
Access Control By Tracking Shallow Execution History

Philip W. L. Fong
Department of Computer Science

University of Regina
Regina, Saskatchewan, Canada S4S 0A2

pwlfong@cs.uregina.ca

Abstract

Software execution environments like operating systems,
mobile code platforms and scriptable applications must
protect themselves against potential damages caused by
malicious code. Monitoring the execution history of the
latter provides an effective means for controlling the ac-
cess pattern of system services. Several authors have re-
cently proposed increasingly general automata models for
characterizing various classes of security policies enforce-
able by execution monitoring. An open question raised by
Bauer, Ligatti and Walker is whether one can further clas-
sify the space of security policies byconstrainingthe capa-
bilities of the execution monitor. This paper presents a novel
information-based approach to address the research prob-
lem. Specifically, security policies are characterized by the
information consumed by an enforcing execution monitor.

By restricting the execution monitor to track only ashal-
low history of previously granted access events, a precise
characterization of a class of security policies enforceable
by restricted access to information is identified. Although
provably less expressive than the general class of policies
enforceable by execution monitoring, this class does con-
tain naturally occurring policies including Chinese Wall
policy, low-water-mark policy, one-out-of-k authorization,
assured pipelines, etc. Encouraged by this success, the tech-
nique is generalized to produce a lattice of policy classes.
Within the lattice, policy classes are ordered by the infor-
mation required for enforcing member policies. Such a fine-
grained policy classification lays the semantic foundation
for future studies on special-purpose policy languages.

1. Introduction

Software execution environments like operating systems,
mobile code platforms and scriptable applications must pro-
tect themselves against potential damages caused by mali-
cious code. Monitoring the execution history of the latter

provides an effective means for controlling the access pat-
tern of system services. Execution monitoring (EM) can be
implemented either by interposing a reference monitor be-
tween system service entry points and the code providing
the services [15, 4, 12], or by injecting monitoring code into
client programs at load time [13, 27, 28, 30, 31, 23, 24].
Schneider [26] proposed an automata-theoretic character-
ization of security policies enforceable by EM. Specifi-
cally, an EM-enforceable policy prescribes access event se-
quences recognized by a Büchi automaton [2]. It is ob-
served that B̈uchi-like security automata can only enforce
safety properties, but not liveness properties. Subsequently,
Bauer, Ligatti and Walker [3, 18] proposed a characteriza-
tion of increasingly general classes of security policies en-
forceable by insertion, suppression and editing automata.
These policy classes are provably more expressive than EM-
enforceable policies.

An open question raised by the work of Baueret al is
whether or not one can further classify the space of EM-
enforceable policies byconstrainingthe capability of the
execution monitor. Not only does such a fine-grained clas-
sification help us understand the inherent complexity of se-
curity policies, it also has a number of practical engineer-
ing ramifications. In an environment in which users invest
a high degree of trust on the formulation of security poli-
cies, and in which the complexity of the security policies
increases with the complexity of the software environment,
one has to face the reality that policy engineering shares
many challenges once considered unique to software en-
gineering. Characterizing security policies as members of
well-understood policy classes can facilitate policy engi-
neering in the following ways:

• Special-purpose policy languages can be designed for
a policy class to facilitate the correct formulation of
member policies.

• Efficient decision procedures may exist for verifying
the correctness of policies belonging to policy classes
with rich internal structure.

• Some policy classes may exhibit structural properties
that render their member policies decomposable into
more manageable policy components. Discovery of
such structural properties enables the composition of
complex policies from reusable components.

This paper presents a novel information-based approach to
address the research problem raised by Baueret al. Instead
of following their proposal, and classifying security poli-
cies by constrainingcomputational resourcesavailable to
the execution monitor, this work classifies EM-enforceable
security policies by the kind ofinformationthat needs to be
tracked by the execution monitor. Such a fine-grained policy
classification lays the semantic foundation for future stud-
ies on special-purpose policy languages.

Consider the Chinese Wall policy [7, 19, 25], a com-
mercial policy for preventing accesses leading to conflict of
interests. As observed by Brewer and Nash in their orig-
inal formulation of the policy, successful enforcement of
the Chinese Wall policy only requires the maintenance of a
shallow access historyof previously granted access events.
Specifically, the decision on whether an access is to be
granted is based solely on theset1 of access events that have
already been granted, and not on the actualsequencingof
such access events. In contrast, a Büchi automaton could
potentially have the full history of granted access events
at its disposal when an access granting decision is made.
This paper presents a characterization of security policies
enforceable by tracking only the shallow access history of
a system. Security policies in this class are recognizable by
shallow history automata(SHA), expressiveness of which
is provably more restrictive than that of Büchi-like secu-
rity automata. Surprisingly, it is still possible to express
a wide range of well-known and realistic security policies
with SHA: Chinese Wall policy [7], low-water-mark pol-
icy [5], one-out-of-k authorization [11], assured pipelines
[6, 32], etc. This demonstrates the feasibility of defining
meaningful policy classes by constraining information ac-
cessible to execution monitors.

Motivated by the above success, the state abstraction
techniques applied to characterize shallow access history
tracking is generalized. A lattice of security policy classes
is obtained as a result. At the top of the lattice is the class
of policies enforceable by tracking the full history of ac-
cess events, as in the case of Büchi-like security automata.
As one moves down the lattice, one finds classes of policies
that are enforceable by consuming less and less informa-
tion, with the class of policies enforceable by SHA and that
by stack inspection [30, 14] somewhere in the middle, in-
comparable to each other, and the class of memoryless poli-
cies at the bottom. This work has therefore laid the theoret-

1 Brewer and Nash used a history matrix to track this set.

ical groundwork for studying special-purpose subclasses of
EM-enforceable security policies.

This paper is organized as follows. Related works are re-
viewed in Section 2. SHA are defined in Section 3 to pro-
vide an information-based characterization of security poli-
cies enforceable by tracking shallow access history. A num-
ber of naturally occurring security policies are shown to be
SHA-enforceable in Section 4. The SHA configuration is
generalized in Section 5 to yield a lattice of policy classes.
Section 6 applies the lattice framework to study the relative
expressiveness of some naturally occurring policy classes,
including that of stack inspection. Discussions can be found
in Section 7. Section 8 concludes the paper.

2. Related Works

Schneider [26] pioneered the characterization of security
policies enforceable by execution monitoring (EM). Specif-
ically, an EM-enforceable policy prescribes access event
sequences recognized by a Büchi automaton [2]. It is ob-
served that B̈uchi-like security automata can only enforce
safety properties, but not liveness properties. Viswanathan
[29] points out that any reasonable characterization on exe-
cution monitoring must involve a computability constraint.
Subsequently, Bauer, Ligatti and Walker [3, 18] proposed
a characterization of increasingly general classes of secu-
rity policies enforceable by insertion, suppression and edit-
ing automata, while Hamlen, Morrisett and Schneider [16]
offers a characterization of security policies enforceable by
code rewriting. These policy classes are provably more ex-
pressive than EM-enforceable policies. The work reported
in this paper is the first one to provide a fine-grained,
information-based characterization of subclasses of EM-
enforceable policies.

