
Inference Attacks by Third-Party Extensions to

Social Network Systems

Seyed Hossein Ahmadinejad∗ Mohd Anwar† Philip W. L. Fong∗

∗Department of Computer Science

University of Calgary

Calgary, Alberta, Canada

{ shahmadi, pwlfong }@ucalgary.ca
†School of Information Sciences

University of Pittsburgh

Pittsburgh, PA, USA

manwar@pitt.edu

Abstract—We study inference attacks that can be launched via
the extension API of Facebook. We explain the threat of these
attacks through a reduction to authentication attacks, devise
a taxonomy for such attacks, and propose a risk metric to
help subscribers of third-party applications refine their privacy
expectations.

I. INTRODUCTION

In the 2006 F8 developer conference, Facebook (FB) an-

nounced a repositioning of its business model. Discerning

that its core business is the construction of the social graph

rather than the development of individual social applications

(e.g., photo sharing, blogging, etc), Facebook released its

development platform, which allows third-party developers to

create social applications that are embedded in the Facebook

environment.

Third-party Facebook applications run on their own

servers1. When Facebook receives a user request to interact

with a third-party application, it delegates the request to the

application’s server. The application subsequently invokes,

through a remote invocation API published by Facebook,

primitive web services offered by the Facebook server, so as

to access the social graph, query user information, contact

the user’s friends, etc. Application output is sent back to the

Facebook server. The latter embeds the received output into

the HTML pages that represent the user interface of Facebook.

In short, a Facebook application is a remotely hosted software

component that augments the feature set of Facebook.

This extensible architecture was then quickly adopted by

other social computing platforms. For example, Google’s

OpenSocial is a cross-platform API with buy-in from a vast

variety of social computing platforms, including LinkedIn,

MySpace, Ning and Yahoo. Third-party applications developed

for the OpenSocial API can be deployed on any social com-

puting platform that supports the API. Although extensibility

is a general phenomenon, we anchor our work on Facebook.

1The Facebook platform API also supports the development of client-side
applications, but they are not the focus of this work.

Extensibility gives rise to new security and privacy chal-

lenges: Since third-party applications are not hosted on Face-

book.com, the latter has no way of ensuring that the applica-

tions are benign. The recent investigative report by Wall Street

Journal on third-party applications is an illustration of the

privacy risk involved [1]. To prevent third-party applications

from exploiting the FB platform API for the purpose of

harvesting personal information, FB allows users to selectively

grant permissions to applications, thereby restricting the latter

to access only data required for the normal operation of the

applications. This permission-based authorization scheme was

refined recently in May 2010, to improve the granularly of

control.

The goal of this work is to highlight that such a permission-

based authorization scheme is not sufficient (although it is

indeed a good baseline protection mechanism). We do so

by exploring one particular class of attacks enabled by the

extension API of a Social Network System (SNS), namely, the

class of SNS API inference attacks. We define an SNS API

inference attack to be the inference of private information by a

third-party application through analyzing public information

made available by the extension API of an SNS. Two points are

worth emphasizing. First, the user willingly consent to giving

access of certain personal data to the third-party application.

The mere availability of such public data does not consti-

tute an inference attack. Second, the user explicitly denies

the third-party application of access to certain private data.

Yet, by cross-referencing, data mining, parsing, or applying

other forms of data analysis to the public data, the third-

party application can successfully infer the private data that

the user consciously attempts to protect. Permission-based

authorization separates public data from private one, but it

does not eliminate the correlation between the two.

Compared to other forms of inference attacks [2], [3], [4],

[5], [6], SNS API inference attacks are unique in at least

three ways. First, limited by permission-based authorization,

the attacking application processes public data structures like

a “crawler” (cf. [4]). The application has neither global knowl-

edge of the entire social graph nor simultaneous access to the



public profile data of all users. Second, a significant amount of

information about a user is authored by parties other than the

user. This includes meta data (e.g., time stamp) injected by the

platform, and contents about an individual that are contributed

by other users (e.g., photo tags). The user has no control

over the generation of such data. Third, due to the nature of

social computing, a popular third-party application has wide

deployment. Viral propagation may lead to mass harvesting

of public information. Consequently, the inference engine of

a malicious application does not even need to be accurate. A

modest probability of success already makes the attack highly

dangerous.

