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Abstract 

Our goal is to provide learning mechanisms to game agents 
so they are capable of adapting to new behaviors based on 
the actions of other agents. We introduce a new on-line 
reinforcement learning (RL) algorithm, ALeRT-AM, that 
includes an agent-modeling mechanism. We implemented 
this algorithm in BioWare Corp.’s role-playing game, 
Neverwinter Nights to evaluate its effectiveness in a real 
game.  Our experiments compare agents who use ALeRT-
AM with agents that use the non-agent modeling ALeRT 
RL algorithm and two other non-RL algorithms.  We show 
that an ALeRT-AM agent is able to rapidly learn a winning 
strategy against other agents in a combat scenario and to 
adapt to changes in the environment. 

Introduction  
A story-oriented game contains many non-player 
characters (NPCs).  They interact with the player character 
(PC) and other NPCs as independent agents.  As 
increasingly realistic graphics are introduced into games, 
players are starting to demand more realistic behaviors for 
the NPCs. Most games today have manually-scripted 
NPCs and the scripts are usually simple and repetitive 
since there are hundreds of NPCs in a game and it is time-
consuming for game developers to script each character 
individually.  ScriptEase (ScriptEase 2009), a publicly-
available author-oriented developer tool, attempts to solve 
this problem by generating script code for BioWare Corp.'s 
Neverwinter Nights (NWN 2009), from high-level design 
patterns. However, the generated scripts are still static in 
that they do not change over time as the NPCs gain 
experience. In essence, the NPCs do not learn from their 
failures or successes. The ALeRT algorithm (Cutumisu et 
al. 2008) attempted to solve this problem by using 
reinforcement learning (RL) to automatically generate 
NPC behaviors that change over time as the NPC learns. 

The ALeRT (Action-dependent Learning Rates with 
Trends) algorithm is based on the single agent online 
learning algorithm Sarsa(λ).  The algorithm was 
implemented in a combat environment to test its 
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effectiveness.  It was demonstrated to achieve the same 
performance as Spronck's rule-based dynamic scripting 
(DS-B) algorithm (Spronck et al. 2006) when the 
environment remains static and adapts better than DS-B 
when the environment changes.    

Although the ALeRT algorithm was successful in a 
simple situation (combat between two fighter NPCs), we 
applied it to more complex learning situations: combat 
between two sorcerer NPCs and combat between mixed 
teams of sorcerers and fighters. We discovered that when 
an NPC’s “best” action was dependent on the actions of 
other NPCs, ALeRT sometimes could not find this “best” 
strategy. We used an “agent model” to predict the other 
NPCs’ actions and used this extra state to learn a better 
strategy. In this paper, we describe a modified version of 
the ALeRT algorithm, called ALeRT-AM (ALeRT with 
Agent Modeling), and we present the results of 
experiments that we conducted to compare ALeRT-AM to 
both ALeRT and DS-B. 

The experiments were conducted using the NWN game 
combat module provided by Spronck (NWN Arena 2009).  
We show that with agent modeling, the augmented 
algorithm ALeRT-AM is able to achieve equal results to 
ALeRT in situations with simple winning strategies, and it 
was able to obtain better results when the winning 
strategies depend on the opposing agent’s actions. 

Related Works 
It is not common for commercial games to apply 
reinforcement learning techniques, since RL techniques 
generally take too long to learn and most NPCs are not 
around long enough (Spronck et al. 2003).  Research has 
been done to incorporate RL algorithms into various genres 
of games.  A planning/RL hybrid method for real-time 
strategy games is proposed by Sharma, et al. (2007), where 
Q-learning, an RL technique, is used to update the utilities 
of high-level tactics and a planner chooses the tactic with 
the highest expected utility. Others have explored the use 
of RL techniques in first-person shooters (Smith et al. 
2007).  Similarly, a variant of the Q-learning algorithm is 
used to learn a team strategy, rather than the behaviors of 
individual characters. We are interested in developing an 
architecture in which individual NPCs can learn interesting 
and effective behaviors. The challenge is in defining a 
learning model with useful features, accurate reward 



functions and a mechanism to model other agents. In 
addition, this leaning model must be capable of being 
incorporated into behaviors by game authors that have no 
programming skills (Cutumisu 2009). 