3. Access Control By Shallow History Track-
ing

This section introduces shallow history automata, the
definition of which provides an information-based charac-
terization of security policies enforceable by tracking shal-
low access history. The class of security policies expressible
by such automata is proven to be a proper subset of the gen-
eral class of EM-enforceable security policies, thereby con-
firming the claim that subclasses of EM-enforceable poli-
cies can be defined through the restriction of information
accessible to the execution monitor. To fix thoughts, the no-
tion of EM-enforceable policies and its characterization via
security automata are reviewed in Section 3.1 and 3.2 re-
spectively. Shallow history automata are then discussed in
Section 3.3.

2

3.1. EM-Enforceable Security Policies

LetΣ be a finite or countably infinite set ofaccess events.
A policy is a setP ⊆ Σ∗ of finite sequences of access
events. AnEM-enforceable policy2 is a non-emptyprefix-
closedpolicy. A policy P is prefix-closed if it satisfies the
following condition:

∀u ∈ Σ∗ : u 6∈ P ⇒ (∀v ∈ Σ∗ : uv 6∈ P)

Let prefix(w) be the set of all prefixes ofw, includingε and
w itself. That is,prefix(w) = {u ∈ Σ∗ | ∃v ∈ Σ∗ s.t.uv =
w}. It is easy to see that the following is an equivalent char-
acterization of prefix-closed policies:

∀w ∈ Σ∗ : w ∈ P ⇒ prefix(w) ⊆ P (1)

In the following, we consider only EM-enforceable policies.

3.2. Security Automata

A variant of Büchi automata is defined here. Asecurity
automaton (SA)is a quadruple〈Σ, Q, q0, δ〉, where

• Σ is a finite or countably infinite set of access events,

• Q is a finite or countably infinite set ofautomaton
states,

• q0 ∈ Q is aninitial state,

• δ : Q × Σ → Q is a (possibly partial)transition func-
tion3.

The notion of acceptance for a SA is different from that
for a regular finite state machine, in which a final state is
explicitly identified. An access event sequence is accepted
by a SA if a transition is defined for every event in the se-
quence. The notion is formalized as follows. Given a SA
M = 〈Σ, Q, q0, δ〉, the following notations are defined for
q, q′ ∈ Q, a ∈ Σ andw ∈ Σ∗:

q
a

−→M q′ if δ(q, a) = q′

q
ε

−→M q

q
wa
−→M q′ if ∃ q′′∈ Q . q

w
−→M q′′ ∧ q′′

a
−→M q′

2 For the purpose of this work, the definition of an EM-enforceable pol-
icy as adopted here is different from the one used by Schneider [26] in
the following ways: (1) Schneider differentiates between general secu-
rity policies and a special class of policies that he calls security prop-
erties. Only those policies that are properties are considered in this pa-
per. (2) Schneider considers infinite sequences of access events. Fol-
lowing the practice of Baueret al [3], only finite sequences of access
events are considered in this paper.

3 The formulation of security automata as given here differs from that
of Baueret al: As our focus is information rather than resource con-
straints, no tractability restriction is imposed on the transition func-
tion. See, however, [29] for the need of such constraints in the general
cases.

We say thatM accepts an access event sequencew if
qo

w
−→M q for someq ∈ Q. The policyP(M) recognized

by the SAM is then defined as the set of all sequences ac-
cepted byM :

{w ∈ Σ∗ | ∃q ∈ Q : q0
w

−→M q}.

It is easy to see that such a set is always non-empty and
prefix-closed, that is,P(M) containsε and satisfies con-
dition (1). Conversely, given any non-empty prefix-closed
policy P , there is a SAM so thatP = P(M). To see this,
consider the SA〈Σ,Σ∗, ε, δP 〉, whereδP (w, a) is defined to
bewa if w,wa ∈ P , and is otherwise undefined. Such a SA
recognizesP . Consequently, the class of EM-enforceable
policies coincides with the class of policies recognized by
a SA. We call the above SA constructed to recognizeP the
canonical SAfor policy P , and denote it by SA(P).

Intuitively, the state of a SA represents the information
that is tracked by the corresponding execution monitor. It
represents the internal data structure maintained by the exe-
cution monitor across subsequent access granting decisions.
The image of the transition function captures the updating
procedure of the internal data structure, while domain of the
transition function captures the logic of access granting de-
cisions. Notice that the canonical SA tracks the full history
of previously granted access events.

3.3. Shallow History Automata

Let F(S) be the set of allfinite subsets of a setS. A
shallow access history(or simply shallow history) is a fi-
nite subset ofΣ, that is, a member ofF(Σ). Our goal is to
define a class of automata that track only the shallow his-
tory of previously granted access events.

A shallow history automaton (SHA)is a SA of the form
〈Σ,F(Σ),H0, δ〉, where

• Σ is a finite or countably infinite set of access events,

• The state setF(Σ) contains all possible shallow ac-
cess histories.

• H0 ∈ F(Σ) is aninitial access history, and

• The transition functionδ is such thatδ(H, a) = H ∪
{a} if δ is defined at〈H, a〉.

Intuitively, a SHA tracks only a shallow access history, and
bases its access granting decisions solely on this informa-
tion. Sequencing information about previously granted ac-
cess events are not retained for subsequent access granting
decisions.

Notice that the image ofδ is alwaysH ∪ {a} if it is de-
fined at〈H, a〉. Consequently, definingδ amounts to speci-
fying its domain as a subset ofF(Σ) × Σ. That is, a SHA
transition function is uniquely specified by listing all the
points at which it is defined.

3

A policy recognized by some SHA is said to beSHA-
enforceable. We write EMSHA to denote the class of all
SHA-enforceable policies.

As expected, SHA is strictly less expressive than SA:

Theorem 1 Fixing the setΣ of access events, there is a SA
M so that no SHAN is such thatP(M) = P(N).

Proof: Let Σ = {a, b, c, d}. Consider the policyP =
prefix(abcd)∪prefix(badc). The policyP is non-empty
and prefix-closed by construction, and is thus recog-
nizable by its canonical SA. Suppose thatP is recog-
nized by a SHAM . Let H0 be the initial state ofM .
The following transitions are valid:

H0
a

−→M {a} ∪ H0
b

−→M {a, b} ∪ H0

c
−→M {a, b, c} ∪ H0

d
−→M {a, b, c, d} ∪ H0

H0
b

−→M {b} ∪ H0
a

−→M {a, b} ∪ H0

d
−→M {a, b, d} ∪ H0

c
−→M {a, b, c, d} ∪ H0

However, with the above transitions,M also accepts
abdc andbacd:

H0
a

−→M {a} ∪ H0
b

−→M {a, b} ∪ H0

d
−→M {a, b, d} ∪ H0

c
−→M {a, b, c, d} ∪ H0

H0
b

−→M {b} ∪ H0
a

−→M {a, b} ∪ H0

c
−→M {a, b, c} ∪ H0

d
−→M {a, b, c, d} ∪ H0

By way of contradiction,P is not SHA-enforceable.

Note that the use of a non-empty initial historyH0 in the
specification of a SHA is merely an optional convenience,
as the following proposition entails.

Proposition 2 For every SHAM = 〈Σ,F(Σ),H0, δ〉,
there exists a SHAM0 = 〈Σ,F(Σ), ∅, δ0〉 such that
P(M) = P(M0).

Proof: To establish the statement, it suffices to constructδ0

so that for allH ∈ F(Σ) anda ∈ Σ, δ0(H, a) is de-
fined if δ(H ∪ H0, a) is defined.