The goal of this work is to improve our understanding of

SNS API inference attacks. Our contributions are threefold:

1) We assess the threat of SNS API inference attacks by

describing how they can be used as building blocks of

an authentication attack.

2) We present a taxonomy for classifying SNS API infer-

ence attacks. Such a taxonomy allows future work to

develop targeted protection mechanisms for each attack

variant.

3) We propose a metric for quantifying the risk of SNS

API inference attacks. Such a metric could be used for

providing feedback to SNS users regarding the adequacy

of their privacy settings.

II. RELATED WORK

Inference of private information using social network data

has been studied in the past. He et al. [2] employ Bayesian

networks to infer private attributes of a victim from the public

attributes of the victim’s friends and friends of friends. Xu et

al. [3] study the inference of private information from social

group membership, again using Bayesian networks. Zheleva

and Getoor [5] study eight inference attacks in which users’

private information is inferred from public friend lists and

public group membership information. The common insight

behind the above works is that related individuals, or individ-

uals belonging to the same social group, tend to share common

attributes. Sophisticated Bayes classifiers designed particularly

for inference attacks on social network data have also been

studied [6]. All the previous works above assume that the

entire social network data set is made available to the attacker;

our work instead studies inference attacks launched specifi-

cally from third-party applications. Constrained by permission-

based authorization and the platform API, these applications

assume the posture of a crawler. The platform API also

exposes foreign data authored by parties other than the user,

thus creating more opportunities for inference.

Perhaps the most comparable to our work is the work of

Bilge et al. [4], who study the use of automatic crawlers to

gather users’ profile information for the purpose of launching

profile cloning attacks. Once enough personal information is

harvested, the attacker can clone the profile of the victim,

either within the same SNS, or in an SNS in which the victim

is not registered. Armed with the cloned profile, the attacker

now attempts to befriend the friends of the victim. Empirical

data suggests that the victim’s friends will likely consent to

the forging of friendship, thus granting the attacker access to

their personal information. Both our work and theirs attempt

to gauge the impact of inference attacks through some form of

operationalization: gaining the trust of the victim’s friends in

[4], and subverting authentication in ours. Our work is unique,

however, in that third-party applications are controlled by a

different access control model than a user-mimicking crawler

[4]. The data made available in the two contexts are also

different.

A small number of previous work deal with the redesign

of an SNS API to reduce the leak of personal information. In

[7], a redesign of the permission-based authorization scheme

of Facebook is proposed to allow an application subscriber to

protect her friends. In privacy-by-proxy [8], the API releases

handles of personal data rather than the data itself to prevent

information leakage. This present work address the problem

of SNS API inference attacks by providing a risk metric to

refine the privacy expectation of users.

III. THE THREAT OF DOSSIER INFERENCE

Solove coined the term digital dossier to refer to the

vast amount of personal data that one surrenders to public

records of various forms [9]. The personal information stored

in an SNS can be collected and analyzed to construct a

relatively complete digital dossier of a user. Most previous

works concern the erosion of privacy due to inference attacks

on SNSs. Yet, deeper questions are: Exactly what have we lost

due to the inference of a digital dossier? How do we measure

the damage caused by inference attacks? Unfortunately, the

loss of privacy is difficult (if not impossible) to measure.

Counting the number of bits of information leaked simply does

not suffice.

We propose an operational means to appraise the threat

of a hard-to-appraise attack, by reducing it to another threat

that we have a much clearer understanding. Specifically, the

reduction goes like this: if we can launch an attack H, a hard-

to-appraise attack, then it would allow us to use it as a building

block to further launch an attack E , a threat we can easily

appraise. E could either cause immediate damages, or erode

the effectiveness of a protection mechanism. The possibility to

launch attack E provides us with a clear assessment of what

a user could potentially lose in case H is possible.

