
A White-Box Policy Analysis and its Efficient
Implementation

Jayalakshmi Balasubramaniam Philip W. L. Fong
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

{ jbalasub, pwlfong }@ucalgary.ca

ABSTRACT
In policy composition frameworks, such as XACML, com-
posite policies can be formed by the application of policy
composition algorithms (PCAs), which combine authoriza-
tion decisions of component policies. Understanding the be-
haviour of composite policies is a non-trivial endeavour, but
instrumental in the engineering of correct access control poli-
cies. Existing policy analyses take a black-box approach, in
which the global behaviour of the composite policy is as-
sessed. A black-box approach is useful for detecting the
presence of erroneous behaviour, but not particularly useful
for locating the source of the error.

In this work, we propose a white-box policy analysis, known
as Decision in Context (DIC), that assesses the behaviour of
component policies situated in a composite policy. We show
that the DIC query can be applied to facilitate policy change
impact analysis, break-glass reduction analysis, dead policy
identification, as well as the pruning of redundant subpoli-
cies. For generality, the DIC query is defined in an XACML-
style policy composition framework that is agnostic of the
underlying access control model. The DIC query is imple-
mented via a reduction to either propositional satisfiability
(SAT) or pseudo boolean satisfiability (PBS) instances, after
which standard solvers can be invoked to complete the eval-
uation. Empirical analyses have been conducted to compare
the relative efficiency of the SAT and PBS encodings. The
latter is found to be a more effective encoding, especially for
composite policies containing majority-voting PCAs.
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1. INTRODUCTION
A typical organization is divided into a number of work

units. For example, a hospital has different departments,
such as cardiology, neurology, anaesthetics, critical care, etc;
a bank is composed of units such as legal, financial manage-
ment, marketing, etc. Each work unit may have a different
set of policies governing the disclosure and usage of data.
In such an organizational setting, an access control system
must (i) consult the policies of the many work units, and (ii)
combine, weigh and prioritize their individual authorization
decisions in order to reach a final authorization decision.
This creates the need for a policy composition framework
[25, 10, 26, 21, 8, 11]. A typical policy composition frame-
work, such as XACML [25], offers policy combinators called
Policy Combining Algorithms (PCAs) for constructing com-
posite policies out of component policies. These PCAs spec-
ify procedures for harmonizing the potentially conflicting
decisions of their component policies.

Being able to comprehend and assess the behaviour of a
composite policy specified in a policy composition frame-
work is both important and challenging. Important because
the formulation of correct policy depends on it. Challeng-
ing because of the sheer size of organizational policies, as
well as the fact that, in an organizational setting, compo-
nents policies may undergo constant revisions motivated by
changing organizational needs. Various policy analyses have
been proposed to alleviate this need [14, 20, 29, 23, 24, 17,
19, 7, 22, 18, 10, 31].

Many of the previously proposed policy analyses [14, 17,
22, 10] are black-box analyses. They assess the global
behaviour of a composite policy: e.g., under such and such
a condition, would the composite policy return such and
such authorization decisions? That is, the composite policy
is seen as a black box, in the sense that the concern is on the
global behaviour of the entire policy rather than the local
behaviour of subpolicies.

Black-box analyses is important, as they help us iden-
tify any problematic behaviour of the composite policy. Yet
they are not designed for locating the source of error: i.e.,
determining which subpolicy of the composite policy pro-
duces the error. To facilitate the location of error sources,
we need analysis techniques that would assess the behaviour



of subpolicies in the execution context of the composite pol-
icy. In other words, the composite policy is now seen as a
white box. White-box analyses are analogous to debug-
ging tools. It is the position of this work that we need to
develop white-box policy analysis techniques.

Yet the behaviour of subpolicies are difficult to understand
due to at least two reasons. First, realistic policy analysis
frameworks offer PCAs that have procedural semantics. For
example, the First-Applicable PCA of XACML may oppor-
tunistically terminate the evaluation of subpolicies when an
applicable subpolicy is found. Reasoning about such be-
haviour is challenging. Second, a breed of PCAs known
as majority-voting algorithms have not been given proper
treatment in previous work on policy analyses [14, 17, 22,
10]. Inefficient implementation, by way of brute-force en-
coding, is usually adopted.

To bridge the above gaps, this work proposes a novel
white-box policy analysis, as well as corresponding imple-
mentation techniques that can gracefully cope with the pres-
ence of majority-voting PCAs. Specifically, the contribu-
tions of this work are the following.

1. A new policy analysis, Decision in Context (DIC), has
been proposed. The DIC analysis can be used for un-
derstanding the behaviour of a subpolicy that is situ-
ated within a composite policy, when the latter is be-
ing evaluated. Specifically, given a subpolicy contained
within a composite policy, a DIC query determines (a)
whether the subpolicy will be evaluated when the com-
posite policy is evaluated, and (b) the potential autho-
rization decisions that the subpolicy may return. The
DIC analysis has a wide range of applications, includ-
ing that of change impact analysis, reduction of break-
glass accesses, dead policy identification, and complex
policy pruning. The definition and applications of DIC
analysis are discussed in §4.

2. The DIC analysis is defined in terms of a policy com-
position language called µ-XACML, which is a light-
weight, idealized version of XACML 2.0 [25]. Defin-
ing DIC in terms of µ-XACML demonstrates that the
analysis can be conducted against policy composition
frameworks with complex policy combinators, includ-
ing those that exhibit procedural characteristics as well
as those that employ majority-voting schemes. This
language is also independent of the choice of access
control models, thereby rendering the DIC analysis
widely applicable. Details of µ-XACML can be found
in §3.

3. We demonstrate how the DIC query can be answered
by a reduction to either propositional satisfiability
(SAT) or pseudo boolean satisfiability (PBS) instances.
While the SAT compilation is now a standard tech-
nique for implementing policy analyses, the applica-
tion of PBS as an encoding technique is a novel con-
tribution of this work. The motivation is to cope with
the complexity introduced by majority-voting PCAs.
A standard SAT-based compilation would lead to an
exponential growth in encoding size, whereas a PBS
encoding is much more compact. Details of these com-
pilation can be found in §5 and §6. An empirical study
for demonstrating the efficiency of the PBS encoding
over the SAT encoding, especially in the presence of
majority-voting PCAs, is reported in §7.

2. RELATED WORK
We compare our work to related research in three aspects:

(i) policy composition frameworks, (ii) policy analysis and
testing, and (iii) policy analysis implementation approaches.

2.1 Policy Composition Frameworks
D-Algebra [26] is an algebraic framework for policy com-

position. Algebraic operations have been designed for pol-
icy composition. A technique has been developed to convert
tabular specification of policy combinators into D-Algebra
functions. The framework is expressive enough for captur-
ing standard PCAs of XACML. The algebra can also be
interpreted in such a way to support majority voting.

