
Relationship-Based Access Control Policies and Their
Policy Languages

Philip W. L. Fong Ida Siahaan
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

{ pwlfong, isrsiaha }@ucalgary.ca

ABSTRACT
The Relationship-Based Access Control (ReBAC) model was
recently proposed as a general-purpose access control model.
It supports the natural expression of parameterized roles,
the composition of policies, and the delegation of trust. Fong
proposed a policy language that is based on Modal Logic for
expressing and composing ReBAC policies. A natural ques-
tion is whether such a language is representationally com-
plete, that is, whether the language is capable of expressing
all ReBAC policies that one is interested in expressing.

In this work, we argue that the extensive use of what we
call Relational Policies is what distinguishes ReBAC from
traditional access control models. We show that Fong’s pol-
icy language is representationally incomplete in that certain
previously studied Relational Policies are not expressible in
the language. We introduce two extensions to the policy lan-
guage of Fong, and prove that the extended policy language
is representationally complete with respect to a well-defined
subclass of Relational Policies.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls

General Terms
Security, Language, Theory

Keywords
Access control policies, modal logic, policy languages,
relationship-based access control, social networks

1. INTRODUCTION
The advent of social computing introduces the world to

a new paradigm of access control, in which interpersonal
relationships are explicitly tracked by the protection system
for the purpose of authorization. Gates coined the term
Relationship-Based Access Control (ReBAC) to refer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’11, June 15–17, 2011, Innsbruck, Austria.
Copyright 2011 ACM 978-1-4503-0688-1/11/06 ...$10.00.

to this paradigm of access control [17]. In a typical ReBAC
system, the protection state consists of a knowledge base
of primitive relationships (e.g., friend) between individual
users [8], and an access control policy (e.g., friend-of-friend)
is expressed in terms of composite relationships induced by
the primitive relationships (e.g., friend ◦ friend).

While previously proposed ReBAC systems are designed
mostly for social computing applications [23, 9, 8, 34, 35, 16],
a formal ReBAC model was proposed recently as a general-
purpose access control model [15]. The model features poly-
relational social networks with asymmetric relations, as well
as a context-dependent authorization procedure that lim-
its the scope of relationships to their applicable contexts.
Fong articulates three benefits of the ReBAC paradigm in
general, and of his ReBAC model in particular. First, for-
mulating policies in terms of binary relationships between
users supports the natural expression of authorization deci-
sions that are based on the relative attributes of the accessor
as perceived by the resource owner (e.g., trust, professional
association, etc). Traditional access control systems base
their authorization decisions on some unary predicates of the
users (e.g., identities, roles, etc) that is defined by a central
authority. The limitations of such an approach becomes ev-
ident as notions such as parameterized roles [29] (or role
templates [19]) creep into RBAC systems: e.g., the param-
eterized role manager(john) signifies the role assumed by the
manager of John. In many emerging application domains,
such as social computing and Electronic Health Records Sys-
tems, in which the protection of user-contributed contents
is prominent, accessibility depends not on the intrinsic at-
tributes of the accessor, but on the relationship between the
accessor and the owner (e.g., the professional relationship)
[5, 30]. ReBAC provides natural support for such situations.
Second, relationship-based access control policies support a
richer form of policy composition. With policies that are
based on unary predicates, the only interesting form of pol-
icy composition would be boolean combinations (i.e., ∧, ∨,
¬), which can be captured readily by, say, a role hierarchy.
Binary relations, however, supports a much richer form of
composition, including relational composition (friend◦friend)
and transitive closure (friend+). Third, a composite binary
relation supports delegation of trust in a natural way: e.g.,
by adopting the policy friend-of-friend, I am delegating to
my friends to decide who can access.

Fong also proposed a policy language for expressing Re-
BAC policies [15]. The language is based on a basic modal
logic, and it has been shown to be capable of expressing com-
plex, composite relationships between an owner and an ac-

51

cessor, such as those found in an Electronic Health Records
(EHR) system [4]. One natural question to ask is whether
the policy language of Fong is representationally complete,
that is, whether it is capable of expressing all the ReBAC
policies we would like to express. In this work, we give a neg-
ative answer to the question, we extend the policy language
to cover its shortcomings, and we formally characterize the
expressive power of the extended policy language. In this
last respect, this research has close affinity to enforceability
research, as exemplified in [33, 26, 13, 21, 36, 27, 28], which
formally characterizes the structural relationships between
naturally occurring policy families, and the family of policies
enforceable by a given enforcement mechanism.

Our contributions are threefold:

1. A distinguished feature of ReBAC is its extensive use
of what has come to be known as relational policies
[1]. We demonstrate, in Section 2, that a number of
relational policies previously studied in the context of
Facebook-style Social Network Systems [16] cannot be
expressed in the policy language of Fong.

2. We introduce, in Section 3, two new features into the
ReBAC policy language, and demonstrate that the re-
sulting language is capable of expressing the above-
mentioned relational policies.

3. In Section 4, we formally characterize the expressive-
ness of the extended policy language by proving both
an “upper bound” and a “lower bound” for the family
of ReBAC policies expressible in the language. The
upper-bound result shows that, every policy express-
ible in the extended policy language belongs to the
family of owner-checkable policies. The lower-bound
result identifies a natural subclass of relational policies,
namely, finitary relational policies, that are provably
expressible in the extended language: the extended
language is representationally complete with respect
to finitary relational policies.

2. INADEQUACY OF B

This section gives an overview of the background on which
this work is based, and articulates the representational in-
completeness of the basic policy language of Fong [15].

2.1 Notation
Given a binary relation R ⊆ X×Y and individuals x ∈ X

and y ∈ Y , we write R(x, y) iff (x, y) ∈ R. We write 2X

for the powerset of X (i.e., the set of all subsets of X),
[X]k for the set of all subsets of X that have a cardinality
k, and [X]<ω for the set of all finite subsets of X. We
write f : X ⇀ Y whenever f is a function with a subset
of X as its domain and Y as its co-domain. We write ∅
for a function with an empty domain. Consider a function
f : X ⇀ Y and individuals x0 ∈ X and y0 ∈ Y . We write
f [x0 7→ y0] to denote the function f ′ : X ⇀ Y defined as
follows: f ′(x) = y0 if x = x0, but f ′(x) = f(x) if x 6= x0.

2.2 Social Networks and Relation Identifiers
We assume that an SNS defines a finite set I of relation

identifiers. Each identifier denotes a type of relationships
that is tracked by the system (e.g., parent-child, patient-
physician, etc). A typical member of I is denoted by i .

A social network is essentially a directed graph with mul-
tiple kinds of edges. While individuals are represented by
vertices, each kind of directed edges represents a distinct
type of relationship between users. Formally, a social net-
work G is a relational structure [6] of the form 〈V, {Ri}i∈I〉,
where:

• V is a finite set of vertices, each representing an indi-
vidual in the social network.

• {Ri}i∈I is a family of binary relations. The binary
relation Ri ⊆ V × V specifies the pairs of individuals
participating in relationship type i .