In our case, H is the SNS API inference attack, and

E is an authentication attack. Specifically, in many online

services, including financial services, the service provider will

negotiate with the user a set of authentication questions that

would be used for authenticating the user in case the primary

authentication mechanism breaks down (e.g., the user forgets

her password), or when extra protection is required (e.g., when

the user is logging on from an unusual IP address). When

applicable, the service provider will challenge the user with

one or more of these questions. If the user provides an answer

that matches the one previously agreed upon between the user

and the service provider, then the service provider accepts the

identity claim of the user, even though other authentication



Question Category Freq.

1. Relationships: E.g., “What is your maternal grandfa-

ther’s first name?”

16

2. Favourites: E.g., “What is your favourite hobby?” 15

3. Educational Experiences: E.g., “What is the name of the

post secondary institution that you attended?”

4

4. First-time Experiences: E.g., “What is the name of your

first employer?”

4

5. Significant Persons in Significant Events: E.g., “What

is the first name of the best man at your wedding?”

2

6. Date of Significant Events: E.g., “When is your wedding

anniversary?”

1

7. Location of Significant Events: E.g., “What is the name

of the hospital in which you were born?”

2

8. Period-specific Information: E.g., “What is the first

name of your favourite teacher in final year of high

school?”

3

9. Other 3

Total 50

Fig. 1. Authentication question types for F .

means failed (e.g., loss of password, dubious location). The

assumption is that only the user knows the answers to the

authentication questions. Unfortunately, many commonly used

authentication questions have answers that can be readily

inferred from casual personal information that a user would

publish in an SNS. The goal of this section is to demonstrate

that the successful launching of SNS API inference attacks

could allow an attacker to infer personal information that

corresponds to answers of common authentication questions.

To identify the kind of questions commonly used for authen-

tication, we analyzed the authentication mechanism of a real

financial institution. We eschew identifying the financial insti-

tution, as well as full details of its authentication questions, so

as to protect the institution as well as its customers. Let us refer

to this institution as F . When a customer opens an account

with F , the customer will be asked to select one question

from each of the five groups of ten pre-selected authentication

questions, for a total of five questions out of fifty pre-selected

ones. The customer will provide answers to those questions.

When the customer logs in from a location different from the

usual one, one of the five questions (selected in random) will

be directed to the user. This extra authentication is performed

on top of the existing password-based authentication mecha-

nism. Figure 1 tabulates the different categories of questions

as well as their frequencies.

Question categories 1 and 2, relationships and favourites,

have answers that are occasionally stored directly in an SNS,

although such information may be protected by permissions:

e.g., a user may choose to make her friend list inacces-

sible, or to hide her favourites. If an attacker could infer

these two categories of information, then 62% of all the

authentication questions would have been covered. The next

popular categories of questions are 3–7, which cover 26%

of the authentication questions. They are questions regarding

personal experiences, including educational experiences, first-

time experiences, or other significant life experiences such as

birth and wedding. Together Categories 1–7 cover 88% of the

questions.

An effective attacker targets her inference efforts in ques-

tions from categories 1–7. We claim that simple inference

attacks exist for many questions in these categories. We outline

two to illustrate the techniques involved. In each case, an FB

application was developed to empirically confirm the exact

permissions needed for the data sources to be accessible.

