
Policy Negotiation for Co-owned Resources in

Relationship-Based Access Control

Pooya Mehregan and Philip W. L. Fong

Department of Computer Science

University of Calgary

Calgary, Alberta, Canada

ABSTRACT
The collaborative nature of content development has given
rise to the novel problem of multiple ownership in access
control, such that a shared resource is administrated simul-
taneously by co-owners who may have conflicting privacy
preferences and/or sharing needs. Prior work has focused on
the design of unsupervised conflict resolution mechanisms.

Driven by the need for human consent in organizational
settings, this paper explores interactive policy negotiation,
an approach complementary to that of prior work. Specifi-
cally, we propose an extension of Relationship-Based Access
Control (ReBAC) to support multiple ownership, in which a
policy negotiation protocol is in place for co-owners to come
up with and give consent to an access control policy in a
structured manner. During negotiation, the draft policy is
assessed by formally defined availability criteria: policy sat-
isfiability, resiliency and feasibility, which all belong to the
second level of the polynomial hierarchy. We devised two
algorithms for verifying policy satisfiability, both employing
a modern SAT solver for solving subproblems. The perfor-
mance is found to be adequate for mid-sized organizations.

Keywords
Multiple Ownership; ReBAC; Negotiation; Availability.

1. INTRODUCTION
One of the most interesting recent developments in the

area of Access Control is the study of multiple ownership.
Specifically, the many and diverse scenarios of resource shar-
ing in social computing applications have brought about a
fundamental change in our understanding of Discretionary
Access Control (DAC). In the classical formulations of DAC
(e.g., the Graham-Denning model [11, 19]), every object has
a primary administrator known as its owner . Ownership, in
the context of Access Control, is about administrative rights
and not property rights. The owner is the user who has full
administrative privilege to determine the access control pol-
icy of the object. While partial administrative privileges can
be delegated, the delegatees are considered acting on behalf

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SACMAT’16, June 05-08, 2016, Shanghai, China

c� 2016 ACM. ISBN 978-1-4503-3802-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2914642.2914652

of the owner, and thus fully trusted. This classical view,
however, has been significantly revised due to the emergence
of new access control requirements in social computing.

Social computing applications provide support for collab-
orative authoring of contents. Contents that are originally
created by one user are enriched and annotated by other
users. Examples of such features include liking, tagging and
commenting. Some contents are even co-authored by mul-
tiple users. An example is the befriending operation, which
creates a joint declaration of two users’ relationship. An ob-
ject of this kind has privacy bearing on multiple parties, and
thus they all want to have a say on the access control pol-
icy of that object. These parties, who are called co-owners
in this work, may have di↵erent or even conflicting privacy
and availability preferences. In other words, co-owned ob-
jects are not the ones accessed/shared by multiple parties,
but the ones that are administered by multiple parties. The
study of multiple ownership involves the design and anal-
ysis of schemes for supporting co-owners in administrating
access control policies in a collaborative manner.

There is now a significant and growing body of literature
on multiple ownership [23, 26, 30, 24, 12, 13, 14, 15, 25, 21],
most notable of which are the seminal work of Squicciarini
et al [23, 24] and that of Hu et al. [12, 13, 14, 15]. A com-
mon theme in their works is to devise unsupervised conflict
resolution mechanisms for reconciling the potentially con-
flicting privacy preferences and sharing needs of the various
co-owners. These mechanisms are usually blackboxes in the
sense that they are mathematically complex enough to es-
cape comprehension by typical end-users [21].

In this work, we venture away from mainstream social
media (Facebook, Twitter, Instagram, etc.), and study mul-
tiple ownership in the setting of organizational comput-
ing — medical records systems, documents sharing and
co-authoring, business process support, etc. For instance,
a patient, her treating clinicians and the hospital adminis-
tration all share a privacy stake in a medical record. They
co-own the record because they all want a say in the access
control policy of the record. Again, colleagues from di↵er-
ent departments who co-author a report share an interest in
the access control of that report. As co-owners represent-
ing di↵erent departments, they may have di↵erent or even
conflicting views on how the report shall be protected.

We propose in this work a framework for supporting mul-
tiple ownership in the family of Relationship-Based Access
Control (ReBAC) models by Fong et al. [8, 10, 3, 22],
through interactive policy negotiation with tool support.
ReBAC is a general-purpose access control paradigm de-

signed for supporting organizational computing. It features
a finer granularity of control over classical Role-Based Ac-
cess Control (RBAC) models, and o↵ers natural support for
delegation of trust [8]. A first, large-scale implementation
of ReBAC in an open-source medical records system was
recently attempted [22]. We therefore ground the present
work on ReBAC, as this forces us to confront the reality of
fine-grained access control as well as trust delegation.

1.1 Rationale for Interactive Negotiation
A uniqueness of this work is the design and implemen-

tation of tool support for interactive negotiation of access
control policies. We envision that co-owners engage in a
conscious process of negotiating the access control policy of
their co-owned objects. We fully acknowledge the impor-
tance of unsupervised conflict resolution schemes proposed
in previous work, and we are in no way advocating interac-
tive negotiation as a replacement for unsupervised conflict
resolution. We, however, recognize the complementary role
of interactive policy negotiation because of two reasons.

First, there is evidence that, in some circumstances, users
feel the need to engage in policy negotiation. For example,
the empirical study reported in [17] reveals that SNS users
do negotiate boundary regulations. Even in the absence of
much needed tool support, users find other methods to ne-
gotiate. For instance, they simply exchange emails to ne-
gotiate the suitability of a group photo before disclosing it.
The authors of [17] advocate the need for supporting expec-
tation discussion and privacy negotiation among co-owners
before conflicts arise. The study reported in [2] also high-
lights the need for negotiation in photo sharing, and the fact
that users make use of o✏ine detours in the absence of tool-
support for such negotiations. We believe that interactive
negotiation empowers users to directly collaborate with one
another. In many cases, conflicts occur because users are
unaware of other co-owners’ privacy preferences; otherwise,
they display eagerness in accommodating the privacy pref-
erences of other co-owners [17]. In collegial environments,
such as those in organizational computing, interactive ne-
gotiation o↵ers the opportunity for users to collaboratively
arrive at a mutually agreeable policy.

Second, the accountability requirements of the applica-
tion domain may demand the express consent of the co-
owners in publishing information. In organizational settings
such as a healthcare facility, in which co-owners may bear
legal responsibilities for regulating information disclosure,
conscious human consent in policy negotiation would be re-
quired. In addition, collaboration in organizational comput-
ing is usually highly structured, mirroring the structure of
the organization. The number of co-owners are therefore
much fewer than typical social computing applications. In-
teractive policy negotiation that reflects the accountability
requirements of organizational computing is thus feasible.

Our position is that both unsupervised conflict resolution
and interactive policy negotiation have their respective roles.
Which approach to adopt must be determined on a case
by case basis, depending on the application domain (social
or organizational computing), nature of the co-ownership
(number of co-owners), or accountability requirements (le-
gal liability). In this work, we will study the less-explored
design space of interactive negotiation, especially in the de-
velopment of tools for supporting such negotiation.

1.2 Contributions
The concrete contributions of this work are the following:
1. An administrative model supporting multiple owner-

ship is formulated for ReBAC (§3). Access control policies
are specified in terms of graph patterns in order to facili-
tate policy negotiation and policy analysis. Administrative
operations that require user consent and policy negotiation
are explicitly identified.

2. A novel policy negotiation protocol is proposed for co-
owners to arrive at and give consent to an access control
policy (§4). Our design o↵ers two unique features. First,
structured revision of the policy under negotiation allows
co-owners to express their privacy preferences through coun-
teracting the policy components contributed by other co-
owners. Second, the need for sharing is assessed against
mechanically verified availability criteria. The two features
jointly provide a balance of privacy and sharing.

3. Three formal criteria of availability (i.e., satisfiability,
feasibility and resiliency) have been formulated for assessing
negotiated policies (§6). These availability criteria are in-
spired by the analogous concepts recently proposed for work-
flow authorization systems [4, 28, 16, 5]. We show that all
of the three criteria belong to the second level of the poly-
nomial hierarchy [1, Chap. 5].

4. Focusing on the availability criterion known as policy
satisfiability, we devise two decision procedures for assessing
availability (§7). Rather than naively reducing policy satis-
fiability to Quantified Boolean Formula (QBF) satisfiability,
our custom algorithms make use of a modern SAT solver to
attack subproblems.