We write V (G) and Ri(G) respectively for the V and Ri

components of the social network G.
Standard graph-theoretic concepts apply to social net-

works in an expected manner. We outline a few to fix
thoughts. We write G ⊆ G′ whenever V (G) ⊆ V (G′) and
Ri(G) ⊆ Ri(G

′) for every i ∈ I. G is said to be a subgraph
of G′. Suppose U ⊆ V (G). We write G[U] to denote the
social network 〈U, {R′i}i∈I〉, where R′i = Ri(G) ∩ (U × U).
G[U] is said to be the subgraph of G induced by U . Two
social networks G, G′ are isomorphic iff there is a bijective
function π : V (G)→ V (G′) such that (u, v) ∈ Ri(G) when-
ever (π(u), π(v)) ∈ Ri(G

′). In this case, we write G ∼= G′,
and call π an isomorphism between G and G′.

Given a social network G, we define the acquaintance
graph acq(G) to be the simple graph 〈V (G), E〉, where
E = {{u, v} ∈ [V (G)]2 | ∃i ∈ I .(u, v) ∈ Ri(G)}. That is, an
acquaintance graph shares the same vertex set as the social
network, and there is an undirected edge between two dis-
tinct vertices in the acquaintance graph iff there is a typed,
directed edge between the same pair of vertices in the social
network. Note that, although loops may occur in the so-
cial network, the acquaintance graph is a simple graph, and
thus it contains no loops. The purpose for defining the ac-
quaintance graph is to reuse connectivity-related concepts
from standard graph theory. Specifically, notions such as
distance, connected-ness, and components can be applied to
a social network. For example, two vertices in a social net-
work G are said to be connected iff there is an undirected
path1 between them in acq(G); the distance between two
connected vertices in G is the length of the shortest path
between them in acq(G); an (extended) neighbourhood of
a vertex u in G is the set N∗G(u) of vertices connected to u in
acq(G); the component of G to which u belongs is the social
network CG(u), which is defined to be G[N∗G(u)]. Lastly, we
write CG(u; v) to denote the social network G[N∗G(u)∪{v}],
which is called an augmented component . The idea is to
form the component of G to which u belongs, but with the
augmentation of vertex v. If u and v are connected, then
CG(u) = CG(u; v). Otherwise, CG(u; v) contains CG(u) plus
an additional, isolated vertex v.

Suppose U is a countable set of user identifiers. We denote
by G(U , I) the set of all finite social networks defined for
user set U and relation identifier set I. That is, G(U , I) =
{〈V, {Ri}i∈I〉 | V ∈ [U]<ω, Ri ⊆ V × V }. G(U , I) contains
all the social networks with a vertex set that is a finite subset
of U . Since I is finite, such a social network has only finitely
many edges. Note that, although every member of G(U , I)
is finite in size, the size of such a member is not bounded.

1We consider a vertex to be connected to itself by a length-
zero path. Consequently, u is always a member of N∗G(u).

52

2.3 ReBAC Policies
In [15] a formal model of ReBAC is introduced. The state

of a ReBAC system is a collection of social networks, as de-
fined above. State transition involves the mutation of the
social networks (e.g., addition and deletion of relationship
edges). An access attempt involves an accessor requesting
access to a resource owned by an owner2. When an access
is attempted at a given state, the policy that controls the ac-
cessibility of the requested resource will be evaluated against
a certain social network induced by the current state. The
policy either allows or denies the request. In the following,
we formally specify what a ReBAC policy is.

A ReBAC policy defines a desired binary relation between
resource owners and resource accessors in the context of a
given social network. Suppose we are given a fixed set U of
users and a fixed set I of relation identifiers. A ReBAC pol-
icy is a family of binary relations over U , indexed by social
networks from G(U , I). More specifically, a policy is a func-
tion P : G(U , I) → 2U×U , such that P (G) ⊆ V (G) × V (G)
for every social network G ∈ G(U , I). Intuitively, a policy P
specifies, for each social network G, a binary relation P (G)
that relates each resource owner to those accessors that the
policy grants access. That is, (u, v) ∈ P (G) iff owner u
grants access to accessor v in the context of social network
G. Note that P (G) contains only finitely many pairs because
G has only finitely many vertices. Using the notation defined
in Section 2.1, we write P (G)(u, v) whenever (u, v) ∈ P (G).

In a typical ReBAC system, only a certain vocabulary of
ReBAC policies is supported. For example, in Facebook,
the policy vocabulary includes ReBAC policies such as me,
friend, friend-of-friend, everyone, etc. A resource owner will
adopt a supported policy from the policy vocabulary to pro-
tect a resource. The following are examples of ReBAC poli-
cies. They were previously proposed in [16] in the study
of Facebook-style Social Network Systems (FSNSs). They
have been adapted here as examples of ReBAC policies.

Example 1 (Distance). Suppose the set of relational
identifiers is I = {friend}. Suppose further that the relation
identified by friend is symmetric (but not necessarily irreflex-
ive). We call such social networks pseudo-Facebook social
networks (the friend relation of a genuine Facebook-style so-
cial network is irreflexive). Define the policy distk such that
distk(G)(u, v) iff u and v is at a distance k or less from
one another. This policy is a generalization of the friend-of-
friend policy in Facebook. Specifically, the distance between
two vertices is taken as a measure of the strength of trust
between two individuals.

Example 2 (Common Friends). Consider again
pseudo-Facebook social networks. Define the policy cfk such
that cfk(G)(u, v) iff (a) u = v, or (b) v is a neighbour of
u, or (c) there are k (or more) common neighbours between
u and v. Intuitively, access is granted to a stranger if k
friends of the owner witness to the trustworthiness of this
stranger. This policy is another generalization of the friend-
of-friend policy in Facebook. Specifically, the number of com-
mon neighbours is taken as a measure of the strength of trust
between two strangers. Having the trust level exceeding the
threshold k results in access granting.

2In [15], an access attempt also involves an access context.
We ignore the latter as it is irrelevant to this work.

Example 3 (Clique). Consider yet again pseudo-
Facebook social networks. Define the policy cliquek such that
cliquek(G)(u, v) iff (a) u = v, or (b) u and v belong to a
clique3 of size k (or more) in acq(G). Intuitively, access is
granted if the accessor and the owner belong to a close-knit
community of size k (or more). This policy is a generaliza-
tion of the friend policy in Facebook. Specifically, the size of
the largest common clique to which two neighbouring indi-
viduals belong is taken as a measure of the strength of trust
between them. Having a trust level exceeding the threshold k
results in access granting. Other notions of close-knit com-
munities [10], such as clans, plexes and cores, can also be
modelled in a similar way.