Example 1. Suppose the goal of the attacker is to identify

the birthday of a user. This information belongs to Category

6 (Date of Significant Events). Suppose further that the user

subscribes to a 3rd-party application developed by the at-

tacker. The user denies the application of the user_birthday

permission, thereby making her birthday private, but grants

the read_stream permission so that the application can

access the so called Stream data structure (i.e., public). The

Stream is a table accessible via the FB Platform API. It

stores wall messages, newsfeed, notes and status updates

of the user. Once subscription is complete, the attacking

application downloads the Stream entries of the user for

at least one year. It then scans through all Stream entries

looking for wall messages containing the standard birthday

wish “happy birthday” (or variants), but not containing the

word “belated” (or variants). The FB platform attaches the

date of communication to each message. Each occurrence of

the standard birthday wish constitutes evidence that the date

of communication is the birthday of the user. The attacker

application then uses frequency of occurrences to select the

most plausible day.

We do not claim that the above is the most accurate birthday

miner. Instead, our goal is to make two points. First, we want

to identify the permissions that are needed in order to infer

the user’s birthday. We want to highlight the fact that even

if the user makes her birthday private, making a seemingly

unrelated data structure accessible is sufficient in exposing

her birthday. Second, we want to highlight the fact that even

a simple-minded mining algorithm would already allow the

attacker to have modest success in inference. With a wide-

scale launch of such an attack, even a modest accuracy could

lead to a significant number of successful attacks. For example,

say that the birthday miner can make a correct guess 10% of

the time, and that the application has an installation base of

50,000 users. We are already looking at 5,000 victims.

Example 2. The goal is to identify the best man of the user

(i.e., Category 5: Significant Person in Significant Events). The

attacking application is granted the user_photos permission

(i.e., to access the user’s photo albums). Each album and

each photo are associated with some user-provided textual

descriptions. The user may optionally “tag” the individuals

appearing in each photo. After downloading these two pieces

of information for the user photos, a mining script scans

the photo albums to look for wedding albums, and in these

albums, look for photos with textual descriptions containing

the keyword “best man” (or variants). Then the miner look

for occurrences of names in the descriptive texts, or names in

tags of these photos. Each co-occurrence of the keyword “best

man” with a name or a tag signifies the possibility that the



named individual is the best man for the user. The miner than

makes a best guess using frequency counts.

Note that the first example can be adapted for inferring other

celebrated days (e.g., wedding anniversary), while the second

is not specific to “best man”: it can be employed to infer other

relationships (Category 1).

IV. A TAXONOMY OF ATTACKS

In this section, we propose a taxonomy for SNS API

inference attacks. Doing so allows us to gain a deeper un-

derstanding of how inference attacks arise from the context

of extensible SNSs, and thus allows us to design protection

technologies that target specific classes of attacks. There are in

principle at least two ways to classify SNS API inference at-

tacks. One is by the mechanism through which data is obtained

by the attacker to form the basis of inference, and the other

is by the type of inference performed by the attacker. In this

work we take the first approach for the following reasons. First,

as our goal is to better articulate the protection requirements

of extensible SNSs, it is more appropriate to examine the

space of attacks from the perspective of mechanisms that cause

information to be leaked. This would allow future work to

consider how the data sources can be better protected. Second,

classification schemes that are based on inference techniques

tend to be highly generic, and thus applicable to inference

attacks in general. This could lead us to lose sight of the

specific protection challenges caused by the extension API

and the peculiar data structures found in SNSs.

We classify the means of information leakage along two

dimensions. The first classification dimension concerns the

channel through which information is leaked to a third-party

application. This leads to five classes of basic attacks. As we

shall see, the five classes are not necessarily orthogonal, for

an attack could very well be enabled by multiple channels

of information leakage. The second dimension classifies the

victim of the attack. This dimension produces three variants

for each of the five classes above.

A. First Dimension: Channel

1) Self Disclosure: Private information is directly exposed

by a user in a public (usually textual) data field or data

stream (e.g., status, wall posts, comments, descriptive texts

in photo albums). An example is to post a message on your

own “Wall”, declaring “My birthday is May 4.” Even if

the user denies the application to read the birthday field of

her profile, the application may still learn about the fact by

monitoring other public channels (i.e., the data structures for

which the application has been granted access). Such attacks

are partly caused by the user’s lack of diligence in protecting

her personal information.