The Policy Combining Language (PCL) [21] is another
policy composition framework. The language has two vari-
ants: one for representing majority-voting PCAs, and the
other for standard PCAs. Majority voting PCAs are spec-
ified using linear constraints on variables representing the
number of policies returning a specific decision. Standard
PCAs are represented as finite-state automata. PCL also
handles obligations.

Bruns and Huth [10] base their policy composition lan-
guage on Belnap Logic (a four-valued logic). The meet and
join operators of the Belnap bilattice are taken as policy
combinators. The language is capable of representing every
possible four-valued functions (and thus all PCAs). The lan-
guage is parameterized on abstract access control systems,
which abstract away the idiosyncrasies of individual access
control model.

The goal of this present work is not to innovate in the
design of policy composition languages. Our policy compo-
sition language, µ-XACML, is designed only for capturing
the essential complexity of XACML 2.0 [25]. It forms the
basis for demonstrating the feasibility of defining the DIC
analysis for realistic policy composition languages. We also
borrowed the idea of abstract access control systems from
[10], to render our work applicable to a wide range of access
control models.

2.2 Policy Analysis and Testing
Various policy analyses have been proposed previously [20,

29, 24, 19, 7, 18, 31]. The following discusses the ones that
are particularly related to the DIC analysis.

A number of types of policy analyses have been presented
in [22]: analysis of information about the policy, analysis of
information about the structure of the policy, analysis of the
decisions returned by a policy, and analysis of the type of ac-
cess requests to which the policy is applicable. They provide
a method to determine, given requests satisfying a request
predicate, whether a policy applicable to such requests can
return a specific decision. They also provide techniques for
analyzing the similarity between two policies.

Two kinds of policy analyses are considered in [10]. First,
they provide a technique to determine if a policy returns a
specific decision on at least one access request. Second, they
provide techniques to compare two policies: (a) they provide
a technique to determine whether a policy is more permissive
than another policy, and (b) they determine policy similarity
by determining whether two policies return the same access
decision for all access requests, or, for all access requests
that satisfy a request predicate.

Hughes and Bultan [17] compare the extent of similar-
ity between two access control policies, by determining the



number of access requests to which these policies are appli-
cable.

Two kinds of policy analyses are proposed in [14] The first
one determines whether an access control policy satisfies a
safety property. The second is change impact analysis on
two versions of a policy. Multi Terminal Binary Decision
Diagrams (MTBDDs) [5, pages 392–422] are adopted for
representing policies. The MTBDDs of the policy before
and after change are combined to represent the change in
behaviour. From this combined diagram, one can effectively
determine the access requests for which the policy returns a
different authorization decision before and after the change.

In [23], a mechanism has been devised to generate test
cases for XACML policies. Each test case is a pair composed
of an access request and an authorization decision. Each
rule in a policy is examined in turn, to determine an access
request for which the corresponding authorization decision
is affected by that rule. Then, a new request-decision pair
is introduced into the set of test cases.

All the above analyses (with the exception of [23]) are
black-box analyses. A policy is analyzed based on either
the type of access requests to which it is applicable, or the
authorization decision that is returned for a specific access
request. The position of this work is that assessing the be-
haviour of individual subpolicies is important during policy
debugging. This work differs from all of the above in that it
is possible for the policy analyst to examine the behaviour
of a subpolicy situated within a composite policy.

2.3 Approach to Implement Policy Analyses
The policy analyses of [10] and [17] are realized by trans-

lating analysis instances to SAT instances. This approach
produces SAT instances of exponential size in cases involv-
ing majority voting. In [14] and [22], change impact analysis
is conducted by generating Multi-Terminal Binary Decision
Diagrams (MTBDDs) to represent the difference between
two policies. In our work, the DIC query is translated into
either SAT or PBS instances. PBS is employed to produce
a compact encoding for policies involving majority-voting
PCAs, and we rely on state-of-the-art PBS solvers to solve
PBS instance efficiently, or to convert an PBS instance to an
optimized SAT instance [13]. To the best of our knowledge,
our work is the first to implement policy analysis queries via
a PBS encoding.

3. µ-XACML
Our proposed policy analysis will be specified in terms of

a policy composition language called µ-XACML, which is
a lightweight, idealized version of XACML 2.0 [25]. The
goal here is not to capture the entirety of XACML. In-
stead, we want to demonstrate that, even in the presence of
complex policy combinators such as XACML PCAs, which
feature imperative characteristics as well as majority-voting
schemes, our policy analysis can still be properly defined.

Following the approach of Bruns and Huth [10], the def-
inition of µ-XACML is parameterized by abstract access
control systems. The interface between an abstract access
control system and the policy composition language takes
the form of request predicates. By following this design, it
allows the µ-XACML and the proposed policy analysis to
be independent of the choice of the underlying access con-
trol models, thereby widening the applicability of the policy
analysis.

3.1 Abstract Access Control System
An access control system S is a 4-tuple 〈PS ,R,RP ,〉.

PS is a set of protection states. R is a set of requests. RP
is a set of request predicates. Typical members of PS , R
and RP are denoted respectively by ps, r and rp. A request
predicate rp describes a property of a request that is issued
in a given protection state. Specifically, each pair (ps, r)
either satisfies a request predicate rp, or not. The ternary
relation  ⊆ PS×R×RP specifies the semantics of a request
predicate. We write ps, r  rp whenever (ps, r , rp) ∈ . Ev-
ery state-request pair (ps, r) induces a variable assignment
σps,r : RP → {0, 1} such that σps,r (rp) = 1 iff ps, r  rp.
An access control system S is uniform iff, for every variable
assignment σ : RP → {0, 1}, there exists a state-request pair
(ps, r) such that σps,r = σ.

As one can easily see, the above notion of access control
systems abstracts away the idiosyncrasy of individual access
control model. So long as an access control model can be
abstracted into a system of the above form, then our policy
composition framework and policy analysis techniques will
be applicable.

3.2 Policy Evaluation
The policy language µ-XACML offers syntax for specify-

ing policy expressions. Each expression is evaluated against
a state-request pair (ps, r). The result of evaluation is one
of four authorization decisions. The decisions “permit”
and “deny” have obvious meaning. The decision “inde-
terminate” is returned when a PCA fails to harmonize
the conflicting decisions returned by its component poli-
cies. The decision “not applicable” is returned when a pol-
icy is not applicable for the given state-request pair. Let
DS = {p,d, i,n} be the set of authorization decision values.

3.3 Syntax
The abstract syntax of µ-XACML is given in the following

context free grammar:

pol ::= permit | deny | con → pol | pca(pol+)

pca ::= po | do | fa | oa | smv | amv | spmv

con ::= rp | > | ⊥

where rp ∈ RP is a request predicate. The atomic policies
permit and deny return fixed decision values. The condi-
tional policy con → pol restricts the applicability of pol
based on the satisfiability of the request predicate con. The
PCA policy pca(pol1, . . . , polk) combines the decisions of the
subpolicies pol1, . . . , polk using the PCA pca. Seven PCAs
are supported in µ-XACML: (a) four standard XACML
policy combining algorithms — permit-overrides (po), deny-
overrides (do), first-applicable (fa), and only-applicable (oa);
(b) three majority voting algorithms — simple majority vot-
ing (smv), absolute majority voting (amv), and super permit
majority voting (spmv).

