
An Automated Technique for Drafting Territories
in the Board Game Risk

Richard Gibson and Neesha Desai and Richard Zhao
Department of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, Canada
{rggibson | neesha | rxzhao}@cs.ualberta.ca

Abstract

In the standard rules of the board game Risk, players take
turns selecting or “drafting” the 42 territories on the board
until all territories are owned. We present a technique for
drafting territories in Risk that combines the Monte Carlo tree
search algorithm UCT with an automated evaluation func-
tion. Created through supervised machine learning, this func-
tion scores outcomes of drafts in order to shorten the length
of a UCT simulation. Using this approach, we augment an
existing bot for the computer game Lux Delux, a clone of
Risk. Our drafting technique is shown to greatly improve per-
formance against the strongest opponents supplied with Lux
Delux. The evidence provided indicates that territory drafting
is important to overall success in Risk.

Introduction

For the past few decades, computer games have been a
popular platform for artificial intelligence research. Many
successful computer programs (bots) play at expert levels
in games such as checkers (Schaeffer et al. 1996), Oth-
ello (Buro 1997), and chess (Campbell, Hoane Jr., and Hsu
2002). These are popular two-player games where both
players share complete information about the game states.
Such games are handled well by classical minimax search
with alpha-beta pruning and some evaluation function (of-
ten hand-tuned) for intermediate states.

However, games involving more than two players (multi-
player) are generally less understood. In this paper, we
describe how to create stronger bots for playing the multi-
player game Risk by Hasbro Inc. In the standard rules of
Risk, the game begins with the players drafting the territo-
ries on the board until every territory has an owner. Our
work here focuses on improving overall performance by de-
veloping an intelligent system for playing the opening terri-
tory draft phase of Risk.

The rest of the paper is organized as follows. First, we
provide an outline for the rules of Risk and a computer ver-
sion of the board game, Lux Delux. Second, we discuss re-
lated work, including traditional minimax search, its exten-
sion to multi-player games, maxn, and the Monte-Carlo tree
search algorithm UCT. We then describe how our system
drafts territories in Risk. Our approach combines UCT with

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The layout of the Risk board and the continent
reinforcement bonuses.

a machine-learned evaluation function to search the game
tree up to the end of the drafting phase, where an estimate of
the merits of the draft outcomes are propagated back. Next,
using a computer version of Risk, we create a bot that uses
our drafting technique and pit it against a number of other
programs. The empirical results show that our bot outper-
forms all of its opponents, even those using post-draft strate-
gies identical to our own. Finally, we summarize the results
and conclude with some future works.

Risk and Lux Delux

Risk is a strategy board game for two to six players where
the objective is to occupy all 42 territories on the board. The
territories are divided into 6 continents as labeled in Figure
1. In the standard rules, players first take turns selecting the
territories until all have been chosen. After players place
their initial armies among their selected territories, players
then take turns until only one player remains. On a turn,
in sequence a player may place reinforcements, conduct at-
tacks on opposing territories, and tactically maneuver armies
amongst owned territories. Attacks are resolved by dice
rolls, where the number of dice is dependent on the num-
ber of attacking and defending armies. A player reduced to
zero armies on the board is eliminated from the game. Play-
ers receive one reinforcement army for every three territories
owned, and receive bonus reinforcements for owning entire
continents (as depicted in Figure 1). Full rules can be found

15

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

���������	�
�
�����������
�

�
�
����
�
������
����

����������

�����������
������
�

��
�

����
�

����
�

�

�������	

����

������	��

�������
��������

�����������
������
�

��
�

����
�

����
�

�

������
����

�������
�

����
�

� �

��
�

����
�

� ����
�

����
�

�

������
����

�������
�

����
�

� �

��
�

����
�

� ����
�

����
�

�

!�����"�#
�

Figure 2: The process described for obtaining a general function f for estimating the merit of each feature set in Risk draft
outcomes (adapted from (Lee 2004, Figure 5.1)).

on-line (Parker Brothers 1993).
The Lux Delux (Sillysoft 2010) game is a commercialized

computer version of Risk, providing several rule-based bots
with source code to play against. Each of the included bots
has an associated difficulty and a general playing style. For
example, “Quo” is a difficult bot that tries to form a cluster
of adjacent territories and methodically expand that cluster.
We use the Lux Delux environment in all of our computa-
tions and experiments.