2) Metadata Association: The SNS automatically injects

metadata (e.g., date of creation, author) into various data

streams. By making these data streams public, the user also

makes the associated metadata accessible to a third-party

application. The application can now infer private information

entailed by that association. Example 1 is a classical example

of this kind of exploits. Because the extension platform

annotates each message by its date of communication, the

association between this date and the textual content (i.e.,

birthday wish), becomes a public information that can be

leveraged by an attacker for inference. Unlike a Self Disclosure

attack, which is due to the voluntary disclosure of private

information in public channels, the user has no control over

the injection of metadata.

3) Foreign Contents: In an SNS, not all data owned by a

user is authored by that user. For example, others can comment

on a photo you post. These comments are owned by you

(in Discretionary Access Control, the owner of a piece of

data is the one who can determine the accessibility of that

data), but they are not authored by you. In short, others are

allowed to produce contents about a user, but that user is

burdened with the responsibility to control access to such

foreign contents. In Example 1, the wall messages are sent

by others. Consequently, the birthday attack is caused by the

association of metadata to foreign contents. Another example

of foreign contents is photo tags.

4) Relational Join: In the relational database model, tables

can be joined by associating common entries. For example, if

there is a table that represents the mapping from photo IDs to

tag IDs, and another table that represents the mapping from

tag IDs to the individuals being tagged, then we can construct

a table (the join of the two) that associates a photo entry to

the individuals tagged in that photo. By making such unique

identifiers available (e.g., photo IDs), the extension platform

grants an attacker the ability to compute the relational join

of two tables, and thus enables certain inferences that would

otherwise be impossible. A classical example is the best man

inference in Example 2. By computing the join identified

above, an attacker can now infer the best man of the user.

5) Frequency Observation: Because a malicious applica-

tion has access to not only a few entries of a data stream,

but the full history of data (e.g., all the historical newsfeeds,

all the photo albums, etc), it is possible for the application

to compute frequency information from such a vast amount

of information. Correlation of various kind can therefore be

inferred.

B. Second Dimension: Victim

The second dimension of classification brings into the

picture the social graph, the defining data structure of an SNS.

The above five attacks can be launched to infer information

for three kinds of victims.

1) Subscriber: The first victim is obviously the subscriber

of the application. For example, if John subscribes to a

malicious application, which in turn infers John’s birthday,

then the attack belongs to this class.

2) Friend: According to the Facebook Privacy Policy, if

Bob is a friend of Alice, and Bob subscribes to an application,

then the application can access not only the public information

of Alice, but also the private information of Alice so long

as such a permission is granted by Bob. In the latter case,

the application can access whatever Bob can access in Alice’s



profile. Thus, while Alice does not subscribe to the application,

she becomes a victim of an inference attack by virtue of her

friend’s subscribing to malicious applications.

3) Reflected: Rather than inferring information regarding

the data owner (i.e., the subscriber or her friends), the attacker

infers information about an individual referenced in the data.

Consider a Reflected variant of Self Disclosure. The subscriber

of an application writes on her own wall: “My wife was born in

Vancouver.” Now the application is aware of the birth place of

the subscriber’s wife. Consider a Reflected variant of Metadata

Association. Suppose Bob subscribes to an application. He

sends a message to his mother Alice, and explicitly address

her as “Mom” in the message. The platform injects author

and recipient IDs into the message entry. Now the application

knows that Bob is a son of Alice, even if the friend list of Alice

is private. In short, activities of a user may act as a mirror,

allowing a malicious application to glance at the “reflection”

of the victim in that mirror.

C. Discussion

An important cause of SNS API inference attacks is a

mismatch between the user’s privacy expectations and the

privacy implications of adopting a certain permission config-

uration. By explicitly granting the user_photos permission

(Example 2), one expects that photo accesses will be the only

consequence. Users fail to incorporate into their mental model

the complex inference closure entailed by releasing photo data.