In story-based games, the DS-B dynamic scripting 
algorithm (Spronck et al. 2006) is an alternative that uses a 
set of rules from a pre-built rule-base.  A rule is defined as 
an action with a condition, e.g. if my health is below 50%, 
try to heal myself. A “script” containing a sequence of 
rules is dynamically-generated and an RL technique is 
applied to the script generation process.  In Spronck’s test 
cases, each “script” for a fighter NPC contains five rules 
from a rule-base of twenty rules.  For a sorcerer NPC, each 
“script” contains ten rules from a rule-base of fifty rules.  
The problem with this approach is that the rule-base is 
large and it has to be manually ordered (Timuri et al.  
2007). Moreover, once a policy is learned by this 
technique, it is not adaptable to a changing environment 
(Cutumisu et al. 2008).  Improvements have been made by 
combining DS-B with “macros” (Szita et al. 2008).  
Macros are sets of rules specialized in certain situations, 
e.g. an opening macro or a midgame macro.  By having a 
rule-base of learned macros instead of singular rules, it is 
shown that adaptivity can be increased.  However, these 
techniques do not take into consideration the actions of an 
opponent agent. 

There are attempts at opponent modeling in real-time 
strategy games, using classifiers on a hierarchically 
structured model (Schadd et al. 2007), but so far no 
attempts have been made in story-based games.  
Researchers have applied opponent-modeling techniques to 
poker, a classical game (Billings et al. 2002), but the 
methods are not directly applicable to story-based games, 
since the rules in poker are too mechanical to be applied to 
NPC behaviors. The algorithm to be introduced in this 
paper is based on a non-agent modeling technique called 
ALeRT (Cutumisu et al. 2008), which we summarize in the 
next section. 

The ALeRT algorithm 
The ALeRT algorithm introduced a variation of a single-
agent on-line RL algorithm, Sarsa(λ) (Sutton and Barto 
1998). A learning agent keeps a set of states of the 
environment and a set of valid actions the agent can take in 
the environment.  Time is divided into discrete steps and 
only one action can be taken at any given time step.  At 
each time step t, an immediate reward, r, is calculated from 
observations of the environment.  A policy π is a mapping 
of each state s and each action a to the probability of taking 
action a in state s.  The value function for policy π, 
denoted Qπ (s,a), is the expected total reward (to the end of 
the game) of taking action a in state s and following π 
thereafter.  The goal of the learning algorithm is to obtain a 
running estimate, Q(s,a), of the value function Qπ (s,a) that 
evolves over time as the environment changes 
dynamically.  The on-policy Sarsa algorithm differs from 
the off-policy Q-learning algorithm in that with Sarsa, the 
running estimate Q(s,a) approximates the value function 

for a chosen policy π, instead of an optimal value function.  
Our estimate Q(s,a), is initialized arbitrarily and is learned 
from experience.  As with Sarsa(λ), ALeRT uses the 
Temporal-Difference prediction method to update the 
estimate Q(s,a), where α denotes the learning rate, γ 
denotes the discount, and e denotes the eligibility trace: 

Q(st, at)  Q(st, at) + α [ rt+1 + γQ(st+1, at+1) – Q(st, at)] e(st, at) 

In Sarsa(λ), α is either a small fixed value or decreasing 
in order to guarantee convergence.    Within a computer 
game environment, the slow learning rate of Sarsa(λ) poses 
a serious problem.  The ALeRT algorithm analyzes trends 
in the environment by tracking the change of Q(s,a) at each 
step.  The trend measure is based on the Delta-Bar-Delta 
measure (Sutton 1992) where a window of previous steps 
is kept.  If the current change follows the trend, then the 
learning rate is increased; and if the current change differs 
from the trend, then learning rate is decreased. 

Secondly, as opposed to a global learning rate, α, 
ALeRT establishes a separate learning rate, α(a) for each 
action, a, of the learning agent.  This enables each action to 
form its own trend so that when the environment is 
changed, only the actions affected by that change register 
disturbances in their trends. 

Thirdly, as opposed to a fixed exploration rate, ALeRT 
uses an adjustable exploration rate, changing in accordance 
with a positive or negative reward.  If the received reward 
is positive, implying the NPC has chosen good actions, the 
exploration rate is decreased.  On the other hand, if the 
reward is negative, the exploration rate is increased. 

The ALeRT algorithm is a general purpose learning 
algorithm which can be applied to the learning of NPC 
behaviors. The easiest way to evaluate the effectiveness of 
a learning algorithm is to test it in a quantitative 
experiment. It is difficult to test behaviors whose rewards 
are not well-defined, so this general algorithm was tested 
in a situation with very concrete and evaluable reward 
functions – combat.  