2.4 Relational Policies
Anwar et al. identify a family of policies, called relational

policies, the use of which distinguishes ReBAC from tra-
ditional access control paradigms [1]. Intuitively, a rela-
tional policy is special in two ways. First, a relational policy
does not base authorization decisions on the identities of the
owner or the accessor. Instead, only the topological struc-
ture the social network is analyzed for authorization. Sec-
ond, a relational policy specifies how the owner and the ac-
cessor shall be related in the social network (e.g., the owner
and the accessor are at a distance no more than k), rather
than individual properties of the owner or the accessor (e.g.,
the accessor has a vertex degree no less than k). These
two characteristics are captured in the following definitions,
which we generalized from those in [1].

Definition 4. A policy P is topology-based iff, for ev-
ery pair of isomorphic social networks G,G′ ∈ G(U , I) with
isomorphism π : V (G) → V (G′), we have (u, v) ∈ P (G)
whenever (π(u), π(v)) ∈ P (G′).

In short, a topology-based policy depends only on the topo-
logical information of the social network, but not on the
identities of the users.

The next definition characterizes policies that specify how
the owner and the accessor are related to one another.

Definition 5. A policy P is local iff, given G ⊆ G′ and
u, v ∈ V (G) for which (u, v) ∈ P (G)\P (G′) ∪ P (G′)\P (G),
there exists i ∈ I such that Ri(G

′)\Ri(G) contains a pair
(u′, v′) for which each of u′ and v′ is connected to each of u
and v in G′.

The intuition of the definition is the following. Suppose P
is a local policy. Suppose further that the authorization
decision of P is altered for a pair of individuals (u, v) after
one adds vertices and edges into the social network G to
obtain social network G′. Then G′ must have received a
new edge (u′, v′) of some relationship type i , such that each
of u′, v′ is connected to each of u, v. In short, adding vertices
or edges outside of the shared component of the owner and
the accessor never alters the authorization decision of a local
policy. Put more succinctly, the ends of every edge that has
an influence on authorization decisions must connect both
the owner and the accessor. That is, such an edge must
contribute to the“connectedness”between the owner and the
accessor. In this way, we capture the intuitive requirement
that the policy must specify how the owner and the accessor

3A clique is a complete subgraph. Here we mean that u and
v are part of a complete subgraph of the social network.

53

are related to one another, rather than specifying individual
graph properties of the owner or the accessor.

Definition 6. A policy is relational iff it is both topol-
ogy based and local.

Note that the three example policies (i.e., distance, common
friends and cliques) are all relational policies.

2.5 The ReBAC Policy Language B

Fong proposed a policy language for expressing ReBAC
policies [15]. We call his language B to differentiate it from
the extended language E to be presented in the sequel. The
language B is a basic modal logic [6]. Each formula in B
expresses a ReBAC policy: i.e., a desirable relationship be-
tween two individuals in a social network. The syntax of a
B formula, which is based on a set I of relation identifiers,
is given below4:

φ, ψ ::= > | a | ¬φ | φ ∧ ψ | 〈i〉φ | 〈−i〉φ

where i ∈ I is a relation identifier.
A policy (i.e., a formula) φ is interpreted in the context of

a social network G ∈ G(V, I) and individuals u, v ∈ V (G).
Specifically, the semantics of B is given in a satisfiability re-
lation G, u, v |=B φ, which asserts that, in social network G,
owner u and accessor v possess the relationship prescribed
by policy φ.

• G, u, v |=B >.

• G, u, v |=B a iff u = v.

• G, u, v |=B ¬φ iff it is not the case that G, u, v |=B φ.

• G, u, v |=B φ∧ψ iff both G, u, v |=B φ and G, u, v |=B ψ.

• G, u, v |=B 〈i〉φ iff there exists u′ ∈ V (G) such that
(u, u′) ∈ Ri(G) and G, u′, v |=B φ.

• G, u, v |=B 〈−i〉φ iff there exists u′ ∈ V (G) such that
(u′, u) ∈ Ri(G) and G, u′, v |=B φ.

Intuitively, > is a relationship satisfiable by any pair of indi-
viduals; a asserts that the accessor is the owner; 〈i〉φ asserts
that the owner has an i-neighbour that is related to the ac-
cessor in the manner specified by φ; 〈−i〉φ asserts that the
owner is the i-neighbour of some individual that is related
to the accessor in the manner specified by φ. The difference
between 〈i〉 and 〈−i〉 is that the former traverses along the
direction of an edge, while the latter traverses against the
direction of an edge. Standard derived forms are defined:

⊥ = ¬> [i]φ = ¬〈i〉 ¬φ
φ ∨ ψ = ¬(¬φ ∧ ¬ψ) [−i]φ = ¬〈−i〉 ¬φ

Intuitively, [i]φ asserts that every i-neighbour of the owner
is related to the accessor in the manner specified by φ.

A ReBAC policy P is definable in B iff there is a B for-
mula φ such that P (G)(u, v) whenever G, u, v |=B φ. It has
been demonstrated that many complex relational policies
are definable in B. Specifically, Fong [15] was able to use B

4The modal operator 〈−i〉 is not found in [15]. Instead, it
is assumed in [15] that social networks are “inverse-closed.”
The two achieve the same effect: the authorization proce-
dure can freely traverse either along or against the direction
of an edge.

to capture all the trust delegation policies identified in the
Electronic Health Records case study developed by Becker
and Sewell [4]. We illustrate the usage of B with a few ex-
amples. Consider social networks with relation identifiers
I = {parent, child, spouse, sibling}, which signify respectively
the child-parent relation, its inverse, the symmetric spouse-
spouse relation, and the reflexive symmetric sibling-sibling
relation. The following policies are definable in B:

“Grant access to grand parents.” The B formula that ex-
presses this policy is “〈parent〉 〈parent〉 a”.

“Grant access to a sibling who is not married.” The B
formula that expresses this policy is:

〈sibling〉 (a ∧ [spouse]⊥)

“Grant access if accessor is the only child of the owner.”
A formula to express the policy is:

〈child〉 a ∧ [child] a

2.6 Limitations of B

B is not without limitations. It turns out that some rela-
tional policies are not definable in B.

Example 7. Assume the setting of Example 2. The pol-
icy cfk, for every k > 2, is not definable in B. The reason
is that the models for these policies are bisimilar to cf1, and
thus indistinguishable by a formula of B [6]. For instance,
consider cf2. A naive attempt to express cf2 in B yields the
following formula:

a ∨ 〈friend〉 a ∨ (〈friend〉 〈friend〉 a ∧ 〈friend〉 〈friend〉 a)

The intention is that the disjuncts “a” and “〈friend〉 a” re-
spectively express requirements (a) and (b) in Example 2,
while the third disjunct expresses requirement (c). Suppos-
edly, each of the two conjuncts “〈friend〉 〈friend〉 a” identifies
a common friend of the owner and the accessor. Unfor-
tunately, this formula does not express cf2. Consider the
scenario in which the owner and the accessor share exactly
one common neighbour. Since conjunction is idempotent,
the formula above is satisfied even though cf2 should fail.