We write vars(pol) to denote the set of request predicates
appearing in policy pol .

3.4 Semantics and Derived Forms
The evaluation function eval(σ, pol) returns the decision

of policy pol when it is evaluated against the variable as-
signment σ. Its definition is given below.

• eval(σ, permit) = p.



• eval(σ, deny) = d.

• eval(σ, con → pol) = eval(σ, pol) if either con = >,
or con = rp and σ(rp) = 1; otherwise, eval(σ, con →
pol) = n.

The decision value returned by eval(σ, pca(pol1, . . . , polk))
depends on pca.

• Case pca = po: If eval(σ, pol i) = p for some 1 ≤ i ≤ k,
then return p. Otherwise, if eval(σ, pol i) = d for some
1 ≤ i ≤ k, then return d. Otherwise, if eval(σ, pol i) =
i for some 1 ≤ i ≤ k, then return i. Otherwise, return
n. Operationally, the subpolicies pol i are evaluated
from left to right, and evaluation stops as soon as one
of the subpolicies evaluates to a p.

• Case pca = do: Similar to the case of po, except that
the order of precedence is: d, i, p, n.

• Case pca = fa: If eval(σ, pol i) = n for all 1 ≤ i ≤ k,
then return n. Otherwise, let i be the smallest index
for which (a) eval(σ, polj) = n for 1 ≤ j < i, and
(b) eval(σ, pol i) = v , where v 6= n. Return v . Oper-
ationally, the subpolicies pol i are evaluated from left
to right, and evaluation stops as soon as one of the
subpolicies evaluates to a decision that is not n.

• Case pca = oa: If eval(σ, pol i) = v for some 1 ≤ i ≤
k, where v ∈ {p,d}, but eval(σ, polj) = n for j 6=
i, then return v . Otherwise, if eval(σ, pol i) = n for
all 1 ≤ i ≤ k, then return n. Otherwise, return i.
Operationally, all subpolicies pol i are evaluated before
the final decision is computed.

To articulate the decision value returned by the majority
voting algorithms smv, amv and spmv, we define additional
notation. We associate with each subpolicy pol i and each
decision value v a variable xvi , such that variable can take
on a value of either 0 or 1, and xvi = 1 iff eval(σ, pol i) = v .

• Case pca = smv: If Σki=1x
p
i > Σki=1x

d
i , then return p.

If Σki=1x
d
i > Σki=1x

p
i , then return d. If Σki=1x

n
i = k,

then return n. Otherwise, return i.

• Case pca = amv: If Σki=1x
p
i ≥ bk/2c+1, then return p.

If Σki=1x
d
i ≥ bk/2c+ 1, then return d. If Σki=1x

n
i = k,

then return n. Otherwise, return i.

• Case pca = spmv: Similar to the case of amv, except
that the threshold is b2k/3c+ 1 rather than bk/2c+ 1.

Operationally, majority voting algorithms evaluate all their
subpolicies pol i before a final decision is computed.

We write eval(ps, r , pol) to denote eval(σps,r , pol), that is,
the evaluation of pol against the state-request pair (ps, r).
We also define the following derived forms.

in
def
= oa(permit, deny) na

def
= ⊥ → permit

The above derived forms essentially evaluate to the decision
values i and n respectively.

3.5 Comparing with XACML
As disclaimed before, µ-XACML is never intended to cap-

ture the entirety of XACML. Instead, µ-XACML is designed
to capture only the essential complexities of XACML so as
to demonstrate that our policy analysis can be applied to
realistic policy languages. We outline below the major ways
in which µ-XACML deviates from XACML.

1. XACML feature rules, policies and policy sets. We
flatten the hierarchy in µ-XACML, and consider only
one syntactic category — policies. Therefore, we do
not differentiate between rule combining algorithms
and policy combining algorithms.

2. In XACML, applicability testing and decision combi-
nation are merged in a single construct (e.g., policy).
In µ-XACML, we separate them into two constructs —
conditional and PCA policies. This produces a more
composeable and uniform language design.

3. In XACML, an indeterminate decision may be returned
for two reasons: (a) a PCA fails to harmonize contra-
dicting decisions of the component policies, or (b) an
error occurs during the evaluation of a policy. In µ-
XACML, we ignore possibility (b).

4. XACML supports dynamic retrieval of policies at the
time of their evaluation, as well as the specification of
obligations; µ-XACML supports neither.

4. DECISION IN CONTEXT
We define in this section a white-box policy analysis, De-

cision in Context (DIC), and showcase some useful applica-
tions of the analysis.

4.1 Preliminaries
We assume that policies are represented as abstract syntax

trees (ASTs) [3] according to the grammar of §3.3. Subpoli-
cies correspond to subtrees.

We further assume that every tree node is uniquely la-
belled within the AST. Thus, we identify a subpolicy by the
label of the root of the corresponding subtree. We write
root(pol) for the label of the root node of pol . Let l1 and
l2 be the labels of two AST nodes. We write l1 v l2 if l1
is either l2 or one of its descendants, and say that l1 is a
subpolicy of l2. We write l1 < l2 if l1 v l2 and l1 6= l2, and
we say that l1 is a proper subpolicy of l2.

4.2 The DIC Query
An atomic DIC query has the form:

DIC (pol , l , ds)

where pol is a policy to be analyzed, l is the label of a
subpolicy of pol , and ds is a non-empty subset of DS .

The above query is said to be satisfied by a variable as-
signment σ iff, during the evaluation of eval(σ, pol), (a) the
subpolicy referenced by l is recursively evaluated, and (b)
the evaluation of this subpolicy returns one of the authoriza-
tion decisions in ds. The query is said to be satisfied by a
state-request pair (ps, r) iff it is satisfied by the variable as-
signment σps,r . The query is satisfiable iff it is satisfied by
some state-request pair. The query is valid iff it is satisfied
by every state-request pair.

Note that, in order for a DIC query to be satisfied by a
variable assignment, both conditions (a) and (b) must hold.
That is, if a variable assignment fails to satisfy the DIC
query, then either the subpolicy is not evaluated, or else its
evaluation yields a decision value that is not in ds.

Condition (a) is significant because of the operational se-
mantics of µ-XACML. Specifically, the conditional as well as
the PCAs fa, po and do may not evaluate all its subpolicies
due to its opportunistic semantics.



Note also that, in order for the DIC query to be well-
formed, l must reference a subpolicy of pol . That is, if pol is
itself a subpolicy of some bigger policy pol ′, and l references
some subpolicy of pol ′ that is not a subpolicy of pol , then
the DIC query is not well defined.