We call a SHA with∅ as the initial state anormalized SHA.
Proposition 2 shows that every policy recognizable by a
SHA is recognizable by a normalized SHA.

3.4. Summary

A subclass of security automata, SHA, is successfully
defined to capture the notion of execution monitoring by
tracking only shallow access history. The separation result
in Theorem 1 confirms that SHA are strictly less expres-
sive than general SA.

4. Security Policies Enforceable By Tracking
Shallow History

Defining artificial subclasses of security policies is point-
less if the classes do not correspond to security policies
found in real-life applications. This section demonstrates
that the class of SHA-enforceable policies does include
nontrivial security policies such as the Chinese Wall policy
(Section 4.1), the low-water-mark policy (Section 4.2), one-
out-of-k authorization (Section 4.3), and assured pipelines
(Section 4.4). The goal is to show that the definition of SHA
yields a class of naturally occurring security policies.

4.1. Chinese Wall Policy

Set in a commercial context, in which a consultant shall
not advise clients whom he or she has insider knowledge of
a competitor, the Chinese Wall security policy is designed
to avoid any conflict of interest that may arise due to the
unchecked flow of information across datasets belonging to
competing parties. LetO be a set of data objects,S a set
of subjects,G a set of company datasets, andT a set of
conflict of interest classes. Associated with each data object
o ∈ O is a permanent labelgroup[o] ∈ G describing the
company dataset in whicho belongs. Similarly, a perma-
nent labeltype[g] ∈ T is assigned to each company dataset
g ∈ G; the label describes the conflict of interest class in
which a company dataset belongs. A subjects may access a
data objecto only if one of the following holds:

• Subjects has already accessed another objecto′ be-
longing to the same company dataset ofo, that is,
group[o] = group[o′].

• Every object o′ that subject s has accessed so
far belongs to a company dataset whose con-
flict of interest class is different from that of
the company dataset in whicho belongs, that is,
type[group[o]] 6= type[group[o′]].

A reference monitor enforcing the Chinese Wall policy
may do so by keeping track of the set of objects previously
accessed by each subject. The policy is therefore SHA-
enforceable. This can be demonstrated formally by the fol-
lowing construction. Let the set of access events beΣ =
S×O, so that a pair〈s, o〉 refers to the event of subjects ac-
cessing objecto. Define SHAN = 〈Σ,F(Σ), ∅, δgroup,type〉,
where the SHA transition functionδgroup,type is defined at
〈H, 〈s, o〉〉 whenever the following holds:

• there exists〈s, o′〉 ∈ H s.t.group[o] = group[o′], or

• for all 〈s, o′〉 ∈ H, type[group[o]] 6= type[group[o′]]

By construction, the SHAN enforces the Chinese Wall pol-
icy.

4

With refinement to the above construction, it is also pos-
sible to show that the variation of Chinese Wall policy as
proposed by Lin [19] is SHA-enforceable.

4.2. Low-Water-Mark Policy (for Subjects)

The low-water-mark policy is one of the three lattice-
based integrity policies proposed by Biba [5]. Defined in
Biba’s security model are a setS of subjects, a setO of ob-
jects and a setL of integrity levels, which are partially or-
dered by a binary relation≤. At any point of time, a la-
bel l[s] ∈ L is assigned to every subjects ∈ S, and like-
wise l[o] ∈ L is assigned to every objecto ∈ O. Intu-
itively, the labell[·] describes thetrustworthinessof a sub-
ject or an object. Three kinds of access events are defined:
write(s, o), read(s, o) andexec(s, s′). The low-water-mark
policy grants accesses according to the following rules:

1. read(s, o) is always permitted, with the side effect of
l[s] ← l[s] ∧ l[o], where∧ denotes the greatest lower
bound between integrity levels.

2. write(s, o) is permitted ifl[o] ≤ l[s].

3. exec(s, s′) is permitted ifl[s′] ≤ l[s].

Intuitively, a subject is not permitted to write to objects with
integrity levels higher than itself, whether directly (Rule 2)
or indirectly (Rule 3). In addition, reading low integrity ob-
jects downgrades the integrity level of a subject (Rule 1).

To construct a SHA for enforcing the low-water-mark
policy, notice that the label of a subject is a function of the
objects it has read, while that of an object is permanent. Let
Σ be the set of all access events. Given an initial label as-
signmentl[·], assume, without loss of generality, that for ev-
ery l ∈ L, there is at least oneo ∈ O such thatl[o] = l (this
can be easily achieved by introducing auxiliary objects into
O). Define a SHANl = 〈Σ,F(Σ),Hl, δl〉, where the ini-
tial historyHl is further specified as follows:

Hl = {read(s, o) | s ∈ S, o ∈ O, l[s] = l[o]},

and the SHA transition functionδl is defined at exactly the
following points:

• 〈H, read(s, o)〉 for all H ∈ F(Σ), s ∈ S ando ∈ O,
and

• 〈H, write(s, o)〉 for all H ∈ F(Σ), s ∈ S ando ∈ O
such that for allread(s, o′) ∈ H, l[o] ≤ l[o′], and

• 〈H, exec(s, s′)〉 for all H ∈ F(Σ), s, s′ ∈ S such that
for all read(s, o) ∈ H, there is aread(s′, o′) ∈ H,
l[o′] ≤ l[o].

By construction, the SHANl enforces the low-water-mark
policy.

4.3. One-Out-Of-k Authorization

One-out-of-k authorization [11] classifies applications
into equivalence classes based on the kind of access rights
required to complete tasks. For example, the following ap-
plication classification is given in [11]:

• A browser is a program that connects to remote sites
(network-connection), access per-process temporary
files (access-tmp-files), and displays them to the user
(console-io).

• An editor is a program that access user files (access-
usr-files), access per-process temporary files (access-
tmp-files), and interacts with the user (console-io).

• A shell is a program that interacts with the user
(console-io) and creates subprocesses (create-
subprocess).

The goal is to dynamically classify an executing program
into one of the application classes based on the access re-
quests it makes. Once classified into an application class, a
program is only allowed to exercise access rights granted
to the class. For instance, once an application has opened a
network socket, it is classified as a browser, and will subse-
quently not be allowed to read user files.

The one-out-of-k constraint can be easily enforced by a
SHA. LetΣ be the set of all possible accesses made by an
application. An application classi is completely character-
ized by the finite or countably infinite setCi ⊆ Σ of permit-
ted accesses. Let the setC = {C1, C2, . . . , Ck} be the set of
all application classes. Define SHANC = 〈Σ,F(Σ), ∅, δC〉
s.t. the SHA transition functionδC is defined at〈H, a〉 iff
H ∪ {a} ⊆ Ci for someCi ∈ C. By construction,NC en-
forces one-out-of-k authorization.

4.4. Assured Pipelines

Assured pipelines [6, 32] arise in the context of ensur-
ing data integrity when data objects are processed by (usu-
ally linear) pipelines of transformation procedures. LetO
be a set of data objects. LetS be a set of transformation
procedures. Assume thatS contains a distinguished mem-
bercreate. Define the set of access events to beΣ = S×O,
where the member〈s, o〉 denotes the application of trans-
formation procedures to data objecto. An assured pipeline
policy is specified as anenabling relatione ⊆ S × S, with
the following restrictions:

1. No circularity: the binary relation defines a directed
acyclic graph (DAG).

2. No pair of the form〈s, create〉 may be included:
create is the sole source node of the acyclic graph.

The intention is that〈s, s′〉 ∈ e means that access〈s′, o〉
is granted if〈s, o〉 is the last access on objecto. In other

5

words, application of transformation procedures on an ob-
ject is a sufficient condition for the subsequent application
of transformation procedures′ on the same object. Because
of the “no circularity” clause, each event〈s, o〉 may occur
at most once.