5. The performance of the two algorithms are evaluated
in §8, in which we empirically justify the superiority of our
custom algorithms over generic QBF solvers, compare the
relative merits of the two algorithms, and demonstrate that
their performance is adequate for mid-sized organizations of
up to 100,000 users. To put this magnitude in perspective,
Microsoft and Google employ 94,000 and 55,419 employees
respectively.

2. RELATED WORK
The need for addressing the diverse privacy concerns of

multiple privacy stakeholders has recently caught the atten-
tion of security researchers. The first work to address this
problem is that of Squicciarini et.al [23]. Their work em-
phasizes the need to honour the privacy preferences of all
co-owners. They used Mechanism Design (Clarke-Tax) and
Game Theory in the setting of an auction to perform con-
flict resolution. Conflict resolution as proposed in this work
is relatively complex for naive end-users. This shortcoming
is addressed in their follow-up work [24], in which they apply
majority-voting instead of the auction.

One of the early works which underlines the multiple own-
ership problem in online social networks is [26]. In this work,
the privacy consequences of disregarding the co-owners’ pri-
vacy preferences have been demonstrated by means of suc-
cessful inference attacks.

In the seminal work of Hu and Ahn [12, 14], each co-
owner submits her preferred privacy policy along with a
number as how (s)he perceives the co-owned object to be
sensitive. A conflict resolution mechanism is then employed
to aggregate the preferred privacy policies and sensitivities
of the co-owners into a single privacy policy. They are the

first to make explicit the connection between policy com-
position (e.g., XACML) and conflict resolution mechanisms
for multiple-ownership. In their follow-up work [13], they
address the need for sharing, which is usually overlooked in
the face of privacy. A quantitative scheme is then proposed
to trade o↵ between privacy and the need for sharing. In
another follow-up work [15], they propose a game-theoretic
analysis of their proposed model, showing there exist a Nash
Equilibrium (NE) for multiple ownership problem.

An adaptive conflict resolution mechanism is proposed in
[25]. This mechanism estimates if a user would concede
based on her willingness to change action. Adaptiveness
is captured in our work in the negotiation protocol (§4).

Mehregan and Fong make the important observation that
multiple-ownership often arises “accidentally” when an ob-
ject is composite, and when co-owners have privacy interests
over various parts of the composite objects [21]. Therefore,
resolving conflicting privacy preferences is genuinely needed
only when indivisible objects are involved. We therefore fo-
cus on indivisible (atomic) objects in this paper.

Our approach is also comparable to [30], in which co-
owners collaboratively author a privacy policy for a co-owned
object, using a mechanism akin to a virtual whiteboard. Pol-
icy components come in two types: weak and strong. Weak
policies are negotiable, and strong ones are not. This work
is unique in prior literature in that it is the only one that
involves negotiation among co-owners in coming up with
a policy for the co-owned object. Our work is therefore
comparable to this work. The drawback for [30] is that,
when a strong policy is introduced, nobody would be able
to edit/remove it except the co-owner who has contributed
it. In our work, users can counteract restrictive atomic poli-
cies with permissive atomic policies (§4).

The ReBAC/MO model of §3 is a descendant of the line
of ReBAC models of [8, 10, 3, 9]. Here we depart from [8,
10, 3, 9], which employs modal logic (and its extension, hy-
brid logic) for the specification of ReBAC policy. Instead,
we revive the suggestion of [7] (see also [10, §4]) in using
birooted graph patterns as the basis of policy specification.
In both this work and that of [7], using graph patterns for
policy specification facilitates policy analysis (in our case
availability analyses). Our novelty includes (a) the identi-
fication of co-owners in atomic policies, (b) combination of
privacy preferences of di↵erent co-owners, and (c) adoption
of syntactic restrictions to facilitate policy negotiation and
availability analyses.

The three availability criteria formulated in this work are
inspired by the recent, exciting advancement of availability
analyses in workflow authorization systems: satisfiability [4,
28, 5], resiliency [28], feasibility [16]. Compared to the anal-
ogous notions in the literature, our definitions are novel on
three counts. First, they are defined to assess the availabil-
ity of a resource in a ReBAC system, rather than the ease in
which a workflow specification can be instantiated. Second,
resiliency and feasibility are defined here via the notion of
graph mutation. This is unique in comparison to workflow
resiliency and feasibility, which are defined in terms of the
departure of users. Third, the three notions of availability
formulated here target the satisfaction of multiple-owners
policies, whereas previous notions of availability attempt to
satisfy security constraints in workflow specifications.

3. AN ADMINISTRATIVE MODEL OF MUL-
TIPLE OWNERSHIP FOR REBAC

This section presents a ReBAC model that supports mul-
tiple ownership. §3.1 and §3.2 review notations previously
defined in the ReBAC literature [7, 8, 10, 3]. §3.3 formal-
izes multiple-owners policies in terms of graph patterns. §3.4
presents a multiple-owners version of the ReBAC model, and
highlights two prototypical administrative operations that
are guarded by negotiation protocols.

3.1 Social Networks
A key component of the protection state for ReBAC is a

social network [8, 10, 3]. Social networks are modelled as
edge-labelled, directed graphs, in which vertices represents
users, and edges represent interpersonal relationships. Edge
labels denote the type of relationships that the edges signify
(e.g., friend, parent, etc).

Definition 1 Given a finite, non-empty set L of relation
identifiers, a graph G is a pair hV, {Rl}l2Li, where V is
the set of vertices, and R is an indexed family of binary
relations over the vertex set, such that each Rl ✓ V ⇥ V is
a binary relation denoting the edges of type l.

We write V (G), L(G) and Rl(G) to denote respectively the
vertex set (V), the label set (L), and the type-l edge set (Rl)
of G.

A graph G1 is a subgraph of G2 i↵ V (G1) ✓ V (G2),
L(G1) ✓ L(G2), and Rl(G1) ✓ Rl(G2) for every l 2 L(G1).
In that case, we write G1 ✓ G2. A bijective function f :
V (G1) ! V (G2) is a graph isomorphism i↵ L(G1) =
L(G2), and for every l 2 L(G1), for every u, v 2 V (G1),
we have (u, v) 2 Rl(G1) , (f(u), f(v)) 2 Rl(G2). In such a
case, we write G1 'f G2. G1 and G2 are isomorphic, and
we write G1 ' G2, if the above bijection f exists.

Given a finite, non-empty set L of edge labels, and a count-
ably infinite universe V of vertices, we write G[V,L] to denote
the set of all graphs G for which V (G) is a finite subset of
V and L(G) ✓ L.
3.2 Access Scenarios and Graph Patterns

Suppose G is the current social network. When a re-
quester v 2 V (G) attempts to access an object owned by
some user u 2 V (G), we have an access scenario charac-
terized by these three components: G, u and v. The spirit of
ReBAC is that this access scenario shall satisfy some graph-
theoretic properties imposed by the access control policy in
order for access to be granted. We model an access scenario
by a birooted graph [7, 10], which is a graph plus the ex-
plicit identification of two vertices (not necessarily distinct).

Definition 2 A birooted graph BG is a triple G(u,v),
where G is a graph, and u, v 2 V (G) are called the roots of
BG. More specifically, u and v are called the owner root
and requester root respectively.

In this work, access control policies are specified in terms
of graph patterns, which are also modelled as birooted
graphs. More specifically, a graph-theoretic property cor-
responds to whether a graph pattern is “contained” in the
access scenario. This matching between a graph pattern and
an access scenario is formalized by the notion of subgraph
isomorphism between birooted graphs. Suppose BG1 =
G1(u1,v1) is a graph pattern, and BG2 = G2(u2,v2) is an

own

colleague

55

colleague //

colleague))

req

))
recommends

//recommends

55

recommends

Figure 1: A birooted graph pattern that says “At least 3 col-
leagues of the owner recommend the requester.” The owner
and requester roots are labelled as own and req respectively.

own/req

(a) Me

own

doctor //
req

(b) Doctor

own

req

(c) Other

own

doctor // assistant//
req

(d) Assistant

Figure 2: Four birooted graph patterns that are used for
formulating policies in the clinic domain.

access scenario. BG1 is a (birooted) subgraph of BG2 i↵
u1 = u2, v1 = v2, and G1 ✓ G2. Note that the two roots of a
birooted subgraph must be identical to those of the birooted
supergraph. A bijective function f : V (G1) ! V (G2) is an
isomorphism of BG1 and BG2 i↵ f(u1) = u2, f(v1) = v2,
and G1 'f G2. We write BG1 ' BG2 i↵ such a bijection
f exists. We write BG1 . BG2 i↵ there exists a birooted
subgraph BG3 ✓ BG2 such that BG1 ' BG3. That is, BG1

is isomorphic to some subgraph of BG2.
We write B[V,L] to denote the set of all birooted graphs

G(u,v) for which G 2 G[V,L]. As a convention, we specify
graph patterns using birooted graphs from B[N,L] (N is the
natural number set).