To evaluate the effectiveness of the algorithm, it was 
applied to Neverwinter Nights, in a series of experiments 
with fighter NPCs, where one fighter used the ALeRT 
algorithm to select actions and the opponent fighter used 
other algorithms (default NWN, DS-B, hand-coded 
optimal).  A combat scenario was chosen because the 
results of the experiment can be measured using concrete 
numbers of wins and loses.  ALeRT achieved good results 
in terms of policy-finding and adaptivity. However, when 
we applied the ALeRT algorithm in a duel between two 
sorcerer NPCs (fighters and sorcerers are common units in 
NWN), the experimental results were not as good as we 
expected (see Experiments and Evaluation). 

A fighter only has limited actions.  For example, a 
fighter may only: use a melee weapon, use a ranged 
weapon, drink a healing potion or drink an enhancement 
potion (speed).  However, a sorcerer has more actions, 
since sorcerers can cast a number of spells. We abstracted 
the spells into eight categories. This gives a sorcerer eight 
actions instead of the four actions available to fighters. 



 

 

In a more complex environment where both sides have a 
fighter and a sorcerer, ALeRT can also be applied.  Each 
action is appended with a target.  The targets are friendly 
fighter, friendly sorcerer, enemy fighter, and enemy 
sorcerer, depending on the validity of the action.  This 
system can be extended easily to multiple members for 
each team.  

ALeRT-AM: ALeRT with Agent Modeling 
With ALeRT, each action is chosen based on the state of 
the environment that does not include knowledge of recent 
actions of other agents.  Although there is no proof that 
ALeRT always converges to an optimal strategy, in 
practice it finds a strategy that gives positive rewards in 
most situations.  In the case of a fighter, where there are 
only a limited number of simple actions, a winning strategy 
can be constructed that is independent of the other agent’s 
actions.  For example, in the four-action fighter scenario it 
is always favorable to take a speed enhancement potion in 
the first step.  Unfortunately, when more complex actions 
are available the actions of the other agents are important. 
In the case of sorcerers, the spell system in NWN is 
balanced so that spells can be countered by other spells.  
For example, a fireball spell can be rendered useless by a 
minor globe of invulnerability spell.  In such a system, any 
favorable strategy has to take into consideration the actions 
of other agents, in addition to the state of the environment.  
The task is to learn a model of the opposing agent and 
subsequently come up with a counter-strategy that can 
exploit such information. 

We adapted the ALeRT algorithm to produce ALeRT-
AM, by adding features based on the predicted current 
actions of other agents using opponent modeling Q-
learning (Uther and Veloso 1997).  We modified the value 
function to contain three parameters, the current state s, the 
agent's own action a, and the opposing agent's action a'.  
We denote the modified value function Q(s, a, a').  At 
every time step, the current state s is observed and action a 
is selected based on a selection policy, ε-greedy, where the 
action with the largest estimated Q(s, a, a') is chosen with 
probability (1-ε), and a random action is chosen with 
probability ε. Since the opponent's next action cannot be 
known in advance, a' is estimated based on a model built 
using past experience. The ALeRT-AM algorithm is 
shown in Figure 1.  

N(s) denotes the frequency of game state s and C(s, a) 
denotes the frequency of the opponent choosing action a in 
game state s.  For each action a, the weighted average of 
the value functions Q(s, a, a') for each opponent action a' is 
calculated, based on the frequency of each opponent 
action.  This weighted average is used as the value of 
action a in the ε-greedy policy, as shown on the line 
marked by **. 

 
 

 
 

 

Figure 1. The ALeRT-AM algorithm. 
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Initialize Q arbitrarily, C(s,  a)← 0, N(s)← 0 for all s,a
Initializeα(a)←αmax for all a
Repeat (for each episode) until s is terminal
 e =
 
0 

s,  a,a'  ← initial state and action of episode
Let F represent the set of features from s,  a,  a'
Repeat (for each step t of episode)

For all i ∈  F :

e(i)← e(i) +  1
F

 (accummulating eligibility traces)

Take action at, observe reward, rt,
opponent's action a't and next state, st+1

With probability 1-ε :

** at+1 ← argmaxa
C(st,a')

N(st )a'
∑ Q(st,a,a')

or with probability ε :
at+1 ← a random action∈ A

  

€ 

δ← rt + γ
C(st+1,a')