In the formula above, the original intention is that the two
conjuncts specify two disjoint sets of intermediaries (i.e.,
two distinct common friends). Unfortunately, boolean con-
junction fails to capture this requirement. This illustrates
the need for an ReBAC policy language to provide a non-
idempotent version of conjunction for specifying disjoint sets
of intermediaries.

Example 8. The policy cliquek is not definable in B, for
every k > 2. For instance, consider clique3. A naive attempt
to express the policy is the following formula:

a ∨ (¬a ∧ 〈friend〉 a ∧ 〈friend〉 (¬a ∧ 〈friend〉 a))

The intention is that the disjunct “a” expresses requirement
(a) in Example 3, while the second disjunct expresses require-
ment (b). In the second disjunct, we assert that the owner is
not the accessor (¬a), the accessor is a friend of the owner
(〈friend〉 a), and the accessor is a friend of a friend of the
owner (〈friend〉 (¬a ∧ 〈friend〉 a)). Yet, the following two so-
cial networks are not distinguishable by B formulas.

•

��u�� //v u //

??

v

54

Specifically, the sub-formula “〈friend〉 (¬a ∧ 〈friend〉 a)” fails
to ensure that the owner (u) and the intermediary (•) are
two distinct vertices.

The above example illustrates an important shortcoming of
the policy language B, namely, its lacking a vertex identi-
fication mechanism: i.e., the ability to name vertices and
subsequently test if they are revisited.

As pointed out in [16], relational policies such as cfk and
cliquek are rich in social significance, and thus the lacking of
disjoint intermediaries and vertex identification in B needs
to be remedied.

3. THE REBAC POLICY LANGUAGE E

In the previous section, we identified two limitations of
the policy language B, namely, disjoint intermediaries and
vertex identification. We now look at how the two features
can be incorporated into a ReBAC policy language. The
result is an extended ReBAC policy language we call E.

Syntax.
As before, E is defined in the context of a countable set U

of vertices and a countable set I of relation identifiers. We
assume that there is a countably infinite set P of proposi-
tional symbols. We write p and q for typical members of P.
We also assume that P contains a distinguished member a.

The syntax of E is given below:

φ, ψ ::= > | p | ¬φ | φ ∧ ψ | 〈i〉φ | 〈−i〉φ | @p.φ | φ⊗ ψ

where p ∈ P is a propositional symbol, and i ∈ I is a rela-
tion identifier. Intuitively, @p.φ introduces a propositional
symbol for identifying the owner. Specifically, the propo-
sition symbol p can be used inside φ to test if a vertex is
the owner. The formula φ⊗ ψ holds whenever the relation-
ships prescribed by φ and ψ both hold between the accessor
and the owner, but the set of intermediary vertices used for
establishing these two relationships are disjoint. A more
precise definition of the semantics of these new constructs is
given below.

The notion of free and bound occurrences of proposi-
tional symbols can be defined in a standard way. For exam-
ple, in the formula (p ∧ @q.〈i〉 q), the propositional symbol
p occurs free but q occurs bound. A formula is a-closed
if no propositional symbol other than a occurs free in the
formula. Otherwise the formula is a-open .

Semantics.
Given a social network G, a function Σ : P ⇀ V (G) is

called a binding environment5. A binding environment
interprets a propositional symbol as a vertex.

The semantics of E is defined via the satisfaction relation
G, u, v |=E φ, which is specified in terms of an auxiliary
relation G,Σ, u
 φ, where Σ is a binding environment.

• G,Σ, u
 >.

5Note that our binding environment plays the role of a valua-
tion or labelling function in the standard literature of modal
logic [6], in which a valuation is a function with signature

P → 2V (G), and a labelling function is a function with sig-
nature V (G) → 2P . In our logic, a propositional symbol
is interpreted as a single vertex. We therefore adapt the
definition to ease presentation.

• G,Σ, u
 p iff Σ(p) = u.

• G,Σ, u
 ¬φ iff it is not the case that G,Σ, u
 φ.

• G,Σ, u
 φ ∧ ψ iff both G,Σ, u
 φ and G,Σ, u
 ψ.

• G,Σ, u
 〈i〉φ iff there exists u′ ∈ V such that (u, u′) ∈
Ri and G,Σ, u′
 φ.

• G,Σ, u
 〈i〉φ iff there exists u′ ∈ V such that (u′, u) ∈
Ri and G,Σ, u′
 φ.

• G,Σ, u
 @p.φ iff p 6= a and G,Σ[p 7→ u], u
 φ.

• G,Σ, u
 φ⊗ ψ iff the following holds:

Let v be Σ(a). There exists two subsets V1

and V2 of V (G), such that V (G) = V1 ∪ V2,
V1 ∩ V2 = {u, v}, and both G[V1],Σ, u
 φ
and G[V2],Σ, u
 φ hold.

Lastly, G, u, v |=E φ iff G, ∅[a 7→ v], u
 φ.

Derived Forms.
We define the derived forms ⊥, φ ∨ ψ, [i]φ and [−i]φ as

before. In addition, we introduce the following derived form:

φ⊕ ψ = ¬(¬φ⊗ ¬ψ)

The connective ⊕ is the dual of ⊗. Specifically, G,Σ, u

φ⊕ ψ iff the following holds:

Let v be Σ(a). For every two subsets V1 and V2 of
V (G) such that V (G) = V1∪V2, V1∩V2 = {u, v},
either G[V1],Σ, u
 φ or G[V2],Σ, u
 φ holds.

In other words, G,Σ, u
 φ ⊕ ψ whenever, for every subset
V of V (G) such that {u,Σ(a)} ⊆ V , either G[V],Σ, u
 φ
or G[V],Σ, u
 φ holds.

Definability.
A policy P is definable in E iff there is an a-closed

formula φ in E such that P (G)(u, v) whenever G, u, v |=E φ.

Examples.
The following examples illustrate how the new features of

E address the needs for disjoint intermediaries and vertex
identification.

Example 9. The policy cf2 is definable in E, via the fol-
lowing formula:

a ∨ 〈friend〉 a ∨ ((〈friend〉 〈friend〉 a)⊗ (〈friend〉 〈friend〉 a))

Example 10. The policy clique3 is definable in E, via the
following formula:

a ∨ (¬a ∧ 〈friend〉 a ∧@p.〈friend〉 (¬p ∧ ¬a ∧ 〈friend〉 a))

4. EXPRESSIVENESS OF E

It has been pointed out in Section 2.4 that ReBAC is dis-
tinguished by its extensive use of access control policies are
relational : i.e., authorization decisions consume only topo-
logical information of the social network (topology-based),
and express how the owner and the accessor are related in
the social network (local). In this section, we will examine
the expressiveness of E by identifying what family of rela-
tional policies are definable in E. We will first establish, in

55

Section 4.1, an “upper bound” of the policies definable in
E: i.e., identifying a natural family of ReBAC policies to
which every E-definable policy belongs. We will then estab-
lish, in Section 4.2, a “lower bound” of the expressiveness of
E. That is, we will identify a natural subclass of relational
policies that are definable in E. In other words, we estab-
lish the representational completeness of E with respect to
that subclass of relational policies. We conclude the section
with a structural analysis of the hierarchy of policy families
identified along the way (Section 4.3).