Example 1 Fig. 1 depicts a graph pattern asserting that
the owner has at least three distinct colleagues who recom-
mend the requester. Such a graph pattern can be used for
expressing delegation of trust as well as level of trust.

The next example illustrates how a policy can be specified
by a disjunctive combination of graph patterns.

Example 2 Consider a clinic domain, in which vertices are
users, a doctor edge relates a patient to her family doctor,
and an assistant edge relates a doctor to his assistant. The
four graph patterns in Fig. 2 can serve as building blocks for
specifying the policies below.

• “Only the owner can access.” This policy is captured by
the graph pattern Me in Fig. 2(a). The pattern requires
that the owner is identical to the requester.

• “Either the owner or her family doctor can access.”
This policy demands a match between the access sce-
nario and either one of the patterns Me or Doctor
(Fig. 2(b)).

• “The owner, her family doctor, or the family doctor’s
assistant can access.” This policy demands a match
with one of the following patterns: Me, Doctor, and
Assistant (Fig. 2(d)).

• “Everyone can access.” The policy requires a match
with either Me or Other (Fig. 2(c)). In short, access
is granted if (a) the requester is the owner (Me), or
(b) if the requester is not the owner (Other). That is,
access is always granted.

3.3 Policies and Authorization
In the original conception of ReBAC, an access control

policy specifies how a legitimate accessor of a resource shall
be related to the owner of that resource [8, 10, 3]. When
we move to the context of multiple ownership, the notion of
an access control policy shall be expanded: a policy spec-
ifies how a legitimate accessor shall be related to each of
the co-owners. For example, co-owner u1 demands that the
accessor shares 5 common friends with u1, but co-owner u2

demands that the accessor be within a distance of 4 in the
social network. The example underlines the compositional
nature of access control policies when multiple owners are
involved. We define here a simple language for specifying
multiple-owner policies, by way of graph patterns. How pol-
icy negotiation is conducted among the owners to arrive at
a policy that everyone can agree on is discussed in the next
sections.

Fixing a universe V of vertices and a universe PV of le-
gitimate graph patterns, the abstract syntax of a policy �
is defined as follows:

� ::= ↵ | ¬� | � ^ �
↵,� ::= acc(BG, u)

where each of ↵ and � is called an atomic policy , which is
composed of an anchor u 2 V together with a graph pattern
BG 2 PV (u need not be a vertex in BG). We also define
the usual derived form �1_�2 ⌘ ¬(¬�1^¬�2). The intuitive
meaning of an atomic policy acc(BG, u) is that owner u de-
mands the requester to be related to u by a graph-theoretic
relationship captured by the graph pattern BG. A policy is
essentially a boolean combination of atomic policies.

The anchor set of policy �, denoted by anchors(�), is
the set of all anchors appearing in the atomic policies of �.

Authorization is defined in terms of the satisfaction re-
lation (|=) between a graph G, a vertex v 2 V (G), and a
policy � for which anchors(�) ✓ V (G):

• G, v |= acc(BG, u) i↵ BG . G(u,v).
• G, v |= ¬� i↵ it is not the case that G, v |= �.
• G, v |= �1 ^ �2 i↵ G, v |= �1 and G, v |= �2.
Lastly, we write P[V,PV] to denote the set of all policies

� with anchors from V and graph patterns from PV.
3.4 Putting It All Together

We define a ReBAC model with multiple ownership
(ReBAC/MO). The model is intentionally simplified for
the purpose of highlighting only the essential elements.

Definition 3 (Scheme) A protection scheme ⌃ is a tu-
ple hL,U ,O,PVi, where L is a finite set of relation identi-
fiers, U and O are countably infinite sets representing re-
spectively the universes of users and objects, and PV ✓
B[N,L] is the policy vocabulary, which specifies the set
of legitimate graph patterns that can be used for formulating
access control policies.

Definition 4 (State) Given a protection scheme ⌃ = hL,
U ,O,PVi, a protection state � is a tuple hU,O,G,!,⇡i,
where U ✓ U is a finite set of active users, O ✓ O is a
finite set of active objects, G 2 G[U ,L] is the current social
network of the active users (i.e., V (G) = U), ! : O ! 2U

maps objects to their co-owners, and ⇡ : O ! P[U,PV] maps
objects to their access control policies. It is further required
that anchors(⇡(o)) ✓ !(o) in order for � to be well-formed.

Definition 5 (Request) Suppose � = hU,O,G,!,⇡i. An
access request is characterized by a pair (o, v) 2 O ⇥ U .
Request (o, v) is authorized in � i↵ G, v |= ⇡(o).

We outline here two prototypical administrative transi-
tions. A fully specified system would o↵er more transitions
(e.g., creation of users). These two prototypical transitions
are singled out to highlight the need for di↵erent policy ne-
gotiation protocols.

Given a function f : X ! Y , we write f [a 7! b] to denote
the function g : X [{a} ! Y [{b} for which g(x) = b if
x = a and g(x) = f(x) otherwise.

The first transition, create(o, U 0), creates a new object o
with co-owners from user set U 0. The following rule specifies
when the transition is well-formed.

o 2 O \O ; ⇢ U 0 ✓ U
O0 = O [{o} !0 = ![o 7! U 0]
⇡0 = ⇡

⇥
o 7! W

u2U0 acc(Me, u)
⇤

hU,O,G,!,⇡i create(o,U0)�������! hU,O0, G,!0,⇡0i
(Create)

Note that initially o is accessible only to users in U 0.
The second transition, release(o,�), re-publishes the ex-

isting object o with the policy �. Well-formedness of the
transition is specified in the following rule.

o 2 O anchors(�) ✓ !(o)
⇡0 = ⇡[o 7! �]

hU,O,G,!,⇡i release(o,�)������! hU,O,G,!,⇡0i
(Release)

While the rules above specify when a transition is well-
formed, they do not articulate the protocols by which users
sign up for co-ownership, and how they agree on a policy for
a co-owned object. Such are the topics of the next section.

4. NEGOTIATION PROTOCOLS
The two administrative transitions, create and release, are

supposed to be guarded by negotiation protocols that allow
the co-owners to agree on the creation or publishing of ob-
jects. In particular, the two transitions are guarded respec-
tively by two di↵erent protocols, simple consenting (§4.1)
and policy negotiation (§4.2).

4.1 Simple Consenting
Facebook uses simple consenting in the befriending oper-

ation. When a user u befriends another user v, the system
sends a befriending invitation v. If the latter gives consent,
then a friendship relationship is recorded in the system. We
call this protocol simple consenting . In a similar vein,
when an object is created in our model, all the co-owners
are notified, and their consents are sought before the object
creation process is complete.

Our model di↵ers from Facebook on how the access control
policy of a co-owned object is administrated. In Facebook,
simple consenting is used only for forging co-ownership, but
the access control policy of a co-owned object is not for-
mulated collaboratively. When u1 befriends u2, the access
control policy of the friendship relationship is not part of the
consenting process. Once friendship has been forged, u1 may
unilaterally specify a policy �1 (for which anchors(�1) =
{u1}), and u2 may independently specify another policy �2

(again, anchors(�2) = {u2}). The friendship relationship is
now visible to any requester who satisfies � = �1 _ �2. This
lack of collaboration allows a co-owner (u1) to formulate a
highly liberal policy (�1) without the consent of another co-
owner (u2), thereby compromising the privacy of the latter.

With this consideration, the create transition of our model
initializes the policy ⇡(o) of a newly created object o to a
highly restrictive default:

_

u2!(o)

acc(Me, u) (1)

When one or more co-owners of o attempt to update ⇡(o),
they will have to perform the release operation, which is
guarded by a policy negotiation protocol, in which all co-
owners collaboratively work out an access control policy.

4.2 Policy Negotiation
The policy negotiation framework to be presented below

is designed to allow co-owners to collaboratively arrive at an
access control policy while balancing two considerations.