A composite DIC query is a boolean combination of
atomic DIC queries:

q ::= DIC (pol , l , ds) | ¬q | q ∨ q

The composite query q1 ∨ q2 is satisfied by variable assign-
ment σ iff σ satisfies either q1 or q2. The query ¬q is satisfied
by σ iff q is not satisfied by σ. The satisfaction of compos-
ite DIC queries by state-request pairs and the satisfiability
and validity of composite DIC queries can be defined in a
straightforward manner. Also, we define the derived form

q1 ∧ q2
def
= ¬(¬q1 ∨ ¬q2).

4.3 Applications
As a white-box policy analysis is like a debugger: it checks

whether a subpolicy will be evaluated, and if so what deci-
sion values it will return. As such, the DIC query has a wide
range of applications. The following are four examples.

4.3.1 Change Impact Analysis
Complex policies are prone to frequent changes. When

the administrator adds new policy components, or remove
or modify existing policy components, there is bound to be
unanticipated changes to the behaviour of other policy com-
ponents. DIC queries can be formulated to facilitate the
effective identification of such unanticipated changes.

Suppose a policy pol1 has been revised to pol2 . More
specifically, the subpolicy l1 in pol1 has been revised into
subpolicy l2 in pol2 . We further suppose that the labels of
the two ASTs are disjoint.

An policy analyst wishing to perform change impact anal-
ysis proceeds in two steps.

Step 1: Expansion or contraction of applicability.
Given a state-request pair (ps, r), a subpolicy l of policy

pol is said to be applicable if the evaluation of eval(ps, r , pol)
results in the recursive evaluation of subpolicy l . The ana-
lyst begins by determining if the policy revision results in a
change of applicability of l1 . If there has been an increase
(resp. decrease) in the number of state-request pairs in which
l1 is applicable, then it is called an expansion (resp. con-
traction) of applicability . The analyst usually has a prior
expectation of whether the revision should result in expan-
sion or contraction of applicability for the target subpolicy.
A DIC query can be formulated to confirm this expectation.

Consider the following atomic DIC queries:

qapp1 = DIC (pol1 , l1 , {p,d, i,n})
qapp2 = DIC (pol2 , l2 , {p,d, i,n})

There is no contraction of applicability iff ¬qapp1 ∨ qapp2 is
valid. Actual expansion of applicability can then be con-
firmed by further checking that qapp2 ∧ ¬qapp1 is satisfiable.

Similarly, there is no expansion of applicability iff ¬qapp2 ∨
qapp1 is valid. Actual contraction of applicability can then be
confirmed by further verifying that qapp1 ∧¬qapp2 is satisfiable.

Step 2: Change of authorization decision.
Once the policy analyst has determined whether the appli-

cability of the target subpolicy has changed, he may wish to
determine whether the decision returned by that subpolicy
has changed between the old and new versions. The policy
analyst usually has prior expectation on whether there is a
change in authorization, or what the change should be like.

Suppose q = DIC (pol , l , ds), where ∅ ⊂ ds ⊆ DS . The
complement query qc is defined to be DIC (pol , l ,DS \ds).
Note that qc is not equivalent to ¬q. The query qc checks if
there can ever be a case when subpolicy l is evaluated, but
the evaluation returns a decision outside of ds.

Consider the following atomic DIC queries:

qv1 = DIC (pol1 , l1 , {v}) qv2 = DIC (pol2 , l2 , {v})

The DIC query qv1 ∧ (qv2 )c is satisfiable iff there is a case
when both the old and new version of the target subpolicy
are applicable, but the old version returns the decision v
while the new version returns a different decision.

4.3.2 Break-Glass Reduction Analysis
In [4], Ardagna et al. introduced the concept of policy

spaces for reducing the number of emergency accesses (aka
break-glass accesses) made to healthcare information sys-
tems to access patient health records.

Policy spaces are partitions (i.e., disjoint subsets) of poli-
cies in an access control system. Four such policy spaces are
described in [4]:

• The positive authorization policy space, denoted
by ρ+, is the set of policies that grant access under
normal circumstances.

• The negative authorization policy space, denoted
by ρ−, consists of those policies denying access under
normal circumstances.

• The planned exception policy space, denoted by εP ,
contains policies that grant access under known ex-
ceptional circumstances, which under normal circum-
stances will not be granted.

• The unplanned exception policy space, denoted by
εU , contains a single policy that grants access to all
access requests. This covers circumstances that do not
satisfy the conditions stipulated in the other three pol-
icy spaces. This policy grants access with certain obli-
gations such as logging and manual auditing.

Such a scheme can be modelled in our policy composition
framework using the following policy:

fa(ρ+, ρ−, εP , εU ) (1)

The atomic policy deny (resp. permit) is not allowed to ap-
pear in ρ+ and εP (resp. ρ−). The policy space εU is simply
the atomic policy permit.

Ardagna et al. propose to reduce the occurrence of excep-
tions (requests to which access is granted by εP and εU ) in
the following ways: (1) by moving frequent applicable poli-
cies from εP to the policy spaces ρ+ and ρ−, and (2) adding
new policies in ρ+ and ρ− that will capture the frequently
applicable conditions under which requests are granted from
εU (by reviewing access logs).



A policy analyst may want to verify that the two kinds of
periodic policy updates advocated by Ardagna et al. actu-
ally achieve the intended effects. This can be summarized
by the following.

before\after ρ+new ρ−new εPnew εUnew

ρ+old × ×
ρ−old × ×
εPold X X
εUold X X

A checkmark (X) indicates that we would like to see if there
exists state-request pair in which the old version of either
εP or εU is applicable, and the new version of either ρ+ or
ρ− is applicable. This check gauges if the update produces
actual benefits.

A cross (×) indicates that we would like to ensure that
there is no state-request pair in which the old version of
either ρ+ or ρ− is applicable, but the new version of either
εP or εU is applicable. This check ensures that the update
produces no error.

Let pol1 and pol2 be the old and new version of the policy
in (1). Let l+1 , l−1 , lP1 , lU1 , l+2 , l−2 , lP2 and lU2 be the labels of
the four policy spaces in the two policy versions. Define the
following DIC query:

qji = DIC (pol i, l
j
i , {p,d, i,n})

where i ∈ {1, 2} and j ∈ {+,−, P, U}.
To gauge if there is any real benefit for the update, the

policy analyst can test if the following is satisfiable: qi1 ∧ qj2,
where i ∈ {P,U} and j ∈ {+,−}. To verify if there is no
error produced by the update, the policy analyst can test
if the following is valid: ¬(qi1 ∧ qj2), where i ∈ {+,−} and
j ∈ {P,U}.

4.3.3 Dead Policy Identification
Another application of the DIC query is in the identifica-

tion of dead policies. By dead policies (analogous to dead
code [3]) we refer to those subpolicies of a composite pol-
icy that are never evaluated. For example, in the policy
po(pol1, pol2, pol3), if, for every state-request pair, at least
one of pol1 and pol2 evaluates to p, then pol3 is a dead
policy. A dead policy may be accidentally produced as a
by-product of policy revision, or it may reflect a design flaw.
Once a dead policy has been identified, the composite policy
can usually be simplified.

