

Learning Character Behaviors using Agent Modeling in Games

Richard Zhao, Duane Szafron

Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada T6G 2E8

{rxzhao, duane} @cs.ualberta.ca

Abstract

Our goal is to provide learning mechanisms to game agents
so they are capable of adapting to new behaviors based on
the actions of other agents. We introduce a new on-line
reinforcement learning (RL) algorithm, ALeRT-AM, that
includes an agent-modeling mechanism. We implemented
this algorithm in BioWare Corp.’s role-playing game,
Neverwinter Nights to evaluate its effectiveness in a real
game. Our experiments compare agents who use ALeRT-
AM with agents that use the non-agent modeling ALeRT
RL algorithm and two other non-RL algorithms. We show
that an ALeRT-AM agent is able to rapidly learn a winning
strategy against other agents in a combat scenario and to
adapt to changes in the environment.

Introduction
A story-oriented game contains many non-player
characters (NPCs). They interact with the player character
(PC) and other NPCs as independent agents. As
increasingly realistic graphics are introduced into games,
players are starting to demand more realistic behaviors for
the NPCs. Most games today have manually-scripted
NPCs and the scripts are usually simple and repetitive
since there are hundreds of NPCs in a game and it is time-
consuming for game developers to script each character
individually. ScriptEase (ScriptEase 2009), a publicly-
available author-oriented developer tool, attempts to solve
this problem by generating script code for BioWare Corp.'s
Neverwinter Nights (NWN 2009), from high-level design
patterns. However, the generated scripts are still static in
that they do not change over time as the NPCs gain
experience. In essence, the NPCs do not learn from their
failures or successes. The ALeRT algorithm (Cutumisu et
al. 2008) attempted to solve this problem by using
reinforcement learning (RL) to automatically generate
NPC behaviors that change over time as the NPC learns.

The ALeRT (Action-dependent Learning Rates with
Trends) algorithm is based on the single agent online
learning algorithm Sarsa(λ). The algorithm was
implemented in a combat environment to test its

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

effectiveness. It was demonstrated to achieve the same
performance as Spronck's rule-based dynamic scripting
(DS-B) algorithm (Spronck et al. 2006) when the
environment remains static and adapts better than DS-B
when the environment changes.

Although the ALeRT algorithm was successful in a
simple situation (combat between two fighter NPCs), we
applied it to more complex learning situations: combat
between two sorcerer NPCs and combat between mixed
teams of sorcerers and fighters. We discovered that when
an NPC’s “best” action was dependent on the actions of
other NPCs, ALeRT sometimes could not find this “best”
strategy. We used an “agent model” to predict the other
NPCs’ actions and used this extra state to learn a better
strategy. In this paper, we describe a modified version of
the ALeRT algorithm, called ALeRT-AM (ALeRT with
Agent Modeling), and we present the results of
experiments that we conducted to compare ALeRT-AM to
both ALeRT and DS-B.

The experiments were conducted using the NWN game
combat module provided by Spronck (NWN Arena 2009).
We show that with agent modeling, the augmented
algorithm ALeRT-AM is able to achieve equal results to
ALeRT in situations with simple winning strategies, and it
was able to obtain better results when the winning
strategies depend on the opposing agent’s actions.

Related Works
It is not common for commercial games to apply
reinforcement learning techniques, since RL techniques
generally take too long to learn and most NPCs are not
around long enough (Spronck et al. 2003). Research has
been done to incorporate RL algorithms into various genres
of games. A planning/RL hybrid method for real-time
strategy games is proposed by Sharma, et al. (2007), where
Q-learning, an RL technique, is used to update the utilities
of high-level tactics and a planner chooses the tactic with
the highest expected utility. Others have explored the use
of RL techniques in first-person shooters (Smith et al.
2007). Similarly, a variant of the Q-learning algorithm is
used to learn a team strategy, rather than the behaviors of
individual characters. We are interested in developing an
architecture in which individual NPCs can learn interesting
and effective behaviors. The challenge is in defining a
learning model with useful features, accurate reward

functions and a mechanism to model other agents. In
addition, this leaning model must be capable of being
incorporated into behaviors by game authors that have no
programming skills (Cutumisu 2009).