N(st+1)a'
∑ Q(st+1,at+1,a') −Q(st,at ,a't )

Q← Q +α a( )δ e 
 e = γλ e 
C(st,a't )← C(st,a't ) +1
N(st )← N(st ) +1

Δα =
αmax −αmin

αsteps

if δ a( )δ > 0 ∧ δ a( ) −µδ a( ) > fσδ a( )

α a( )←α a( ) + Δα

else if δ a( )δ ≤ 0
α a( )←α a( ) −Δα

end of step

Δε =
εmax −εmin

εsteps

if rstep =1
step
∑

ε = ε − Δε

else
ε = ε + Δε

end of episode



NWN Implementation 
We used combat to test the effectiveness of the ALeRT-
AM algorithm, for all the same reasons as it was used to 
test ALeRT. We conducted a series of learning 
experiments in NWN using Spronck's arena-combat 
environment.  An agent is defined as an AI-controlled 
character (A non-player character, or NPC), and a player 
character (PC) is controlled by the player.  Each agent 
responds to a set of events in the environment.  For 
example, when an agent is attacked, the script associated 
with the event OnPhysicalAttacked is executed. 

An episode is defined as one fight between two 
opposing teams, starting when all agents of both teams 
have been created in the arena and ending as soon as all 
agents from one team are destroyed.  A step is defined as 
one round of combat, which lasts six seconds of game 
time. 

Every episode can be scored as a zero-sum game.  When 
each team consists of one agent, the total score of an 
episode is 1 if the team wins and -1 if the team loses.  The 
immediate reward function of one step is defined as: 

 

H represents the hit points of an agent where the 
subscript s denotes the hit points of the agent whose 
actions are being selected and the subscript o denotes the 
hit points of the opposing agent.  An H with a hat (^) 
denotes the hit points at the current step and an H without a 
hat denotes the hit points at the previous step.  

When each team consists of two agents, the total score 
can be defined similarly.  The hit points of all team 
members are added together.  The total score of an episode 
is 1 if the team wins and -1 if the opposing team wins.  The 
immediate reward function of one step is defined as: 

 

The subscripts 1 and 2 denote team members 1 and 2. 
The feature vector contains combinations of states from 

the state space and actions from the action space.  
Available states and actions depend on the properties of the 
agent.  Two types of agents are used in our experiment, a 
fighter and a sorcerer.  The state space of a fighter consists 
of three Boolean states:  1) the agent’s hit points are lower 
than half of the initial hit points; 2) the agent has an 
enhancement potion available; 3) the agent has an active 
enhancement effect.  The action space of a fighter consists 
of four actions: melee, ranged, heal, and speed.  The state 
space of a sorcerer consists of four Boolean states: 1) the 
agent’s hit points are lower than half of the initial hit 
points; 2) the agent has an active combat-protection effect; 
3) the agent has an active spell-defense effect; 4) the 
opposing sorcerer has an active spell-defense effect. The 

action space of a sorcerer consists of the eight actions 
shown in Table 1. When agent modeling is used by the 
sorcerer, there is also an opponent action space, consisting 
of equivalent actions for the opposing sorcerer agent. 

Experiments and Evaluation 
The experiments were conducted with Spronck's NWN 
arena combat module, as shown in Figure 2.  For the two 
opposing teams, one team is scripted with our learning 
algorithm, while the other team is scripted with one 
strategy from the following set. NWN is the default 
Neverwinter Nights strategy, a rule-based static 
probabilistic strategy.  DS-B represents Spronck’s rule-
based dynamic scripting method.  ALeRT is the 
unmodified version of the online-learning strategy, while 
ALeRT-AM is the new version that includes agent 
modeling. 

Table 1. The actions for a sorcerer 

Figure 2. The arena showing combat between two teams. 

Action Category Description 

Attack melee Attack with the best melee 
weapon available 

Attack ranged Attack with the best ranged 
weapon available 

Cast combat-enhancement 
spell 

Cast a spell that increases a 
person's ability in physical 
combat, e.g. Bull's strength 

Cast combat-protection 
spell 

Cast a spell that protects a person 
in physical combat, e.g. Shield 

Cast spell-defense spell Cast a spell that defends against 
hostile spells, e.g. Minor Globe of 
Invulnerability 

Cast offensive-area spell Cast an offensive spell that 
targets an area, e.g. Fireball 

Cast offensive-single spell Cast an offensive spell that 
targets a single person, e.g. Magic 
Missile 

