
Satisfiability and Feasibility
in a Relationship-Based Workflow Authorization

Model

Arif Akram Khan and Philip W.L. Fong

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada
{arikhan,pwlfong}@ucalgary.ca

Abstract. A workflow authorization model is defined in the framework
of Relationship-Based Access Control (ReBAC), in which the protection
state is a social network. Armed with this model, we study a new decision
problem called workflow feasibility. The goal is to ensure that the space
of protection states contains at least one member in which the workflow
specification can be executed to completion. We identify a sufficient con-
dition under which feasibility can be decided by a refutation procedure
that is both sound and complete. A formal specification language, based
on a monotonic fragment of the Propositional Dynamic Logic (PDL),
is proposed for specifying protection state spaces. The adoption of this
language renders workflow feasibility NP-complete in the general case
but polynomial-time decidable for an important family of workflows.

Keywords: Relationship-based access control, workflow authorization
model, workflow satisfiability, workflow feasibility, graph homomorphism,
refutation procedure, propositional dynamic logic, model checking.

1 Introduction

In a workflow authorization system [1, 2, 3, 4, 5, 6], permissions are encapsulated
in tasks, such that users acquire permissions by executing a task in a workflow.
This design achieves permission abstraction [7] in the context of business pro-
cesses in enterprise-level systems. Access control policies are usually specified in
the form of constraints over who can execute which tasks in the workflow. An
instantiation of the workflow (i.e., an assignment of tasks to users) must honour
the constraints in order to be considered valid.

Research on workflow authorization models focus on the issue of availability :
i.e., are the permissions encapsulated in a workflow available when needed?
Early studies explored the problem of workflow satisfiability [3, 5]: i.e., can
a workflow be instantiated such that all constraints are satisfied in the current
protection state? In a recent study pursued by Wang and Li [8, 6], a higher
degree of availability is analyzed. Specifically, they [8, 6] studied the problem of

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 109–126, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

110 A.A. Khan and P.W.L. Fong

workflow resiliency1. Suppose an emergency makes some users unavailable,
can the workflow still be completed? A (statically) k-resilient workflow remains
satisfiable even after any k users are removed from the current state.

In this work, we study the problem of workflow feasibility where we ask
whether the permissions can be made available in any “reasonable” protection
state or not. Although the permissions may not be available in the current pro-
tection state (i.e., the workflow is not currently satisfiable), there should be at
least one protection state in a known state space where the workflow is satisfi-
able. This notion can been seen as the dual of resiliency, as explained in Sect. 2.

We envision that the policy developer has a priori knowledge of what the
protection state space looks like. When she is to author a new workflow (or
revise an existing one), she wants to evaluate the workflow, to determine whether
the specification may be overly restrictive with respect to her understanding of
what protection states are known to be in the state space. If the workflow is not
satisfiable in any of the known protection states (i.e., infeasible), then constraints
in the workflow specification must be relaxed.

While previously proposed workflow authorization models are built on top of
a Role-Based Access Control framework [11, 3, 12, 13, 4], recent authors did
recognize that many constraints in a workflow specification are binary relations
over executors of tasks [5, 6]. To facilitate the modelling of interpersonal rela-
tionships, we ground our workflow authorization model in the recently proposed
framework of Relationship-Based Access Control (ReBAC) [14, 15, 16].
In ReBAC, authorization decisions are based on the interpersonal relationships
among users, and the protection state is a social network of users. As we will
be studying satisfiability in the midst of evolving interpersonal relationships, we
find ReBAC to be a natural theoretical basis.

Our specific contributions are the following:

1. We formulate a ReBAC workflow authorization model (Sect. 3). With this
model, we offer a novel characterization of the workflow satisfiability problem
based on graph homomorphism [17] (Sect. 4). This new perspective forms
the basis for the rest of our results.

2. We propose a new decision problem, workflow feasibility, for assessing the
availability of permissions encapsulated in a workflow against a known space
of protection states (Sect. 5).

3. We propose to decide workflow feasibility using a refutation procedure, and
we identify the exact conditions under which refutation is both sound and
complete (Sect. 6).

4. We propose to specify a ReBAC protection state space using a fragment
of Propositional Dynamic Logic [18]. When state spaces are specified
in this way, workflow feasibility is NP-complete in the general case, but
polynomial-time decidable for an important class of workflow specifications
in which constraints are conjunctive (Sect. 7).

1 Resiliency was also studied in a context not related to workflow authorization sys-
tems [9, 10].

Satisfiability and Feasibility in a Relationship-Based Workflow 111

2 Related Works

Workflow Authorization Models. Workflow authorization has received a lot of
attention from the security research community. Early works on workflow au-
thorization focus on synchronizing authorization decisions with the progression
of workflow [2, 1]. These works do not concentrate on workflow constraints
[12, 19, 20, 21, 22]. Role Based Access Control (RBAC) is widely used to model
such constraints [11, 3, 12, 13, 4]. Our work instead focuses on relationship-based
constraints.

Consistency. Bertino et al. developed a sophisticated constraint specification
language [11, 3], in which constraints are clauses in logic programming. A desired
characteristic of a set of constraints is that there should be at least one way to
complete the workflow without breaching any of them. Bertino et al. called this
consistency . They proposed a planning algorithm for assigning users and roles
to tasks in such a way that the workflow constraints are satisfied (i.e., deciding
consistency). The complexity of this algorithm is exponential. Tan et al. defined
consistency in a stricter sense by requiring one complete plan for each authorized
user and role [4]. Their algorithm for deciding consistency is again exponential.