Formally, a subpolicy referenced by l is a dead policy iff
the following DIC query is not satisfiable (i.e., its negation
is valid):

DIC (pol , l , {p,d, i,n})

In a sizeable composite policy, the search for dead policies
can be performed in a top-down manner. More specifically,
the AST of the composite policy can be traversed in a pre-
order fashion, and each node is checked to see if it is a dead
policy.

4.3.4 Complex Policy Pruning
Another useful application of the DIC query is in deter-

mining the parts of the composite policy that can be pruned
(to be replaced by simpler policies). Specifically, a subpolicy
that always returns the same decision can be replaced by a

constant policy (i.e., permit, deny, in, na). This is compara-
ble to constant folding in compilers [3] as well as the policy
tree pruning method in [11]. Again, the presence of such a
subpolicy may be the result of policy revision or design flaw.

Suppose we are to check if the subpolicy l of policy pol
always return the same decision v . This can be achieved
by checking if the complement (§4.3.1) of DIC (pol , l , {v}) is
not satisfiable (i.e., the negation of the complement is valid).
When this is the case, we know that either l is not evaluated,
or else its evaluation never yields any decision other than v .

Again, the search for subpolicies to prune can be per-
formed in a top-down manner: i.e., the AST of the compos-
ite policy is traversed in a pre-order fashion.

4.4 Complexity
The satisfiability of DIC queries naturally induces a deci-

sion problem.

The DIC-SAT Problem Given a well-formed, atomic DIC
query DIC (pol , l , ds) of a uniform access control sys-
tem, is the DIC query satisfiable?

Theorem 1. The DIC-SAT problem is NP complete.

That DIC-SAT is in NP is elementary. The NP-hardness of
DIC-SAT is demonstrated in Appendix A through a reduc-
tion from monotone one-in-three 3SAT [28].

5. REDUCTION TO SAT
To test the satisfiability of a DIC query, a standard im-

plementation is to compile the DIC query into an equiva-
lent propositional satisfiability (SAT) problem instance, and
then employ a standard SAT solver to solve the SAT in-
stance. We derived such a compilation algorithm, DIC2SAT,
the design of which is the topic of this section. Our goal
here is to outline the baseline implementation technique,
and then point out its weakness in handling majority-voting
PCAs, so as to prepare for the presentation of the alternative
reduction in the next section.

5.1 The DIC2SAT Algorithm
We assume that the underlying access control system is

uniform (that is, every variable assignment is realized by
some state-request pair). §5.2 explains how this assumption
can be relaxed.

The input and output of DIC2SAT is given below.

Input A policy pol , a label l , and a set ds of decision values,
such that DIC (pol , l , ds) is a well-formed DIC query.

Output A propositional formula φ such that DIC (pol , l , ds)
is satisfiable iff φ is satisfiable.

Specifically, the request predicates that appear in pol are
taken as propositional variables in φ. Since the access con-
trol system is assumed to be uniform, the existence of a vari-
able assignment that satisfies the DIC query implies that the
DIC query is satisfiable.

5.2 Alternative Usages
The DIC2SAT algorithm can be used for testing the sat-

isfiability of a composite DIC query. Suppose q1, . . . , qk are
atomic DIC queries, and f(q1, . . . , qk) is a boolean combi-
nation of the atomic queries. Suppose further that φi is the
SAT encoding of qi (as returned by DIC2SAT). Then the



satisfiability of f(q1, . . . , qk) (as a composite query) can be
determined by testing the satisfiability of f(φ1, . . . , φk) (as
a propositional formula).

While the DIC2SAT algorithm can be applied directly to
uniform systems, it can be easily adapted to handle non-
uniform systems. Given a DIC query q, there may be de-
pendencies among the truth values of the request predicates
appearing in q, because not every variable assignment is real-
ized by some state-request pair. In such cases, it is usually
possible to capture these dependencies in a propositional
formula ψ (because there can only be finitely many request
predicates appearing in q). If DIC2SAT returns a formula
φ, then we test the satisfiability of φ ∧ ψ to find out if q is
satisfiable.

As an example, suppose resource predicates rp1 and rp2

respectively indicate if the resource being accessed is a de-
partmental or university resource. Suppose further that
every departmental resource is considered a university re-
source. Then we can capture this dependency by the propo-
sitional formula ¬rp1 ∨ rp2. If DIC2SAT returns φ, then we
test the satisfiability of φ ∧ (¬rp1 ∨ rp2).

Generalizing the above technique, one can actually per-
form what-if analysis using DIC2SAT. By what-if analysis,
we mean to ask if a DIC query is satisfiable by specific kinds
of state-request pairs for which certain conditions (expressed
in terms of a boolean combination of some request pred-
icates) hold. For example, “is this DIC query satisfiable if
the requested resource is a university equipment but the user
is not an academic staff?” Suppose the condition can be cap-
tured by a propositional formula ψ, and DIC2SAT converts
the DIC query to φ, then we test the satisfiability of ψ ∧ φ.

5.3 The Overall Structure of DIC2SAT
DIC2SAT is syntax directed. That is, given a policy pol ,

DIC2SAT performs case analysis to see which variant of pol-
icy pol is, based on the grammar of §3.3. If pol is atomic,
DIC2SAT returns a simple propositional formula as the en-
coding of pol . If pol is composite, DIC2SAT recursively
invokes itself to process the subpolicies, and then combines
the returned formulas to build an encoding for pol .

The full pseudocode of the DIC2SAT algorithm is given in
the companion technical report [6]. Here we illustrate how
the algorithm behaves by listing the pseudocode for the case
of conditional policy.

case pol = rp → pol ′:
if l = root(pol) then

if n ∈ ds then
return ¬rp ∨DIC2SAT(pol ′, root(pol ′), ds);

else
return rp ∧DIC2SAT(pol ′, root(pol ′), ds);

else /* l < root(pol) */

return rp ∧DIC2SAT(pol ′, l , ds);

We explain the intuition behind the pseudocode. The
outer if -then-else indicates that there are two main cases:
(1) the subpolicy l is pol itself, or (2) l is a proper subpolicy
of pol . In case (1), subpolicy l is obviously evaluated when
pol is evaluated. So the question is whether pol returns a
member of ds. Now there are two subcases: (a) the deci-
sion n is one of the decisions in ds, or (b) otherwise. In
subcase (a), there are two ways in which a member of ds is
returned: either rp does not hold, and thus the conditional
policy returns n, or else the evaluation of the subpolicy pol ′

yields a member of ds. In subcase (b), n 6∈ ds, and thus
the only way for a member of ds to be returned is when the
condition rp holds, and also when the subpolicy pol ′ returns
such a member.

In main case (2), l is a proper subpolicy of pol . We need
rp to hold in order for pol ′ to be evaluated, and recursively
we need subpolicy l to be evaluated to a member of ds when
pol ′ is evaluated.

5.4 Compiling Standard PCAs
The compilation of the four standard PCAs is more in-

volved. We illustrate this by considering the compilation of
the first-applicable (fa) PCA.