4.1 Owner-checkable policies
We begin our discussion with the family of topology-based

policies that can be enforced by an agent that traverses a
neighbourhood of the owner.

Definition 11. A topology-based policy P is owner-
checkable (OC) iff P (G)(u, v) ⇔ P (CG(u; v))(u, v). A
topology-based policy P is accessor-checkable (AC) iff
P (G)(u, v)⇔ P (CG(v;u))(u, v).

Intuitively, the authorization decision of an OC policy can
be determined by examining only the component of social
network in which the owner is located, plus the additional
knowledge of whether the accessor is in that component
(CG(u; v)). That is, even if there may be vertices and edges
outside of the owner’s component, they never influence the
authorization decision. The intuition of an AC policy is
analogous.

An OC policy is special in two ways. Firstly, an OC pol-
icy presents a tractability advantage. In particular, an OC
policy can be evaluated by a “crawler” that traverses only
the owner’s component (i.e., neighbourhood), starting at the
owner vertex. Venturing outside of the owner’s component
is never necessary. An AC policy shares the same tractabil-
ity advantage if the traversal begins at the accessor’s vertex.
Secondly, an OC policy provides a security advantage. Al-
though an AC policy provides the same tractability advan-
tage as an OC policy, only an OC policy provides this form
of security advantage. The checking of an AC policy can be
conducted by a “crawler” that traverses the accessor’s com-
ponent, starting at the accessor. Yet, an AC policy may lead
to a denial-of-service attack by the accessor. Specifically, the
accessor may carefully craft its neighbourhood in such a way
that would lead the “crawler” (i.e., the authorization proce-
dure) to explore a graph neighbourhood that is expensive
to traverse (with respect to the policy in question). Even
if access is not granted, an accessor may repeatedly request
access, leading the authorization procedure to waste pre-
cious computational resources. An OC policy prevents this
form of manipulation, in the sense that the accessor cannot
dictate the computational cost of authorization.

Relational policies are related to OC and AC policies.

Proposition 12. A relational policy is both OC and AC.

(A proof of this proposition can be found in Appendix A.)
The following theorem represents an“upper bound” to the

expressiveness of E.

Theorem 13. A policy definable in E is OC.

(A proof of this theorem can be found in Appendix A.)
A corollary of Theorem 13 is that, if a policy can be ex-

pressed as an E formula, then there is no need for an ad-
ditional syntactic analysis to ensure that the policy is OC.

This contrasts with the use of alternative policy languages
(e.g., Datalog), whereby an additional analysis is needed to
ensure the policy is indeed OC.

4.2 Finitary Relational Policies
We now turn to the “lower bound” of E’s expressiveness.

The authorization decisions of a ReBAC policy can be de-
termined in two ways. One is to grant access when certain
relationships are present in the social network, the other is
to grant access when certain relationships are absent. The
evaluation of a policy of the second kind requires complete
knowledge of the entire social network, while the evaluation
of a policy of the first kind requires only a fragment of the
social network to provide an existential proof of compliance.
The following definition formalizes the idea.

Definition 14. A policy P is monotonic iff G ⊆ G′

implies P (G) ⊆ P (G′).

That is, adding relationships into a social network never
reduces accessibility, and removing relationships never ex-
pands accessibility. Such a policy makes authorization deci-
sions by verifying the presence of relationships rather than
the absence of relationships. The notion of monotonicity was
originally proposed in [16] for Facebook-style Social Network
Systems. Here we generalize the notion for ReBAC policies.

Adopting policies that are exclusively monotonic enables a
decentralized implementation of ReBAC in the style of trust
management systems [7, 37, 25, 24]. Specifically, an accessor
who seeks authorization may present to the reference mon-
itor a fragment of the social network (e.g., a collection of
certificates of relationships) as a proof of compliance. We
are therefore interested in policies that are both monotonic
and topology based.

Definition 15. A policy P is positive iff it is both topol-
ogy based and monotonic.

We review here a characterization of positive policies. Our
characterization is phrased in terms of birooted graphs.

Definition 16. A birooted graph G(u,v) is a triple
〈G, u, v〉 such that G is a social network and u, v ∈ V (G).
The vertices u and v are the roots of G(u,v), and they need
not be distinct. Specifically u is the owner root, and v
is the accessor root. We write B(S, I) = {G(u,v) | G ∈
G(S, I), u, v ∈ V (G)} to denote the set of all birooted graphs
based on vertex set S. G′(u,v) is a (birooted) subgraph of
G(u,v), written as G′(u,v) ⊆ G(u,v), iff G′ ⊆ G. (Note the
matching roots.) We say that G(u,v) and G′(u′,v′) are iso-
morphic iff there exists an isomorphism π : V (G)→ V (G′)
between social networks G and G′, such that π(u) = u′ and
π(v) = v′. In this case we write G(u,v)

∼= G′(u′,v′). We also
write G′(u′,v′) . G(u,v) whenever there is a birooted graph
G′′(u,v) such that G′(u′,v′)

∼= G′′(u,v) and G′′(u,v) ⊆ G(u,v).

We are now ready to state the characterization theorem for
positive policies.

Definition 17. The policy positively induced by a set
B of birooted graphs is the policy P+

B for which

P+
B (G)(u, v) iff ∃G′(u′,v′) ∈ B . G′(u′,v′) . G(u,v)

Intuitively, the birooted graph set B specifies topological
“patterns”that must exist between an owner and an accessor

56

in the social network in order for access to be granted by the
policy. It was proven in [1] that every positive policy can
be characterized by a set of birooted graph patterns. The
result was originally established for Facebook-style Social
Network Systems. Here, we adapt the result to the more
general context of ReBAC.

Theorem 18. Every positive policy is positively induced
by a set of birooted graphs. The minimal set of birooted
graphs to positively induce a given policy P is defined to be
the set B for which there exists no proper subset of B that
also positively induces P . This minimal set does not contain
a pair of distinct birooted graphs G(u,v) and G′(u′,v′) such
that G(u,v) . G′(u′,v′). Such a minimal set always exists,
and is unique up to birooted graph isomorphism.

Intuitively, every positive policy can be uniquely character-
ized by a smallest set of birooted graph patterns.

We are particularly interested in a special kind of positive
policies.

Definition 19. A positive policy P is finitary iff the
minimal set of birooted graphs to positively induce P is a
finite set.

Finitary policies can be characterized by a finite number of
birooted graphs. While positive policies can be evaluated
by checking for the presence of relationships, the finitary
requirement ensures that only a bounded number of such
relationships need to be enumerated. This requirement is
computationally significant in two ways. Firstly, this trans-
lates to a bound in the search effort for a centralized im-
plementation of the authorization procedure, for the search
tree now has bounded depth. Secondly, in a distributed im-
plementation of ReBAC, this constraint implies that a proof
of compliance consists of a bounded number of certificates.