In story-based games, the DS-B dynamic scripting
algorithm (Spronck et al. 2006) is an alternative that uses a
set of rules from a pre-built rule-base. A rule is defined as
an action with a condition, e.g. if my health is below 50%,
try to heal myself. A “script” containing a sequence of
rules is dynamically-generated and an RL technique is
applied to the script generation process. In Spronck’s test
cases, each “script” for a fighter NPC contains five rules
from a rule-base of twenty rules. For a sorcerer NPC, each
“script” contains ten rules from a rule-base of fifty rules.
The problem with this approach is that the rule-base is
large and it has to be manually ordered (Timuri et al.
2007). Moreover, once a policy is learned by this
technique, it is not adaptable to a changing environment
(Cutumisu et al. 2008). Improvements have been made by
combining DS-B with “macros” (Szita et al. 2008).
Macros are sets of rules specialized in certain situations,
e.g. an opening macro or a midgame macro. By having a
rule-base of learned macros instead of singular rules, it is
shown that adaptivity can be increased. However, these
techniques do not take into consideration the actions of an
opponent agent.

There are attempts at opponent modeling in real-time
strategy games, using classifiers on a hierarchically
structured model (Schadd et al. 2007), but so far no
attempts have been made in story-based games.
Researchers have applied opponent-modeling techniques to
poker, a classical game (Billings et al. 2002), but the
methods are not directly applicable to story-based games,
since the rules in poker are too mechanical to be applied to
NPC behaviors. The algorithm to be introduced in this
paper is based on a non-agent modeling technique called
ALeRT (Cutumisu et al. 2008), which we summarize in the
next section.

The ALeRT algorithm
The ALeRT algorithm introduced a variation of a single-
agent on-line RL algorithm, Sarsa(λ) (Sutton and Barto
1998). A learning agent keeps a set of states of the
environment and a set of valid actions the agent can take in
the environment. Time is divided into discrete steps and
only one action can be taken at any given time step. At
each time step t, an immediate reward, r, is calculated from
observations of the environment. A policy π is a mapping
of each state s and each action a to the probability of taking
action a in state s. The value function for policy π,
denoted Qπ (s,a), is the expected total reward (to the end of
the game) of taking action a in state s and following π
thereafter. The goal of the learning algorithm is to obtain a
running estimate, Q(s,a), of the value function Qπ (s,a) that
evolves over time as the environment changes
dynamically. The on-policy Sarsa algorithm differs from
the off-policy Q-learning algorithm in that with Sarsa, the
running estimate Q(s,a) approximates the value function

for a chosen policy π, instead of an optimal value function.
Our estimate Q(s,a), is initialized arbitrarily and is learned
from experience. As with Sarsa(λ), ALeRT uses the
Temporal-Difference prediction method to update the
estimate Q(s,a), where α denotes the learning rate, γ
denotes the discount, and e denotes the eligibility trace:

Q(st, at)  Q(st, at) + α [rt+1 + γQ(st+1, at+1) – Q(st, at)] e(st, at)

In Sarsa(λ), α is either a small fixed value or decreasing
in order to guarantee convergence. Within a computer
game environment, the slow learning rate of Sarsa(λ) poses
a serious problem. The ALeRT algorithm analyzes trends
in the environment by tracking the change of Q(s,a) at each
step. The trend measure is based on the Delta-Bar-Delta
measure (Sutton 1992) where a window of previous steps
is kept. If the current change follows the trend, then the
learning rate is increased; and if the current change differs
from the trend, then learning rate is decreased.

Secondly, as opposed to a global learning rate, α,
ALeRT establishes a separate learning rate, α(a) for each
action, a, of the learning agent. This enables each action to
form its own trend so that when the environment is
changed, only the actions affected by that change register
disturbances in their trends.