We begin by defining some shorthands. Suppose 〈pol1, . . . ,
polk〉 is a sequence of policies, l is a label for which l v
root(polk), and ds is a non-empty set of decisions.

AllN (〈pol1, . . . , polk〉)
def
=

k∧
i=1

DIC2SAT(pol i, root(pol i), {n})

Intuitively, the formula AllN (〈pol1, . . . , polk〉) is satisfiable
iff every pol i evaluates to n.

FA(〈pol1, . . . , polk〉, l , ds)
def
=

AllN (〈pol1, . . . , polk−1〉) ∧DIC2SAT(polk, l , ds)

Intuitively, the formula FA(〈pol1, . . . , polk〉, l , ds) is satisfi-
able iff (a) each of pol1, . . . , polk−1 evaluates to n, and (b)
subpolicy l of polk is evaluated to a decision in ds.

The compilation of fa is shown below:

case pol = fa(pol1, . . . , polk):
if l = root(pol) then
φ := ⊥;
if ds ∩ {p,d, i} 6= ∅ then
φ := φ ∨

∨k
j=1 FA(〈pol1, . . . , polj〉,

root(polj), ds ∩ {p,d, i});
if n ∈ ds then
φ := φ ∨AllN (pol1, . . . , polk);

return φ;
else /* l < root(pol) */

let j be the index for which l v root(polj);
return FA(〈pol1, . . . , pol j〉, l , ds);

The case handled by the else is easier to explain, so we
start with that. In this case, l refers to a proper subpolicy
of pol . So, l must be pointing to a subpolicy of one of
pol1,. . . , polk. Let’s say it is pointing to a subpolicy of pol j .
Then a simple invocation of FA(〈pol1, . . . , polj〉, l , ds) gives
us exactly what we need.

In case l is referring to pol , the evaluation of l is guar-
anteed. We just need to ensure that the evaluation of pol
returns a member of ds. The pseudocode initializes a for-
mula φ to ⊥ (the boolean constant false). The intention
is that this formula will be a disjunction of further subfor-
mulas. As the construction progresses, more disjuncts will
be put into the disjunction, and φ will be returned when
the construction is complete. The first nested if builds dis-
juncts that account for pol returning a non-n member of ds.
The second nested if builds disjuncts that account for pol
returning n (in case the latter is a member of ds).



5.5 Compiling Majority Voting Algorithms
In [10], Bruns and Huth give a brute force SAT encoding

of policies involving majority voting. The compilation tech-
niques presented in the previous subsections can be applied
to produce a brute-force compilation for the three majority-
voting PCAs smv, amv and spmv. Rather than detailing the
compilation here, we discuss below the problem of such an
encoding.

Majority-voting PCAs consider the number of subpolicies
returning a decision when a final decision is computed. Con-
sider as an example the PCA policy amv(pol1, . . . , poln). A
final decision of p is returned if at least k = bn

2
c+1 subpoli-

cies return p. A brute-force encoding will have to formu-
late a disjunction of k sub-formulas, with each sub-formula
representing the condition under which one of the

(
n
k

)
com-

binations of subpolicies return p. So the size of the out-
put formula produced by such an encoding will be at least(
n
k

)
= Ω(2

n
2 ).

The number of combinations that need to be generated
by smv, amv and spmv are respectively Ω(2n), Ω(2

n
2 ) and

Ω(( 3
2
)
2×n
3 ). This exponential growth in the size of the out-

put formula underlines the need for a more compact encod-
ing of DIC satisfiability, a topic to which we now turn.

6. REDUCTION TO PBS
A more compact encoding of DIC satisfiability can by ob-

tained by PBS. This section begins with an introduction of
PBS, and then proceeds to present the compilation tech-
niques behind our DIC2PBS compiler.

6.1 Pseudo Boolean Satisfiability
A pseudo boolean variable is an integer variable that

can be assigned a value of 0 or 1. A (linear) pseudo boolean
constraint has one of the following general forms.

a1y1 + a2y2 + . . .+ anyn ≤ b
a1y1 + a2y2 + . . .+ anyn = b

a1y1 + a2y2 + . . .+ anyn ≥ b

where ai’s and b are integer constants, and yi’s are pseudo
boolean variables. A pseudo boolean constraint set is a
finite set of pseudo boolean constraints. An assignment of 0
or 1 to each variable appearing in the constraint set is called
a variable assignment . If the variable assignment satisfies
all the constraints in the constraint set, then it is a solution
to the constraint set. A constraint set is satisfiable iff it has
a solution. Pseudo boolean satisfiability (PBS), that is, de-
ciding if a given pseudo boolean constraint set is satisfiable,
is known to be NP complete.

6.2 The DIC2PBS Algorithm
We again assume that the underlying access control sys-

tem is uniform. (Non-uniform systems can be handled in
exactly the same way as discussed in §5.2.) We devised a
compilation algorithm, DIC2PBS, that reduces a DIC satis-
fiability instance to a PBS instance. The request predicates
in the DIC query appear as pseudo boolean variables in the
PBS instance.

We define further notions before presenting DIC2PBS.
Suppose CS is a satisfiable pseudo boolean constraint set,
and x is a pseudo boolean variable that appears in CS .
Then the pair (CS , x) is called an instrumented constraint
set . That CS is satisfiable is already given; the question is

whether there exists a solution to CS that assigns 1 to x.
An instrumented constraint set is used for representing a
boolean condition: the condition holds iff there exists a so-
lution to CS such that x is set to 1.

The input and output of DIC2PBS is given below.

Input A policy pol , a label l , and a set ds of decision values,
such that DIC (pol , l , ds) is a well-formed DIC query.

Output An instrumented constraint set (CS , x) such that:

• The request predicates appearing in pol will appear in
CS as pseudo boolean variables. Let RV be the set of
variables in CS that correspond to request predicates.
Let AV be the rest of variables in CS .

• x ∈ AV .

• Every variable assignment for the variables in RV can
be extended to a solution of CS .

• Suppose σ is a variable assignment for the request
predicates in pol . If σ satisfies the input DIC query,
then every extension of σ to a solution of CS will assign
1 to x. If σ does not satisfy the input DIC query, then
every extension of σ to a solution of CS will assign 0
to x. Consequently, the input DIC query is satisfiable
iff there is a solution for CS for which x is set to 1.

Suppose the instrumented constraint set (CS , x) is returned
by DIC2PBS. Consider the pseudo boolean constraint set
CS ′ = CS ∪ {x = 1}. The constraint set CS ′ is satisfiable
iff the input DIC query is satisfiable.

6.3 Compiling Majority-Voting PCAs
To demonstrate the compactness of the PBS encoding, we

here outline the compilation for the query DIC (pol , l , ds),
where:

• pol = smv(pol1, . . . , poln),

• l = root(pol), and

• ds = {p}.

Recall that the simple majority voting PCA (smv) returns
p iff the number of subpolicies returning p is strictly larger
than the number of subpolicies returning d. The compila-
tion proceeds in three steps.