1. Privacy preferences. The co-owners want to make sure
that only certain users may access the co-owned ob-
jects. The participatory nature of the negotiation pro-
cess allows the co-owners to reflect their subjective pri-
vacy preferences in the final access control policy.

2. Sharing needs. An object is created because the co-
owners desire to make it available to other users. The
negotiation process allows each co-owners to state a
desirable level of availability for the co-owned object.
This specified level of availability will be used as an
objective measure of policy quality.

The successful completion of the policy negotiation pro-
cess for object o produces a settlement , which is comprised
of two components:

1. A settlement policy � for which anchors(�) ✓ !(o),
and all co-owners in !(o) have expressed consent over
the adoption of �.

2. Every co-owner u 2 !(o) would have specified an avail-
ability criterion u, and the system would have ver-
ified that the settlement policy � satisfies u for each
owner u.

While the settlement policy expresses the privacy prefer-
ences of the co-owners, the availability criteria express their
sharing needs.

The negotiation process proceeds in rounds. In each round,
every owner u will be given a chance to contribute changes
to the settlement policy � in a controlled manner, as well as
revising her availability criterion u. Negotiation concludes
successfully when the settlement policy � is verified by the
system to satisfy the availability criterion u of every owner
u. These availability criteria will be discarded once the ne-
gotiation concludes. Only the settlement policy is recorded.

Further details of the settlement policy and availability
criteria are given in §4.2.1 and §4.2.2 respectively. Details
of the negotiation protocol are given in §4.2.3.
4.2.1 Syntax of Settlement Policy

To facilitate the negotiation of policies and the verification
of availability criteria, we constrain the syntax of an access
control policy to the following form:

� = (↵1 _ ↵2 _ . . . _ ↵m) ^ (¬�1 ^ ¬�2 ^ . . . ^ ¬�n) (2)

where ↵i and �j are atomic policies.

We define additional notations to facilitate discussion. We
write atom+(�) and atom�(�) to denote respectively the
atom sets {↵1,↵2, . . . ,↵m} and {�1,�2, . . . ,�n}. We define
the following notations for the set of positive (resp. negative)
atoms that are anchored at user u.

atom+(�, u) = {↵ 2 atom+(�) | u 2 anchors(↵)}
atom�(�, u) = {� 2 atom�(�) | u 2 anchors(�)}

We also write pat+(�, u) and pat�(�, u) to denote respec-
tively the birooted graph sets {BG | acc(BG, u) 2 atom+(�,
u)} and {BG | acc(BG, u) 2 atom�(�, u)}. In short, pat+(�,
u) is the set of positive graph patterns with u as the anchor,
and pat�(�, u) is the analogue for negative graph patterns.

A comparison between the above syntactic form and the
form of policies used in Facebook for controlling the visibil-
ity of a friendship relationship is in order. The four policies
of Example 2 are all positive policies [7, 10]. This means
each of them can be expressed as a disjunctive combination
of finitely many graph patterns. It should be obvious to the
reader that the four policies of Example 2 are but organiza-
tional variants of Facebook’s standard policies: “only me,”
“friends,” “friends of friends,” and “everyone.” This means
Facebook’s standard policies can also be represented by dis-
junctions of finitely many graph patterns. As discussed in
§4.1, the policy that controls the visibility of the friendship
relationship between users u and v has the form � = �u_�v,
where each of �u and �v is a disjunction of atomic policies
(because they are positive policies). Consequently, the ac-
cess control policy of a friendship relationship in Facebook
has the following form:

� = (↵1 _ ↵2 _ . . . _ ↵m) (3)

Two di↵erences between our syntactic form, (2), and that
of Facebook, (3), can be observed. First, our syntactic form
allows negative graph patterns. A co-owner may counteract
the positive graph patterns contributed by other co-owners
through the specification of negative graph patterns. Sec-
ond, the negotiation of policies of the above form is regu-
lated by a policy negotiation protocol, while �u and �v are
set unilaterally by u and v.

4.2.2 Availability Criteria

The sharing needs of a co-owner u 2 !(o) of a resource o is
expressed in terms of an availability criterion u. Intuitively,
u expresses how widely accessible u wants o to be. Co-
owner u may choose to impose availability criterion u on
one of two formulas: (a) the settlement policy �, or (b) the
formula �[u] defined as follows:

�[u] =

0

@
_

↵2atom

+(�,u)

↵

1

A ^
0

@
^

�2atom

�(�)

¬�
1

A

In short, �[u] is obtained from the settlement policy � by
selecting only those positive atoms anchored at u, but in-
cluding all the negative atoms. Intuitively, �[u] specifies the
legitimate accessors who are preferred by u. For brevity, we
assume that an availability criterion is imposed on the set-
tlement policy �. The reader should keep in mind that in
reality a co-owner may choose between � or �[u].

Three di↵erent families of availability criterion are pro-
posed in this work. The first notion of availability is that of

satisfiability , which requires that a resource be accessible
by a specific number of users in the present protection state.

Example 3 (Satisfiability) Object o shall be accessible by
at least 35 users in the social network.

Resiliency is a second family of availability criteria. Intu-
itively, resiliency mandates a level of availability even when
the protection state is“slightly”perturbed by administrative
actions. Resiliency is more demanding than satisfiability, in
the sense that resiliency requires not only that a resource
is accessible by some specific number of users in the present
protection state, but also that the resource remains available
as such when the protection state mutates. In the context
of ReBAC, such mutations take the form of the introduction
of new relationships (edges) or the dissolution of existing re-
lationships. It is, however, unrealistic to expect that avail-
ability can be maintained against arbitrary mutation of the
social network. Thus resiliency prescribes availability over a
specific extent of mutation to the protection state.

Example 4 (Resiliency) Even if Bob (one of the owner of
resource o) were to acquire up to 10 additional patients (or
lose up to 10 of my existing patients), object o shall remain
accessible by at least 25 users.

A third notion of availability, feasibility , is a relaxation
of satisfiability. A resource may not meet the requirement
of satisfiability (accessible by a specific number of users),
but it meets the demand of feasibility if the social network
can be “repaired” to meet the requirement of satisfiability.
Again, repairs are realized by edge addition or removal in
the social network.

Example 5 (Feasibility) I shall be able to make object o
accessible by at least 50 users if the company hires no more
than 10 additional members for my department (or fires no
more than 10 existing colleagues).

The formal definition of availability criteria and their me-
chanical verification are deferred to §6 and §7 respectively.

4.2.3 Protocol in Details

The negotiation of the access control policy of a co-owned
object o proceeds in rounds. Throughout the process, the
protocol maintains a policy � as the candidate for ⇡(o), as
well as an availability criterion u for each co-owner u 2
!(o). The policy � is always in the form of (2).

As mentioned before, � is initialized to the default policy
(1). The availability criterion u of every co-owner u is
initialized to 1-satisfiability (i.e., accessible to at least one
user). The default policy trivially satisfies 1-satisfiability.

Round i proceeds according to the following steps:
1. Notify. Every co-owner u 2 !(o) is presented with

the following: (i) the policy � obtained in the previous
round, including the positive and negative graph pat-
terns (pat+(�, v) and pat�(�, v)) of every co-owner v,
(ii) the availability criterion u adopted by co-owner
u in the previous round, and (iii) a boolean flag indi-
cating whether � satisfies u.

2. Consent or Revise. Each co-owner u will now be
given an opportunity to take one of two options:
(a) Consent. If u is satisfied, u may choose to give

consent to adopt � as the policy of o.

(b) Revise. Otherwise, co-owner u may choose to
revise (i) u and/or (ii) the graph pattern sets
pat+(�, u) and pat�(�, u). In short, co-owner u
may only edit the atomic policies of � for which
u is an anchor.

The consent/revise step of di↵erent co-owners may be
conducted concurrently.

3. Verify. If all co-owners give consent, then the pro-
tocol concludes successfully. Otherwise, at least one
co-owner has revised either her availability criterion
or her graph patterns. The system will now perform
verification of the current policy � against each of the
availability criterion u (see §6 for details). The result
is reported to the co-owners in the next round.

5. AN EXAMPLE
The various features of our scheme are illustrated in the

following example. A medical doctor D suspects that the
unique conditions of her patient P are the symptoms of a
new cardiovascular disease. D wants to share the medical
record of P with two researchers, CR and UR, who work
in a pharmaceutical company and a university respectively.
The following is a transcript of how they negotiate the access
control policy � of the co-owned medical record.