Thirdly, as opposed to a fixed exploration rate, ALeRT
uses an adjustable exploration rate, changing in accordance
with a positive or negative reward. If the received reward
is positive, implying the NPC has chosen good actions, the
exploration rate is decreased. On the other hand, if the
reward is negative, the exploration rate is increased.

The ALeRT algorithm is a general purpose learning
algorithm which can be applied to the learning of NPC
behaviors. The easiest way to evaluate the effectiveness of
a learning algorithm is to test it in a quantitative
experiment. It is difficult to test behaviors whose rewards
are not well-defined, so this general algorithm was tested
in a situation with very concrete and evaluable reward
functions – combat.

To evaluate the effectiveness of the algorithm, it was
applied to Neverwinter Nights, in a series of experiments
with fighter NPCs, where one fighter used the ALeRT
algorithm to select actions and the opponent fighter used
other algorithms (default NWN, DS-B, hand-coded
optimal). A combat scenario was chosen because the
results of the experiment can be measured using concrete
numbers of wins and loses. ALeRT achieved good results
in terms of policy-finding and adaptivity. However, when
we applied the ALeRT algorithm in a duel between two
sorcerer NPCs (fighters and sorcerers are common units in
NWN), the experimental results were not as good as we
expected (see Experiments and Evaluation).

A fighter only has limited actions. For example, a
fighter may only: use a melee weapon, use a ranged
weapon, drink a healing potion or drink an enhancement
potion (speed). However, a sorcerer has more actions,
since sorcerers can cast a number of spells. We abstracted
the spells into eight categories. This gives a sorcerer eight
actions instead of the four actions available to fighters.

In a more complex environment where both sides have a
fighter and a sorcerer, ALeRT can also be applied. Each
action is appended with a target. The targets are friendly
fighter, friendly sorcerer, enemy fighter, and enemy
sorcerer, depending on the validity of the action. This
system can be extended easily to multiple members for
each team.

ALeRT-AM: ALeRT with Agent Modeling
With ALeRT, each action is chosen based on the state of
the environment that does not include knowledge of recent
actions of other agents. Although there is no proof that
ALeRT always converges to an optimal strategy, in
practice it finds a strategy that gives positive rewards in
most situations. In the case of a fighter, where there are
only a limited number of simple actions, a winning strategy
can be constructed that is independent of the other agent’s
actions. For example, in the four-action fighter scenario it
is always favorable to take a speed enhancement potion in
the first step. Unfortunately, when more complex actions
are available the actions of the other agents are important.
In the case of sorcerers, the spell system in NWN is
balanced so that spells can be countered by other spells.
For example, a fireball spell can be rendered useless by a
minor globe of invulnerability spell. In such a system, any
favorable strategy has to take into consideration the actions
of other agents, in addition to the state of the environment.
The task is to learn a model of the opposing agent and
subsequently come up with a counter-strategy that can
exploit such information.

We adapted the ALeRT algorithm to produce ALeRT-
AM, by adding features based on the predicted current
actions of other agents using opponent modeling Q-
learning (Uther and Veloso 1997). We modified the value
function to contain three parameters, the current state s, the
agent's own action a, and the opposing agent's action a'.
We denote the modified value function Q(s, a, a'). At
every time step, the current state s is observed and action a
is selected based on a selection policy, ε-greedy, where the
action with the largest estimated Q(s, a, a') is chosen with
probability (1-ε), and a random action is chosen with
probability ε. Since the opponent's next action cannot be
known in advance, a' is estimated based on a model built
using past experience. The ALeRT-AM algorithm is
shown in Figure 1.

N(s) denotes the frequency of game state s and C(s, a)
denotes the frequency of the opponent choosing action a in
game state s. For each action a, the weighted average of
the value functions Q(s, a, a') for each opponent action a' is
calculated, based on the frequency of each opponent
action. This weighted average is used as the value of
action a in the ε-greedy policy, as shown on the line
marked by **.

Figure 1. The ALeRT-AM algorithm.