Satisfiability. Although the concept was implicit in the work of Bertino et al.
[11, 3], Crampton first coined the term workflow satisfiability , and gave a
precise, solution-independent definition for it [5]. Specifically, satisfiability refers
to the existence of an instantiation of a workflow specification such that all the
constraints are satisfied. Satisfiability is defined with respect to a fixed protection
state (e.g., for an RBAC system, the protection state consists of a role hierarchy
and a user-role assignment). Wang and Li showed that workflow satisfiability is
NP-complete [8, 6], and NP-completeness remains even by considering only the
simplest types of constraints (i.e., user-step authorization and user-inequality
constraints). They further proved that the problem is fixed-parameter tractable,
meaning that there is a decision procedure for satisfiability which is exponential
only to the number of tasks (but not the size of the protection state). Assuming
the number of tasks is bounded by a small value, the problem is tractable.
Workflow satisfiability is the building block of the feasibility problem. We offer a
novel characterization of satisfiability in terms of graph homomorphism, which
is instrumental in establishing our results.

Resiliency. Wang and Li pointed out availability to be the essence behind the
pursuit of workflow satisfiability, and took it into a higher degree [8, 6]. While
workflow satisfiability examines availability in the current protection state, they
extended the notion to examine availability in any bleak future state when some
users might be absent. They call the new problem workflow resiliency . In
other words, resiliency deals with availability in a state space that includes all
possible protection states reachable from the current one by removing users.

This paper is related to their work in three ways. First, we follow the lead of
Wang and Li in considering availability in the midst of a changing protection

112 A.A. Khan and P.W.L. Fong

state. Second, the problem of workflow feasibility can be seen as the dual of the
resiliency problem. While resiliency is concerned with availability in every state
of a state space induced by adversarial transitions, feasibility is concerned with
availability in at least one state of a state space induced by normal transitions.
Third, we consider not only the change of personnel, but also the evolution of
their interpersonal relationships.

Relationship Based Access Control. We base our workflow authorization model
on Relationship-Based Access Control (ReBAC) [14, 15, 16], which uses inter-
personal relationships among users as the basis of authorization decisions. These
relationships induce a social network that is explicitly tracked by a ReBAC sys-
tem. A ReBAC access control policy specifies how a resource requester shall be
topologically related to the resource owner in the social network in order for ac-
cess to be granted. Sect. 3 shows that our ReBAC workflow authorization model
can capture all constraint types previously discussed in [4, 5, 8, 6].

3 A ReBAC Workflow Authorization Model

Notation. We write dom(f) and ran(f) respectively for the domain and the range
of a function f . We write f : A ⇀ B whenever dom(f) ⊆ A and ran(f) ⊆ B. If
X ⊆ dom(f) then we write f(X) for {f(x) | x ∈ X}. We write 2X for the power
set of X (i.e., the set of all subsets of X).

Protection System. A ReBAC protection system (or simply a system) is
parameterized by two sets, U and L. The set U is a countably infinite set of
user identifiers of the system. At run time, only a finite subset of U is active
(see below). We write u and v for typical members of U . The set L is a finite set
of relation identifiers. Each member of L identifies a type of interpersonal
relationship tracked by the system: e.g., “parent”, “doctor”, etc. It is assumed
that these relations are binary. Note that a relation and its inverse may be named
differently: e.g.,“patient” and “doctor”. We write l for a typical member of L. In
the following, we fix the sets U and L.

Protection State. The state of a ReBAC protection system is characterized
by a social network , which is essentially an edge-labelled directed graph. The
vertices of a social network represent the active users of the system. The directed
edges are labelled with relation identifiers from L. There is a directed edge from
u to v with label l whenever the two participate in the binary relation named
by l. We make these notions formal in the following.

A relational structure (or simply a graph for brevity) is a pair 〈V, {Rl}l∈L〉,
where V ⊆ U is a non-empty, finite set of vertices, and {Rl}l∈L is a family of
binary relations, indexed by the set L. Each binary relation Rl ⊆ V ×V specifies
the vertex pairs that are related in a type-l relationship. Given a relational
structure G, V (G) is the vertex set of G, and Rl(G) is the binary relation with
index l. Given a finite or countably infinite set X , G(X) denotes the set of all
relational structures for which the vertex set is a nonempty, finite subset of X .

Satisfiability and Feasibility in a Relationship-Based Workflow 113

Workflow Specification. Fixing a ReBAC system with a set of relation identifiers
L, a workflow specification W is a 3-tuple 〈T ,≤, C〉, where:
– T is a finite set of task identifiers. A typical member of T is denoted by

t. When a workflow is instantiated, a user u ∈ U will be assigned to execute
each task t ∈ T . User u is said to be the executor of task t.

– ≤ is a partial order over T . It is required that the partial order has both
a least element and a greatest element. Intuitively, if t1 ≤ t2 then t2 must
not be executed before t1. If t1 and t2 are incomparable, then their relative
ordering is not restricted.

– C, the constraint expression , is a positive boolean combination of prim-
itive constraints. A primitive constraint has the form l(ti, tj), where l ∈ L
and ti, tj ∈ T . The constraint requires that the executor of ti must be related
to the executor of tj in a type-l relationship.

An example of a constraint expression is the following:
(
l1(t1, t2)

∨l2(t1, t2)
)
∧l3(t1, t2). Intuitively, the constraint expression is satisfied iff l3(t1, t2)

as well as one of l1(t1, t2) or l2(t1, t2) are satisfied. Formally, each primitive con-
straint is interpreted as a proposition symbol in the propositional formula C. A
truth assignment to the propositional symbols can be represented as a family of
binary relations {Cl}l∈L (where each Cl ⊆ T ×T), such that l(ti, tj) receives an
assignment of true iff (ti, tj) ∈ Cl. Note that, as C does not contain negation,
there is always at least one truth assignment that satisfies C.

A constraint expression is conjunctive if it does not contain disjunctions.

Workflow Instances. Given a workflow specification W = 〈T ,≤, C〉, a function
π : T ⇀ U is called a workflow instance (or simply a plan). Intuitively, π is an
assignment of executors to tasks. If dom(π) = T (i.e., there is an user assignment
for every task), then π is said to be complete. Otherwise, π is partial . If
dom(π) = ∅ then π is empty . Given a protection state G = 〈V, {Rl}l∈L〉, a
workflow instance π is valid for W in G (or simply valid) if the partial
ordering and the constraint expression of W are both satisfied. Formally, π is
valid if the following three conditions are all satisfied: (i) ran(π) ⊆ V ; (ii) if
t1 ≤ t2 and t2 ∈ dom(π) then t1 ∈ dom(π) (such that no preceding task is left
out); (iii) there exists a satisfying truth assignment {Cl}l∈L for the constraint
expression C, such that for every (t1, t2) ∈ dom(π)×dom(π), if (t1, t2) ∈ Cl then
(π(t1),π(t2)) ∈ Rl.