1. For 1 ≤ i ≤ n, let (CSp
i , x

p
i ) be the return value of

DIC2PBS(pol i, root(pol i), {p}). (That is, (CSp
i , x

p
i )

captures the condition that pol i evaluates to p.)

2. For 1 ≤ i ≤ n, let (CSd
i , x

d
i ) be the return value of

DIC2PBS(pol i, root(pol i), {d}). (That is, similar to
Step 1, the variable xdi will assume the value 1 iff pol i
evaluates to d.)

3. Return (CS , y), where y is a fresh variable, and CS is
the union of the following three sets.

(a) CSp
1 ∪ . . . ∪ CSp

n,

(b) CSd
1 ∪ . . . ∪ CSd

n, and



(c) the set containing the following two constraints:

n∑
i=1

xpi −
n∑
i=1

xdi ≥ y + (1− y)× (−n) (2)

n∑
i=1

xpi −
n∑
i=1

xdi ≤ y × n (3)

To understand Step 3, note that
∑n
i=1 x

p
i is the number of

subpolicies returning p,
∑n
i=1 x

d
i is the number of subpoli-

cies returning d, constraint (3) forces y to 1 when
∑n
i=1 x

p
i >∑n

i=1 x
d
i , and constraint (2) forces y to 0 when

∑n
i=1 x

p
i ≤∑n

i=1 x
d
i .

Note that the growth in size of the output is polynomial
rather than exponential.

The compilation of other cases of majority-voting PCAs
are similar. For details please consult the companion tech-
nical report [6].

6.4 Compiling the Rest of the Policy Language
While PBS provides a more compact encoding for majority-

voting PCAs, the compilation strategy of DIC2SAT for con-
ditional policies and standard PCA policies can be reused
as is in DIC2PBS. The role of a propositional formula in
DIC2SAT is now assumed by an instrumented constraint
set in DIC2PBS. DIC2SAT constructs boolean combina-
tions of formulas returned by recursive calls. Therefore, for
DIC2PBS, we need a way to formulate instrumented con-
straint sets that express the conjunction, disjunction and
negation of boolean conditions encoded as instrumented con-
straint sets.

In the following, we present two algorithms, AtLeast and
AtMost , that can be used for encoding boolean combina-
tions.

Suppose 〈(CS1, x1), . . . , (CSn, xn)〉 is a non-empty se-
quence of instrumented constraint sets (with distinct vari-
ables x1, . . . , xn). Suppose further than m is a non-negative
integer. The function AtLeast(〈(CS1, x1), . . . , (CSn, xn)〉,m)
returns an instrumented constraint set (CS , y). The variable
y is a fresh variable. The constraint set CS contains all the
constraints in CS1 ∪ CS2 ∪ . . .CSk, plus the following two
constraints.

n∑
i=1

xi ≥ y ×m (4)

n∑
i=1

xi ≤ y × n+ (1− y)× (m− 1) (5)

If
∑n
i=1 xi is at least m, then constraint (5) forces y to 1. If∑n

i=1 xi is smaller than m, then constraint (4) forces y to 0.
The intention is that, if each instrumented constraint set

(CS i, xi) represents a boolean condition, then the output
(CS , y) expresses the boolean condition that at least m of
the input variables (xi) are set to 1. The AtLeast function
can be used for encoding disjunction (with m set to 1) and
conjunction (with m set to n).

We also devised a function AtMost for ensuring that no
more than a certain number of conditions hold. This func-
tion can be used for encoding negation (with a single instru-
mented constraint set as input and with the threshold set to
zero).

In summary, with the use of instrumented constraint sets,
one can encode boolean combinations, and thus the rest of

the policy language can be compiled using exactly the same
compilation strategy previously used in DIC2SAT.

7. EMPIRICAL STUDY
This section reports an empirical study that was con-

ducted to compare the relative efficiency of testing DIC sat-
isfiability via the PBS encoding versus the SAT encoding.

7.1 Prototype Implementation
The DIC2SAT and DIC2PBS algorithms were implemented

in respectively 2210 and 1949 lines of Java code, among
which 1176 lines are shared between the two implementa-
tions.

The DIC2SAT implementation returns the abstract syn-
tax tree of a propositional formula. It further performs a
post-processing step to convert the generated formula into
CNF form. This transformation is based on the Tseitin
transformation [30]. The CNF formula is then fed to the
MiniSat Solver [12, 2]. The MiniSat Solver is an open-
source SAT solver implemented in C++. The conversion
to CNF is necessary because MiniSat expects its input in
CNF. The solver reports the satisfiability of its input, and
the time in seconds taken to determine satisfiability.

The DIC2PBS implementation constructs an instrumented
constraint set (CS , x) as specified in §6. It then passes the
constraint set CS ∪{x = 1} to the MiniSat+ Solver [13, 1],
which is an open-source PBS solver implemented in C++.
Again, the solver reports satisfiability and timing in seconds.

7.2 Experiment Setup

Overall Design.
Random instances of DIC queries were generated for vari-

ous ranges of policy size. For each randomly generated DIC
query, the aforementioned DIC2SAT and DIC2PBS imple-
mentations were invoked to compile the DIC query into a
corresponding SAT and PBS instance. MiniSat and Min-
iSat+ were invoked to solve that instance. The average
compile time and the average solver time for each size range
is computed. Details are given in the following.

Hardware.
The experiment was conducted on a High Performance

Computing Unix server, named BigBox, at the University
of Calgary. The server features a 16-core processor and 128
GB RAM. A total of 10 GB RAM has been allocated to the
Java Virtual Machine (JVM) for this experiment.

DIC Instances.
Random instances of the atomic DIC query were gener-

ated according to the scheme sketched below. DIC instances
are generated for different policy sizes, ranging from 3 to 300.
We divide the size range into intervals. The first interval is
3–20. Thereafter, each interval covers 20 policy sizes, such
that the last interval is 281–300. A total of 50 random DIC
instances were generated for each interval.

Generation of DIC Instances.
Each randomly generated DIC instance has the form (pol ,

root(pol), ds), where pol is a policy, and ds is a non-empty
subset of {p,d, i,n}. Each of the 15 possible non-empty
subsets is selected with equal probability.
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Figure 1: Comparison of Percentage of Handled In-
stances by DIC2SAT and DIC2PBS.

Given a size parameter n, a random policy of size n is gen-
erated using the algorithm PolGen in Appendix B, with mi-
nor variations to be discussed below. The policies generated
by PolGen contains both standard as well as majority-voting
PCAs. We adapt PolGen so that the top-level AST node
of the generated policy must of the form pca(pol1, . . . , polk)
(i.e., it can be neither an atomic nor conditional policy). In
addition, pca must be one of the three majority-voting algo-
rithms (each chosen with probability 1/3). Note that these
restrictions apply only to the top-level AST node. The other
subpolicies are generated with the probability distribution
specified in Appendix B, and thus they contain either stan-
dard or majority-voting PCAs.