€

Initialize Q arbitrarily, C(s, a)← 0, N(s)← 0 for all s,a
Initializeα(a)←αmax for all a
Repeat (for each episode) until s is terminal
 e =

0

s, a,a' ← initial state and action of episode
Let F represent the set of features from s, a, a'
Repeat (for each step t of episode)

For all i ∈ F :

e(i)← e(i) + 1
F

 (accummulating eligibility traces)

Take action at, observe reward, rt,
opponent's action a't and next state, st+1

With probability 1-ε :

** at+1 ← argmaxa
C(st,a')

N(st)a'
∑ Q(st,a,a')

or with probability ε :
at+1 ← a random action∈ A

€

δ← rt + γ
C(st+1,a')

N(st+1)a'
∑ Q(st+1,at+1,a') −Q(st,at ,a't)

Q← Q +α a()δ e
 e = γλ e
C(st,a't)← C(st,a't) +1
N(st)← N(st) +1

Δα =
αmax −αmin

αsteps

if δ a()δ > 0 ∧ δ a() −µδ a() > fσδ a()

α a()←α a() + Δα

else if δ a()δ ≤ 0
α a()←α a() −Δα

end of step

Δε =
εmax −εmin

εsteps

if rstep =1
step
∑

ε = ε − Δε

else
ε = ε + Δε

end of episode

NWN Implementation
We used combat to test the effectiveness of the ALeRT-
AM algorithm, for all the same reasons as it was used to
test ALeRT. We conducted a series of learning
experiments in NWN using Spronck's arena-combat
environment. An agent is defined as an AI-controlled
character (A non-player character, or NPC), and a player
character (PC) is controlled by the player. Each agent
responds to a set of events in the environment. For
example, when an agent is attacked, the script associated
with the event OnPhysicalAttacked is executed.

An episode is defined as one fight between two
opposing teams, starting when all agents of both teams
have been created in the arena and ending as soon as all
agents from one team are destroyed. A step is defined as
one round of combat, which lasts six seconds of game
time.

Every episode can be scored as a zero-sum game. When
each team consists of one agent, the total score of an
episode is 1 if the team wins and -1 if the team loses. The
immediate reward function of one step is defined as:

H represents the hit points of an agent where the
subscript s denotes the hit points of the agent whose
actions are being selected and the subscript o denotes the
hit points of the opposing agent. An H with a hat (^)
denotes the hit points at the current step and an H without a
hat denotes the hit points at the previous step.

When each team consists of two agents, the total score
can be defined similarly. The hit points of all team
members are added together. The total score of an episode
is 1 if the team wins and -1 if the opposing team wins. The
immediate reward function of one step is defined as:

The subscripts 1 and 2 denote team members 1 and 2.
The feature vector contains combinations of states from

the state space and actions from the action space.
Available states and actions depend on the properties of the
agent. Two types of agents are used in our experiment, a
fighter and a sorcerer. The state space of a fighter consists
of three Boolean states: 1) the agent’s hit points are lower
than half of the initial hit points; 2) the agent has an
enhancement potion available; 3) the agent has an active
enhancement effect. The action space of a fighter consists
of four actions: melee, ranged, heal, and speed. The state
space of a sorcerer consists of four Boolean states: 1) the
agent’s hit points are lower than half of the initial hit
points; 2) the agent has an active combat-protection effect;
3) the agent has an active spell-defense effect; 4) the
opposing sorcerer has an active spell-defense effect. The

action space of a sorcerer consists of the eight actions
shown in Table 1. When agent modeling is used by the
sorcerer, there is also an opponent action space, consisting
of equivalent actions for the opposing sorcerer agent.

Experiments and Evaluation
The experiments were conducted with Spronck's NWN
arena combat module, as shown in Figure 2. For the two
opposing teams, one team is scripted with our learning
algorithm, while the other team is scripted with one
strategy from the following set. NWN is the default
Neverwinter Nights strategy, a rule-based static
probabilistic strategy. DS-B represents Spronck’s rule-
based dynamic scripting method. ALeRT is the
unmodified version of the online-learning strategy, while
ALeRT-AM is the new version that includes agent
modeling.