Example 1. A hypothetical Assignment Evaluation Workflow needs to be run
against a social network (Fig. 1) of an academic institution. Bob is teaching a
class in which both Alice and Elham are enrolled, and for which both Charlene
and Daniel are Teaching Assistants (TAs). In the social network, two vertices
are related by a Not-Equal relationship iff they are distinct. Such edges are not
displayed in Fig. 1 to preserve cleanliness.

Consider the workflow specification W with tasks and constraints depicted in
Fig. 2. The tasks are ordered as in the following:

Submission < Marking < Reviewing < Grading

114 A.A. Khan and P.W.L. Fong

Alice

Charlene

Bob

Daniel

Instructor

Teaching-AssistantTeaching-Assistant

Elham

Instructor

Fig. 1. Social Network without != edges

Submission Grading

Marking
Reviewing

Instructor

Teaching-AssistantTeaching -Assistant

Not-Equal

Fig. 2. Tasks and Constraints

The constraint expression is the conjunction of the following four primitive con-
straints:

1. The submitted assignment is graded by the instructor of the submitter:

Instructor(Submission,Grading)

2. The assignment is marked by a TA assisting the instructor:

Teaching-Assistant(Grading,Marking)

3. Reviewing is performed by a TA of the instructor:

Teaching-Assistant(Grading,Reviewing)

4. The TA who reviews the marking is different from the TA who performs the
marking:

Not-Equal(Reviewing,Marking)

The four edges in Fig. 2 denote these four primitive constraints. The following
workflow instance is complete and valid for W in G:

[Submission *→ Alice,Grading *→ Bob,Marking *→ Charlene,Reviewing *→ Daniel]

Expressiveness. We compare our workflow authorization model with those of
Crampton et al. [4, 5] and Wang and Li [8, 6]. The goal is to point out that, the
present formulation of ReBAC workflow authorization is sufficient for expressing
all constraints that appeared in the literature.

The first kind of constraints we discuss about is role-step authorization
constraints (what Wang and Li later called user-step authorization con-
straints). The idea is to associate with a task a unary predicate specifying the
set of users who can carry out that task. This can be captured readily in our
model, as every unary user predicate P can be represented by a binary relation
RP , such that P (u) holds whenever (u, u) ∈ RP .

A second kind of constraints in [4, 5] (called entailment constraints) has
the form (D, t1, t2, ρ), where D ⊆ V (G), (t1, t2) ∈ T × T , and ρ is a binary
relation. Such a constraint is simply a binary relation between the executors of
t1 and t2 which can be encoded by a dedicated binary relation in ReBAC.

Satisfiability and Feasibility in a Relationship-Based Workflow 115

A third kind of constraints in [4] is cardinality constraints, which come in
two variants: local and global. A local cardinality constraint can be encoded
as a number of entailment constraints [23]. A global cardinality constraint de-
mands that at least k distinct executors must be involved in the execution of
some n tasks. Such a constraint can be expressed as a disjunction of

(n
k

)
con-

junctive constraints. Each of the conjunctive constraints demands that k of the
n tasks are assigned distinct executors.

Wang and Li [8, 6] have simple binary constraints ρ(t1, t2), which is iden-
tical to our primitive constraints. Their universal constraints ρ(∀X, t) can be
expressed as a conjunction of primitive constraints (one for each task in X). The
existential constraints ρ(∃X, t) can be encoded as a disjunction of primitive
constraints (one for each task in X).

4 Workflow Satisfiability as Graph Homomorphism

Workflow satisfiability is the building block of workflow feasibility. In this sec-
tion, we point out a novel connection between workflow satisfiability and graph
homomorphism that will be used extensively in the sequel.

A workflow specification W is satisfiable in a protection state G if there is
a complete workflow instance π that is valid for W in G.

Given a workflow specification W = 〈T ,≤, C〉, a relational structure 〈T ,
{Cl}l∈L〉 is a task network whenever {Cl}l∈L is a satisfying truth assignment
for the constraint expression C. A task network is minimal if no proper sub-
graph corresponds to a satisfying truth assignment for C. Let TN (W) be the
set of all minimal task networks for W . Note that if C is conjunctive, then
TN (W) contains exactly one minimal task network. Fig. 2 shows the minimal
task network for the workflow in Example 1.

A homomorphism from a relational structure G = 〈V, {Rl}l∈L〉 to another
relational structure G′ = 〈V ′, {R′

l}l∈L〉 is a function h : V → V ′ such that
(u, v) ∈ Rl implies (h(u), h(v)) ∈ R′

l. If such a function h exists, then G is
homomorphic to G′, and we write G → G′. If, in addition, the function h
is a bijection, and h−1 is a homomorphism from G′ to G, then h is called an
isomorphism , and G is isomorphic to G′. In this case we write G ∼= G′. We
also write h(G) for the homomorphic image of G, which is defined as the
relational structure 〈h(V), {R′′

l}l∈L〉 such that R′′
l = {(h(u), h(v)) | (u, v) ∈

Rl}. Note that h(G) is a subgraph of G′. Specifically, the homomorphic image
h(G) consists of only those vertices and edges in G′ to which vertices and edges
of G are mapped. Obviously, G → h(G) via h. The following proposition relates
workflow satisfiability and homomorphism.

Proposition 1. A workflow specification W is satisfiable in protection state G
iff there exists a task network in TN (W) that is homomorphic to G.

The proposition is simply a corollary of (a) the definition of valid complete
workflow instances as well as (b) the observation that a workflow is satisfiable
iff it is satisfiable via a minimal task network (i.e., a member of TN (W)).