In this paper, we are only concerned with strategies for
playing the opening territory selection phase of Risk. In
addition, we focus only on three-player Risk, as this incor-
porates the multi-player aspect and is arguably more strate-
gically demanding compared to playing with more players.
With fewer players, each player must make more selections
in the opening draft. Since we are concerned with improv-
ing territory selection in Risk, we chose to use the Quo
bot’s rules for our post-draft play as it appeared to be the
strongest bot provided with Lux Delux during preliminary
testing (though more thorough tests in our empirical evalua-
tion indicate otherwise).

Related Work

A widely known approach to game playing is the minimax
adversarial search algorithm (Russell and Norvig 2003). To
reduce computation time, internal nodes of the game tree are
typically evaluated by a heuristic function, which returns a
value estimating the merit of the state to the player. These
values are then backed up the tree to the root, where the
player then chooses the action leading to the child with the
maximum propagated value.

While minimax search is traditionally employed in many
two-player games, it is not applicable to games with n > 2
players. A generalization of traditional minimax search
to more players is the maxn algorithm (Luckhart and Irani
1986). At the leaf nodes of the game tree, a heuristic func-
tion now estimates a vector of n merits (v1, ..., vn), one for
each player. At nodes belonging to player i, the vector with
the highest merit vi is propagated up to the parent. Thus,
players are assumed to be maximizing their own individ-
ual payoffs throughout the remainder of the game. An al-
ternative to maxn is the Paranoid algorithm (Sturtevant and
Korf 2000), where the active player assumes that the other

players are out to minimize his or her payoff with complete
disregard to their own benefits. The Paranoid algorithm is
essentially equivalent to the minimax algorithm, where the
other players are represented as one meta-player (Min) at-
tempting to minimize the individual heuristic value of the
active player (Max). Finally, the maxn and Paranoid prop-
agation strategies can be dynamically selected according to
the game situation. This is done in the MP-Mix algorithm
(Zuckerman, Felner, and Kraus 2009), along with a third
strategy called Offensive. On the whole, these algorithms
perform best when the branching factor (i.e. action space) is
small and when there exists a good evaluation function for
approximating the merits of non-terminal states. Unfortu-
nately, when drafting in Risk the first player has 42 actions
to choose from initially, and we know of no such evaluation
function to use for territory selection.

An algorithm more suited for large actions spaces and re-
quiring no evaluation function is UCT (Kocsis and Szepes-
vari 2006), a Monte Carlo planning algorithm that has
been used effectively in Computer Go (Gelly and Silver
2008) and general game playing, for example in CadiaPlayer
(Björnsson and Finnsson 2009). UCT tries to intelligently
bias the game tree by simulating games that focus on appeal-
ing branches of the tree. At each step, UCT builds upon the
sparse game tree from the previous simulations by selecting
an action a at state s to expand by

a = argmax
a′

(
Qi(s, a

′) + c

√
log n(s)

n(s, a′)

)
,

where Qi(s, a) is the estimated value for player i of taking
a at s, i is the active player at s, c is an exploration constant,
n(s) is the number of times s has been visited, and n(s, a)
is the number of times a has been taken in s. The estimate
Qi(s, a) is equal to the average final game value player i
received on previous simulations where s was visited and
a was taken at s. This final game value is typically 1 for
a win and 0 for a loss in win-lose type games. On each
simulation, UCT adds one new node to the game tree and
then randomly plays out the rest of the game. After running
numerous simulations from the current state s, UCT takes
the action argmax

a
Qi(s, a).

We now describe some previous work related to drafting

16

� � � � � � � 	
 � �� �� ��

�

��

��

��

��

��

��

�������� ������������ ������ ������������� ����� ����

��������������������

��
"�

�

��!��

��!��
��!�� ��!		

��!��

��!		

��!
�

��!��

�	!��

��!�� ��!�� ��!�� ��!�� ��!�

��!��

��!��
�	!��

��!
�

��!��

�!��

�!�	

��!��
��!
	