Table 1. The actions for a sorcerer

Figure 2. The arena showing combat between two teams.

Action Category Description

Attack melee Attack with the best melee
weapon available

Attack ranged Attack with the best ranged
weapon available

Cast combat-enhancement
spell

Cast a spell that increases a
person's ability in physical
combat, e.g. Bull's strength

Cast combat-protection
spell

Cast a spell that protects a person
in physical combat, e.g. Shield

Cast spell-defense spell Cast a spell that defends against
hostile spells, e.g. Minor Globe of
Invulnerability

Cast offensive-area spell Cast an offensive spell that
targets an area, e.g. Fireball

Cast offensive-single spell Cast an offensive spell that
targets a single person, e.g. Magic
Missile

Heal Drink a healing potion

Each experiment consisted of ten trials and each trial
consisted of either one or two phases of 500 episodes. All
agents started with zero knowledge of themselves and their
opponents, other than the set of legal actions they can take.
At the start of each phase, each agent was equipped with a
specific set of equipment and in case of a sorcerer, a
specific set of spells. In a one-phase experiment, we
evaluated how quickly our agents could find a winning
strategy. In a two-phase experiment, we evaluated how
well our agents could adapt to a different set
(configuration) of sorcerer spells. It should be noted that
the NWN combat system uses random numbers, so there is
always an element of chance.

Motivation for ALeRT-AM
The original ALeRT algorithm, with a fighter as the agent,
was shown to be superior to both traditional Sarsa(λ) and
NWN in terms of strategy-discovering and more adaptive
to environmental change than DS-B (Cutumisu et al.
2008). We begin by presenting the results of experiments
where ALeRT was applied to more complex situations.

Figure 3 shows the result of ALeRT versus the default
NWN algorithm, for three different teams, one fighter team
(Cutumisu et al. 2008), a new sorcerer team and a new
sorcerer-fighter team. The Y-axis represents the average
number of episodes that the former team has won. ALeRT
is quick to converge on a good counter-strategy that results
in consistent victories for all teams.

Figure 3. ALeRT against NWN for several teams.

Figure 4 shows the results of ALeRT vs. DS-B, for the
same teams. For the fighter team and the fighter-sorcerer
team, both ALeRT and DS-B are able to reach an optimal
strategy fairly quickly, resulting in a tie.

In the more complex case of the sorcerer team, the
results have higher variance with an ALeRT winning rate
that drops to about 50% as late as episode 350. These
results depend on whether an optimal strategy can be found
that is independent of actions of the opposing team. A lone
fighter has a simple optimal strategy, which does not
depend on the opponent. In the fighter-sorcerer team, the
optimal strategy is for both the fighter and sorcerer to focus
on killing the opposing sorcerer first, and then the problem
is reduced to fighter vs. fighter.

However, with a sorcerer team, there is no single static
best strategy, as for every action, there is a counter-action.
For example, casting a minor globe of invulnerability will
render a fireball useless, but the minor globe is ineffective
against a physical attack. The best strategy depends on the
opponent's actions and the ability to predict the opponent's
next action is crucial.

Figure 4. Motivation for ALeRT-AM: ALeRT versus DS-B for

several teams

Agent modeling
With ALeRT and agent modeling, ALeRT-AM achieves
an approximately equal result with ALeRT when battling
against the default NWN strategy (Figure 5). The sorcerer
team defeats NWN with a winning rate above 90% while
the fighter-sorcerer team achieves an 80% winning rate.

Figure 5. ALeRT-AM against NWN for several teams.

With ALeRT-AM versus DS-B, the results are much
more consistent (Figure 6). For the sorcerer team, ALeRT-
AM derives a model for the opponent in less than 100
episodes and is able to keep its winning rate consistently
above 62%. For the fighter-sorcerer team, ALeRT-AM
does better than ALeRT against DS-B by achieving and
maintaining a winning rate of 60% by episode 300.