116 A.A. Khan and P.W.L. Fong

Deciding if one graph (or relational structure in general) is homomorphic to
another is known to be NP-complete [17]. Thus workflow satisfiability for ReBAC
is NP-hard even if the constraint expression is conjunctive. Moreover, the general
problem is NP-complete since a nondeterministic Turing Machine can decide a
problem instance in two steps: (i) guess a satisfying truth assignment for the
constraint expression and a homomorphic mapping from the corresponding task
network to the social network; (ii) verify the guesses (which takes polynomial
time). This lower bound is not a new result [6]. The purpose here is to establish
the connection between workflow satisfiability and graph homomorphism.

5 Workflow Feasibility

Workflow satisfiability assesses availability against the current protection state.
We examine an alternative way of evaluation in this section by determining
availability in the presence of state changes. We ask, is the workflow specification
reasonably formulated, such that it can be instantiated in some protection state
(among all possible states in the state space)? If yes, we say that the workflow
specification is feasible. As relationships change over time, a workflow that is
unsatisfiable in one protection state can become satisfiable after a period of time.
So the lack of availability in the current state does not necessarily mean that the
permissions encapsulated in the workflow can not be made available ever. That
is why we need to assess feasibility.

Not every possible social network is in the state space. Generally there are
some topological restrictions governing the articulation of relationships in the so-
cial networks of a given business domain. These restrictions render some states
(i.e., social networks) illegitimate. Social networks containing such an inconsis-
tency do not belong to the state space. So, the definition of feasibility considers
satisfiability with respect to a well-defined family of legitimate social networks.
As we shall see, such a family is specified in terms of what we call a graph
predicate.

Example 2. The following are examples of topological restrictions.

1. Antitransitivity . Consider a relational structure describing the relation-
ships among manufacturers, distributors and retailers. Suppose that there is
a single relation supply, which relates a supplier to a consumer. A manufac-
turer shall not compete with its distributors. So we demand supply to be an
antitransitive relation. That is, there shall not be x, y and z for which x
supplies goods to y, y supplies goods to z, but x also supplies goods directly
to z.

2. Acyclicity . Suppose the supervise relation relates a supervisor to a person
under her supervision. We expect this relation to be acyclic. That is, the
social network induced by this relation shall not contain a directed cycle.

3. Bipartiteness. Say the vertices of a social network are firms. To prevent
conflicts of interests, the firms that any firm deals with shall not deal with
one another. To ensure this, the deals-with relation shall form a bipartite

Satisfiability and Feasibility in a Relationship-Based Workflow 117

graph (assuming deals-with is symmetric). A bipartite graph is a graph in
which vertices can be divided into two disjoint partitions, such that no two
vertices in the same partition are adjacent.

5.1 Graph Predicates

A graph predicate is a boolean function P with type G(N) → {0, 1}, where N is
the set of natural numbers. That is, given a relational structure G with vertices
labelled by natural numbers, the predicate P (G) returns a boolean value. In the
following, we consider only graph predicates that are topology based [24]: i.e.
G ∼= G′ implies P (G) = P (G′). A topology-based graph predicate ignores vertex
labelling. As vertex labelling is not important, we overload our notation such
that graph predicates can be applied to either social networks or task networks.
The negation of a graph predicate P , denoted by ¬P , is the graph predicate
defined such that (¬P)(G) = 1 iff P (G) = 0.

5.2 Families of Social Networks

The family of relational structures induced by a graph predicate P is defined as
follows: GP (X) = {G ∈ G(X) | P (G) = 1}. Intuitively, GP (X) is the set of all
relational structures from G(X) that satisfy the graph predicate P . When the
state space is defined in this way, the graph predicate is called a characteristic
predicate of the state space. Similarly, a family of relational structures can also
be induced by a violation predicate (which is the negation of the character-
istic predicate) as G−

P (X) = {G ∈ G(X) | P (G) = 0}. Intuitively, a relational
structure is excluded from the family iff it satisfies the violation predicate. We
will make extensive use of violation predicates in the next section.

5.3 Workflow Feasibility Defined

A workflow specification W is said to be feasible for the family of social net-
works induced by a characteristic predicate P , iff there is a social network
G ∈ GP (U) such that W is satisfiable in G. We require P to be decidable in
the following definition of workflow feasibility as a decision problem.

WORKFLOW FEASIBILITY
Instance: Workflow specification W and decidable graph predicate P .
Question: Is W feasible for graph family GP (U)?

A problem instance can also be specified with a decidable violation predicate.
The reason is that the negation of a decidable graph predicate is also decidable.

Formulated in its full generality, workflow feasibility is recursively enumer-
able2. By placing further constraints on the choice of characteristic predicates,
workflow feasibility can be rendered decidable, a topic to which we now turn.

2 Feasible workflows can be enumerated as follows. Enumerate all pairs (W, G), where
W is a workflow specification and G ∈ G(U). For each pair, check that (i) P (G) and
(ii) W is satisfiable in G. Output W if both checks succeed.

118 A.A. Khan and P.W.L. Fong

6 Feasibility via Refutation

While we have argued that feasibility is an important criterion of availability,
the feasibility of a given workflow is not known to be decidable in the general
case. In this section, we propose a refutation procedure to decide feasibil-
ity. We motivate our approach as follows. Under some special conditions to be
stated below, if a task network satisfies a violation predicate P , then every social
network that it is homomorphic to will also satisfy P . Therefore, if every task
network in TN (W) satisfies the violation predicate, then we can safely conclude
that the workflow is infeasible. The refutation procedure is summarized below:

To determine if W is feasible for G−
P (U), evaluate P (G) for every task

network G ∈ TN (W). If the test is positive in every case, then declare
W “infeasible”; otherwise declare W “maybe feasible”.

The procedure always terminates because there is only a finite number of truth
assignments and P is decidable. It is a refutation procedure because it employs
a violation predicate to detect if W is unsatisfiable for any member of G−

P (U).
The examples below show that the refutation procedure is not always sound.