Round #1. In anticipation of referral, D adds a positive
atom ↵D to �, to grant access to those cardiologists belong-
ing to the same health district as she does. D also imposes
on �[D] a satisfiability requirement (D), demanding that at
least two users (i.e., herself and a cardiologist) can access.

Company researcher CR contributes a positive atom ↵CR,
to grant access to all members of his research team. CR
worries that 3 of his team members may leave the team due
to personal reasons, and he anticipates that the research
on the new disease needs at least a team of 5 researchers.
CR then imposes CR, a resiliency requirement, on �[CR],
demanding that at least 5 users (i.e., team members) can
access even if the social network is changed by 3 edges (i.e.,
team members departing).

University researcher UR contributes a positive atom ↵UR,
to grant access to his graduate students. UR is expecting
one new PhD student to join her research group in the up-
coming Fall semester. By that time, she wants to make
sure that at least herself and three of her PhD students can
access the document. So UR is set up to be a feasibility re-
quirement, to be imposed on �[UR], demanding that there
is a way to change 1 edge (i.e., the incoming student) in
the social network so that 4 users (i.e., herself and 3 PhD
students) have access.

P does not add any positive atom, nor does he alter the
default availability criterion. Yet he does not want anyone
associated with, or funded by, the insurance company I to
see his record. So he introduces a negative atom �P to deny
access to such individuals.

It turns out that every cardiologist in the same health
district as D is funded by insurer I, and thus D is violated
by �[D]. In addition, all but one of the PhD students of UR
are funded by scholarships from I, so UR is violated by
�[UR]. A second round of negotiation is therefore needed.
Round #2. Noticing that ↵D is too restrictive, doc-

tor D now revises ↵D to include cardiologists in both her
own health district and neighboring health districts. Such a
widening of access “counteracts” the limiting e↵ect of �P .
University researcher UR figures that requiring the record

to be accessible by 3 PhD students is probably too conser-
vative. The project can be completed even if only two PhD
students have access. So she revises UR to a feasibility re-
quirement, demanding that there is a way to change 1 edge
in the social network so that 3 users have access (1 less than
before). In short, UR “counteracts” the limiting e↵ect of �P
by lowering her sharing expectation.

All the availability criteria check out, and negotiation con-
cludes successfully.

6. AVAILABILITY CRITERIA
An important contribution of this work is the formula-

tion of formal availability criteria as a means for expressing
sharing needs, as well as the mechanical verification of such
criteria to provide feedback to the negotiating co-owners.
In this section, we formalize the three notions of availabil-
ity in §4.2.2: satisfiability, resiliency and feasibility. While
the spirit of these notions is inspired by their analogues in
workflow authorization systems [4, 28, 16, 5], our technical
formulation via graph mutation is a novel contribution.

In the following, a policy needs not be in the constrained
form of (2). We do not anticipate that imposing restriction
(2) a↵ects our complexity results (Theorems 1, 2 and 3).

6.1 Satisfiability
The first notion of availability is that of satisfiability .

Problem: Satisfiability (MO-Sat)
Instance: a positive integer k, a graph G, a policy � for

which anchors(�) ✓ V (G)
Question: Does there exist k distinct vertices v 2 V (G) for

which G, v |= �?
Fixing the protection state (i.e., G), policy � is said to be
k-satisfiable i↵ hk,G,�i 2 MO-Sat. Intuitively, if a co-
owner demands � to be k-satisfiable, then there shall exists
k potential requesters who are able to gain access in the cur-
rent protection state. Obviously, a (k + 1)-satisfiable policy
is also k-satisfiable.

Not only MO-Sat, but all the three availability criteria
presented in this section belong to the second level of the
polynomial hierarchy [1, Chap. 5].

Theorem 1 MO-Sat is in �p
2 , and is both NP-hard and

coNP-hard.

See [20, Chap. 5, pp. 55–57] for a proof.

6.2 Feasibility
We need another notation before we can proceed: d(G,G0)

is the (edge) distance between the two graphs G and G0,
which is defined to be ⌃l2L|Rl(G)�Rl(G

0)|, where S�T is
the symmetric di↵erence of sets S and T .

Relaxing the definition of satisfiability gives rise to a sec-
ond notion of availability — feasibility , which demands
that the protection state can be “repaired” to render the
policy k-satisfiable.
Problem: Feasibility (MO-Fea)
Instance: a non-negative integer �, a positive integer k, a

graph G, and a policy � for which anchors(�) ✓ V (G)
Question: Is there a graph G0 for which L(G0) = L(G),

V (G0) = V (G), and d(G,G0)  �, such that there
exists k distinct v 2 V (G0) for which G0, v |= �?

Obviously, we get back MO-Sat if � = 0. Fixing graph
G, we say that � is (�, k)-feasible i↵ h�, k,G,�i 2 MO-Fea.
Every k-satisfiable policy is (�, k)-feasible.

Theorem 2 MO-Fea is ⌃p
2-complete.

A proof of the theorem is given in [20, Chap. 5, pp. 57–58].

6.3 Resiliency
Strengthening satisfiability yields the notion of resiliency ,

which demands that a policy remains k-satisfiable even if the
protection state is mutated.
Problem: Resiliency (MO-Res)
Instance: a non-negative integer �, a positive integer k, a

graph G, and a policy � for which anchors(�) ✓ V (G)
Question: Is it the case that for everyG0 such that L(G0) =

L(G) and V (G0) = V (G) and d(G,G0)  �, there exists
k distinct vertices v 2 V (G0) for which G0, v |= �?

Fixing G, we say that � is (�, k)-resilient i↵ h�, k,G,
�i 2 MO-Res. A (�, k)-resilient policy is also k-satisfiable.

Theorem 3 MO-Res is ⇧p
2-complete.

Consult [20, Chap. 5, pp. 59–60] for a proof.

7. VERIFYING AVAILABILITY
As the three availability criteria belong to the second level

of the polynomial hierarchy, we do not expect that they can
be solved in polynomial time. A natural starting point would
be to reduce the problems toQuantified Boolean Formula
(QBF) satisfiability, and then deploy a QBF solver to attack
the problems [1, Chap. 5]. Experimental results suggest that
this line of attack is not viable (§8.2). In this work, we focus
on solving MO-Sat, since it belongs to �p

2 , and thus it has
a higher degree of tractability. We defer to future work the
exploration of more tractable subproblems of MO-Fea and
MO-Res as well as their decision procedures.
As MO-Sat is both NP- and coNP-hard, it is not likely

it belongs to NP [1, Chap. 2]. Consequently, we do not
expect that we can reduce MO-Sat to the Boolean sat-
isfiability (SAT) problem, and then employ a SAT solver
to attack MO-Sat. Rather, we make use of a SAT solver
as a subroutine for crafting two verifiers for MO-Sat. As
MO-Sat 2 �p

2 , this is theoretically viable.

7.1 Reducing an Atomic Policy to SAT
The two MO-Sat algorithms to be examined in §7.2 both

invoke a SAT solver for testing the satisfiability of atomic
policies. We describe here a reduction of the satisfiability
of atomic policies to SAT. This reduction will be used as a
subroutine in the algorithms of §7.2.
We use Sat4j as our SAT solver [18]. Sat4J allows users

to formulate not only regular clauses, but also what Wang
and Li [28] call Pseudo Boolean (PB) constraints, which
count the number of satisfied literals in a clause:

(l1 _ l2 _ . . . _ lm)k (4)

(l1 _ l2 _ . . . _ lm)=k (5)

Specifically, (4) is satisfied if at most k of the literals are
satisfied, and (5) is satisfied if exactly k literals are satisfied.
Algorithm 1, Reduce, reduces 1-satisfiability to SAT. Specif-

ically, Reduce takes three parameters:
1. G is the social graph of the ReBAC protection state.
2. acc(H(x,y), u) is the atomic policy for which 1-satisfia-

bility is to be tested.
3. {Yj}j2V (G) is an indexed family of propositional vari-

ables, one for each vertex in G.