Heal Drink a healing potion 



 

 

Each experiment consisted of ten trials and each trial 
consisted of either one or two phases of 500 episodes.  All 
agents started with zero knowledge of themselves and their 
opponents, other than the set of legal actions they can take. 
At the start of each phase, each agent was equipped with a 
specific set of equipment and in case of a sorcerer, a 
specific set of spells.  In a one-phase experiment, we 
evaluated how quickly our agents could find a winning 
strategy.  In a two-phase experiment, we evaluated how 
well our agents could adapt to a different set 
(configuration) of sorcerer spells.  It should be noted that 
the NWN combat system uses random numbers, so there is 
always an element of chance. 

Motivation for ALeRT-AM 
The original ALeRT algorithm, with a fighter as the agent, 
was shown to be superior to both traditional Sarsa(λ) and 
NWN in terms of strategy-discovering and more adaptive 
to environmental change than DS-B (Cutumisu et al. 
2008). We begin by presenting the results of experiments 
where ALeRT was applied to more complex situations. 

Figure 3 shows the result of ALeRT versus the default 
NWN algorithm, for three different teams, one fighter team 
(Cutumisu et al. 2008), a new sorcerer team and a new 
sorcerer-fighter team.  The Y-axis represents the average 
number of episodes that the former team has won.  ALeRT 
is quick to converge on a good counter-strategy that results 
in consistent victories for all teams. 

 
Figure 3. ALeRT against NWN for several teams. 

Figure 4 shows the results of ALeRT vs. DS-B, for the 
same teams.  For the fighter team and the fighter-sorcerer 
team, both ALeRT and DS-B are able to reach an optimal 
strategy fairly quickly, resulting in a tie. 

In the more complex case of the sorcerer team, the 
results have higher variance with an ALeRT winning rate 
that drops to about 50% as late as episode 350.  These 
results depend on whether an optimal strategy can be found 
that is independent of actions of the opposing team. A lone 
fighter has a simple optimal strategy, which does not 
depend on the opponent. In the fighter-sorcerer team, the 
optimal strategy is for both the fighter and sorcerer to focus 
on killing the opposing sorcerer first, and then the problem 
is reduced to fighter vs. fighter. 

However, with a sorcerer team, there is no single static 
best strategy, as for every action, there is a counter-action.  
For example, casting a minor globe of invulnerability will 
render a fireball useless, but the minor globe is ineffective 
against a physical attack.  The best strategy depends on the 
opponent's actions and the ability to predict the opponent's 
next action is crucial. 

  
Figure 4. Motivation for ALeRT-AM: ALeRT versus DS-B for 

several teams 

Agent modeling 
With ALeRT and agent modeling, ALeRT-AM achieves 
an approximately equal result with ALeRT when battling 
against the default NWN strategy (Figure 5).  The sorcerer 
team defeats NWN with a winning rate above 90% while 
the fighter-sorcerer team achieves an 80% winning rate. 
 

 
Figure 5. ALeRT-AM against NWN for several teams. 

With ALeRT-AM versus DS-B, the results are much 
more consistent (Figure 6).  For the sorcerer team, ALeRT-
AM derives a model for the opponent in less than 100 
episodes and is able to keep its winning rate consistently 
above 62%. For the fighter-sorcerer team, ALeRT-AM 
does better than ALeRT against DS-B by achieving and 
maintaining a winning rate of 60% by episode 300. 

The ALeRT-AM algorithm was also tested again the 
original ALeRT algorithm.  Figure 7 shows the results for 
the sorcerer teams and the fighter-sorcerer teams.  ALeRT-



AM has an advantage over ALeRT at adapting to the 
changing strategy, generally keeping the winning rate 
above 60% and quickly recovering from a disadvantaged 
strategy, as shown near episode 400 in the sorcerer vs. 
sorcerer scenario (a turning point on the blue line in the 
graph). 
 