An assured pipeline policy can be enforced by a SHA
Ne = 〈Σ,F(Σ), ∅, δe〉, where the SHA transition function
δe is defined at exactly the points〈H, 〈s, o〉〉 satisfying one
of the following conditions:

• s = createand〈s, o〉 6∈ H, or

• for somes′ ∈ S, all of the following hold:

– 〈s′, o〉 ∈ H, and

– 〈s′, s〉 ∈ e, and

– there is nos′′ ∈ S s.t.〈s′′, o〉 ∈ H and〈s′, s′′〉 ∈
e.

By constructionNe enforces the assured pipeline policy
specified by enabling relatione.

4.5. Summary

Four naturally occurring security policies have been
shown to be SHA-enforceable, thereby demonstrating that
information restriction could indeed be employed to clas-
sify real-life security policies.

5. Obtaining Policy Classes By Abstraction

Given that it is possible to define a meaningful subclass
of EM-enforceable security policies, the next question is:
can the above technique be generalized to obtain other sub-
classes of EM-enforceable policies? Section 5.1 offers an
affirmative answer to the question, with the help of con-
cepts borrowed from automata theory [8, 17]. The structural
properties of EM-enforceable policy classes are then stud-
ied in Section 5.2 and 5.3.

5.1. Abstraction By Homomorphism

Given an arbitrary restriction on the information accessi-
ble to an execution monitor, the following procedure can be
systematically carried out to obtain an automata-theoretic
characterization of the policies thus enforceable:

1. An information restriction constraint is specified as a
setA of abstract states, which represents the kind of
information that the execution monitor is allowed to
track (e.g., shallow histories as finite subsets of access
events).

2. An interpretation of the abstract states inA is defined,
so they refer to states of the canonical SA in a con-
sistent manner (e.g., each shallow history documents

the set of previously granted access events in an exe-
cution sequence).

3. Under the above interpretation, a subclass of SA is de-
fined so that member automata behave consistently ac-
cording to the interpretation (e.g., shallow history au-
tomata).

This plan is executed as follows.
Let A be a finite or countably infinite set of abstract

states. A functionα : Σ∗ → A is anabstractionif it satis-
fies the followingcompatibility property:

For allw,w′ ∈ Σ∗ anda ∈ Σ,
α(w) = α(w′) ⇒ α(wa) = α(w′a) (2)

An abstraction mashes distinct states of the canonical SA
into a single abstract state, rendering them indistinguish-
able. The compatibility property guarantees that the loss of
information does not introduce confusion.

Thehomomorphic imageSAα(P) of the canonical secu-
rity automaton SA(P) induced by abstractionα is the secu-
rity automaton〈Σ,A, α(ε), δP/α〉, where

δP/α(α(w), a) = α(wa) whenever δP (w, a) = wa

andδP is the transition function of SA(P). Sinceα satisfies
the compatibility property,δP/α is a well-defined (partial)
function.

Notice that not every policyP is recognized by SAα(P)
— in general,P ⊆ P(SAα(P)) (see Corollary 16). Those
policiesP recognized by SAα(P) are the policies that can
be enforced by consuming only information left behind by
the abstractionα. A policy P is said to beenforceableby
abstractionα iff P is recognized by the security automa-
ton SAα(P), that is, iff P = P(SAα(P)). Fixing the setΣ
of access events, the class of all policies enforceable by ab-
stractionα is denoted by EMα. In summary, given any ab-
stractionα, it is now possible to define exactly the class of
security policies enforceable by tracking information per-
mitted by the abstraction.

The policy class EMα is defined as the set of all solu-
tions to a fixed point equation. Although it facilitates the
development of theory (see the appendix), such a definition
is not easy to apply. This motivates an alternative character-
ization of EMα. Given an abstraction functionα, anα-SA is
a SA〈Σ,A, α(ε), δ〉 such that for allw ∈ Σ∗ anda ∈ Σ, ei-
therδ(α(w), a) = α(wa) or δ is not defined at〈α(w), a〉 at
all. Becauseα satisfies the compatibility property, the tran-
sition functionδ is well defined. Anα-SA has the following
useful property.

Proposition 3 Given anα-SA M andw ∈ Σ∗, w ∈ P(M)

iff α(ε)
w

−→M α(w).

6

The following proposition asserts thatα-SA provides an al-
ternative characterization of policies enforceable by an ab-
stractionα.

Proposition 4 EMα contains precisely the class of policies
recognizable byα-SA.

Proof: Notice that every homomorphic image SAα(·) in-
duced byα is an α-SA, and thus every policy en-
forceable by abstractionα is recognizable by anα-
SA. The converse is also true: given anα-SA M ,
P(M) = P(SAα(P(M))). To demonstrate this, it suf-
fices to show that

P(SAα(P(M))) ⊆ P(M),

as Corollary 16 supplies the other direction of contain-
ment. The above statement can be easily established by
induction with the help of the following lemma.

Lemma: Let M be anα-SA 〈Σ,A, α(ε), δ〉. For all
q, q′ ∈ A and a ∈ Σ, if q

a
−→SAα(P(M)) q′ then

q
a

−→M q′.

Proof: Suppose the antecedent holds, then by defi-
nition of SAα(P(M)) there existsw ∈ Σ∗ so that
q = α(w), q′ = α(wa) and w

a
−→SA(P(M)) wa,

meaning that bothw andwa are inP(M). By Propo-
sition 3, we haveα(ε)

w
−→M q

a
−→M q′.

The following example shows that access control by
tracking shallow history is simply an instance of abstrac-
tion.

Example 5 There exists an abstraction functionα such that
EMα = EMSHA. To see this, defineα : Σ∗ → F(Σ) such
that for w ∈ Σ∗, α(w) is the set of access events inΣ that
occur inw. The functionα satisfies the compatibility prop-
erty: if w,w′ ∈ Σ∗ are such thatα(w) = α(w′), thenw
and w′ contain the same setH ∈ F(Σ) of access events,
and thusα(wa) = α(w′a) = H ∪{a} for anya ∈ Σ. Con-
sequently,α is an abstraction function. Under this defini-
tion ofα, every normalized SHA is anα-SA and vice versa.
The claim follows from Propositions 2 and 4.

5.2. Abstractions As Congruence Relations

It turns out that the notion of information abstraction is
very robust: it can be defined independent of the choice of
abstract states.

Every abstractionα induces an equivalence relation≡α

as follows:

For allw,w′ ∈ Σ∗, w ≡α w′ ⇔ α(w) = α(w′).