The ALeRT-AM algorithm was also tested again the
original ALeRT algorithm. Figure 7 shows the results for
the sorcerer teams and the fighter-sorcerer teams. ALeRT-

AM has an advantage over ALeRT at adapting to the
changing strategy, generally keeping the winning rate
above 60% and quickly recovering from a disadvantaged
strategy, as shown near episode 400 in the sorcerer vs.
sorcerer scenario (a turning point on the blue line in the
graph).

Figure 6. ALeRT-AM versus DS-B for several teams

Figure 7. ALeRT-AM versus ALeRT for several teams

Figure 8. ALeRT-AM versus DS-B in a changing environment

Adaptation in a dynamic environment
ALeRT was shown to be adaptable to change in the
environment for the fighter team (Cutumisu et al. 2008), by
changing the configuration at episode 501 (the second
phase). For a fighter team, a better weapon was given in
the second phase. We demonstrate that the adaptability
remains even with agent modeling (Figure 8). For a
sorcerer team, the new configuration has higher-level
spells. We are interested in the difficult sorcerer case and
two sets of experiments were performed. In the first set of
experiments, for the first 500 episodes, the single optimal
strategy is to always cast fireball, since no defensive spell
is provided that is effective against the fireball, and both
ALeRT-AM and DS-B find the strategy quickly, resulting
in a tie. DS-B has a slightly higher winning rate due to the
epsilon-greedy exploratory actions of ALeRT-AM and the
fact that in this first phase, no opponent modeling is
necessary, since there is a single optimal strategy. After
gaining a new defensive spell against the fireball at episode
501, there is no longer a single optimal strategy. In a
winning strategy, the best next action depends on the next
action of the opponent. The agent model is able to model
its opponent accurately enough so that its success
continuously improves and by the end of episode 1000,
ALeRT-AM is able to defeat DS-B at a winning rate of
approximately 80%. In the second set of experiments, both
the first 500 episodes and the second 500 episodes require
a model of the opponent in order to plan a counter-strategy,
and ALeRT-AM clearly shows its advantage over DS-B in
both phases.

Observations
Although ALeRT-AM has a much larger feature space than
ALeRT (with sixty-four extra features for a sorcerer,
representing the pairs of eight features for the agent and
eight features for the opposing agent), its performance does
not suffer. In a fighter-sorcerer team, the single best
strategy is to kill the opposing sorcerer first, regardless of
what the opponent is trying to do. In this case, ALeRT-
AM performs as well as ALeRT in terms of winning
percentage against all opponents we have experimented
with. Against the default static NWN strategy, both
ALeRT and ALeRT-AM perform exceptionally well,
quickly discovering a counter-strategy to the opposing
static strategy, if one can be found, as is the case with the
sorcerer team and the fighter-sorcerer team. We have also
shown that ALeRT-AM does not lose the adaptivity of
ALeRT in a changing environment.

In the sorcerer team, where the strategy of the sorcerer
depends heavily on the strategy of the opposing agent,
ALeRT-AM has shown its advantages. Both against the
rule-based learning agent DS-B and the agent running the
original ALeRT algorithm, ALeRT-AM emerges
victorious and it is able to keep its victory by quickly
adapting to the opposing agent’s strategy.

When implementing the RL algorithm for a game
designer, the additional features required for agent

modeling will not cause additional work. All features can
be automatically generated from the set of actions and the
set of game states. The set of actions and the set of game
states are simple and intuitive, and they can be reused
across different characters in story-based games.

Conclusions
We modified the general purpose learning algorithm
ALeRT to incorporate agent modeling and evaluated the
new algorithm by modeling opponent agents in combat.
While ALeRT was able to find a winning strategy quickly,
when the winning strategy depended only on the actions of
the agent itself, it did not give consistent results when the
winning strategy included actions that are dependent on the
opponent's actions. ALeRT-AM corrected this problem by
constructing a model for the opponent and using this model
to predict the best action it could take against that
opponent. The ALeRT-AM algorithm exhibits the same
kind of adaptability that ALeRT exhibits when the
environment changes. Although the experiments focused
on modeling opponent agents, the same algorithm can be
used to predict the actions of allied agents to improve
cooperative actions. The algorithm can also be applied
beyond combat since the designer of the game needs only
to supply a set of states for the game, and a set of legal
actions the NPCs can take and a reward function. An
initial learning phase can be done off-line so that the initial
behaviors are reasonable and as the game progresses, the
NPCs will be able to adapt quickly to the changing
environment. With a typical story-based game consisting
of hundreds of NPCs, the learning experience can also be
shared among NPCs of the same type, thus greatly
reducing the time required to adapt for the learning
algorithm.