��!	�

	!��

�!��
�

��!
�

�!��
�!�	

�!��

�!�

�!��

�

�

�!��

!��

�!��

�!�	

�

	!��

��!	�

�	!	�
��!��

��!
� ��!��

��!��

�
!��

Figure 3: The weights for features of type (i), as computed in Weka. Data points with a red square are derived through linear
extrapolation.

territories in Risk. One related area is the problem of draft-
ing athletes in sports leagues, to which some progress has
been made. Many professional sports use a drafting pro-
cedure where teams sequentially select entry-level players
based on the teams’ current needs and scouting reports of
the players’ skills. Brams and Straffin (Brams and Straffin
Jr. 1979) examine very small drafts where each team has
its own order of preference of the entering players. They
use a maxn-type approach to find optimal drafting strate-
gies, but hint that the approach is ill-advised for larger drafts
due to a prohibitively large branching factor. In addition,
Fry et. al (Fry, Lundberg, and Ohlmann 2007) solve a deter-
ministic dynamic programming problem through linear pro-
gramming to determine a team’s best drafting strategy and
apply it to a fantasy football draft. However, a key ingredient
in their model is that each team has positional (quarterback,
running back, etc.) needs and must limit its picks to a fixed
number of players for each position. For Risk drafting, we
are not concerned with restricting territories to competitors
in any way.

Finally, playing Risk in particular has garnered some at-
tention from the AI community. Firstly, the program MARS
(Johansson and Olsson 2006) is a multi-agent system for
Risk that deploys an agent in each territory on the board.
The system’s actions for placing armies, conducting attacks,
and fortifying territories are determined through “bids” sub-

mitted by the territory agents. These bids evaluate the ter-
ritories via hand-tuned features and parameter values. Sec-
ondly, Zuckerman, Felner, and Kraus used Risk as a testbed
for their MP-Mix algorithm (Zuckerman, Felner, and Kraus
2009). To do so, they restricted the branching factor to only
3 promising moves, where a move represented an entire se-
quence of territories to conquer. However, both of these ap-
proaches use a Risk variant where territories are randomly
assigned to begin the game rather than selected by the play-
ers. We are not aware of any previous work regarding the
drafting phase of Risk.

Our Approach

We use UCT as our main algorithm for drafting territories in
Risk, since maxn and other traditional search algorithms are
not practical when there are many possible actions and no
known evaluation functions. One issue with applying UCT
simulations, however, is that Risk is not well-suited to nu-
merous runs of the entire game as games typically last many
turns and dice rolls introduce a lot of randomness in the re-
sults. Furthermore, if all players play randomly in Risk,
there is no guarantee that the game will even end. Since
UCT simulates games randomly beyond previously stored
states in its search tree, the algorithm is unlikely to complete
more than a small number of simulations, leading to poor es-
timates of the possible actions. To increase the rate at which

17

Table 1: The weights for features (ii), (iii), and (iv) as com-
puted in Weka.

Feature Weight

First to play 13.38

Second to play 5.35
Each unique enemy neighbor -0.07

Each pair of friendly neighbors 0.96

simulations can be performed, we instead simulate only the
initial drafting portion of the game, which has a fixed length
(the number of territories remaining to be selected) regard-
less of random play. This is done by evaluating each draft
outcome with a numerical score that estimates our probabil-
ity of winning the entire game of Risk from that draft out-
come. These scores are generated off-line using supervised
machine learning, which we now describe.

Our learning technique is closely related to Lee’s work
(Lee 2004) of combining single-agent heuristic search with
a machine-learned fitness function to pick a set of actions
from a large library. Lee’s objective is to find a small set of
actions which allow the agent to behave as close to optimal
as possible in a Markov decision process, relative to having
access to the entire library of actions. Our approach here
can be seen as an extension of Lee’s work from a single-
agent problem to a competitive multi-agent problem, where
we replace single-agent search with an adversarial method,
UCT.

We manually identified a number of features that are tac-
tically important in draft outcomes of Risk. Many of these
features are inspired by the calculation of highest “bids” (Jo-
hansson and Olsson 2006). For each player, our features are
described by: (i) for each continent, the number of territories
owned in that continent; (ii) when the player plays in the turn
order; (iii) the number of distinct territories owned by other
players which border owned territories (enemy neighbors);
and (iv) the number of pairs of owned territories which are
adjacent (friendly neighbors). Our process for estimating
the merit of a feature set is depicted in Figure 2. First, we
collect many draft outcomes, each obtained by randomly as-
signing all 42 territories evenly among the 3 players. Then,
for each draft outcome, 100 games are played to comple-
tion where each player follows the post-draft strategy of the
Quo bot provided with the Lux Delux software package.
Each player i, i = 1, 2, 3, has a set of features Si associ-
ated with each outcome. Each feature set is assigned a value
vi ∈ {0, 1, ..., 100} equal to the number of games that player
i eventually won from the associated draft outcome. This
provides a collection of feature set value pairs {(Si, vi)} of
size equal to three times the number of draft outcomes col-
lected. Next, supervised machine learning is applied to ob-
tain a general function

f : S �→ v ∈ R

that estimates the merit of the feature set S when follow-
ing Quo’s post-draft strategy. Finally, for a draft outcome
Z = (A1, A2, A3) with Ai being the set of player i’s ter-
ritory selections, we calculate vi = f(Si) where Si is the