It can be shown that such an equivalence relation satisfies
the followingsubstitution property:

For allw,w′ ∈ Σ∗ anda ∈ Σ,
w ≡ w′ ⇒ wa ≡ w′a (3)

Conversely, given any equivalence relation≡ overΣ∗ that
satisfies the the substitution property, it can be shown that
the mappingα≡ : Σ∗ → Σ∗/≡ defined as follows:

α≡(w) = [w]≡.

is in fact an abstraction. That is,α≡ satisfies the compati-
bility property. Consequently, the notion of information ab-
straction can be characterized either by an abstract state
mapping satisfying the compatibility property, or by a par-
tition of the access sequence space with an equivalence re-
lation satisfying the substitution property. The latter charac-
terization has a clear advantage over the former — it is inde-
pendent of the choice of abstract states. In fact, abstraction
functions with entirely different codomains may induce the
same equivalence relation, making the latter a better means
of capturing the essence of the notion of information ab-
straction.

Let us call an equivalence relation satisfying the substi-
tution property acongruence relation. We write SA≡(P) as
a shorthand for SAα≡

(P). A policy P is enforceableby a
congruence relation≡ if P is recognized by SA≡(P). We
also write EM≡ as a shorthand for EMα≡

.
Defining abstractions in terms of congruence relations

gives us a simple way of comparing their information com-
plexities. Intuitively, more policies are enforceable by≡1

than by≡2 if ≡1 is more differentiating than≡2.

Theorem 6 Let ≡1 and ≡2 be two congruence relations
over Σ∗. If ≡1 ⊆≡2, then EM≡2

⊆ EM≡1
. Moreover, the

latter containment is proper if the former is proper.

Consult the appendix for a proof of this theorem.

5.3. Lattice of Policy Classes

Define the binary operatort, thejoin, on the space of all
congruence relations overΣ∗:

≡1 t ≡2 =≡1 ∩ ≡2

That is, the join operator combines the differentiating power
of its operands. Similarly, define the binary operatoru, the
meet, as follows:

≡1 u ≡2 = (≡1 ∪ ≡2)
+

that is, the transitive closure of the union of the two operand
congruence relations. In other words, a meet captures the
common differentiating power of the two operands. The fol-
lowing theorem is a well-known result in automata theory:

7

Theorem 7 The binary operatorst andu define a lattice
on the space of all congruence relations overΣ∗. The lat-
tice has both a top element≡> and a bottom element≡⊥.

Proof: It is mechanical to check thatt andu produce con-
gruence relations and define a lattice. The top element
≡> is the congruence relation∅ in which all members
of Σ∗ are distinct, while the bottom element≡⊥ is the
congruence relationΣ∗×Σ∗, in which all members of
Σ∗ are equivalent.

Intuitively, the top element≡> induces the class EM≡>
of

all EM-enforceable security policies. In contrast, the bottom
element≡⊥ induces the class EM≡⊥

of security policies en-
forceable by SA with only one state. Such SA arememory-
less: they do not track historical information at all, and grant
access in a static manner. The rest of the congruence rela-
tions are ordered in decreasing differentiating power as we
move down the lattice. As a consequence of Theorem 6,
this lattice of congruence relations induces a poset of EM-
enforceable policy classes ordered by class containment.

Example 8 The abstraction functionα defined in Exam-
ple 5 induces a congruence≡α so that, forw,w′ ∈ Σ∗,
w ≡α w′ iff w andw′ contain the same set of access events.
It is obvious that≡> ⊂≡α ⊂≡⊥. According to Theorem 6,
EM≡⊥

⊂ EMSHA⊂ EM≡>
.

5.4. Summary

This section generalizes the construction of SHA to ob-
tain a lattice of policy classes. The notion of an information-
based characterization of security policies is shown to be
more general than shallow access history tracking. New pol-
icy classes may be characterized through the specification
of either an abstraction mapping or a congruence relation.
Theorems 6 and 7 also confirm the following intuition: the
more information the execution monitor is allowed to track,
the more security policies it is able to enforce.

6. Comparing the Differentiating Power of
Abstractions

The policy classes EMSHA, EM≡>
and EM≡⊥

are first
examples of naturally occurring policy classes in the pol-
icy class lattice. It is natural to ask if there are other mem-
bers of the lattice that correspond to naturally occurring pol-
icy classes. This section explores policy classes induced by
stack inspection and a forgetful variant of SHA. The former
is shown to be equivalent to a simple abstraction, while the
latter corresponds to a family of abstractions. The expres-
siveness of the two protection mechanisms are then com-
pared to that of SHA and SA. The utility of the policy class

lattice and a number of useful proof techniques are also
highlighted.

6.1. Generalized Stack Inspection

Stack inspection [30, 14] is an access control mechanism
that has been implemented in safe runtime environments
such as the Java Virtual Machine (JVM) [20] and the Com-
mon Language Runtime (CLR) [10]. The runtime rights of
a piece of code is a function of the content of the execu-
tion stack. Stack inspection has been criticized as being un-
able to enforce certain history-based policies [1]. The fol-
lowing analysis adds another data point into the debate by
formally establishing the limitation of stack inspection.

LetΣ = Σ⊕∪Σª, whereΣ⊕∩Σª = ∅. Suppose further
that there is a bijection of the typeΣ⊕ → Σª. Denote the
image of the bijection bya for a ∈ Σ⊕. Intuitively, a ∈ Σ⊕

represents a subprogram (e.g., function, method, procedure,
etc) invocation event, whilea represents the corresponding
return event. An execution stack can then be represented
as a sequence inΣ∗

⊕, with the top of the stack correspond-
ing to the end of the sequence. A Stack Inspection Automa-
ton (SIA) is anα-SA 〈Σ,Σ∗

⊕ ∪ {⊥}, ε, δ〉, so that⊥ 6∈ Σ∗
⊕,

and the abstraction functionα is defined as follows:

α(ε) = ε

α(wa) =

{

α(w)a if α(w) 6= ⊥

⊥ otherwise

α(wa) =

{

w′ if α(w) = w′a for w′ ∈ Σ∗
⊕

⊥ otherwise

wherew ∈ Σ∗ anda ∈ Σ⊕. Intuitively, a SIA maintains
a stack of invocation records, and bases its access granting
decisions solely on the content of the stack. The error state
⊥ is for handling invocation sequences that are not well-
formed. Denote EMα by EMSIA. Since≡α is not empty, it
follows from Theorem 6 that the SIA is strictly less expres-
sive than the SA.

Theorem 9 EMSIA ⊂ EM.

The expressiveness of the SIA and that of the SHA, how-
ever, are not comparable.

Theorem 10 EMSIA and EMSHA are incomparable.

Proof: Let Σ⊕ = {a, b}, and thusΣ = {a, a, b, b}. Con-
sider the SIA-enforceable policy “b should be disal-
lowed if a is in the execution stack.” An enforcing SIA
acceptsaab andaaa, but rejectsaaab.

8

Suppose the policy is enforceable by a SHAM .
ThenM acceptsaab andaaa.

∅
a

−→M {a}
a

−→M {a, a}
b

−→M {a, a, b}

∅
a

−→M {a}
a

−→M {a, a}
a

−→M {a, a}

But then it meansM also acceptsaaab, a contradic-
tion.

∅
a

−→M {a}
a

−→M {a, a}
a

−→M {a, a}
b

−→M {a, a, b}

Therefore, EMSIA 6⊆ EMSHA.
Now, consider the SHA-enforceable policy “b

should be disallowed ifa has already occurred.” An
enforcing SHA acceptsbbaa but rejectsaab.

Suppose the policy is enforceable by a SIAN . N
acceptsbbaa.