 
Figure 6. ALeRT-AM versus DS-B for several teams 

 

 
Figure 7. ALeRT-AM versus ALeRT for several teams 

 

 
 

Figure 8. ALeRT-AM versus DS-B in a changing environment 

 

Adaptation in a dynamic environment  
ALeRT was shown to be adaptable to change in the 
environment for the fighter team (Cutumisu et al. 2008), by 
changing the configuration at episode 501 (the second 
phase).  For a fighter team, a better weapon was given in 
the second phase.  We demonstrate that the adaptability 
remains even with agent modeling (Figure 8).  For a 
sorcerer team, the new configuration has higher-level 
spells.  We are interested in the difficult sorcerer case and 
two sets of experiments were performed.  In the first set of 
experiments, for the first 500 episodes, the single optimal 
strategy is to always cast fireball, since no defensive spell 
is provided that is effective against the fireball, and both 
ALeRT-AM and DS-B find the strategy quickly, resulting 
in a tie. DS-B has a slightly higher winning rate due to the 
epsilon-greedy exploratory actions of ALeRT-AM and the 
fact that in this first phase, no opponent modeling is 
necessary, since there is a single optimal strategy. After 
gaining a new defensive spell against the fireball at episode 
501, there is no longer a single optimal strategy.  In a 
winning strategy, the best next action depends on the next 
action of the opponent.  The agent model is able to model 
its opponent accurately enough so that its success 
continuously improves and by the end of episode 1000, 
ALeRT-AM is able to defeat DS-B at a winning rate of 
approximately 80%.  In the second set of experiments, both 
the first 500 episodes and the second 500 episodes require 
a model of the opponent in order to plan a counter-strategy, 
and ALeRT-AM clearly shows its advantage over DS-B in 
both phases. 

Observations 
Although ALeRT-AM has a much larger feature space than 
ALeRT (with sixty-four extra features for a sorcerer, 
representing the pairs of eight features for the agent and 
eight features for the opposing agent), its performance does 
not suffer.  In a fighter-sorcerer team, the single best 
strategy is to kill the opposing sorcerer first, regardless of 
what the opponent is trying to do.  In this case, ALeRT-
AM performs as well as ALeRT in terms of winning 
percentage against all opponents we have experimented 
with.  Against the default static NWN strategy, both 
ALeRT and ALeRT-AM perform exceptionally well, 
quickly discovering a counter-strategy to the opposing 
static strategy, if one can be found, as is the case with the 
sorcerer team and the fighter-sorcerer team.  We have also 
shown that ALeRT-AM does not lose the adaptivity of 
ALeRT in a changing environment. 

In the sorcerer team, where the strategy of the sorcerer 
depends heavily on the strategy of the opposing agent, 
ALeRT-AM has shown its advantages.  Both against the 
rule-based learning agent DS-B and the agent running the 
original ALeRT algorithm, ALeRT-AM emerges 
victorious and it is able to keep its victory by quickly 
adapting to the opposing agent’s strategy. 

When implementing the RL algorithm for a game 
designer, the additional features required for agent 



 

 

modeling will not cause additional work.  All features can 
be automatically generated from the set of actions and the 
set of game states.  The set of actions and the set of game 
states are simple and intuitive, and they can be reused 
across different characters in story-based games. 

Conclusions 
We modified the general purpose learning algorithm 
ALeRT to incorporate agent modeling and evaluated the 
new algorithm by modeling opponent agents in combat. 
While ALeRT was able to find a winning strategy quickly, 
when the winning strategy depended only on the actions of 
the agent itself, it did not give consistent results when the 
winning strategy included actions that are dependent on the 
opponent's actions.  ALeRT-AM corrected this problem by 
constructing a model for the opponent and using this model 
to predict the best action it could take against that 
opponent.  The ALeRT-AM algorithm exhibits the same 
kind of adaptability that ALeRT exhibits when the 
environment changes. Although the experiments focused 
on modeling opponent agents, the same algorithm can be 
used to predict the actions of allied agents to improve 
cooperative actions. The algorithm can also be applied 
beyond combat since the designer of the game needs only 
to supply a set of states for the game, and a set of legal 
actions the NPCs can take and a reward function.  An 
initial learning phase can be done off-line so that the initial 
behaviors are reasonable and as the game progresses, the 
NPCs will be able to adapt quickly to the changing 
environment.  With a typical story-based game consisting 
of hundreds of NPCs, the learning experience can also be 
shared among NPCs of the same type, thus greatly 
reducing the time required to adapt for the learning 
algorithm. 

As future work, experiments can be conducted with 
human players to get an evaluation of the human 
conception of the learning agents. The player would 
control a character in the game and a companion would be 
available to the player. Two sets of experiments would be 
run, one with an ALeRT-AM learning companion and one 
with a different companion.  Players would be asked which 
one they prefer.  Ultimately, the goal of the learning 
algorithm is to provide NPCs with more realistic behaviors 
to present a better gaming experience for players. 
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