One solution is to reduce the information that can be inferred

from the data released via the API. A second solution is to

help refine user expectations, so that they are more aware

of the privacy implications when they grant permissions to

applications.

V. RISK ASSESSMENT

We propose a means to bridge the gap between the privacy

expectation of the user, and the actual consequence of adopting

a particular privacy setting. Specifically, we propose a risk

assessment scheme (or a risk metric) that provides users

with a scalar value measuring how easy it is for a malicious

application to launch an inference attack. The metric uses

the authentication attack described in Section III as a proxy

for SNS API inference attacks, and measures the probability

that the authentication attack can be launched against the

subscriber of a third-party application.

A. A Risk Metric

The object of measurement is a specific configuration of

privacy settings that the user adopts for a given application.

Such a configuration includes permissions granted to the ap-

plication, as well as other global privacy settings. We measure

the risk induced by such a configuration. Let Γ be the space of

all possible configurations of privacy settings for that user, and

γ a typical member of Γ. We assume that Γ is partially ordered

by ⊑, and we write γ1 ⊑ γ2 iff γ1 is no more permissive than

γ2.

We postulate that we can identify a set Q =
{q0, q1, . . . , qN−1} of N authentication questions that are

typically used by web applications for authentication purposes.

(It is not necessary for Q to exhaustively cover all possible

authentication questions, which is clearly impossible, but it

should cover a small but representative set.) Associated with

the questions is a set A = {a0, a1, . . . , aN−1} of canonical

inference algorithms, one for inferring the answer of each

question. Q and A together forms our benchmark. Suppose

further that a typical web application will ask users to answer

k of the questions, selected randomly from Q (with equal

probability). Our risk metric measures the probability πk(γ)
that an attacker can use the inference algorithms in A to

successfully infer the correct answers to k randomly selected

questions.

For the metric πk(γ) to be defined properly, we need a

number of parameters for the model.

• Fi : Γ → {0, 1} is a feasibility predicate indicating

whether the data needed by ai to attempt inferring an

answer to question qi is available when the user adopts

a given configuration γ ∈ Γ of privacy settings. The

predicate Fi must be monotonic with respect to ⊑. That

is, γ1 ⊑ γ2 implies Fi(γ1) ⇒ Fi(γ2).
• Pi ∈ [0, 1] is a conditional probability, called inference

accuracy. Given that the privacy settings of the user al-

lows the attacker to access the data needed for inference,

Pi is the probability that the attacker can correctly infer

the answer to question qi. This probability is induced by

the distribution of profile data among the users of the

SNS. We further assume that the successful inference of

each question is independent from the inference of other

questions. Further justification of this assumption will be

given in the sequel.

We can compute πk(γ) as follows:

∑

S∈[ZN ]k

∏

i∈S
Fi(γ)× Pi
(

N

k

)

where ZN = {0, 1, . . . , N −1}, and [S]k is the set of all size-

k subsets of set S . If Fi and Pi are available, then it takes

O(Nk) time to compute πk(γ).

B. Model Parameters

To deploy the risk metric, one has to select the benchmark

Q and A, and supply the feasibility predicate Fi as well as the

inference accuracy Pi for each inference algorithm ai ∈ A.

We discuss guidelines on how this can be achieved.

The questions in Q should be selected in such a way that

covers a diverse range of data sources described in Section

IV-A. In order for the assumption of independence among

Pi to be realistic, the inference algorithms in A shall draw

on relatively independent data sources. The two inference

algorithms in Examples 1 and 2 are good examples: the first

one works with wall messages, while the second examines

photo albums. Again, there is no need for Q to be exhaustive

in its coverage of authentication questions. What is required



is that it contains a manageable but representative set of

authentication questions.

Once qi and ai are fixed, the feasibility predicate Fi can be

formulated by examining the Facebook API documentation,

and enumerating the permissions required by ai to access the

relevant data sources.

The inference accuracy Pi of ai must be assessed em-

pirically. We suggest using real user data for this purpose.