ε
b

−→N b
b

−→N ε
a

−→N a
a

−→N ε

But then it meansN also acceptsaab, a contradiction.

ε
a

−→N a
a

−→N ε
b

−→N b

Therefore, EMSHA 6⊆ EMSIA.

6.2. Shallow History Automata with Forgetting

The formulation of SHA in Section 3 mandates that the
entire set of previously granted access events be remem-
bered. Unable to forget previous access events, the SHA is
only capable of handling assured pipelines with an acyclic
enabling relation. This motivates the introduction of forget-
ting into the SHA. Given a setΣ of access events, and a
functionf : F(Σ) × Σ → F(Σ), a forgetful shallow his-
tory automaton with forgetting functionf , or af -SHA, is a
SA 〈Σ,F(Σ), ∅, δ〉 such thatδ(H, a) = H ∪{a} \ f(H, a)
wheneverδ is defined at〈H, a〉 ∈ F(Σ) × Σ. Intuitively, f
specifies the subset of shallow history that should be erased
from memory. For a fixedf , af -SHA is merely anαf -SA
with the abstraction functionαf : Σ∗ → F(Σ) defined as
follows.

αf (ε) = ∅
αf (wa) = αf (w) ∪ {a} \ f(αf (w), a)

The following invariant can be established by induction:

αf (w) ⊆ {a ∈ Σ | a occurs inw} (4)

Example 11 Suppose the “no circularity” clause is re-
moved from the definition of an enabling function. An as-
sured pipeline policy with a (possibly cyclic) enabling rela-
tion e can be enforced by af -SHA, where

f(H, 〈s, o〉) = {〈s′, o〉 ∈ H | s′ 6= s}

Specifically, the transition functionδe of thef -SHA is de-
fined at exactly the points〈H, 〈s, o〉〉 satisfying one of the
following conditions:

• s = create and〈s, o〉 6∈ H, or

• for somes′ ∈ S, all of the following hold:

– 〈s′, o〉 ∈ H, and

– 〈s′, s〉 ∈ e, and

By constructionNe enforces the assured pipeline policy
specified by enabling relatione.

With an appropriately chosen forgetting functionf , a f -
SHA can enforce policies not enforceable by a regular SHA.
In fact, a regular SHA is nothing more than a forgetful SHA
with a constant forgetting function. In short, forgetting in-
creases the expressiveness of a SHA. It is therefore natu-
ral to ask if all EM-enforceable policies can be recognized
by some forgetful SHA.

Let us begin with a weaker result. By a counting argu-
ment in the style of the pumping lemma, one can show that,
for any fixed forgetting functionf , the f -SHA is strictly
less expressive than the SA.

Theorem 12 Given any forgetting functionf , EMαf
⊂

EM≡>
.

Proof: Let E be a finite subset ofΣ. By (4), αf (w) ∈
F(E) for any w ∈ E∗. The size ofF(E) is finite,
while E∗ contains infinitely many members. By the
pigeonhole principle, the congruence relation≡αf

is
clearly non-empty. It follows from Theorem 6 that
EMαf

⊂ EM.

The above result can be further strengthened: the class of all
policies enforceable by forgetful SHA does not cover all of
the EM-enforceable policies.

Theorem 13
⋃

f EMαf
⊂ EM.

Proof: We construct a non-empty prefix-closed policyP
so thatP 6∈ EMαf

for every forgetting functionf . The
case for|Σ| = 1 is trivial to deal with. LetE = {a, b}
be a size-2 subset ofΣ. Let r : E3 → N be an injec-
tive ranking function for length-3 sequences inE3. Let
P =

⋃

w∈E3 prefix(war(w)). Assume there is anαf -
SA M such thatP = P(M). By (4), αf (w) ∈ F(E)
for anyw ∈ E∗. The size ofF(E) is 4, whileE3 con-
tains 8 members. By the pigeonhole principle, there
exist u, v ∈ E3 such thatαf (u) = αf (v). Without
loss of generality, assume thatr(u) > r(v). Proposi-
tion 3 therefore guarantees the following.

α(ε)
u

−→M α(u)
ar(u)

−→M α(uar(u))

α(ε)
v

−→M α(v)
ar(v)

−→M α(uar(v))

9

By construction,α(u) = α(v), and thus the following
transitions are legitimate.

α(ε)
v

−→M α(v)
ar(u)

−→M α(var(u))

But var(u) 6∈ P by construction, a contradiction.

Notice that the proof makes use of a diagonalization-style
argument, in which a policy is constructed to diagonalize
againstcongruencesinduced byαf .

6.3. Summary

Classes of naturally occurring policies, including those
induced by stack inspection and forgetful SHA have been
shown to result from an appropriately constructed abstrac-
tion or family of abstractions. Several proof techniques for
comparing the differentiating power of abstractions have
been highlighted.

7. Discussion

The notion of information complexity is in fact very sen-
sitive to the choice of access events. We have seen that, with
a fixed set Σ of access events, there are EM-enforceable
policies that SHA cannot enforce. Now, if weinstrumentthe
access events so that an event is a pair of the form〈a, i〉, in
which i is the time index of accessa in the event sequence,
then a SHA can enforce every policy that a SA could en-
force without the instrumentation. Consequently, one must
fix the set of access events to get a fair comparison of the
expressiveness of different abstractions. Also, one should
attempt to pick the most “natural” formulation of access
events.

To simplify discussion, all event sequences fromΣ∗ are
treated as being equally plausible. In reality, the execution
environment may generate only sequences belonging to a
subset ofΣ∗. For example, in the case of (linear) assured
pipelines, the requirement that every access event occurs
only once is in fact a part of the behavior characteristics
of the execution environment, and not a part of the security
policy per se. To focus on the essence of the security pol-
icy rather than the idiosyncrasy of the execution environ-
ment, one could have defined a security automaton alterna-
tively as a 5-tuple〈Σ,Ψ, Q, q0, δ〉, in which the newly in-
troduced second componentΨ ⊆ Σ∗ is the set of all event
sequences that could be generated by the execution environ-
ment. For an elaboration of this treatment, consult the works
of Schneider [26] and Baueret al [3].

A number of theoretical apparatus, including that of au-
tomata homomorphism, congruence relations, compatibility
property, substitution property, and lattices of congruence
relations, are all borrowed from B̈uchi’s algebraic approach
to automata theory [8, 17]. Instead of using these tools to

study the minimization and decomposition of individual
automata, they are applied to obtain a novel, information-
based characterization of security policies:

1. Automata homomorphisms and their counter-
parts, congruence relations, are used for defining
automata classes with restricted access to history in-
formation.

2. Each automata class is then used to characterize a class
of security policies enforceable with the corresponding
information constraint.

3. The mapping from the lattice of congruence relations
to their corresponding policy classes is then shown to
be order-preserving.

An abstraction is basically a syntactic means for defin-
ing the data structure tracked by the execution monitor. The
corresponding congruence is the semantics of this syntax.
Seen in this light, the present theoretical framework offers
a very precise semantic infrastructure for defining syntactic
constructs that represent the data structure tracked by an ex-
ecution monitor. A future direction is to employ the current
framework to define special-purpose policy languages for
mobile code systems. By bringing in automata theory into
the study, it is hoped that automata decomposition results
from the theory could facilitate the development of reusable
policy components. Specifically, Corollary 16, Proposition
17 and Proposition 18 imply that, given a congruence≡,
P(SA≡(·)) is a closure operator [9], and thus policies en-
forceable by≡ form a complete lattice. This constitutes
a starting point from which one could provide a semantic
foundation for policy decomposition.

