except unpredictability.
This study indicates that hand-scripted charadeesperceived as less diverse, less
plausible and have less active characters tharactearbehaviors generated using
behavior capture with HMM sequence generalizatiime study also shows that T6
ranked significantly higher than all other testechiniques for overall believability.

It is perhaps surprising that T6 was perceivedigsificantly better for overall
believability compared to T3, T4, and T5, even tjlour6 was not perceived as
significantly better on some of the four componeriteria. This indicates that either
there is a missing criterion that is necessary doerall believability or that

believability cannot simply be decomposed into pdrased on criteria. This is a
crucial question in trying to measure believabjliyg pointed out by MacNamee [7],
who endorsed the evaluation of aspects of beliditsabrather than overall
believability to reduce subjectivity. To evaluateetimportance of our criteria, we
asked participants to rate the importance of e&theofour criteria. Table 4 show the
average importance computed from the responseshefstudy participants. As
expected, unpredictability is the least importanthe eyes of the participants.

Table 3. p-values (to two decimals) from T-tests on TeghgriT6 versus each other technique
for each criterion. Entries with a dark backgroane significant at the 95% confidence level.

Criteria T3vs.T6 | T4vs. T6 | T5vs. T6

Active 0.00 0.05 0.22 0.50 0.20
Unpredictable 0.01 0.09 0.14

Plausible 0.00 0.00 0.04

Diverse 0.00 0.00

Overall 0.00 0.00 0.00

0.50 0.40

Table4. The average importance of the four criteria.tiBipants rated each criteria on a scale
of -3 to 3. A positive number means important intcbuting positively to overall
believability. A negative number means importantamtributing negatively. The larger the
absolute value the more important it is.

Criteria Average | mportance
active 1.76
unpredictable 0.71
plausible 2.19
diverse 1.52

We will conduct studies on different variations amdarger participant pool to
increase confidence that behavior capture genesagegicantly better behaviors.

6 Conclusion

The video game industry continues to grow and gedesigners are becoming more
specialized in their own areas. In addition, recstary-based video games have
started providing tools so that non-professionads design their own stories.
However, in order to successfully use these toalsdesigner needs to know
programming, since characters in game are controieprogrammed scripts.

In this paper we propose a new tool for game desggthat allow them to create
behaviors for virtual characters, without havingléarn complicated programming.

Using an analogy to motion capture, we propose ta-didven method of creating

behaviors for NPCs by behavior capture. Game dessgrake control of a particular
NPC and perform the desired behaviors for this NPOsing category-based

generalization for characters and objects, and éfiedarkov Models for sequence
generalization, our behavior capture technique ypred a variety of behaviors learned
from the training traces. We performed a userystacconfirm that behavior capture
produces behaviors that are perceived as significasuperior with regards to

character activity level, unpredictability and beloa diversity compared to the

scripted behaviors seen in a typical commerciatyst@sed game. This study also
showed that using HMMs for sequence generalizatisiead of raw behavior traces
contributes significantly to perceived overall kehbility. For future work, larger

user studies with more participants and differecgngs should be conducted to
provide move evidence of the utility of behaviopttae and more insight into the
best technique for sequence generalization.

References

1. AiLive. http://lwww.ailive.net/

2. AiLive. AiLive LiveCombat: Artificial intelligene and behavior capture for games.
http://www.youtube.com/watch?v=u8oNTLzCFNU

3. Baum, L. E., Petrie, T., Soules G., and Weiss,ANmaximization technique occurring in
the statistical analysis of probabilistic functiasfsMarkov chains. Ann. Math. Statist., vol.
41, no. 1, pp. 164-171 (1970)

4. Cutumisu, M.: Using Behavior Patterns to GeneB&xtepts for Computer Role-Playing
Games. Ph.D. thesis. University of Alberta (2010)

5. Cutumisu, M. and D. Szafron.: An Architecture fdame Behavior Al: Behavior Multi-
Queues. Proceedings of the Fifth Artificial Intgihce and Interactive Digital
Entertainment Conference (AlIDE), Stanford, USA,20¢2009)

6. Gleicher, M.: Animation from observation: Motiarapture and motion editing. ACM
SIGGRAPH Computer Graphics.33, 4 (2000)

7. MacNamee, B.: Proactive Persistent Agents: Usitgational Intelligence to Create
Support characters in Character-Centric Computer GaRleB Thesis. Trinity College
Dublin (2004)

8. Mahlmann, T., Drachen, A., Togelius, J., CanoAsaYannakakis, G.N.: Predicting Player
Behavior in Tomb Raider: Underworld. In Proceedingstlte IEEE Conference on
Computational Intelligence and Games (2010)

9. Ontanon, S., Bonnette, K., Mahindrakar, P., GeMe#in, M. A., Long, K.,
Radhakrishman, Shah, J., Ram, R.: A. Learning from &uBemonstrations for Real-Time
Case-Based Planning. In the 1JCAI-09 Workshop onniegrStructural Knowledge From
Observations (2009)

10.0rkin, J. and Roy, D.: Automatic Learning andn&ation of Social Behavior from
Collective Human Gameplay. International Conference Autonomous Agents and
Multiagent Systems (2009)

11.Thurau, C., Bauckhage, C.: Analyzing the EvolutbSocial Groups in World of Warcratft.
In Proceedings of the IEEE Conference on Computatimelligence and Games (2010)

12.Thurau, C., Bauckhage, C., and Sagerer, G.: Ioité&arning at all levels of game-Al. In
Proceedings of the International Conference on Coenp@ames, Atrtificial Intelligence,
Design and Education. University of Wolverhampt®d2—408 (2004)

13.TruSoft: Artificial Contender. http://www.trugafom/principles.html