Example 3. Here are two violation conditions that can cause refutation to make
unsound judgement.

1. Connectedness . Consider the (irreflexive, symmetric) colleague relation in
an organizational setting where it is an integrity requirement that the graph
induced by the colleague relation must be connected. It would be an unsound
decision by the refutation procedure to declare a task network infeasible when
two tasks are found to be disconnected, as the two tasks could be assigned
to users that are connected in the social network by other ways.

2. Quasi-reflexivity . Suppose clerk is a unary predicate over users, marking
off those users who are in the role of an administrative assistant. Suppose
further that we would like to impose clerk as a role-step authorization con-
straint. Sect. 3 suggests that we can do so by encoding clerk as a binary
relation. Such a relation must be quasi-reflexive (i.e., xRy implies x = y).
It would be an unsound decision by the refutation procedure to declare a
task network infeasible when two distinct tasks are found to be related by
the clerk relation, as the two tasks could be assigned to the same user.

Therefore, some special conditions must be met in order for refutation to be
sound. Sect. 6.1 specifies these conditions. Sect. 6.2 then considers the issue of
completeness: when the refutation procedure fails to declare that a workflow
specification W is infeasible, can we then conclude that W is feasible?

6.1 Soundness

A graph predicate P is invariant over homomorphism if, for every relational
structures G and H , P (G) and G → H jointly imply P (H). Now we can express
the condition under which refutation is sound.

Satisfiability and Feasibility in a Relationship-Based Workflow 119

Theorem 1 (Soundness). The refutation procedure is sound if the violation
predicate P is invariant over homomorphism.

The process of establishing that a violation predicate is invariant over homo-
morphism can be tedious. We therefore streamline this process by decomposing
invariance over homomorphism into two easily checkable conditions: (a) mono-
tonicity and (b) invariance over vertex contraction . We define these two
conditions in the sequel, and give examples of how they can be used for demon-
strating that a violation predicate is invariant over homomorphism.

Monotonicity. A graph predicate P is monotonic if, when P is evaluated to true
for a relational structure G, adding vertices and edges to G will not cause P to
be evaluated to false. Formally, a graph predicate P is monotonic iff, for every
relational structure G and H , G ⊆ H implies P (G) ⇒ P (H). In Example 3.1,
the violation predicate is not monotonic, causing refutation to become unsound.

Invariance over Vertex Contraction. Intuitively, vertex contraction is an
operation that merges two vertex in a relational structure. Formally, given a re-
lational structure G ∈ G(X) and two vertices u, v ∈ V , we denote by VC (G, u, v)
the graph G′ = 〈V ′, {R′

l}l∈L〉, where: V ′ = V (G) \ { v } and R′
l = {(hu,v(x),

hu,v(y)) | (x, y) ∈ Rl(G)}. Here, the function hu,v : V → V ′ is defined as fol-
lows: hu,v(x) = u if x = v, otherwise hu,v(x) = x. In summary, VC (G, u, v) is
obtained from G by “folding” v into u. All the edges previously joining v now
join u instead.

A graph predicate P is invariant over vertex contraction iff P (G) ⇒
P (VC (G, u, v)). Example 3.2 shows a violation predicate that is not invariant
over vertex contraction, thereby causing refutation to become unsound.

Invariance over Homomorphism. To show that a graph predicate P is
invariant over homomorphism, one could instead demonstrate that P is both
monotonic and invariant over vertex contraction.

Theorem 2. A graph predicate P is invariant over homomorphism iff it is both
monotonic and invariant over vertex contraction.

Proving invariance over homomorphism is usually tedious. Monotonicity, how-
ever, is usually quite trivial to establish. Similarly, invariance over vertex con-
traction is also quite manageable, as one only focuses on the effect of “merging”
a pair of vertices.

Example 4. Consider the violating predicates for the restrictions in Example 2.

1. Antitransitivity . The violation predicate detects if there exist vertices x,
y and z (not necessarily distinct), for which supply holds between x and y,
y and z, as well as x and z.

2. Acyclicity . The violation predicate returns true whenever the graph con-
tains a directed cycle.

120 A.A. Khan and P.W.L. Fong

3. Bipartiteness. The violation predicate returns true whenever the graph
contains an odd-length cycle [25, Theorem 1.2].

These violation predicates are monotonic and invariant over vertex contraction.
In each case, violation corresponds to the presence of a specific graph structure,
and thus monotonicity follows immediately. The violation of antitransitivity is
invariant over vertex contraction: since the vertices x, y and z are not necessarily
distinct, merging two of them preserves violation. A similar argument applies to
the violation of acyclicity (resp. bipartiteness): contracting two vertices in a cycle
(resp. odd cycle) produces a shorter cycle (resp. a shorter cycle of odd length).

6.2 Completeness

When the refutation procedure declares a workflow to be “infeasible”, soundness
guarantees that the declaration must be correct. Another possible declaration is
“maybe feasible”. If the declaration of “maybe feasible” always implies that the
workflow is feasible, then we say that the refutation procedure is complete. In
a technical sense, the refutation procedure is complete.

Theorem 3 (Completeness). The refutation procedure is complete if the vi-
olation predicate P is invariant over homomorphism.

In practice, a violation predicate that precisely characterizes the state space may
be highly complex, and thus it needs not be invariant over homomorphism. A
pragmatic policy developer will be wise to use another predicate P ′ to approxi-
mate P , in such a way that (a) P ′(G) ⇒ P (G) for every G ∈ G(U), and (b) P ′

is invariant over homomorphism. In this case, the refutation procedure will be
sound but not complete, as ¬P ′(W) does not guarantee ¬P (W).

7 Using PDL for Violation Specification

This section examines the specification of violation predicates using a formal
specification language. We have two design objectives for this language. The first
objective concerns the appropriateness of the specified predicates. In order for
the refutation procedure to be sound, violation predicates shall be invariant over
homomorphism. We therefore demand the specification language to express only
graph predicates that are invariant over homomorphism. The second objective
concerns the efficiency of evaluating the specified predicates. We demand that the
specification language captures only polynomial-time checkable graph predicates.