Figure 4: An example of a draft outcome. The territories
picked by players 1, 2, and 3 are blue, green, and red respec-
tively. Territories connected by a line are also considered
adjacent or bordering. Modified from Lux Delux.

feature set associated with Ai, and define the value of the
draft outcome Z for player i to be

Vi(Z) = v+

i
/
(
v+

1 + v+

2 + v+

3

)
,

where v+

i
= max(0, vi). Thus, player i attempts to max-

imize the estimated merit vi of his or her selections while
minimizing those of the opponents.

Our general function f was computed off-line from 7364
random draft outcomes for a total of 22092 (S, v) pairs.
We used Weka (Hall et al. 2009) to weight each individ-
ual feature using Weka’s linear regression classifier (with no
attribute selection), where features (i) and (ii) were repre-
sented as nominal features and features (iii) and (iv) were
numeric. Thus, f(S) can be calculated by simply summing
the weights, displayed in Figure 3 and Table 1, of the fea-
tures present in S. However, there are some features of type
(i) which did not appear in any of the 22092 feature sets
because of their unlikeliness of occurring through random
drafting; for instance, there were no cases where one player
owned all 9 territories of North America. The weights of
these features were calculated through linear extrapolation
of the closest two continent counts for the associated conti-
nent.

We now show how to use Figure 3 and Table 1 to com-
pute Vi(Z) for the draft outcome given in Figure 4. Player
1 (blue) has 4 territories in Australia, 0 in South America, 2
in Africa, 1 in North America, 3 in Europe, and 4 in Asia.
In addition, player 1 has 18 distinct enemy neighbors and
11 pairs of friendly neighbors. Assuming player 1 is first to
play, f(S1) is computed as

f(S1) = [10.71 + 0.69 + 10.72 + 0.98 + 43.77

+ 23.61] + [13.38 + 18(−0.07) + 11(0.96)]

= 113.12,

where the values in the first set of brackets are from Fig-
ure 3 and the second set of brackets are from Table 1. This
gives f(S1) = 113.12. We can similarly compute the val-
ues of the feature sets for player 2 (green) and player 3
(red) as f(S2) = 89.47 and f(S3) = 119.65 respectively,
where player 2 is second to play. Finally, Vi(Z) is computed

18

(a) (b) (c)

Figure 5: Risk bot performances. Error bars indicate 95% confidence intervals.

via Vi(Z) = f(Si)/ (f(S1) + f(S2) + f(S3)), giving us
�V (Z) = (0.35, 0.28, 0.37).

Empirical Evaluation

We created a “UCT-Quo” bot by replacing the drafting rules
of the Quo bot provided in Lux Delux with our approach of
combining UCT and the machine-learned evaluation func-
tion. The Quo bot is one of the four strongest bots provided
by the game, according to the game designers. For com-
parison, we also created a “Random-Quo” and a “Greedy-
Quo” bot that replace Quo’s drafting rules with a random
drafting strategy and a “greedy” strategy, respectively. The
greedy strategy works as follows: At any state ŝ in the
draft (i.e. a partial assignment of territories to players), we

can obtain temporary feature sets Ŝ1, Ŝ2, Ŝ3 for each player
of the current selections made, using the same features as
described in the previous section. We can then calculate

V̂i(ŝ) = f(Ŝi)/(f(Ŝ1) + f(Ŝ2) + f(Ŝ3)) of the state ŝ,
where f is our machine-learned evaluation function. Greedy
picks the territory which leads to the state ŝ with the greatest

V̂i(ŝ) value, breaking ties by selecting randomly among the
territories with the fewest number of unoccupied neighbors.
For example, on an empty board, we can conclude from Fig-
ure 3 and Table 1 that Greedy will always open by picking a
territory in Europe with exactly three neighbors (the fewest
of all territories in Europe) because Europe has the biggest
increase in score from 0 to 1 territory. Greedy can be seen

as a 1-ply lookahead search that uses V̂i(ŝ) as an evaluation
function, despite f being designed to only evaluate draft out-
comes.