Algorithm 1: Reduce

input : G, acc(H(x,y), u), {Yj}j2V (G)

output: a CNF formula �

1 Initialize � to an empty set of clauses;
2 foreach i 2 V (H) do
3 foreach j 2 V (G) do
4 Create fresh propositional variable Xi,j ;
5 foreach i 2 V (H) do

6 � := � ^
⇣W

j2V (G) Xi,j

⌘

=1
;

7 foreach j 2 V (G) do

8 � := � ^
⇣W

i2V (H) Xi,j

⌘

1
;

9 foreach l 2 L(H) do
10 foreach i, j 2 Rl(H) do
11 foreach p 2 V (G) do

12 � := � ^
⇣
¬Xi,p _Wq2neigh

G(l,p) Xj,q

⌘
;

13 � := � ^Xx,u;
14 foreach j 2 V (G) do
15 � := � ^ (¬Xy,j _ Yj) ^ (Xy,j _ ¬Yj);
16 return �;

The output of Algorithm 1 is a CNF formula �, which con-
tains, among other propositional variables generated within
the algorithm, those variables Yj ’s supplied by the caller.
Formula � is satisfiable i↵ there exists v 2 V (G) for which
H(x,y) . G(u,v). In addition, a satisfying assignment will
turn Yv to true, and all the other Yj ’s to false. Having
{Yj}j2V (G) as an input to the algorithm allows the caller to
recover the identity of v with ease, and also makes it easy
to embed � in a larger SAT instance.

The returned formula � tests if there exists a vertex v 2
V (G) as well as a birooted graph isomorphism f between
H(x,y) and some subgraph of G(u,v). The mapping f is rep-
resented by the propositional variables Xi,j ’s created on line
4. More specifically, Xi,j is turned on i↵ f maps i 2 V (H)
to j 2 V (G). Line 6 adds clauses to ensure that f is a func-
tion. Then on line 8, clauses are introduced to ensure that
the f is injective. Function neigh

G(l, p) (read neighbours)
used in line 12 is defined below:

Definition 6 neigh

G(l, p) is a function with G ⇥ L(G) ⇥
V (G) ! 2V (G) signature and following definition:

neigh

G(l, p) = {q 2 V (G) | (p, q) 2 Rl(G)} (6)

Line 12 add clauses to ensure that adjacency is preserved
by f . Line 13 ensures f(x) = u. The clauses added on line
15 ensure that f(y) is identical to the selection of vertex
indicated by the Yj ’s.

The design of Algorithm 1 is comparable to the reduction
of graph isomorphism to SAT reported in [27], with four
di↵erences. First, PB constraints have been employed in
our reduction for ensuring that f is an injective function,
where regular clauses are used in [27] for similar purposes.
In our preliminary experiments, the use of PB constraints
have significantly enhanced the performance of SAT solv-
ing. Second, adjacency preservation is only enforced in one
direction in our algorithm (line 12), as we are testing sub-
graph isomorphism rather than graph isomorphism (as in
[27]). Third, additional clauses are introduced to handle the
mapping of roots in our algorithms (lines 13–15). Fourth,

Algorithm 2: VertexEnumerator

input : k, G, �
output: A boolean value

1 foreach j 2 V (G) do
2 Create fresh propositional variable Yj ;
3 vars := {Yj}j2V (G);

4 :=
⇣W

j2V (G) Yj

⌘

=1
;

5 count := 0;
6 foreach v 2 V (G) do
7 foreach atomic policy ↵ in � do
8 '↵ := (Yv) ^ ^ Reduce(G,↵, vars);
9 apply Sat4j on '↵ to obtain truth value for ↵;

10 evaluate � using truth values from line 9;
11 if � evaluates to true then
12 count := count + 1;
13 if count = k then
14 return true;
15 return false;

according to theorem 4 the clauses added in line 12 have
significantly better space complexity than the ones in [27].

Theorem 4 Let m and n be the number of vertices for the
graph patterns and the social graph, respectively. Suppose we
fix the average degree of the vertices. The space complexity
of the adjacency preservation clauses in Algorithm 1 (line
12) is ⇥(m2n) and in [27] is ⇥(m2n2).

A proof is given in [20, Chap. 6, p. 76].

7.2 Two MO-Sat Verifiers
We pointed out that checking MO-Sat by a QBF solver

is ine�cient (§8.2). Instead, we propose custom algorithms
that invoke a SAT solver as a subroutine. As MO-Sat is in
�p

2 , only polynomially many invocations are required.
Modern SAT solvers are highly optimized, and are bet-

ter studied than QBF solvers. In this work we work with
Sat4j [18], which is a SAT solver written in Java. Accord-
ing to its developers, Sat4j is only 3.25 times slower than its
C++ counterpart. It has also been employed in the past for
automating various analyses in Access Control [28].
We present below two algorithms for deciding MO-Sat.

In both cases, the input is an MO-Sat instance (k, G, �),
and the output is a boolean decision. As we shall see, Sat4j
is not only used as an oracle for deciding NP-complete sub-
problems, but also used in the second algorithm as a model
enumerator for pruning the search space.

7.2.1 Vertex Enumerator

Our first algorithm is listed in Algorithm 2. This algo-
rithm does not make any assumptions on the syntax of the
input formula �. The full syntax in §3.3 can be used.
Algorithm 2 iterates through each vertex v of the social

graph G, and checks if v satisfies the policy � (i.e., v can
successfully access the resource guarded by �), hence, the
name VertexEnumerator. If k users are found to satisfy �,
then � is k-satisfiable. To evaluate �, each atomic policy
in � is evaluated independently, and their truth values are
substituted into � (line 10). To evaluate an atomic policy
↵, line 8 reduces ↵ to a SAT instance (via a call to Reduce),
and adds clauses to select v as the requester (and to deselect

Algorithm 3: ModelEnumerator

input : k, G, �
output: A boolean value

1 foreach j 2 V (G) do
2 Create fresh propositional variable Yj ;
3 vars := {Yj}j2V (G);

4 :=
⇣W

j2V (G) Yj

⌘

=1
;

5 foreach ↵ 2 atom+(�) do
6 '↵ := Reduce(G,↵, vars);
7 ' := ^ Disj({'↵ | ↵ 2 atom+(�)});
8 count := 0;
9 invoke Sat4j to enumerate the models � of ';

10 foreach � do
11 let v be such that �(Yv) = true;
12 flag := true;
13 foreach � 2 atom�(�) do
14 '� = (Yv) ^ ^ Reduce(G,�, vars);
15 invoke Sat4j on '� to get truth value for �;
16 if � is true then
17 flag := false;
18 break;
19 if flag then
20 count := count + 1;
21 if count = k then
22 return true;
23 add the unit clause (¬Yv) to ';
24 return false;

other users). The resulting SAT instance is then solved by
invoking Sat4j to obtain the truth value for ↵ (line 9).

Algorithm 2 is basically a constructive proof that MO-
Sat is in �p

2 . Its strength is generality: it works for all �.
Its weakness is that it examines every vertex of G without
discretion, and thus leads to slower performance (§8).

7.2.2 Model Enumerator

Our secondMO-Sat verifier is Algorithm 3, ModelEnumerator.
This algorithm assumes that the input formula � conforms
to the constrained syntax of (2). This syntactic restriction
is crucial to the design of the algorithm.

The design of Algorithm 3 is enabled by two features of
modern SAT solvers, including Sat4j:

1. Model enumeration. The SAT solver does not only find
one model (i.e., satisfying truth assignment) for the
input CNF, but allows the caller to iterate through all
models.

2. Learned clauses. During the enumeration of models,
users may introduce additional clauses to the target
formula, thereby eliminating certain models from sub-
sequent enumeration.

The core idea of Algorithm 3 is to employ Sat4j to enu-
merate the models � of (↵1 _ . . . _ ↵m) (lines 9–10). Every
such model identifies a v in G that can access so long as the
negative atoms are ignored (line 11). The algorithm then
invokes another instance of Sat4j to ensure that v does not
satisfy any negative atom � 2 atom�(�) (line 15). Once
the model � has been considered, a unit clause is introduced
into � to ensure that v is never considered again (line 23).

By employing (↵1_. . ._↵m) to drive the process of identi-
fying potential accessors, ModelEnumerator does not need to

consider every vertex in G, this could lead to a performance
advantage over VertexEnumerator. See §8.3 for an empirical
comparison of the two algorithms.

The subroutine Disj({'1, . . . ,'k}) invoked on line 7 takes
a set of CNF formulas '1, . . . , 'k as input, and returns a
CNF formula that is equivalent to '1_. . ._'k. We illustrate
the construction in the case of k = 2. The general case is a
straightforward extension. Suppose '1 =

Vm1
i=1 C

1
i and '2 =Vm2

i=1 C
2
i are conjunctions of respectively m1 and m2 clauses.