To meet both objectives, we adopt a monotonic fragment of the Propositional
Dynamic Logic (PDL) [18] for specifying violation predicates. As we shall see,
our PDL-based specification language is invariant over homomorphism, and has
a polynomial-time model checking algorithm [26].

We have also introduced minor adaptations to the PDL for our purposes.
Specifically, we observe in Example 4 that many violation predicates detect the
presence of cyclic substructures. Our adaptation of PDL can be used for speci-
fying the existence of such substructures.

Satisfiability and Feasibility in a Relationship-Based Workflow 121

7.1 Syntax and Semantics of PDL

We provide here a brief introduction to the syntax and semantics of the PDL
fragment on which our specification language is based.

Suppose there is a finite or countably infinite set Prop of propositional sym-
bols. The monotonic PDL fragment involves two types of constructs: formulas
and relations. The syntax of formulas (φ, ψ) and relations (α, β) are defined
inductively in the following:

α,β ::= l | −α | α ∪ β | α;β | α∗

φ,ψ ::= 2 | p | φ ∨ ψ | φ ∧ ψ | 〈α〉φ

where l ∈ L is a relation identifier, and p ∈ Prop is a propositional symbol.
Informally, relations are regular expressions with the relation identifiers as the
alphabet. Specifically, our regular expression language offers the following rela-
tion combinators: converse (−), alternation (∪), concatenation (;) and Kleene
star (∗). Lastly, formulas are modal logic formulas with relations as modalities.
Note that we only consider monotonic constructs in the language. Note also
that we do not include the “φ?” relation in PDL (originally for constructing
conditional relations). As we shall see, this last design decision has a significant
impact on the complexity of model checking.

The formulas and relations are interpreted over a relational structure G =
〈V, {Rl}l∈L〉 and a labelling function L : Prop → 2V . The labelling function
specifies for each propositional symbol the set of vertices for which the propo-
sitional symbol is true. Two interpretation functions µG and ρG,L respectively
provide the interpretations of relations and formulas (for the specific G and L).
Specifically, µG(α) ⊆ V × V is a binary relation over the vertex set of G. Simi-
larly, ρG,L(φ) ⊆ V identifies the set of vertices in G for which the formula φ is
satisfied. When the choice of G and L is clear, we simply write µ(α) and ρ(φ)
for brevity. The semantics of the language is defined as follows.

µ(l) = Rl ρ(2) = V

µ(−α) = µ(α)−1 ρ(p) = L(p)

µ(α ∪ β) = µ(α) ∪ µ(β) ρ(φ ∨ ψ) = ρ(φ) ∪ ρ(ψ)

µ(α;β) = µ(α) ◦ µ(β) ρ(φ ∧ ψ) = ρ(φ) ∩ ρ(ψ)

µ(α∗) = µ(α)∗ ρ(〈α〉φ) = {u ∈ V | ∃v ∈ ρ(φ) . (u, v) ∈ µ(α)}

In words, l is interpreted simply as the binary relation Rl in G. The converse
−α is interpreted as the inverse of the relation represented by α. Alternation
α ∪ β is interpreted as the union of the relations represented by α and β. The
concatenation α;β is the relational composition of the relations represented by
α and β. The Kleene star α∗ is interpreted as the reflexive transitive closure of
the relation represented by α. The constant formula 2 is satisfied by all vertices
in G. The propositional symbol p is satisfied by the vertices in L(p). Disjunction
and conjunction are interpreted as set union and intersection. The formula 〈α〉φ
is satisfied by those vertices with an α-neighbor that in turn satisfies φ.

122 A.A. Khan and P.W.L. Fong

We write G,L, u |= φ whenever u ∈ ρG,L(φ). When this is the case, the graph
pattern specified by φ is satisfied in G at vertex u with labelling function L.

7.2 Specifying Violation Predicates with PDL

Without using propositional symbols (i.e., Prop = ∅), the above language al-
lows us to write formulas that represent path patterns (with 2 as the pattern
for the empty path). Recall we observe from Example 4 that many practical
violation predicates detect cyclic structures in the social network. We therefore
customize the monotonic PDL fragment above for representing cyclic structures.
Specifically, we adopt exactly one propositional symbol org, called the anchor .
That is, we set Prop = {org}. The anchor proposition org names the vertex from
which the search for cyclic pattern begins3. In this way, we can write formulas
that detect if the initial vertex is revisited, and thus a cycle is found. Formally,
let [org *→ u] denote the labelling function L : {org} → U for which L(org) = u.
Then the following checks if the cyclic structure specified by φ exists in G by
initiating the search from the vertex u.

G, [org *→ u], u |= φ

We write !φ" to denote the graph predicate that takes a graph G as argument
and returns true iff:

there exists u ∈ V (G) such that G, [org *→ u], u |= φ.

That is, !φ" searches for a vertex u ∈ V (G) at which φ is satisfied. The space of
protection states induced by φ is therefore G−

!φ"(U).

Example 5. The formulas below specify the violation predicates in Example 4.

1. Antitransitivity. Note the use of converse (−) in this example.

〈supply; supply;−supply〉org

2. Acyclicity. Note the use of Kleene star (∗) in this example.

〈supervise; supervise∗〉org

3. Bipartiteness. Let l be a shorthand for deals-with. Note the use of alterna-
tion (∪) in this example.

〈(l ∪ −l); ((l ∪ −l); (l ∪ −l))∗〉org

The following is a corollary of a well-known result [28, Chapter 2].

Theorem 4. For every formula φ in the above monotonic fragment of PDL,
!φ" is invariant over homomorphism.

Invariance is due to our choice of a monotonic fragment of PDL. Therefore,
specifying violation predicates with our PDL fragment preserves the soundness
of refutation.
3 A propositional symbol that names a specific vertex is called a nominal in hybrid
logic [27, 16].