We are now ready to state the main theorem of this work.

Theorem 20. Every finitary OC policy is definable in E.

The theorem provides a “lower bound” of what can be ex-
pressed in E. The proof of this theorem can be found in
Appendix A.

Recall that our core interest is in expressing relational
policies, rather than OC policies. The following corollary,
which follows directly from proposition 12, identifies a sub-
class of relational policies definable in E.

Corollary 21. Every finitary relational policy is defin-
able in E.

Note that all the three example policies (i.e., distance, com-
mon friends, and clique) are finitary relational policies.

We can further strengthen the above result. Suppose P1

and P2 are definable in E via the formulas φ1 and φ2. Con-
sider the policy P defined such that P (G) = P1(G)∩P2(G).
That is, P grants access whenever both P1 and P2 grant
access. It is easy to see that P is also definable in E, via the
formula φ1 ∧φ2. The same can be said about other boolean
combinations (disjunction and negation).

Corollary 22. The family of policies definable in E is
closed under boolean combinations. Consequently, boolean
combinations of finitary relational policies are definable in
E. Note that such boolean combinations of finitary relational
policies are still relational policies, although they are not nec-
essarily finitary.

This corollary gives us an easy extension of the definability
result in Corollary 21.

Figure 1: The hierarchy of policy families identi-
fied in this work: TB: topology-based policies; OC:
owner-checkable policies; Rel: relational policies;
Pos: positive policies; Fin: finitary policies; FR: fini-
tary relational policies.

4.3 Discussion
Figure 1 depicts the hierarchy of policy families identi-

fied in this section. Note that every inclusion in Figure 1
is proper. To demonstrate this, the following list states a
member policy for each set difference.

TB\(Pos ∪ OC): The social network contains no more than
k vertices (including the owner and the accessor).

Pos\Fin: The owner and the accessor are connected.

Fin\FR: The accessor has at least k neighbours.

OC\Rel: The owner has no more than k neighbours.

Rel\FR: The owner and the accessor are not connected.

5. RELATED WORK
The term Relationship-Based Access Control (ReBAC)

was first coined by Gates [17] when she articulated the need
for an access control paradigm that is based on interpersonal
relationships. A number of ReBAC models and/or systems
have been proposed for social computing applications [23, 9,
8, 34, 35, 16]. The targets of study include the distributed
evaluation of trust [9], the employment of semantic web tech-
nology to encode social networks and ReBAC policies [8],
the automatic generation of ReBAC policies [34], multiple
ownership of resources [35], the generalization of Facebook-
style Social Network Systems [16], and the characterization
of relational policies [1]. Fong advocates the employment of
ReBAC in application domains outside of social computing
[15], and demonstrates the utility and feasibility of doing
so by the specification of a general-purpose ReBAC model
and a ReBAC policy language. He points out that the var-
ious constructs in his ReBAC model arise naturally out of
the generalization of foundational concepts such as roles,
role hierarchy, sessions and constraints in Role-Based Access
Control (RBAC) [31, 12]. His work also raises the question
of representational completeness, which is the focus of this
work. The core contribution of this work is (a) demonstrat-
ing that Fong’s policy language fails to encode a number
of relational policies previously studied in [16], (b) incor-
porating the support of disjoint intermediaries and vertex
identification into a ReBAC policy language that is based
on modal logic, and (c) providing both an upper bound and

57

a lower bound to the family of policies expressible in the
extended policy language.

The question of representational completeness is related to
enforceability research [33, 26, 13, 21, 36, 27, 28]. The goal
of enforceability research is to establish the structural rela-
tionships between naturally occurring policy families (e.g.,
safety policies), and the family of policies enforceable by
a specific kind of enforcement mechanisms (e.g., program
monitors that have access only to the execution history).
Rather than relating policy families to enforcement mecha-
nisms, this work establishes upper bound and lower bound
for the family of policies definable in a policy language.

Policies such as cfk (for k > 2) are not definable in B.
The reason is that the models for these policies are bisimi-
lar to cf1, and thus indistinguishable by a formula of B [6].
Therefore, in E a new connective ⊗ is introduced to require
disjoint partitioning of the social network during a satisfia-
bility check (except for the accessor and the owner). This
approach is similar to manifold roles by Li et al. in RTT

[25]. The credential using ⊗ in RTT is a union of the sets
where the intersection of such sets is empty. The concept
of threshold structure by Li et al. in Delegation logic [24]
is also similar to ⊗. In a threshold structure, k out of N
principals are required, where each of the k is unique.

6. FUTURE WORK
Some extensions to the ReBAC model have been sug-

gested in [15]. We discuss in the following future directions
that are specific to ReBAC policy languages.

A natural future work is to improve the precision of the
characterization of policies definable in E. Specifically, there
is a “gap” between the “upper bound” and “lower bound”
presented in Section 4. As demonstrated in Section 4.3, the
inclusion of FR in OC is proper. It is desirable if one can close
the gap, and provide a precise identification of the family of
policies definable in E.

One of the motivations for designing a policy language
for ReBAC policies is to facilitate policy analysis. It has
been shown [14] that proper static analysis can be applied to
the configuration of Facebook-style Social Network Systems
to ensure the absence of Sybil attacks. It is interesting to
explore if this or other policy analyses can be translated
into an equivalent syntactic analysis for policies written in
a ReBAC policy language.

Both this work and [15] assume the ReBAC system tracks
relationships explicitly, and the relations are in turn iden-
tified by a fixed vocabulary of relation identifiers. This as-
sumption has made the design of rich policy languages pos-
sible. In some applications, however, the presence of a rela-
tionship is induced by complex external factors. For exam-
ple, consider a network consisting of users and devices such
as mobile phones, in which the presence of a relationship is
the result of the states of the mobile phones (e.g., battery
level) and their relative proximity. Rational modelling of
such external dependence would allow us to reuse ReBAC
and our policy languages even in these application domains.

Another future direction is to combine the strengths of
both RBAC and ReBAC, thereby allowing the access control
system to reason about both the relationships between indi-
viduals, and the hierarchical organization of user roles. One
possibility is to employ Description Logic (DL) technology
[2] as the basis of both the policy language and the autho-
rization engine. Highly related to modal logics [32], DL is a

mature technology, with language families of various levels
of tractability, and the support of efficient reasoners (e.g.,
RACER [20] and FaCT [22]). A previous work on applying
DL to access control is that of RelBAC [18, 38], in which
DL is employed to construct an access control model akin
to Domain-Type Enforcement (DTE) [3]. Further work is
needed to integrate ReBAC and RBAC in one model.

7. CONCLUSION
This work examined the relative expressiveness of two Re-

BAC policy languages. We began by demonstrating that
there are known relational policies, such as cfk and cliquek,
that cannot be expressed in the ReBAC policy language B.
We pointed out that the limitations were due to the lack of
support for disjoint intermediaries and vertex identification.
The two features were then incorporated into B, resulting
in an extended policy language E. We showed that ReBAC
policies definable in E are owner-checkable policies, a super-
set of relational policies. We also showed that every finitary
relational policy is definable in E, meaning that E is rep-
resentationally complete with respect to that policy family.
We have therefore identified a policy language that is repre-
sentationally adequate for expressing useful ReBAC policies.