We ran several preliminary matches consisting of only
UCT-Quo bots with different UCT exploration constants and
found that c = 0.01 provided the best results. Thus, UCT-
Quo used c = 0.01 in all later experiments. For each pick,
UCT-Quo ran 3000 simulations from the root decision point,
taking less than one second per pick on an Intel Core 2 Duo
CPU at 2.00 GHz with 4GB of RAM. We also pitted UCT-
Quo against the four difficult bots in the game Lux Delux:
Quo, EvilPixie, KillBot, and Boscoe.

We present the experimental results in Figure 5. For each

combination of 3 bots that were tested, 50 rounds of games
were played to completion where 1 round consisted of 6
games, one for each of the 3! turn orderings of the bots. All
games were run with the Lux Delux settings “selected coun-
tries” and “placed armies” turned on, and “cards” turned off.

Firstly, Figure 5(a) shows that UCT-Quo came first place
against Greedy-Quo and Random-Quo in terms of both the
average draft evaluation score from our machine-learned
outcome evaluator (leftmost bars), and in number of ac-
tual games won (rightmost bars). This suggests that UCT
is a good choice for drafting Risk territories. Furthermore,
since Random-Quo wins only a small percentage of games
despite having an identical post-draft strategy as its oppo-
nents, we have evidence that the drafting phase in Risk is
crucial to success. Finally, note that the similarity in shape
between the leftmost and rightmost bars suggests that our
draft outcome evaluator does a good job at approximating
Quo’s chances of winning from an outcome.

Next, a five-bot round robin tournament consisting of
UCT-Quo and the four difficult Lux Delux bots was played
and the total number of wins for each bot in the tournament
is shown in Figure 5(b). The five bots were competing in
three-player matches where each bot competed against all
combinations of two other bots for a total of 10 combina-
tions. The results clearly show that UCT-Quo is superior to
the other four bots as it wins nearly double and nearly triple
the number of games that the next closest competitors Kill-
Bot and Quo win respectively. Full results of the tournament
are provided in Table 2.

Finally, we compare two particular results from the round
robin tournament in Figure 5(c). The blue bars show that
KillBot was the strongest among Boscoe, KillBot, and Quo,
having won roughly 60% of the games against these two
opponents. However, when the hand-coded drafting strat-
egy of Quo was replaced by our UCT approach, we see that
UCT-Quo did significantly better than Quo against the same
two opponents, having won over 75% of the games (the red
bars). This result again demonstrates that drafting territories
is an important stage of Risk, and that combining UCT with
an automated evaluation function is an effective computa-
tional approach to this problem.

19

Table 2: Results of the five-bot round robin tournament. Er-
ror values give 95% confidence intervals of win totals for
each bot per matchup.

Matchup No. of Wins Matchup No. of Wins

UCT-Quo 190 ± 14.00 UCT-Quo 234 ± 13.56
Quo 54 ± 12.47 Quo 53 ± 12.65

EvilPixie 56 ± 13.03 Boscoe 13 ± 7.31

UCT-Quo 181 ± 12.80 UCT-Quo 190 ± 16.08
Quo 60 ± 14.82 EvilPixie 51 ± 12.98

KillBot 59 ± 12.10 KillBot 59 ± 11.44

UCT-Quo 254 ± 12.47 UCT-Quo 230 ± 12.20
EvilPixie 36 ± 11.56 KillBot 68 ± 11.80
Boscoe 10 ± 6.26 Boscoe 2 ± 2.74

Quo 105 ± 10.19 Quo 126 ± 9.39
EvilPixie 90 ± 10.84 EvilPixie 128 ± 8.00
KillBot 105 ± 8.04 Boscoe 46 ± 10.42

Quo 67 ± 7.20 EvilPixie 63 ± 7.31
KillBot 185 ± 10.57 KillBot 181 ± 10.80
Boscoe 48 ± 8.84 Boscoe 56 ± 9.95

UCT-Quo’s typical strategy is to claim many neighbor-
ing territories in North America and prevent a player from
claiming all of South America or Africa by selecting the last
available territory in those continents when necessary. This
behavior can be understood from Figure 3 as the weights for
having many territories in North America are much larger
than the weights for having few to no territories there. In
addition, there are large increases in weight from having all
but one territory to having every territory in South America
and Africa. Since UCT-Quo uses Vi(Z) to evaluate draft
outcomes, it believes its chances of winning are better if
it stops its opponents from beginning the game with all of
South America or Africa.