Satisfiability and Feasibility in a Relationship-Based Workflow 123

7.3 Model Checking

We show that evaluating a graph predicate !φ" takes polynomial time. This
involves testing the |= relation at every vertex of the graph argument. To this
end, we describe an adaptation of Lange’s PDL model checking algorithm [26].

Suppose G = 〈V, {Rl}l∈L〉. Let n = |V |. We represent a binary relation over
V as a boolean square matrix (i.e., an n × n matrix with boolean entries).
Specifically, µ(α) returns such a matrix. We also represent a subset of V by a
boolean column vector of size n. Specifically, ρ(φ) returns such a column vector.

With this data representation, µ can be evaluated inductively using matrix
operations. As the base case, µ(l) is simply the boolean matrix representation
of Rl. Now, µ(−α) involves transposing a matrix, and µ(α∪β) involves bitwise-
or. Both operations take O(n2) time. Next, µ(α;β) involves (boolean) matrix
multiplication, while µ(α∗) involves reflexive transitive closure. Both operations
are O(n3). In summary, O(n3) time is needed for each relation subexpression.

In a similar fashion, ρ can be evaluated inductively. The picture, however, is
sightly more complex. The evaluation of ρG,[org&→u] must be performed for every
u ∈ V . The first base case ρG,[org&→u](2) is a column vector with all entries set
to 1. The second base case ρG,[org&→u](org) is a column vector with a 1 in u’s row,
and 0 everywhere else. The evaluation of ρG,[org&→u](φ∨ψ) and ρG,[org&→u](φ∧ψ)
involve bitwise-or and bitwise-and respectively, both are O(n) operations. The
evaluation of ρG,[org&→u](〈α〉φ) involves the multiplication of the n × n matrix
µG(α) with the column vector ρG,[org &→u](φ), which is an O(n2) operation. In
summary, evaluating ρG,[org &→u](φ) for a single u ∈ V is an O(n2) operation.
Therefore, evaluating ρG,[org &→u](φ) for every u ∈ V takes O(n3) time.

Since the processing of each subexpression or subformula takes O(n3) time,
and there are all together |φ| subexpressions and subformulas, the evaluation of
!φ" takes O(|φ|× n3) time. Although a third-degree polynomial is involved, the
complexity is actually quite reasonable, as the refutation procedure evaluates
the violation predicate against task networks rather than social networks. While
the latter typically have an intimidating size, the former have a much more
manageable size. This same assumption regarding the small number of tasks in
a typical workflow has been used by other authors also [6].

Our design choice of not including the “φ?” construct from PDL pays dividend
in the time complexity of model checking. Had we included that construct, the
interpretation function µG would be parameterized not only by G, but also
the labelling function (as in µG,L). As a result, we would have to perform an
O(n3) operation for every relation subexpression and for every labelling function
[org *→ u], where u ∈ V . The final tally for the time complexity of model checking
would then be O(|φ| × n4) instead of our current O(|φ| × n3).

7.4 Complexity of Refutation

When the constraint expression is conjunctive, the minimal task network can be
readily constructed from the constraint expression, and thus refutation can be
conducted in polynomial time by applying the above model checking algorithm

124 A.A. Khan and P.W.L. Fong

over the minimal constraint network. But with this restriction of expressive-
ness, certain constraints such as global cardinality constraints [4] and existential
constraints [8, 6] can not be expressed.

The following theorem asserts that refutation using PDL formulas is compu-
tationally hard for general constraint expressions.

Theorem 5. Given a workflow W and a PDL formula φ, deciding if !φ"(G) is
true for every task network G ∈ TN (W) is coNP-complete.

This result implies that workflow feasibility, of which refutation is a co-problem,
is NP-complete when the violation predicate is specified in PDL. Intuitively,
feasibility is hard in the general setting because it involves a search for a non-
violating task network among all task networks. In contrast, there is only one
minimal task network when the constraint expression is conjunctive, and it takes
only polynomial time to check if this minimal task network satisfies a graph
predicate that is specified in PDL.

8 Conclusion and Future Work

We introduced a workflow authorization model in the framework of ReBAC.
The model offers a fresh characterization of the workflow satisfiability prob-
lem in terms of graph homomorphism. Armed with this new understanding, we
studied a new decision problem called workflow feasibility, which is the dual of
workflow resiliency. A refutation procedure was proposed for deciding feasibility.
The refutation procedure was shown to be sound and complete if the space of
protection states can be characterized by a violation predicate that is invariant
over graph homomorphism. To facilitate verification, we proposed two verifi-
cation conditions that jointly imply invariance over homomorphism. We also
proposed the adoption of a monotonic fragment of PDL as a language for spec-
ifying the violation predicate. We showed that with this specification language
the time complexity of refutation is polynomial for conjunctive constraints, and
coNP-complete for general constraint expressions.

We highlight some possible extensions of this work. The monotonic fragment
of PDL used in this paper employs the anchor nominal org for detecting revisited
vertices. A possible extension of this feature involves the hybridization of the
monotonic fragment of PDL [27, 16]. This extension will allow us to capture
complex graph patterns while maintaining invariance over homomorphism. It is
unknown how this extension will impact the time complexity of model checking.

We pointed out that feasibility can be seen as the dual of resiliency. This
perspective generates a new form of resiliency problem, in which deformative
transitions do not remove users (as in [8, 6]), but instead remove relationships
(i.e., the social network is evolving). This problem has not been studied in ex-
isting literature. As user removal can be simulated via relationship removal (i.e.,
presence of users can be captured by a unary predicate present, which in turn
can be encoded using a binary relation), such a problem is a generalization of
Wang and Li’s notion of resiliency in [8, 6].

Satisfiability and Feasibility in a Relationship-Based Workflow 125

Acknowledgments. This work is supported in part by an NSERC Discovery
Grant and a Canada Research Chair.