Acknowledgements
This work is supported in part by an NSERC Discovery
Accelerator Supplements.

8. REFERENCES
[1] M. Anwar, Z. Zhao, and P. W. L. Fong. An access

control model for Facebook-style social network
systems. Tech. Rep. 2010-959-08, Dept. of Computer
Science, University of Calgary, AB, Canada, July 2010.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,
and P. F. Patel-Schneider, editors. The Description
Logic Handbook. Cambridge, 2007.

[3] L. Badger, D. F. Sterne, D. L. Sherman, K. M.
Walker, and S. A Haghighat. Practical domain and
type enforcement for UNIX. In Proceedings of the 1995
IEEE Symposium on Security and Privacy (S&P’95),
pages 66–77, Oakland, CA, USA, May 1995.

[4] M. Y. Becker and P. Sewell. Cassandra: Flexible trust
management, applied to electronic health records. In
Proceedings of the 17th IEEE Computer Security
Foundations Workshop (CSFW’04), Pacific Grove,
CA, USA, June 2004.

[5] K. Beznosov. Requirements for access control: US
healthcare domain. In Proceedings of the 3rd ACM
Workshop on Role-Based Access Control (RBAC’98),
page 43, Fairfax, VA, USA, October 1998.

[6] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic. Cambridge, 2001.

[7] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy (S&P’96), pages
164–173, Oakland, CA, USA, May 1996.

[8] B. Carminati, E. Ferrari, R. Heatherly,
M. Kantarcioglu, and B. Thurainsingham. A semantic
web based framework for social network access control.
In Proceedings of the 14th ACM Symposium on Access
Control Models and Technologies (SACMAT’09),
pages 177–186, Stresa, Italy, June 2009.

58

[9] B. Carminati, E. Ferrari, and A. Perego. Enforcing
access control in Web-based social networks. ACM
Transactions on Information and System Security,
13(1):1–38, October 2009.

[10] D. Chakrabarti and C. Faloutsos. Graph mining:
Laws, generators, and algorithms. ACM Computing
Surveys, 38, March 2006.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, 3rd
edition, 2009.

[12] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST standard for
role-based access control. ACM Transactions on
Information and System Security, 4(3):224–274, 2001.

[13] P. W. L. Fong. Access control by tracking shallow
execution history. In Proceedings of the 2004 IEEE
Symposium on Security and Privacy (S&P’04), pages
43–55, Oakland, CA, USA, May 2004.

[14] P. W. L. Fong. Preventing Sybil attacks by privilege
attenuation: A design principle for social network
systems. In Proceedings of the 2011 IEEE Symposium
on Security and Privacy (S&P’11), Oakland, CA,
USA, May 2011.

[15] P. W. L. Fong. Relationship-based access control:
Protection model and policy language. In Proceedings
of the First ACM Conference on Data and Application
Security and Privacy (CODASPY’11), pages 191–202,
San Antonio, Taxas, USA, February 2011.

[16] P. W. L. Fong, M. Anwar, and Z. Zhao. A privacy
preservation model for Facebook-style social network
systems. In Proceedings of the 14th European
Symposium on Research In Computer Security
(ESORICS’09), volume 5789 of LNCS, pages 303–320,
Saint Malo, France, September 2009. Springer.

[17] Carrie E. Gates. Access Control Requirements for
Web 2.0 Security and Privacy. In IEEE Web 2.0
Privacy and Security Workship (W2SP’07), Oakland,
CA, USA, 2007.

[18] F. Giunchiglia, R. Zhang, and B. Crispo. RelBAC:
Relation based access control. In Proceedings of the
Fourth International Conference on Semantics,
Knowledge and Grid (SKG’08), pages 3–11, Beijing,
China, December 2008.

[19] L. Giuri and P. Iglio. Role templates for content-based
access control. In Proceedings of the 2nd ACM
Workshop on Role-Based Access Control (RBAC’97),
pages 153–159, Fairfax, VA, USA, November 1997.

[20] V. Haarslev and R. Möller. RACER system
description. In Proceedings of the 1st International
Joint Conference on Automated Reasoning
(IJCAR’01), pages 701–705, Siena, Italy, 2001.

[21] K. W. Hamlen, G. Morrisett, and F. B. Schneider.
Computability classes for enforcement mechanisms.
ACM Transactions on Programming Langanguages
And Systems, 28(1):175–205, January 2006.

[22] I. R. Horrocks. Using an expressive description logic:
FaCT or fiction? In Proceedings of the 6th
International Conference on Principles of Knowledge
Representation and Reasoning (KR’98), pages
636–649, Trento, Italy, 1998.

[23] S. R. Kruk, S. Grzonkowski, A. Gzella, T. Woroniecki,
and H.-C. Choi. D-FOAF: Distributed identity

management with access rights delegation. In
Proceedings of the 1st Asian Semantic Web
Conference (ASWC’06), volume 4185 of LNCS, pages
140–154, Beijing, China, September 2006. Springer.

[24] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation
logic: A logic-based approach to distributed
authorization. ACM Transactions on Information and
System Security, 6(1):128–171, February 2003.

[25] N. Li, J. C. Mitchell, and W. H. Winsborough. Design
of a role-based trust-management framework. In
Proceedings of the 2002 IEEE Symposium on Security
and Privacy (S&P’02), pages 114–130, Berkeley,
California, USA, May 2002.

[26] J. Ligatti, L. Bauer, and D. Walker. Edit automata:
Enforcement mechanisms for run-time security
policies. International Journal of Information
Security, 4(1–2):2–16, February 2005.

[27] J. Ligatti, L. Bauer, and D. Walker. Run-time
enforcement of nonsafety policies. ACM Transactions
on Information and Systems Security, 12(3), 2009.

[28] J. Ligatti and S. Reddy. A theory of runtime
enforcement, with results. In Proceedings of the 15th
European Symposium on Research in Computer
Security (ESORICS’10), volume 6345 of LNCS,
Athens, Greece, September 2010. Springer.

[29] E. Lupu and M. Sloman. Reconciling role based
management and role based access control. In
Proceedings of the 2nd ACM Workshop on Role-Based
Access Control (RBAC’97), pages 135–141, Fairfax,
VA, USA, November 1997.

[30] L. Rostad and O. Edsberg. A study of access control
requirements for healthcare systems based on audit
trails from access logs. In Proceedings of the 22nd
Annual Computer Security Applications Conference
(ACSAC’06), Miami Beach, FL, USA, December 2006.

[31] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 19(2):38–47, February 1996.

[32] K. Schild. A correspondence theory for terminological
logics: preliminary report. In Proceedings of the 12th
International Joint Conference on Artificial
intelligence (IJCAI’91), pages 466–471, 1991.