The notion of abstraction has close resemblance to that
of abstraction interpretation [22]. A future direction is to ap-
ply the current framework to study security policies in the
context of programming languages, and explore interactions
with the theory of abstract interpretation.

McLean [21] proposed a framework for Mandatory Ac-
cess Control (MAC) models that support changes in secu-
rity levels. Models of this framework form a Boolean al-
gebra. Further enrichment of the framework to handlen-
person rules results in a distributive lattice of security mod-
els. An interesting further work is to explore if McLean’s
lattice can be embedded in the lattice of EM-enforceable
policies.

8. Conclusion

A novel approach has been proposed to address the
open question raised by Baueret al. The space of EM-
enforceable security policies is classified according to the
information consumed by the execution monitor. The feasi-
bility of this approach has been demonstrated by the charac-
terization of security policies enforceable by tracking shal-

10

low execution history. Although the class is provably less
expressive than the general class of EM-enforceable poli-
cies, it nevertheless contains a number of naturally occur-
ring security policies. Generalization of the technique al-
lows one to define a lattice of security policy classes, in
which member classes are ordered by the amount of infor-
mation that must be tracked by an enforcing execution mon-
itor. The expressiveness of access control mechanisms such
as stack inspection has been studied in this lattice frame-
work.

Acknowledgments

I would like to thank John McLean and the anonymous
reviewers for their constructive comments. The quality of
this paper has been greatly improved by their feedback.

References

[1] M. Abadi and C. Fournet. Access control based on execu-
tion history. InProceedings of the 10th Annual Network and
Distributed System Security Symposium, San Diego, Califor-
nia, Feb. 2003.

[2] B. Alpern and F. B. Schneider. Recognizing safety and live-
ness.Distributed Computing, 2(3):117–126, 1987.

[3] L. Bauer, J. Ligatti, and D. Walker. More enforceable se-
curity policies. InProceedings of the Workshop on Foun-
dations of Computer Security (FCS’02), Copenhagen, Den-
mark, July 2002.

[4] M. Bernaschi, E. Gabrielli, and L. V. Mancini. REMUS: A
security-enhanced operating system.ACM Transactions on
Information and System Security, 5(1):36–61, Feb. 2002.

[5] K. Biba. Integrity considerations for secure computer sys-
tems. Technical Report 76–372, U. S. Air Force Electronic
Systems Division, 1977.

[6] W. E. Boebert and R. Y. Kain. A practical alternative to hier-
archical integrity policies. InProceedings of the 8th National
Computer Security Conference, pages 18–27, Oct. 1985.

[7] D. F. C. Brewer and M. J. Nash. The Chinese Wall security
policy. In Proceedings of the IEEE Symposium on Research
in Security and Privacy, pages 206–214, Oakland, Califor-
nia, May 1989.

[8] J. R. Büchi. Finite Automata, Their Algebra and Grammars.
Springer-Verlag, 1988.

[9] S. Burris and H. P. Sankappanavar.A Course in Universal
Algebra. Springer-Verlag, 1981.

[10] ECMA. Standard ECMA-335: Common Language Infras-
tructure (CLI), 2nd edition, Dec. 2002.

[11] G. Edjladi, A. Acharya, and V. Chaudhary. History-based ac-
cess control for mobile code. InProceedings of the 5th ACM
Conference on Computer and Communications Security, San
Francisco, CA, USA, 1998.

[12] A. Edwards, T. Jaeger, and X. Zhang. Runtime verification
of authorization hook placement for the Linux security mod-
ules framework. InProceedings of the 9th ACM Conference

on Computer and Communications Security, pages 225–234,
Washington, DC, Nov. 2002.

[13] D. Evans and A. Twyman. Flexible policy-directed code
safety. InProceedings of the 1999 IEEE Symposium on Se-
curity and Privacy, pages 32–45, Oakland, California, May
1999.

[14] C. Fournet and A. D. Gordon. Stack inspection: Theory and
variants. ACM Transactions on Programming Languages
and Systems, 25(3):360–399, May 2003.

[15] T. Fraser. LOMAC: Low water-mark integrity protection for
COTS environments. InProceedings of the 2000 IEEE Sym-
posium on Security and Privacy, Oakland, California, 2000.

[16] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Com-
putability classes for enforcement mechanisms. Technical
Report TR 2003-1908, Computer Science Department, Cor-
nell University, Aug. 2003.

[17] M. A. Harrison. Introduction to Switching and Automata
Theory. McGraw-Hill, 1965.

[18] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforce-
ment mechanisms for run-time security policies.Interna-
tional Journal of Information Security, 2003. To appear.

[19] T. Y. Lin. Chinese Wall security policy — an aggressive
model. InProceedings of the Fifth Annual Computer Secu-
rity Applications Conference, pages 282–289, Dec. 1989.

[20] T. Lindholm and F. Yellin.The Java Virtual Machine Speci-
fication. Addison Wesley, 2nd edition, 1999.

[21] J. McLean. The algebra of security. InProceedings of the
1988 IEEE Symposium on Security and Privacy, pages 2–7,
Oakland, CA, Apr. 1988.

[22] F. Nielson, H. R. Nielson, and C. Hankin.Principles of Pro-
gram Analysis. Springer, 1999.

[23] A. Rudys and D. S. Wallach. Termination in language-based
systems.ACM Transactions on Information and System Se-
curity, 5(2):138–168, May 2002.

[24] A. Rudys and D. S. Wallach. Transactional rollback for
language-based systems. InProceedings of the International
Conference on Dependable Systems and Networks (DSN’02),
pages 439–448, Washington, D.C., June 2002.

[25] R. S. Sandhu. A lattice interpretation of the Chinese Wall
policy. In Proceedings of the 15th NIST-NCSC National
Computer Security Conference, pages 221–235, Baltimore,
MD, Oct. 1992.

[26] F. B. Schneider. Enforceable security policies.ACM Trans-
actions on Information and System Security, 3(1):30–50,
Feb. 2000.

[27] Úlfar Erlingsson and F. B. Schneider. SASI enforcement of
security policies: A retrospective. InProceedings of the 1999
New Security Paradigms Workshop, pages 87–95, Caledon
Hills, Ontario, Canada, Sept. 1999.

[28] Úlfar Erlingsson and F. B. Schneider. IRM enforcement of
Java stack inspection. InProceedings of the 2000 IEEE Sym-
posium on Security and Privacy, pages 246–255, Berkeley,
California, May 2000.

[29] M. Viswanathan.Foundations for the Run-time Analysis of
Software systems. PhD thesis, University of Pennsylvania,
Dec. 2000.

11

[30] D. S. Wallach, A. W. Appel, and E. W. Felten. SAFKASI:
A security mechanism for language-based systems.ACM
Transactions on Software Engineering and Methodology,
9(4):341–378, Oct. 2000.

[31] I. Welch and R. J. Stroud. Using reflection as a mechanism
for enforcing security policies on compiled code.Journal of
Computer Security, 10(4):399–432, 2002.

[32] W. D. Young, P. A. Telega, and W. E. Boebert. A verified
labler for the secure Ada target. InProceedings of the 9th
National Computer Security Conference, pages 55–61, Sept.
1986.