We introduced the above bias to the top-level AST node
because we want to compare the relative performance of the
two encodings in the case of majority-voting PCAs.

Time Out.
During pilot runs of the experiment (with a less capable

hardware environment), we noticed that DIC2SAT would
completely exhaust its heap space when dealing with DIC
queries with large SAT encodings, resulting either in an out-
of-memory error (usually accompanied by numerous invoca-
tions of the garbage collector), or in thrashing of memory
pages. In either cases, the compile time is either unavailable
or prohibitively large. To prevent this from happening in the
real experiment, we set a time-out bound of 15 minutes for
the compile time. If a DIC query can be compiled within the
time-out bound, then that query is said to be “handled” by
the compiler. We recorded the percentage of randomly gen-
erated DIC queries that were successfully handled by each
of DIC2SAT and DIC2PBS.

Measurements.
The following four measurements were made for each ran-

domly generated DIC instance that could be properly han-
dled by a compiler within the time-out bound.

• CT-SAT (resp. CT-PBS) is the time in seconds to
compile a DIC query to a SAT (resp. PBS) instance,
using the DIC2SAT (resp. DIC2PBS) implementation.

• ST-SAT (resp. ST-PBS) is the time in seconds taken
by the MiniSat SAT solver (resp. MiniSat+ PBS
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Figure 2: Comparison of Average Compile Times of
DIC2SAT and DIC2PBS.
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Figure 3: Comparison of Average Solver Times of
SAT and PBS Instances.

solver) to determine the satisfiability of the compiled
SAT (resp. PBS) instance.

CT-SAT and CT-PBS were measured using JETM, the
Java Execution Time Monitor. ST-SAT and ST-PBS were
reported by MiniSat and MiniSat+.

7.3 Experiment Results
Figure 1 depicts, for each policy size interval, the percent-

age of DIC instances that were successfully handled by each
of DIC2SAT and DIC2PBS without triggering time out. The
vertical axis corresponds to percentages of handled DIC in-
stances, and the horizontal axis corresponds to policy size
intervals. In all input intervals, DIC2PBS handled more DIC
instances than DIC2SAT. For instance, DIC2SAT began not
to be able to handle all instances when policy size reaches 21.
After than point, percentage of handled instances dropped
to around 50% or below in the next few intervals. DIC2SAT
failed to handle any instances of size 201 or more. In con-
trast, DIC2PBS demonstrated a more graceful degradation.
The percentage of handled instances remains roughly 50%
even for input sizes of 181–200, and remains non-zero even
up to input sizes of 281–300. This is explained by noticing
that the SAT instances produced by DIC2SAT are much
bigger than those generated by DIC2PBS.

Figure 2 depicts the average compile time (i.e., CT-SAT
and CT-PBS), in seconds, for each policy size interval.
Note that as DIC2SAT failed to handle any DIC instances of
policy size 200 or above, the line for CT-SAT broke off after



that point. Except for very small DIC instances, CT-SAT
consistently exceeded CT-PBS. This, again, is explained
by difference in encoding size produced by the two com-
pilers. Note that the line for CT-PBS actually decreased
for large DIC instances. The reason is that, for bigger in-
put size, many of the difficult instances are not handled by
DIC2PBS, and it is likely that the remaining instances are
not particularly challenging.

Figure 3 depicts the average solver time (i.e., ST-SAT
and CT-PBS), in seconds, for each policy size interval.
Note that, if the DIC instance can be handled by the com-
piler, the solver time is actually insignificant.

8. CONCLUSION AND FUTURE WORK
The DIC analysis has been proposed as a white-box policy

analysis. We demonstrated both the wide range of applica-
tions of the analysis, as well as the feasibility of the analysis
via SAT and PBS encodings. Of particular interest is our
novel application of PBS to achieve a compact encoding for
policies containing majority-voting PCAs.

We are currently extending our work to adapt DIC anal-
ysis to Relationship-Based Access Control [15, 16, 9]. Re-
search challenges include the choice of request predicates as
well as formalizing their dependencies.
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APPENDIX
A. NP-HARDNESS OF DIC-SAT

To demonstrate the NP-hardness of DIC-SAT, we outline
below a reduction from monotone one-in-three 3SAT [28].

An instance of monotone one-in-three 3SAT problem is

similar to an instance of 3SAT, except that all literals are
positive. That is, every clause is a disjunction of three vari-
ables. Monotone one-in-three 3SAT decides whether there
exists a truth assignment that satisfies exactly one variable
in each of the clauses. The problem is known to be NP-
complete [28].

Given an instance of montone one-in-three 3SAT, φ =
C1 ∧ C2 ∧ . . . ∧ Ck, where each Ci is of the form xi1 ∨ xi2 ∨
xi3, we construct a corresponding DIC-SAT instance qφ =
DIC (pol , root(pol), {p}), where pol is defined as follows

amv(pol1, . . . , polk,

k − 1 times︷ ︸︸ ︷
deny, . . . , deny)

and each pol i is defined as follows

oa(xi1 → permit, xi2 → permit, xi3 → permit)

It is easy to see that qφ is satisfiable iff there is a truth
assignment that satisfies exactly one variable in each clause
of φ.

B. GENERATION OF RANDOM POLICIES
The following specifies an algorithm PolGen for generat-

ing a random policy of size n, with RP as the set of request
predicates. We write m as a shorthand for the size of RP .
Note that the policy returned PolGen does not contain >
and ⊥.
Algorithm PolGen(n,RP):

Case n = 1. Each of deny and permit is generated with prob-
ability 1/2.

Case n = 2. A conditional policy rp → pol will be gen-
erated. One of the m request predicates from RP is
selected to be rp, each with probability 1/m. Either
deny or permit is selected to be pol , each with proba-
bility 1/2.

Case n ≥ 3. Either a conditional policy rp → pol or a PCA
policy pca(pol1, . . . , polk) is generated, each with prob-
ability 1/2. The following specifies the procedure for
each of the two subcases.

Subcase rp → pol . One of themmembers of RP is se-
lected to be rp, with probability 1/m. The subpol-
icy pol is generated by a recursive call to PolGen(n−
1,RP).

Subcase pca(pol1, . . . , polk). Firstly, pca will be selected
from one of the seven combining algorithms (i.e.,
po, do, fa, oa, smv, amv, and spmv), each with prob-
ability 1/7. Secondly, we generate k and pol1, . . . ,
polk. To understand how this is done, we digress
to introduce the idea of compositions.
A composition of a positive integer n is a sequence
of positive integers n1, . . . , nk such that k ≤ n
and n = n1 + · · · + nk. There is a total of 2n−1

compositions. The composition with k = 1 is said
to be degenerate. So there is a total of 2n−1 − 1
nondegenerate compositions. See [27, §5.3.1] for an
algorithm for generating random compositions.
We randomly generate a nondegenerate composi-
tion of n− 1, so that each nondegenerate composi-
tion is generated with equal probability. Suppose
the selected composition is n1, . . . , nk. Then we
recursively invoke PolGen(ni,m) to generate pol i.