With consent from real users, we can download the profile

data needed for making inference using dedicated third-party

applications. Then we attempt to use inference algorithm ai to

infer an answer for authentication question qi. The success rate

of ai gives us an estimation of Pi. We are currently seeking

ethics approval for conducting such an estimation.

C. Usage

The risk metric can be deployed to help users to better

assess the risk of granting permissions to applications. When

a user subscribes to an application, or when the user adjusts

the permissions granted to the application, the SNS can display

the risk metric πk(γ) for, say, k = 1, . . . , 4, where γ represents

the current privacy settings γ with respect to that application.

VI. CONCLUSION AND FUTURE WORK

In this work we identify the threat of SNS API inference

attacks, provide a taxonomy of these attacks, and propose a

risk assessment scheme to help users understand the risk of

subscribing to a third-party application in an extensible SNS.

Future work includes the creation of a concrete benchmark for

the risk metric, the the extension of the metric to account for

uneven popularity of authentication questions, and the design

of a secure API for extensible SNSs.

An ongoing work is to actually create a benchmark, formu-

late the feasibility predicates, and empirically assess the infer-

ence accuracy of the inference algorithms in the benchmark.

This would allow us to empirically evaluate the effectiveness

of the risk assessment scheme.

One limitation of the proposed risk assessment scheme is

that it assumes all authentication questions in the benchmark

are equally popular. An improvement is to reformulate the

metric so that it takes into account the uneven popularity of

the authentication questions. An interesting research question

would be to determine which version of the risk metric is

actually more effective in steering users’ privacy expectations.

Bridging the privacy expectation of the user and the actual

risk of subscribing to applications is one of the two solution

approaches discussed in Section IV. The other approach is

to redesign the platform API and the data structures of an

extensible SNS to minimize inference. We are interested in

pursuing this direction.

ACKNOWLEDGMENT

The authors would like to thank Jun Biao Zhang for

helping to identify the permissions required by the example

attacks, and Ida Siahaan and Philipp Woelfel for their helpful

discussions. This work is partly funded by an NSERC Strategic

Project Grant.

REFERENCES

[1] E. Steel and G. A. Fowler, “Facebook in privacy breach,” The Wall Street

Journal, Oct. 2010.
[2] J. He, W. W. Chu, and Z. V. Liu, “Inferring privacy information from

social network,” in Proceedings of ISI’06, ser. LNCS, vol. 3975. San
Diego, CA, USA: Springer, May 2006, pp. 154–165.

[3] W. Xu, X. Zhou, and L. Li, “Inferring privacy information via social
relations,” in Proceedings of the 24th IEEE ICDE Workshop, Cancun,
Mexico, Apr. 2008.

[4] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda, “All your contacts are
belong to us,” in Proceedings of WWW’09, Madrid, Spain, Apr. 2009, pp.
551–560.

[5] E. Zheleva and L. Getoor, “To join or not to join,” in Proc. WWW’09,
Madrid, Spain, Apr. 2009, pp. 531–540.

[6] J. Lindamood, R. Heatherly, B. Thuraisingham, and M. Kantarcioglu,
“Inferring private information using social network data,” in Proceedings

of the 18th International Conference on World Wide Web (WWW’09),
Madrid, Spain, Apr. 2009, pp. 1145–1146.

[7] A. Besmer, H. R. Lipford, M. Shehab, and G. Cheek, “Social applications:
Exploring a more secure framework,” in Proceedings of the 2009 Sympo-

sium On Usable Privacy and Security (SOUPS’09), Mountain View, CA,
USA, Jul. 2009.

[8] A. Felt and D. Evans, “Privacy protection for social networking plat-
forms,” in Web 2.0 Security and Privacy (W2SP’08), Oakland, CA, USA,
May 2008.

[9] D. J. Solove, The Digital Person: Technology and Privacy in the Infor-

mation Age. NYU Press, 2004.