Appendix: Proof of Theorem 6

Observation 14 Let P be a non-empty prefix-closed pol-
icy, and≡ be a congruence relation. Then, for anyw ∈ Σ∗

anda ∈ Σ, we have:

w
a

−→SA(P) wa ⇒ [w]≡
a

−→SA≡(P) [wa]≡ (5)

and

[w]≡
a

−→SA≡(P) [wa]≡ ⇒ w′ a
−→SA(P) w′a (6)

for somew′ ∈ [w]≡.

Proposition 15 LetP be a non-empty prefix-closed policy,
and≡1 and≡2 congruence relations such that≡1 ⊆≡2.
Then

P(SA≡1
(P)) ⊆ P(SA≡2

(P)).

Proof: The statement can be easily demonstrated by induc-
tion with the help of the following lemma.

Lemma: Denote SA≡1
(P) and SA≡2

(P) by M1 and
M2 respectively. For anyw ∈ Σ∗ anda ∈ Σ, we have:

[w]≡1

a
−→M1

[wa]≡1
⇒ [w]≡2

a
−→M2

[wa]≡2
.

Proof:

[w]≡1

a
−→M1

[wa]≡1

⇒ w′ a
−→SA(P) w′a w′ ∈ [w]≡1

, by (6)

⇒ [w′]≡2

a
−→M2

[w′a]≡2
by (5)

⇒ [w]≡2

a
−→M2

[wa]≡2
∵ ≡1 ⊆≡2 and
w′ ≡1 w and (3)

Corollary 16 Let P be a non-empty prefix-closed policy,
and≡ a congruence relation. Then

P ⊆ P(SA≡(P)).

Proof: Let≡>= ∅ be the congruence relation in which ev-
ery sequence belong to a distinct equivalence class.
Then P = P(SA(P)) = P(SA≡>

(P)). The result
follows from Proposition 15.

Proposition 17 Let P1 andP2 be non-empty prefix-closed
policies so thatP1 ⊆ P2, and let≡ be a congruence rela-
tion. Then

P(SA≡(P1)) ⊆ P(SA≡(P2)).

Proof: The statement can be demonstrated easily by induc-
tion with the help of the following lemma.

Lemma: Denote SA≡(P1) and SA≡(P2) by M1 and
M2 respectively. Then forw ∈ Σ∗ anda ∈ Σ, we have

[w]≡
a

−→M1
[wa]≡ ⇒ [w]≡

a
−→M2

[wa]≡

Proof:

[w]≡
a

−→M1
[wa]≡

⇒ w′ a
−→SA(P1) w′a w′ ∈ [w]≡, by (6)

⇒ w′ a
−→SA(P2) w′a ∵ P1 ⊆ P2

⇒ [w′]≡
a

−→M2
[w′a]≡ by (5)

⇒ [w]≡
a

−→M2
[wa]≡ ∵ w ≡ w′ and (3)

Proposition 18 Let P be a non-empty prefix-closed policy
and≡ a congruence relation. Then

P(SA≡(P(SA≡(P)))) = P(SA≡(P)).

Therefore,P(SA≡(P)) ∈ EM≡.

Proof: By Corollary 16 and Proposition 17, we already
haveP(SA≡(P)) ⊆ P(SA≡(P(SA≡(P)))). It there-
fore suffices to show thatP(SA≡(P(SA≡(P)))) ⊆
P(SA≡(P)). The inclusion can be demonstrated eas-
ily by induction with the help of the following lemma:

Lemma: Denote SA≡(P) and SA≡(P(SA≡(P))) by
M1 and M2 respectively. Then for anyw ∈ Σ∗ and
a ∈ Σ, we have:

[w]≡
a

−→M2
[wa]≡ ⇒ [w]≡

a
−→M1

[wa]≡.

Proof:

[w]≡
a

−→M2
[wa]≡

⇒ w′ a
−→SA(P(M1)) w′a w′ ≡ w, by (6)

⇒ w′, w′a ∈ P(M1) by def of SA(·)

⇒ [w′]≡
a

−→M1
[w′a]≡ by Proposition 3

⇒ [w]≡
a

−→M1
[wa]≡ ∵ w ≡ w′ and (3)

12

Proof of Theorem 6

Suppose≡1 ⊆≡2. From Proposition 15 and Corollary
16, we have:

P ⊆ P(SA≡1
(P)) ⊆ P(SA≡2

(P)).

It follows that P = P(SA≡2
(P)) implies

P = P(SA≡1
(P)). Therefore, EM≡2

⊆ EM≡1
.

Now, suppose further that≡1 ⊂≡2. We want to show
that there is a policy in EM≡1

that is not in EM≡2
.

Let w be a shortest sequence inΣ∗ such that[w]≡1
⊂

[w]≡2
. Let w′ be a shortest sequence in[w]≡2

\ [w]≡1
. We

then also have[w′]≡1
⊂ [w′]≡2

.
Let a ∈ Σ be an arbitrary access event. Define non-

empty prefix-closed policyP = prefix(wa) ∪ prefix(w′).
Define also non-empty prefix-closed policyP ′ =
P(SA≡1

(P)). We claim that, althoughP ′ is obvi-
ously a member of EM≡1

(Proposition 18), it does
not belong to EM≡2

, that is, P ′ 6= P(SA≡2
(P ′)). To

demonstrate this, we show that (1)w′a 6∈ P ′, but (2)
w′a ∈ P(SA≡2

(P ′)).

1. w′a 6∈ P ′: If w′a ∈ P(SA≡1
(P)), then there must be

someu, ua ∈ P , so thatu ∈ [w′]≡1
andua ∈ [w′a]≡1

.
The following case analysis demonstrates that this is
impossible.

(a) u 6∈ prefix(w′)\{w′}, for otherwise,u ≡1 w′ 6≡1

w butu ≡2 w′ ≡2 w (because≡1⊂≡2), and thus
u would be a shorter candidate forw′.

(b) u 6∈ prefix(w) \ {w}, for otherwise, by the same
argument as the previous case,u would be a
shorter candidate forw.

(c) u 6= w, for otherwisew ≡1 w′, contradicting the
definition ofw′.

(d) u 6= wa, for otherwise eitherwaa 6∈ P or u ∈
prefix(w′) \ {w′}.

(e) u 6= w′, for otherwise eitherw′a 6∈ P or u = w
or u ∈ prefix(w) \ {w}.

2. w′a ∈ P(SA≡2
(P ′)): Notice that, as Corollary 16 im-

pliesP ⊆ P ′, it then follows from Proposition 17 that
P(SA≡2

(P)) ⊆ P(SA≡2
(P ′)). Consequently, it suf-

fices to showw′a ∈ P(SA≡2
(P)).

Asw,wa ∈ P , we have[w]≡2

a
−→SA≡2

(P) [wa]≡2
.

By Proposition 3, w′ ∈ P implies that

[ε]≡2

w′

−→SA≡2 (P) [w′]≡2
. Sincew ≡2 w′, [w]≡2

and
[w′]≡2

are the same equivalence class, and, by the sub-
stitution property, so are[wa]≡2

and [w′a]≡2
. There-

fore, [ε]≡2

w′

−→SA≡2 (P) [w′]≡2

a
−→SA≡2 (P) [w′a]≡2

.

13