Conclusions

We presented a technique for drafting territories in the board
game Risk. Our approach combines the UCT algorithm with
a machine-learned draft outcome evaluator to trim the length
of each UCT simulation. The augmented UCT-Quo bot out-
performed all of the difficult bots tested within Lux Delux,
including the Quo bot itself. Our experiments indicate that
the drafting stage is an important part of Risk, and combin-
ing UCT with an evaluation function is an effective means of
drafting territories. As mentioned, our drafting technique is
quite fast (less than a second per pick) and could be appeal-
ing to anyone making a bot for a future commercial version
of Risk.

We see potential future work stemming from using UCT
and a machine-learned evaluator in other types of games,
particularly in other drafting-type scenarios such as in fan-
tasy sports leagues. Furthermore, many sports video games
include a rookie or fantasy draft component and a UCT ap-
proach could provide a more intelligent opponent than cur-
rent implementations. These and other drafting ”games” are
convenient because the number of turns each player gets is
typically fixed, guaranteeing that UCT simulations will ter-
minate after a predictable amount of time (by possibly using

a draft outcome evaluator). Finally, we suspect that a more
sophisticated supervised learning technique than simple lin-
ear regression may improve the performance of our Risk bot.

Acknowledgments
We would like to thank Vadim Bulitko for his helpful guid-
ance throughout this project. This research was supported
by NSERC, iCORE, and Alberta Ingenuity, now part of Al-
berta Innovates – Technology Futures.

References
Björnsson, Y., and Finnsson, H. 2009. Cadiaplayer: A
simulation-based general game player. Computational In-
telligence and AI in Games, IEEE Transactions on 1:4–15.

Brams, S., and Straffin Jr., P. 1979. Prisoners’ dilemma and
professional sports drafts. Am. Math. Mon. 86:80–88.

Buro, M. 1997. The Othello match of the year: Takeshi Mu-
rakami vs. Logistello. International Computer Chess Asso-
ciation Journal 20:189–193.

Campbell, M.; Hoane Jr., A.; and Hsu, F. 2002. Deep blue.
Artificial Intelligence 134:57–83.

Fry, M.; Lundberg, A.; and Ohlmann, J. 2007. A player se-
lection heuristic for a sports league draft. Journal of Quan-
titative Analysis in Sports 3.

Gelly, S., and Silver, D. 2008. Achieving master level play
in 9 × 9 Computer Go. In Fox, D., and Gomes, C. P., eds.,
AAAI, 1537–1540. AAAI Press.

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. 2009. The WEKA data mining software:
An update. SIGKDD Explorations 11.

Johansson, S., and Olsson, F. 2006. Using multi-agent sys-
tem technology in risk bots. In Laird, J., and Schaeffer, J.,
eds., AIIDE, 42–47. AAAI Press.

Kocsis, L., and Szepesvari, C. 2006. Bandit based Monte-
Carlo planning. In 15th European Conference on Machine
Learning, 282–293.

Lee, G. 2004. Automated action set selection in Markov
decision processes. Master’s thesis, University of Alberta.

Luckhart, C., and Irani, K. 1986. An algorithmic solution of
n-person games. In AAAI-86, 158–162.

Parker Brothers. 1993. http://www.hasbro.com/

common/instruct/Risk.pdf. Accessed 23-Apr-
2010.

Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Upper Saddle River, New Jersey: Pren-
tice Hall, second edition.

Schaeffer, J.; Lake, R.; Lu, P.; and Bryant, M. 1996. Chi-
nook: The world Man-Machine Checkers Champion. AI
Magazine 17:21–29.

Sillysoft. Lux Delux - The best Risk game there is. http:
//sillysoft.net/lux/. Accessed 23-Apr-2010.

Sturtevant, N., and Korf, R. 2000. On pruning techniques
for multi-player games. In AAAI-2000, 201–207.

Zuckerman, I.; Felner, A.; and Kraus, S. 2009. Mixing
search strategies for multi-player games. In IJCAI, 646–651.

20

	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010