References

1. Thomas, R.K., Sandhu, R.S.: Task-based Authorization Controls (TBAC): A Fam-
ily of Models for Active and Enterprise-Oriented Autorization Management. In:
Proceedings of the 11th IFIP WG11.3 Working Conference on Database and Ap-
plication Security (DAS 1998), Lake Tahoe, California, USA, pp. 166–181 (1998)

2. Atluri, V., Huang, W.K.: An Authorization Model for Workflows. In: Martella, G.,
Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp.
44–64. Springer, Heidelberg (1996)

3. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of autho-
rization constraints in workflow management systems. ACM Transactions on In-
formation and System Security 18(1), 65–104 (1999)

4. Tan, K., Crampton, J., Gunter, C.A.: The consistency of task-based authoriza-
tion constraints in workflow systems. In: Proceedings of the 17th IEEE Workshop
on Computer Security Foundations (CSFW 2004), pp. 155–169. IEEE Computer
Society, Washington, DC (2004)

5. Crampton, J.: A reference monitor for workflow systems with constrained task
execution. In: Proceedings of the tenth ACM Symposium on Access Control Models
and Technologies (SACMAT 2005), Stockholm, Sweden, pp. 38–47 (2005)

6. Wang, Q., Li, N.: Satisfiability and resiliency in workflow authorization systems.
ACM Transactions on Information and System Security 13(4), 40:1–40:35 (2010)

7. Baldwin, R.W.: Naming and grouping privileges to simplify security management
in large databases. In: Proceedings of the 1990 IEEE Symposium on Security and
Privacy (S&P 1990), Oakland, CA, USA, pp. 116–132 (May 1990)

8. Wang, Q., Li, N.: Satisfiability and Resiliency in Workflow Systems. In: Biskup, J.,
López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 90–105. Springer, Heidelberg
(2007)

9. Li, N., Tripunitara, M.V., Wang, Q.: Resiliency policies in access control. In: Pro-
ceedings of the 13th ACM Conference on Computer and Communications Security
(CCS 2006), Alexandria, VA, USA, pp. 113–123 (October 2006)

10. Li, N., Wang, Q., Tripunitara, M.: Resiliency policies in access control. ACM Trans-
actions on Information and System Security 12(4) (April 2009)

11. Bertino, E., Ferrari, E., Atluri, V.: A flexible model supporting the specification
and enforcement of role-based authorization in workflow management systems. In:
Proceedings of the Second ACM Workshop on Role-based Access Control (RBAC
1997), Fairfax, Virginia, United States, pp. 1–12 (1997)

12. Ahn, G.J., Sandhu, R., Kang, M., Park, J.: Injecting RBAC to secure a web-
based workflow system. In: Proceedings of the Fifth ACM Workshop on Role-Based
Access Control (RBAC 2000), Berlin, Germany, pp. 1–10 (2000)

13. Kandala, S., Sandhu, R.: Secure role-based workflow models. In: Proceedings of
IFIP WG11.3 Working Conference on Database and Application Security (DAS
2001), Niagara, Ontario, Canada, pp. 45–58 (2001)

14. Fong, P.W.L.: Relationship-based access control: protection model and policy lan-
guage. In: Proceedings of the First ACM Conference on Data and Application
Security and Privacy (CODASPY 2011), San Antonio, TX, USA, pp. 191–202
(February 2011)

126 A.A. Khan and P.W.L. Fong

15. Fong, P.W.L., Siahaan, I.: Relationship-based access control policies and their pol-
icy languages. In: Proceedings of the 16th ACM Symposium on Access Control
Models and Technologies (SACMAT 2011), Innsbruck, Austria, pp. 51–60 (June
2011)

16. Bruns, G., Fong, P.W.L., Siahaan, I., Huth, M.: Relationship-based access con-
trol: Its expression and enforcement through hybrid logic. In: Proceedings of the
2nd ACM Conference on Data and Application Security and Privacy (CODASPY
2012), San Antonio, TX, USA (February 2012)

17. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press (2004)
18. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-

nal of Computer and System Sciences 18(2), 194–211 (1979)
19. Casati, F., Castano, S., Fugini, M.: Managing workflow authorization constraints

through active database technology. Information Systems Frontiers 3(3), 319–338
(2001)

20. Crampton, J., Huth, M.: Synthesizing and verifying plans for constrained work-
flows: Transferring tools from formal methods. In: Proceedings of the 2011 Work-
shop on Verification and Validation of Planning and Scheduling Systems (June
2011)

21. Huang, W.K., Atluri, V.: Secureflow: a secure Web-enabled workflow management
system. In: Proceedings of the Fourth ACMWorkshop on Role-based Access Control
(RBAC 1999), Fairfax, Virginia, United States, pp. 83–94 (1999)

22. Warner, J., Atluri, V.: Inter-instance authorization constraints for secure workflow
management. In: Proceedings of the Eleventh ACM Symposium on Access Control
Models and Technologies (SACMAT 2006), Lake Tahoe, California, USA, pp. 190–
199 (2006)

23. Crampton, J.: On the satisfiability of constraints in workflow systems. Technical
Report RHUL-MA-2004-1, Department of Mathematics, Royal Holloway, Univer-
sity of London (2004)

24. Fong, P.W.L., Anwar, M., Zhao, Z.: A Privacy Preservation Model for Facebook-
Style Social Network Systems. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 303–320. Springer, Heidelberg (2009)

25. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland
(1976)

26. Lange, M.: Model checking propositional dynamic logic with all extras. Journal of
Applied Logic 4(1), 39–49 (2006)

27. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter,
F. (eds.) Handbook of Modal Logic. Elsevier (2007)

28. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge (2002)

	Satisfiability and Feasibility in a Relationship-Based Workflow Authorization Model
	Introduction
	Related Works
	A ReBAC Workflow Authorization Model
	Workflow Satisfiability as Graph Homomorphism
	Workflow Feasibility
	Graph Predicates
	Families of Social Networks
	Workflow Feasibility Defined

	Feasibility via Refutation
	Soundness
	Completeness

	Using PDL for Violation Specification
	Syntax and Semantics of PDL
	Specifying Violation Predicates with PDL
	Model Checking
	Complexity of Refutation

	Conclusion and Future Work
	References