By introducing two additional propositional variables x1 and
x2, one can construct a CNF formula ' that is equivalent to
their disjunction ('1 _ '2):

' = (x1 _ x2)=1 ^

m1̂

i=1

(¬x1 _ C1
i)

!
^

m2̂

i=1

(¬x2 _ C2
i)

!

8. EXPERIMENTS AND RESULTS
This section reports three experiments we conducted for

evaluating the performance of our MO-Sat algorithms. The
first experiment (§8.2) compares the performance between
Vertex Enumerator and two QBF solvers GhostQ and RAReQS.
The second experiment (§8.3) compares the performance
between Vertex Enumerator and Model Enumerator. The
third (§8.4) demonstrates that the performance of Model
Enumerator is adequate for mid-sized organizations.

8.1 Experimental Setup

Experiment Platform.

Our experiments are conducted using a machine with the
following configurations.
Hardware: Intel R� Xeon R� CPU E5-1650 v3 @ 3.50GHz (6

cores); 64 GB RAM; 1 TB SSD.
Software: Operating System: Fedora release 20 (Heisen-

bug); Sat4j algorithms are programmed and run by
JavaTM SE Runtime Environment (build 1.8.0 05-b13).

Datasets.

All experiments are executed on synthetic datasets (in-
cluding social networks and access control policies). We list
the dataset generation parameters below.

• Rep.: number of times an experiment is repeated for a
given set of parameters;

• k
u

: number of requesters needed to satisfy policy (i.e.,
aiming for k

u

-satisfiability);
• #atom+: number of positive atoms (↵) in policy (�);
• #atom�: number of negative atoms (�) in policy (�);
• #Vpat+ : number of vertices in the graph patterns of

positive atoms (↵);
• #Vpat� : number of vertices in the graph patterns of

negative atoms (�);
• Prob.

G

: the edge probability by which social graph G
is generated;

• Prob.
pat

: the edge probability by which graph patterns
are generated;

• AvgDeg .
G

: the average degree of vertices (for outgoing
edges) that we require social graph G to possess;

• AvgDeg .
pat

: the average degree of vertices (for outgo-
ing edges) that we require the patterns to possess;

• |L|: number of edge labels used in graphs and graph
patterns.

We use Erdős-Rényi model [6] to generate the social graphs
and graph patterns. In this model, an edge from any vertex

��

����

����

����

����

����

����

���� ���� ���� ���� ���� ���� �	�� �
�� ���� �����

��
�
��
��
�

�
��
�������������������

��������������
�
 ! �"#
��
��"

Figure 3: Vertex Enumerator versus QBF Solvers

u to any vertex v is set with a fixed probability, independent
from other edges. We use this model to obtain randomness
along with low deviation from average degrees of vertices.

There is also a validation phase after generating graph
patterns. A graph pattern will be deemed “usable”, if every
edge in the graph pattern is connected to both roots. This
guarantees the graph patterns represent local policies [7,
10]. “Unusable” graph patterns are discarded. Moreover,
whenever an edge is being added, we choose its label uni-
formly at random from the available labels set.

We use the edge probability parameters (Prob.
G

and
Prob.

pat

) whenever we want the average degree of the ver-
tices to grow proportionally to the size of graph. In other
words, we keep the edge probability constant. On the other
hand, whenever we want to keep the average outgoing edges
degree of vertices constant, we use the average degree pa-
rameters (AvgDeg .

G

and AvgDeg .
pat

).
In each round of experiment, we first create the dataset

with the required parameters, and then all the algorithms
are executed with the same dataset. Fairness in comparison
is therefore guaranteed.

We consider 95% confidence interval in our experiments.

8.2 Vertex Enumerator vs QBF Solvers
This experiment compares the performance of Vertex Enu-

merator (Algorithm 2) against that of two non-clausal QBF
solvers — GhostQ and RAReQS. In the latter cases, MO-Sat
instances are first reduced to QBF satisfiability instances,
and then the QBF solvers are invoked to solve them. We
choose to work with non-clausal QBF solvers because con-
verting the QBF encoding to CNF would increase the num-
ber of quantifier alternation of the resulting formulas, mak-
ing the problem instances prohibitively challenging.

The experiment variable is the size of the social graph.
The parameters for this experiment are as follows: • Rep.:
20; • k

u

: 1; • #atom+: 1; • #atom�: 0; • #Vpat+ : 5;
• Prob.

G

: 0.1; • Prob.
pat

: 0.1; • |L|: 1.
The average running time of the three solvers are plotted

in Fig. 3. The performance of the QBF solvers are clearly
inferior to VertexEnumerator. This confirms the need for
custom MO-Sat algorithms.

8.3 Vertex Enumerator vs Model Enumerator
This experiment compares the performance of Vertex Enu-

merator (Algorithm 2) and Model Enumerator (Algorithm
3). The experiment is repeated for two di↵erent sizes of
graph patterns in the positive atoms (↵). The parameters
for this experiment are listed below: • Rep.: 20; • k

u

: 1;
• #atom+: 3; • #atom�: 3; • #Vpat+ : 5; • #Vpat� : 5;
• Prob.

G

: 0.1; • Prob.
pat

: 0.1; • |L|: 1; The size of social

��

���

���

���

���

����

����

����

����

����

�� ���� ���� ���� ���� ����� ����� ����� ����� ����� �����

��
�
��
��
�

�	
�	���
����
����������

�
��
�����
���	�
�	�
�����
���	�

Figure 4: Vertex Enumerator versus Model Enumerator

graph is the variable of experiment, and we measure the per-
formance of algorithms given di↵erent sizes of social graphs.

The average running times of the two algorithms are plot-
ted in Fig. 4. Two observations can be made. First, Model
Enumerator clearly out-performs Vertex Enumerator. This
confirms our intuition that Model Enumerator is more se-
lective in generating requester candidates than Vertex Enu-
merator. Second, the performance advantage of Model Enu-
merator widens as the size of social graph increases.

8.4 Large Social Graphs
This experiment evaluates if Model Enumerator is ade-

quate for realistic social graphs for mid-sized organizations.
The following are the parameters for this experiment: • Rep.:
20; • k

u

: 1; • #atom+: 3; • #atom�: 3; • #Vpat+ : 5;
• #Vpat� : 5; • AvgDeg .

G

: 200; • Prob.
pat

: 0.5; • |L|: 4;
In the previous two experiments, we employ only one edge

label. That is done in order to make the problem instances
challenging: edge labels provide useful information for the
SAT solver. To make the social graphs more realistic in
this third experiment, we follow [22] in adopting four edge
labels. Moreover, we use more complex graph patterns by
boosting the edge probabilities in graph pattern from 0.2 to
0.5. For realism, we also fix the average degree of vertices
(outgoing edges) to two hundreds, instead of allowing it to
grow proportionally to the size of the social graph (as in
the previous two experiment). In an organizational setting,
vertex degree is likely very stable.

We run Model Enumerator over social graphs of sizes
10,000 to 100,000 (increment 10,000). To put the scale in
perspective, Microsoft and Google employ 94,000 and 55,419
employees, respectively. Fig. 5 depicts the average running
times for Model Enumerator. Average problem solving times
are within 50 seconds for social graphs of 100,000 vertices.
This means that between successive rounds of policy negoti-
ation, we can expect to have a delay of less than one minute
for verifying availability criteria. This is well acceptable as
Facebook-style consenting protocols (for befriending) work
more in the style of email notification than instant messag-
ing. Such performance indicates that our technology can be
deployed comfortably in mid-sized organizations in the scale
of, say, Microsoft or Google.

9. LIMITATIONS
A limitation of this work is that the following question

remains open: What if the co-owners cannot settle on a
policy in a timely fashion? This is known as termination
or convergence guarantee in the literature. Convergence of
collective access control decision is not a new topic, and is
often conducted using Game Theory [15, 23].

���

���

��

���

���

���

���

���

���
���

���
���

���
���

���
���

���
���

���
���

�	�
���

�
�
���

���
���

���
���

�

��
�
��
��
�

	
��
��
����������������

�
�����������
�

Figure 5: Model Enumerator with Large Social Graphs

One may be tempted to compare this work with Auto-
mated Trust Negotiation (ATN) [29, 31], and to expect
that termination guarantees can be obtained in an analo-
gous manner for this work. ATN is designed to enable the
exchange of sensitive attributes among parties. These at-
tributes are needed for authorizing access to a sensitive ob-
ject in the paradigm of Attribute-based Access Control .
The number of attributes each principal possesses is finite;
an object’s policy is fixed; each policy consists of only finitely
many attributes. These settings guarantee termination.