As future work, experiments can be conducted with
human players to get an evaluation of the human
conception of the learning agents. The player would
control a character in the game and a companion would be
available to the player. Two sets of experiments would be
run, one with an ALeRT-AM learning companion and one
with a different companion. Players would be asked which
one they prefer. Ultimately, the goal of the learning
algorithm is to provide NPCs with more realistic behaviors
to present a better gaming experience for players.

Acknowledgements
This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and
the Alberta’s Informatics Circle of Research Excellence
(iCORE). We thank the three anonymous reviewers for
their feedbacks and suggestions. We also thank the rest of
the ScriptEase research team, past and present.

References
Billings, D., Davidson, A., Schaeffer, J. and Szafron, D. 2002.
The challenge of poker. Artificial Intelligence, 134 (1-2), 201-
240.

Cutumisu, M. 2009. Using Behavior Patterns to Generate Scripts
for Computer Role-Playing Games. PhD thesis, University of
Alberta.

Cutumisu, M., Szafron, D., Bowling, M., Sutton, R.S. 2008.
Agent Learning using Action-Dependent Learning Rates in
Computer Role-Playing Games. 4th Annual Artificial Intelligence
and Interactive Digital Entertainment Conference (AIIDE-08),
22-29.

NWN. 2009. http://nwn.bioware.com.

NWN Arena. 2009. http://ticc.uvt.nl/~pspronck/nwn.html.

Schadd F., Bakkes, S., and Spronck, P. 2007. Opponent Modeling
in Real-Time Strategy Games. 8th International Conference on
Intelligent Games and Simulation (GAME-ON 2007), 61-68.

ScriptEase. 2009. http://www.cs.ualberta.ca/~script/.

Sharma, M., Holmes, M., Santamaria, J.C., Irani, A., Isbell, C.,
Ram, A. 2007. Transfer Learning in Real-Time Strategy Games
Using Hybrid CBR/RL. In International Joint Conference on
Artificial Intelligence (IJCAI-07), 1041-1046.

Smith, M., Lee-Urban, S., Muñoz-Avila, H. 2007. RETALIATE:
Learning Winning Policies in First-Person Shooter Games. In
Proceedings of the Nineteenth Innovative Applications of
Artificial Intelligence Conference (IAAI-07), 1801-1806.

Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., and Postma, E.
2006. Adaptive Game AI with Dynamic Scripting. Machine
Learning 63(3): 217-248.

Spronck, P., Sprinkhuizen-Kuyper, I., and Postma, E. 2003.
Online Adaptation of Computer Game Opponent AI.
Proceedings of the 15th Belgium-Netherlands Conference on AI.
291-298.

Sutton, R.S., and Barto, A.G. eds. 1998. Reinforcement Learning:
An Introduction. Cambridge, Mass.: MIT Press.

Sutton, R.S. 1992. Adapting Bias by Gradient Descent: An
Incremental Version of Delta-Bar-Delta. In Proceedings of the
10th National Conference on AI, 171-176.

Szita, I., Ponsen, M., and Spronck, P. 2008. Keeping Adaptive
Game AI Interesting. In Proceedings of CGAMES 2008, 70-74.

Timuri, T., Spronck, P., and van den Herik, J. 2007. Automatic
Rule Ordering for Dynamic Scripting. In Proceedings of the 3rd
AIIDE Conference, 49-54, Palo Alto, Calif.: AAAI Press.

Uther, W., and Veloso, M. 1997. Adversarial reinforcement
learning. Tech. rep., Carnegie Mellon University. Unpublished.