[33] F. B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security,
3(1):30–50, 2000.

[34] A. Squicciarini, F. Paci, and S. Sundareswaran.
PriMa: An effective privacy protection mechanism for
social networks. In Proceedings of the 5th ACM
Symposium on Information, Computer and
Communications Security (ASIACCS’10), pages
320–323, Beijing, China, April 2010.

[35] A. C. Squicciarini, M. Shehab, and J. Wede. Privacy
policies for shared content in social network sites. The
VLDB Journal, 2010. To appear.

[36] C. Talhi, N. Tawbi, and M. Debbabi. Execution
monitoring enforcement under memory-limitation
constraints. Information and Computation,
206:158–184, 2008.

[37] S. Weeks. Understanding trust management systems.
In Proceedings of the 2001 IEEE Symposium on
Security and Privacy (S&P’01), pages 94–105,
Oakland, California, USA, May 2001.

59

[38] R. Zhang, F. Giunchiglia, B. Crispo, and L. Song.
Relation-based access control: An access control
model for context-aware computing environment.
Wireless Personal Communications, 55(1):5–17,
September 2010.

APPENDIX
A. PROOF

Proposition 12. A relational policy is both OC and AC.

Proof. Suppose P is a relational policy. We show that P
is OC. (The proof of the assertion that P is also AC is sym-
metrical.) Consider the social network G and vertices u, v ∈
V (G). It is obvious that CG(u; v) ⊆ G. There is no i ∈ I
such that Ri(G)\Ri(CG(u; v)) contains a pair (u′, v′) for
which each of u′ and v′ is connected to u in G. Consequently,
by Definition 5, P (CG(u; v))\P (G)∪P (G)\P (CG(u; v)) is an
empty set, and thus P (G)(u, v)⇔ P (CG(u; v))(u, v).

Theorem 13. A policy definable in E is OC.

Proof. Had it not been for the construct @p.φ, this the-
orem could have been proven in a straightforward manner
via structural induction on the abstract syntax tree of a for-
mula. The subtlety arises from the fact that φ may contain
free occurrences of variables.

To address the presence of free variables, we prove a claim
regarding a pair (Σ, φ), where Σ is an environment, and φ
is a formula. A formula φ is said to be Σ-closed iff every
free variable of φ belongs to the domain of Σ. A pair (Σ, φ)
is a closure iff φ is Σ-closed. We also write π(Σ) to denote
the environment Σ′ defined over the same domain as Σ, such
that Σ′(p) = π(Σ(p)).

Claim: Given a closure (Σ, φ) such that Σ(a) is defined, the
following conditions hold:

1. Let π be an isomorphism between social networks
G and G′. Then G,Σ, u
 φ iff G′, π(Σ), π(u)
 φ.

2. G,Σ, u
 φ iff CG(u; Σ(a)),Σ, u
 φ.

The theorem follows directly from the above claim. The
proof of the claim is a straightforward structural induction
on the abstract syntax tree of the formula in the closure.

The proof of Theorem 20 relies on the following lemma.

Lemma 23. Suppose P is both positive and OC. Let B be
the minimal set of birooted graphs to positively induce P .
For all G(u,v) ∈ B, every v′ ∈ V (G)\{v} is connected to u.

The proof of the lemma is elementary.

Theorem 20. Every finitary OC policy is definable in E.

Proof. We describe a sketch of the proof. Suppose P is a
finitary OC policy. As P is positive, let B be the minimal set
of birooted graphs to positively induce P . Since P is finitary,
B is finite. We outline in the following the construction of
an E formula φ for each birooted graph G(u,v) ∈ B such
that, for every G′(u′,v′) ∈ B(U, I), G(u,v) . G

′
(u′,v′) implies

G′, u′, v′ |=E φ. The formula required by the theorem is the
disjunction of the constructed formulas (recall that there are
only finitely many of such formulas as B is finite).

Given birooted graph G(u,v) ∈ B, we construct a corre-
sponding formula φ(u) as follows:

Step 1: We label each vertex by a distinct propositional
symbol. (Since we have countably infinitely many propo-
sitional symbols, we always have enough symbols to
work with.) In the following, we write px for the propo-
sitional symbol associated with a vertex x.

Step 2: Since P is both positive and OC, Lemma 23 implies
that the vertices in G (perhaps with the exception of
v) are connected to u. With u as the root, one can
therefore build a depth-first search tree T . We assume
that the search algorithm may traverse either along or
against the direction of an edge. That is, a tree edge
linking a parent vertex and a child vertex may go in ei-
ther direction. Following standard terminology, we call
the non-tree edges in G back edges. A back edge al-
ways link a descendent vertex with an ancestor vertex.
(Again, a back edge may either point from a descendent
vertex to an ancestor vertex, or point the other direc-
tion.) For more details regarding DFS trees, consult a
standard text such as [11]. Note that v may or may
not be part of T , but all other vertices are in T . Also,
every edge in G is either a tree edge or a back edge.

Step 3: For each vertex x in search tree T , construct a
formula φ(x) = ψ1 ∧ ψ2 ∧@px.(ψ3 ∧ ψ4), where:

• If x is not the root of T (i.e., x 6= u), then ψ1 =
¬px1 ∧ ¬px2 ∧ . . . ∧ pxk , where x1, x2, . . . , xk are
the proper ancestors of x (i.e., excluding x itself).
In case x = u, then ψ1 = >.

• If x = v, then ψ2 = a. Otherwise, ψ2 = ¬a.

• If x is a leaf of T , then ψ3 = >. Otherwise, a
subformula is constructed for each child of x in T .
Suppose (x, y) ∈ Ri(G) is a tree edge linking x with
its child y in T . The subformula corresponding to
y is 〈i〉φ(y). If the tree edge points in the other
direction (i.e., (y, x) ∈ Ri(G)), then we use 〈−i〉
instead. Let ψ1

3 , ψ2
3 , . . . , ψm

3 be the subformulas
constructed in this way. We construct ψ3 = ψ1

3 ⊗
ψ2

3 ⊗ . . .⊗ ψm
3 .

• If x is not incident on a back edge in G, then
ψ4 = >. Otherwise, ψ4 is a conjunction of for-
mulas, one for each back edge linking x with one
of its ancestors. Suppose (x, y) ∈ Ri(G) is one
such back edge. The conjunct corresponding to
this back edge is 〈i〉 py. If the back edge points in
the other direction (i.e., (y, x) ∈ Ri(G)), then we
use 〈−i〉 instead.

The construction proceeds recursively, with φ(y) constructed
prior to φ(x) whenever y is a child of x. The recursion termi-
nates properly because T is a tree of finite size. The intuition
behind the construction is that φ(u) is an encoding of G, in-
cluding both the subgraph T and all the back edges. More
precisely, φ(u) encodes a DFS that an authorization proce-
dure can deploy to confirm that a birooted graph contains a
subgraph isomorphic to the “pattern” G(u,v). The detailed
proof of this last claim is mechanical.

60