In contrast, our interactive negotiation protocol is pro-
posed for co-owners to collaboratively devise a ReBAC pol-
icy that satisfies their availability criteria. The atomic poli-
cies are comprised of graph patterns, and thus the space of
atomic policies is infinite. Therefore, termination guarantee
becomes nontrivial unless we introduce further restrictions
on the space of atomic policies or on the refinement of the
settlement policy in successive rounds.

10. CONCLUSION AND FUTURE WORK
We argued that interactive policy negotiation has an im-

portant role in supporting multiple ownership in organiza-
tional computing. We proposed a novel, tool-supported pol-
icy negotiation framework, in which policies under negoti-
ation are assessed by formal availability criteria, including
satisfiability, resiliency and feasibility. Although these avail-
ability criteria belong to the second level of the polynomial
hierarchy, we designed and evaluated algorithms for deciding
satisfiability, and showed that they provide adequate perfor-
mance for mid-sized organizations.

We highlight three possible future works. The first is to
formulate more tractable subproblems for feasibility and re-
siliency. A possible compromise is to aim for subproblems
that reside in �p

2. We have seen, in the case of MO-Sat,
that such subproblems are quite amenable to the design of
e�cient algorithms based on modern SAT solvers.

A second future work concerns the generalization of the
language for specifying multiple-owners policies. Currently,
we use birooted graph patterns as the basis of the language.
This constrains us to consider only binary relationships be-
tween the requester and one of the co-owners. In some cases,
we may need to express relationships between the requester
and multiple co-owners (e.g., the requester shall be a mutual
friend of co-owners u1 and u2).

A third future work is to identify conditions under which
the negotiation protocol is guaranteed to terminate. One
possibility is to incorporate incentives into the negotiation
protocol so as to promote collaboration among co-owners
[15, 23]. Another way is to introduce syntactic restrictions
on the refinement of settlement policy in successive rounds.

Acknowledgments
This work is supported in part by an NSERC Discovery
Grant (RGPIN-2014-06611) and a Canada Research Chair
(950-229712).

11. REFERENCES
[1] Arora, S., and Barak, B. Computational

Complexity: A Modern Approach. Cambridge
University Press, 2009.

[2] Besmer, A., and Richter Lipford, H. Moving
beyond untagging: Photo privacy in a tagged world.
In Proceedings of CHI ’10 (Atlanta, Georgia, USA,
2010), pp. 1563–1572.

[3] Bruns, G., Fong, P. W. L., Siahaan, I., and
Huth, M. Relationship-based access control: Its
expression and enforcement through hybrid logic. In
Proceedings of CODASPY ’12 (San Antonio, TX,
USA, Feb. 2012).

[4] Crampton, J. A reference monitor for workflow
systems with constrained task execution. In
Proceedings of SACMAT ’05 (Stockholm, Sweden,
2005), pp. 38–47.

[5] Crampton, J., Gutin, G., and Yeo, A. On the
parameterized complexity and kernelization of the
workflow satisfiability problem. ACM TISSEC 16, 1
(June 2013).

[6] Erdős, P., and Rényi, A. On random graphs i.
Publication of the Mathematical Institute of the
Hungarian Academy of Sciences 6 (1959), 290–297.

[7] Fong, P. W. L. Preventing Sybil attacks by privilege
attenuation: A design principle for social network
systems. In Proceedings of IEEE S&P ’11 (Oakland,
CA, May 2011), pp. 263–278.

[8] Fong, P. W. L. Relationship-based access control:
Protection model and policy language. In Proceedings
of CODASPY ’11 (San Antonio, Texas, USA, Feb.
2011), pp. 191–202.

[9] Fong, P. W. L., Mehregan, P., and Krishnan, R.
Relational abstraction in community-based secure
collaboration. In ACM CCS ’13 (Berlin, Germany,
2013), pp. 585–598.

[10] Fong, P. W. L., and Siahaan, I. Relationship-based
access control policies and their policy languages. In
Proceedings of SACMAT ’11 (Innsbruck, Austria,
June 2011), pp. 51–60.

[11] Graham, G. S., and Denning, P. J. Protection:
Principles and Practice. In Proceedings of AFIPS ’72
(Spring) (Atlantic City, New Jersey, 1972),
pp. 417–429.

[12] Hu, H., and Ahn, G.-J. Multiparty authorization
framework for data sharing in online social networks.
In Proceedings of DBSec ’11 (Richmond, VA, USA,
2011), pp. 29–43.

[13] Hu, H., Ahn, G.-J., and Jorgensen, J. Detecting
and resolving privacy conflicts for collaborative data
sharing in online social networks. In Proceedings of
ACSAC’11 (Orlando, Florida, USA, 2011),
pp. 103–112.

[14] Hu, H., Ahn, G.-J., and Jorgensen, J. Multiparty
access control for online social networks: Model and
mechanisms. IEEE TKDE 25, 7 (2013).

[15] Hu, H., Ahn, G.-J., Zhao, Z., and Yang, D. Game
theoretic analysis of multiparty access control in
online social networks. In Proceedings of SACMAT ’14
(London, Ontario, Canada, 2014), pp. 93–102.

[16] Khan, A. A., and Fong, P. W. L. Satisfiability and
feasibility in a relationship-based workflow
authorization model. In Proceedings of ESORICS ’12
(Pisa, Italy, Sept. 2012), pp. 109–126.

[17] Lampinen, A., Lehtinen, V., Lehmuskallio, A.,
and Tamminen, S. We’re in it together: Interpersonal
management of disclosure in social network services.
In Proceedings of CHI ’11 (Vancouver, BC, Canada,
2011), pp. 3217–3226.

[18] Le Berre, D., and Parrain, A. The sat4j library,
release 2.2. Journal on Satisfiability, Boolean Modeling
and Computation 7 (2010), 59–64.

[19] Li, N., and Tripunitara, M. V. On Safety in
Discretionary Access Control. In Proceedings of IEEE
S&P ’05 (Oakland, CA, May 2005), pp. 96–109.

[20] Mehregan, P. Multiple Ownership in Access Control.
PhD thesis, University of Calgary, March 2016.

[21] Mehregan, P., and .Fong, P. W. L. Design
patterns for multiple stakeholders in social computing.
In Proceedings DBSec ’14. July 2014, pp. 163–178.

[22] Rizvi, S. Z. R., Fong, P. W., Crampton, J., and
Sellwood, J. Relationship-based access control for an
open-source medical records system. In Proceedings of
SACMAT ’15 (Vienna, Austria, 2015), pp. 113–124.

[23] Squicciarini, A. C., Shehab, M., and Wede, J.
Privacy Policies for Shared Content in Social Network
Sites. The VLDB Journal 19, 6 (Dec. 2010), 777–796.

[24] Squicciarini, A. C., Xu, H., and Zhang, X. L.
CoPE : Enabling collaborative privacy management in
online social networks. Journal of the American
Society for Information Science 62, 3 (2011), 521–534.

[25] Such, J. M., and Criado, N. Adaptive conflict
resolution mechanism for multi-party privacy
management in social media. In Proceedings of WPES
’14 (Scottsdale, Arizona, USA, 2014), pp. 69–72.

[26] Thomas, K., Grier, C., and Nicol, D. M.
Unfriendly: Multi-party privacy risks in social
networks. In Proceedings of PETS ’10 (Berlin,
Germany, July 2010), pp. 236–252.

[27] Torán, J. On the resolution complexity of graph
non-isomorphism. In Proceedings of SAT’13 (Helsinki,
Finland, July 2013), pp. 52–66.

[28] Wang, Q., and Li, N. Satisfiability and resiliency in
workflow authorization systems. ACM TISSEC 13, 4
(Dec. 2010).

[29] Winsborough, W. H., and Li, N. Safety in
automated trust negotiation. In IEEE S&P ’04
(Oakland, California, USA, May 2004), pp. 147–160.

[30] Wishart, R., Corapi, D., Marinovic, S., and
Sloman, M. Collaborative privacy policy authoring in
a social networking context. In Proceedings of IEEE
POLICY’10 (Fairfax, VA, July 2010), pp. 1–8.

[31] Yu, T., Winslett, M., and Seamons, K. E.
Supporting structured credentials and sensitive
policies through interoperable strategies for automated
trust negotiation. ACM TISSEC 6, 1 (Feb. 2003),
1–42.

